JP2021170443A - Induction heating coil manufacturing method - Google Patents

Induction heating coil manufacturing method Download PDF

Info

Publication number
JP2021170443A
JP2021170443A JP2020072409A JP2020072409A JP2021170443A JP 2021170443 A JP2021170443 A JP 2021170443A JP 2020072409 A JP2020072409 A JP 2020072409A JP 2020072409 A JP2020072409 A JP 2020072409A JP 2021170443 A JP2021170443 A JP 2021170443A
Authority
JP
Japan
Prior art keywords
conductor portion
heating
induction heating
heated
heating coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020072409A
Other languages
Japanese (ja)
Inventor
康博 山本
Yasuhiro Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020072409A priority Critical patent/JP2021170443A/en
Publication of JP2021170443A publication Critical patent/JP2021170443A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide an induction heating coil manufacturing method that enhances the tensile strength of a heating conductor part and brings electric inductivity into an appropriate state.SOLUTION: An induction heating coil 1 includes an integrally formed heating conductor part 11, other conductor parts 12, 13 formed separately from the heating conductor part 11, and a joint 14 for connecting the heating conductor part 11 and the other conductor parts 12, 13 together. The heating conductor part 11 is composed of a material including copper and at least one of zirconium, chromium and silver as materials other than copper, the other materials being included 10% or less in total, and the electric conductivity is made to be lower than those of the other conductor parts 12, 13. The manufacturing method includes the steps of: enhancing the tensile strength by applying heat treatment to the heating conductor part 11; and connecting the heating conductor part 11 and the other conductor parts 12, 13 together thereafter.SELECTED DRAWING: Figure 1

Description

本発明は、誘導加熱コイルの製造方法に関する。 The present invention relates to a method for manufacturing an induction heating coil.

従来、このような分野の技術として、特開2018−010876号公報がある。この公報に記載された誘導加熱コイルの製造方法では、誘導加熱コイルを金属積層造型で、加熱導体部と、その他の導体部と、を一体形成することが記載されている。なお、この誘導加熱コイルは、コイル部、電力供給部、冷媒通路は、金属積層造形法を用いて形成されており、コイル部は内径部と外径部を有する湾曲形状である。 Conventionally, Japanese Patent Application Laid-Open No. 2018-010876 is available as a technique in such a field. In the method for manufacturing an induction heating coil described in this publication, it is described that the induction heating coil is integrally formed with a heating conductor portion and other conductor portions by metal lamination molding. In the induction heating coil, the coil portion, the power supply portion, and the refrigerant passage are formed by using a metal lamination molding method, and the coil portion has a curved shape having an inner diameter portion and an outer diameter portion.

また、他の誘導コイルの製造方法として、特開2010−192167号公報がある。この誘導コイルの製造方法では、機械加工で制作した平板ブロックをパルス通電接合で固相接合し、削り出すことによって製造することができる。 Further, as another method for manufacturing an induction coil, there is Japanese Patent Application Laid-Open No. 2010-192167. In this method of manufacturing an induction coil, a flat plate block produced by machining can be solid-phase bonded by pulse energization bonding and then machined.

特開2018−010876号公報Japanese Unexamined Patent Publication No. 2018-010876 特開2010−192167号公報JP-A-2010-192167

しかしながら、前述した特許文献1に記載された誘導加熱コイルの製造方法では、銅合金の金属積層造形品とすると導電率が低くなることから、抵抗発熱が多くなり、電力消費が増大するという問題がある。 However, in the method for manufacturing an induction heating coil described in Patent Document 1 described above, there is a problem that resistance heat generation increases and power consumption increases because the conductivity is low when a copper alloy metal laminated molded product is used. be.

より具体的には、金属積層造形では造形体の熱伝導率が高いため、レーザを用いた場合には熱が引かれ、積層が一般的に困難となる。そのため、クロムやジルコニウムを数%加えた銅合金を用いて積層造形を行う場合が多い。このとき熱処理により導電率が純銅の88%程度まで回復させることができるが、寿命を向上させるために引っ張り強さを高くする熱処理を加えた場合には、伝導率が純銅の73%程度になってしまい、効率が低下する。 More specifically, since the thermal conductivity of the modeled body is high in the metal lamination molding, heat is drawn when a laser is used, and the lamination is generally difficult. Therefore, in many cases, laminated modeling is performed using a copper alloy containing several% of chromium or zirconium. At this time, the conductivity can be restored to about 88% of pure copper by heat treatment, but when heat treatment to increase the tensile strength is added to improve the life, the conductivity becomes about 73% of pure copper. Therefore, the efficiency is reduced.

また、前述した特許文献2に記載された誘導コイルの製造方法では、ろう付けによって複数のパイプ部材を連結させる構造ではないため、焼き入れによってろう材が劣化することによって、ろう付け部分の接合強度が低下することや、剥離することを防止することができる。 Further, since the method for manufacturing an induction coil described in Patent Document 2 described above does not have a structure in which a plurality of pipe members are connected by brazing, the brazing material deteriorates due to quenching, and thus the joint strength of the brazed portion Can be prevented from being lowered or peeled off.

しかしながら、パルス通電接合では接合面全体での均一な溶着が困難であり、1箇所で接合が完了してしまうと全ての電流がその部分を流れるため、未接合の部分で発熱が生じず、接合部が完全に閉じない状態となる場合がある。この場合、生じる隙間から冷却水が漏れる恐れがある。 However, in pulse energization bonding, uniform welding over the entire bonding surface is difficult, and when bonding is completed at one location, all current flows through that portion, so heat is not generated at the unbonded portion, and bonding is performed. The part may not be completely closed. In this case, the cooling water may leak from the generated gap.

また、固相接合部の熱影響層は組織が変化しており、疲労強度が低下した状態となる。さらに、この固相接合部は加熱を行う加熱導体部にあるため、熱疲労が発生することから、寿命が短くなる場合がある。 In addition, the structure of the heat-affected layer at the solid-phase junction has changed, resulting in a reduced fatigue strength. Further, since this solid phase joint portion is located in the heating conductor portion for heating, thermal fatigue occurs, which may shorten the life.

さらに、固相接合部はリード部及び加熱導体部にわたって存在するため、導電率の不均一が生じて電流密度が偏り、ワークの焼き入れ深さが不均一になる可能性がある。 Further, since the solid phase bonding portion exists over the lead portion and the heating conductor portion, the conductivity may be non-uniform, the current density may be uneven, and the quenching depth of the work may be non-uniform.

本発明は、加熱導体部の引張強さを強化するとともに、加熱導体部の導電率が適切な状態となる誘導加熱コイルの製造方法を提供するものである。 The present invention provides a method for manufacturing an induction heating coil in which the tensile strength of the heating conductor portion is strengthened and the conductivity of the heating conductor portion is in an appropriate state.

本発明にかかる誘導加熱コイルの製造方法は、誘導加熱コイルは、一体成形された加熱導体部と、前記加熱導体部とは別体で成形された他の導体部と、前記加熱導体部と、前記他の導体部とを接合する接合部と、を有し、前記加熱導体部は、銅と、前記銅以外のその他の材料としてジルコニウム、クロム、銀のいずれか少なくとも1つを含む材料であって、前記その他の材料を合計10%以下で含む材料で構成されているとともに、導電率が、前記他の導体部より低く形成されており、前記加熱導体部に対して、熱処理することで引張強さを強化するステップと、その後、前記加熱導体部と、前記他の導体部とを接続するステップと、を有する。
これにより、加熱導体部に熱処理を先に実行しておくことで、他の導体部に対する熱処理の影響を低減することができる。
In the method for manufacturing an induction heating coil according to the present invention, the induction heating coil includes an integrally molded heating conductor portion, another conductor portion formed separately from the heating conductor portion, and the heating conductor portion. It has a joint portion for joining the other conductor portion, and the heated conductor portion is a material containing copper and at least one of zirconium, chromium, and silver as other materials other than the copper. In addition to being composed of a material containing the other materials in a total of 10% or less, the conductivity is formed to be lower than that of the other conductor portion, and the heated conductor portion is tensioned by heat treatment. It has a step of strengthening the strength, and then a step of connecting the heated conductor portion and the other conductor portion.
As a result, by performing the heat treatment on the heated conductor portion first, the influence of the heat treatment on the other conductor portions can be reduced.

これにより、加熱導体部の引張強さを強化するとともに、導電率が適切な状態となる誘導加熱コイルを製造できる。 As a result, it is possible to manufacture an induction heating coil in which the tensile strength of the heating conductor portion is strengthened and the conductivity is in an appropriate state.

誘導加熱コイルの構成を示した図である。It is a figure which showed the structure of an induction heating coil. ろう付け接合部の近傍の上面図である。It is a top view of the vicinity of a brazed joint. 誘導加熱コイル1の製造の手順を示した図である。It is a figure which showed the procedure of manufacturing of an induction heating coil 1. 金属3Dプリンタを用いて誘導加熱コイル1の製造する状態の一例を示す図である。It is a figure which shows an example of the state of manufacturing the induction heating coil 1 using a metal 3D printer. 合金粉末にレーザの照射した状態を示す拡大図である。It is an enlarged view which shows the state which irradiated the laser to the alloy powder. 一対の加熱導体部を示した図である。It is a figure which showed the pair of heating conductor parts. 金属3Dプリンタから1対の加熱導体部を取り出した状態の一例である。This is an example of a state in which a pair of heating conductors is taken out from a metal 3D printer. 加熱導体部の内部を示した図である。It is the figure which showed the inside of the heating conductor part. ワークを囲むように加熱導体部が配置された状態を示す図である。It is a figure which shows the state which the heating conductor part is arranged so that it surrounds a work. 500℃で1時間の熱処理時の引張強さと導電率を示した図である。It is a figure which showed the tensile strength and conductivity at the time of heat treatment at 500 degreeC for 1 hour. リード導体部および伝達導体部を製造する状態の一例を示す図である。It is a figure which shows an example of the state which manufactures the lead conductor part and the transmission conductor part. 伝達導体部を製造する際の断面の一例を示す図である。It is a figure which shows an example of the cross section at the time of manufacturing a transmission conductor part. 700℃で1時間の熱処理時の引張強さと導電率を示した図である。It is a figure which showed the tensile strength and conductivity at the time of heat treatment at 700 degreeC for 1 hour. ろう付けの様子を示す図である。It is a figure which shows the state of brazing. ろう付けの様子を示す断面図である。It is sectional drawing which shows the state of brazing. 各導体部における電気伝導率と温度の関係の一例を示す図である。It is a figure which shows an example of the relationship between electric conductivity and temperature in each conductor part. 本手法により形成された誘導加熱コイルと従来のコイルとの引張強さの比較を示した図である。It is a figure which showed the comparison of the tensile strength of the induction heating coil formed by this method, and the conventional coil. 本手法により形成された誘導加熱コイルにおける引張強さと導電率の比較対象とする部位を示す図である。It is a figure which shows the part to be compared the tensile strength and the conductivity in the induction heating coil formed by this method. 従来のコイルにおける引張強さと導電率の比較対象とする部位を示す図である。It is a figure which shows the part to be compared the tensile strength and the conductivity in the conventional coil. 部位ごとの引張強さと導電率の比較結果を示した図である。It is a figure which showed the comparison result of the tensile strength and the conductivity for each part.

以下、図面を参照して本発明の実施の形態について説明する。図1に示すように、誘導加熱コイル1は、一体成形により形成された一対の加熱導体部11と、電源から加熱導体部11に電流を伝達するリード導体部12と、一対の加熱導体部11間で電流を伝達する伝達導体部13と、加熱導体部11とリード導体部12、及び、加熱導体部11と伝達導体部13を接続するろう付け接合部14と、を備える。誘導加熱コイル1は、円筒状のワーク2を片側から誘導加熱するためのコイルである。なお、リード導体部12及び伝達導体部13は、加熱導体部11とは異なる、他の導体部とする。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the induction heating coil 1 includes a pair of heating conductor portions 11 formed by integral molding, a lead conductor portion 12 for transmitting a current from a power source to the heating conductor portion 11, and a pair of heating conductor portions 11. A transmission conductor portion 13 for transmitting a current between them, a heating conductor portion 11 and a lead conductor portion 12, and a brazing joint portion 14 for connecting the heating conductor portion 11 and the transmission conductor portion 13 are provided. The induction heating coil 1 is a coil for inductively heating a cylindrical work 2 from one side. The lead conductor portion 12 and the transmission conductor portion 13 are different conductor portions from the heating conductor portion 11.

加熱導体部11は、一対の1/4円状のもので半円状を形成しており、半円の内径側に円筒状のワーク2が対向して配置される。加熱導体部11は、銅合金粉末を原料とする積層造形で一体的に形成されている。また加熱導体部11は、造形後に、導電率を高くし、引張強さを強くするための熱処理が行われる。なお、一対の加熱導体部11は、第1の加熱導体部11aと、第2の加熱導体部11bにより構成されているものとする。 The heating conductor portion 11 is formed of a pair of 1/4 circular objects in a semicircular shape, and the cylindrical work 2 is arranged so as to face the inner diameter side of the semicircle. The heated conductor portion 11 is integrally formed by laminated molding using copper alloy powder as a raw material. Further, the heated conductor portion 11 is subjected to a heat treatment for increasing the conductivity and the tensile strength after molding. It is assumed that the pair of heating conductor portions 11 is composed of a first heating conductor portion 11a and a second heating conductor portion 11b.

ここで、加熱導体部11において行われる熱処理の条件は、加熱導体部11の引張強さがリード導体部12より高く、かつ、伝達導体部13より高い状態となることである。 Here, the condition of the heat treatment performed in the heated conductor portion 11 is that the tensile strength of the heated conductor portion 11 is higher than that of the lead conductor portion 12 and higher than that of the transmission conductor portion 13.

なお、加熱導体部11の原材料となる銅合金粉末は、ジルコニウム(Zr)、クロム(Cr)、銀(Ag)のいずれかを合計10%以下含み、残部が銅により構成されている。 The copper alloy powder used as the raw material of the heated conductor portion 11 contains any one of zirconium (Zr), chromium (Cr), and silver (Ag) in a total of 10% or less, and the balance is composed of copper.

また後述するように、加熱導体部11には、冷媒として使用する冷却水の通路21が形成されている。 Further, as will be described later, the heating conductor portion 11 is formed with a passage 21 for cooling water used as a refrigerant.

リード導体部(リード部)12は、電源15から供給された電流を加熱導体部11に伝達する。具体的には、リード導体部12は、第1のリード導体部12aと、第2のリード導体部12bと、により構成されている。 The lead conductor portion (lead portion) 12 transmits the current supplied from the power supply 15 to the heating conductor portion 11. Specifically, the lead conductor portion 12 is composed of a first lead conductor portion 12a and a second lead conductor portion 12b.

第1のリード導体部12aの端部は、後述する第1のろう付け接合部14aaを介して、第1の加熱導体部11aに接続されている。また、第2のリード導体部12bの端部は、後述する第3のろう付け接合部14bbを介して、第2の加熱導体部11bに接続されている。なお図2は、誘導加熱コイル1の、第1のリード導体部12aの端部が第1の加熱導体部11aにろう付けされている、第1のろう付け接合部14aa近傍の上面図の一例である。 The end portion of the first lead conductor portion 12a is connected to the first heating conductor portion 11a via a first brazing joint portion 14aa described later. Further, the end portion of the second lead conductor portion 12b is connected to the second heating conductor portion 11b via a third brazed joint portion 14bb described later. FIG. 2 is an example of a top view of the induction heating coil 1 in the vicinity of the first brazed joint portion 14aa in which the end portion of the first lead conductor portion 12a is brazed to the first heating conductor portion 11a. Is.

リード導体部12は、加熱導体部11と同様に銅合金粉末を原料とする積層造形で形成されている。リード導体部12の導電率は、加熱導体部11の導電率より高くなるように処理されているものが用いられる。 Like the heated conductor portion 11, the lead conductor portion 12 is formed by laminated molding using copper alloy powder as a raw material. The lead conductor portion 12 is treated so as to have a conductivity higher than that of the heated conductor portion 11.

またはリード導体部12は、純銅により形成されたパイプを折り曲げて構成することも可能である。 Alternatively, the lead conductor portion 12 can be formed by bending a pipe made of pure copper.

また、リード導体部12には冷却水の通路21が形成されている。 Further, a cooling water passage 21 is formed in the lead conductor portion 12.

伝達導体部13は、第1の加熱導体部11aと第2の加熱導体部11bとの間で電流を伝達する。伝達導体部13は、本体部13aと、本体部13aから分岐する第1の分岐部13bと、第2の分岐部13cと、を備える。 The transmission conductor portion 13 transmits an electric current between the first heating conductor portion 11a and the second heating conductor portion 11b. The transmission conductor portion 13 includes a main body portion 13a, a first branch portion 13b that branches from the main body portion 13a, and a second branch portion 13c.

第1の分岐部13bは、後述する第2のろう付け接合部14abを介して、第1の加熱導体部11aに接続されている。また、第2の分岐部13cは、後述する第4のろう付け接合部14bcを介して、第2の加熱導体部11bに接続されている。 The first branch portion 13b is connected to the first heating conductor portion 11a via a second brazed joint portion 14ab described later. Further, the second branch portion 13c is connected to the second heating conductor portion 11b via a fourth brazed joint portion 14bc described later.

伝達導体部13は、加熱導体部11と同様に銅合金粉末を原料とする積層造形で形成されている。伝達導体部13の導電率は、加熱導体部11の導電率より高くなるように処理されているものが用いられる。 Like the heated conductor portion 11, the transmission conductor portion 13 is formed by laminated molding using copper alloy powder as a raw material. The conductive conductor portion 13 is treated so as to have a higher conductivity than that of the heated conductor portion 11.

または伝達導体部13は、純銅により形成されたパイプを折り曲げて構成することも可能である。 Alternatively, the transmission conductor portion 13 can be formed by bending a pipe made of pure copper.

また、伝達導体部13には冷却水の通路21が形成されている。これにより、リード導体部12から挿入された冷却水が、加熱導体部11を通過し、伝達導体部13に流れて排出される状態にすることができる。 Further, a cooling water passage 21 is formed in the transmission conductor portion 13. As a result, the cooling water inserted from the lead conductor portion 12 can pass through the heating conductor portion 11 and flow to the transmission conductor portion 13 to be discharged.

ろう付け接合部14は、加熱導体部11とリード導体部12を接合する接合部であるととともに、加熱導体部11と伝達導体部13を接合する接合部である。 The brazed joint portion 14 is a joint portion for joining the heated conductor portion 11 and the lead conductor portion 12, and is also a joint portion for joining the heated conductor portion 11 and the transmission conductor portion 13.

ここでろう付け接合部14は、第1,第2のろう付け接合部14aa,14abと、第3,第4のろう付け接合部14bb,14bcと、を有する。具体的には、第1,第2のろう付け接合部14aa,14abは、第1の加熱導体部11aと第1のリード導体部12aの間や、第1の加熱導体部11aと伝達導体部13の第1の分岐部13bの間の接続を介するように設けられる。同様に、第3,第4のろう付け接合部14bb,14bcは、第2の加熱導体部11bと第2のリード導体部12b間や、第2の加熱導体部11bと伝達導体部13の第2の分岐部13cの間の接続を介するように設けられる。 Here, the brazing joint portion 14 has first and second brazing joint portions 14aa and 14ab, and third and fourth brazing joint portions 14bb and 14bc. Specifically, the first and second brazed joint portions 14aa and 14ab are between the first heating conductor portion 11a and the first lead conductor portion 12a, or between the first heating conductor portion 11a and the transmission conductor portion. It is provided so as to be via a connection between the first branch portions 13b of 13. Similarly, the third and fourth brazed joint portions 14bb and 14bc are located between the second heated conductor portion 11b and the second lead conductor portion 12b, and the second heated conductor portion 11b and the transmission conductor portion 13 It is provided so as to be provided via a connection between the branch portions 13c of 2.

ここで、図3を参照して誘導加熱コイル1の詳細な製造方法について説明する。 Here, a detailed manufacturing method of the induction heating coil 1 will be described with reference to FIG.

図3に示すように、誘導加熱コイル1の製造は、加熱導体部11の一体的形成(ステップS1)、加熱導体部11の熱処理(ステップS2)、リード導体部12および伝達導体部13の一体的形成(ステップS3)、リード導体部12および伝達導体部13の熱処理(ステップS4)、加熱導体部11に対し、リード導体部12と伝達導体部13のろう付け(ステップS5)、の手順により行われる。 As shown in FIG. 3, the induction heating coil 1 is manufactured by integrally forming the heating conductor portion 11 (step S1), heat-treating the heating conductor portion 11 (step S2), and integrating the lead conductor portion 12 and the transmission conductor portion 13. By the procedure of target formation (step S3), heat treatment of the lead conductor portion 12 and the transmission conductor portion 13 (step S4), and brazing of the lead conductor portion 12 and the transmission conductor portion 13 to the heating conductor portion 11 (step S5). Will be done.

加熱導体部11の一体的形成(ステップS1)について説明する。
図4は、金属3Dプリンタを用いて誘導加熱コイル1の製造している状態の一例である。ここで、加熱導体部11は、クロム1.2%で残銅部である合金粉末(中心粒径30μm)を原料とするものとして説明する。加熱導体部11は、遠赤外(波長1024nm)で400Wのファイバレーザを熱源として、粉末が選択的に溶融され、積層造形により一体的に形成される。なお図5は、合金粉末にレーザの照射した状態を示す拡大図である。
The integral formation of the heating conductor portion 11 (step S1) will be described.
FIG. 4 is an example of a state in which the induction heating coil 1 is manufactured using a metal 3D printer. Here, the heated conductor portion 11 will be described as using an alloy powder (center particle size 30 μm) which is 1.2% chromium and is a residual copper portion as a raw material. The heated conductor portion 11 is integrally formed by laminating molding in which powder is selectively melted using a 400 W fiber laser as a heat source in the far infrared (wavelength 1024 nm). FIG. 5 is an enlarged view showing a state in which the alloy powder is irradiated with a laser.

ここで図6に示すように、加熱導体部11は、2段の円弧状パイプを片端で繋いだ形状である。なお図7は、金属3Dプリンタから1対の加熱導体部を取り出した状態の一例である。 Here, as shown in FIG. 6, the heating conductor portion 11 has a shape in which a two-stage arc-shaped pipe is connected at one end. Note that FIG. 7 is an example of a state in which a pair of heating conductors is taken out from a metal 3D printer.

ここで図8は、図6に示したA−A断面図である。図8に示すように、加熱導体部11の内部には、略ひし形の空間が形成されている。この略ひし形の空間は、冷却水の通路21として機能する。 Here, FIG. 8 is a cross-sectional view taken along the line AA shown in FIG. As shown in FIG. 8, a substantially diamond-shaped space is formed inside the heating conductor portion 11. This substantially diamond-shaped space functions as a cooling water passage 21.

加熱導体部11の2段の円弧状のパイプは、ワーク2の焼き入れ時にフィレット部とピン部に対向するように配置される。なお図9は、図8に示したB−B断面図である。 The two-stage arcuate pipe of the heating conductor portion 11 is arranged so as to face the fillet portion and the pin portion when the work 2 is quenched. 9 is a cross-sectional view taken along the line BB shown in FIG.

加熱導体部11の熱処理(ステップS2)について説明する。
ステップS1で形成された加熱導体部11に対して、500℃で1時間の熱処理を実行する。ここで図10(a)、図10(b)に示すように、加熱導体部11には、クロム1.2%で残銅部である合金粉末を用いられていることから、導電率73%、引張強さ600MPaとなる。
The heat treatment (step S2) of the heated conductor portion 11 will be described.
The heated conductor portion 11 formed in step S1 is heat-treated at 500 ° C. for 1 hour. Here, as shown in FIGS. 10 (a) and 10 (b), since the heated conductor portion 11 uses an alloy powder containing 1.2% chromium and a residual copper portion, the conductivity is 73%. , The tensile strength is 600 MPa.

次に、リード導体部12および伝達導体部13の一体的形成(ステップS3)について説明する。
図11に示すように、リード導体部12および伝達導体部13のそれぞれを、ステップS1の加熱導体部11の積層造形と同様の銅合金粉末、及び金属3Dプリンタを用いて造形する。
Next, the integral formation of the lead conductor portion 12 and the transmission conductor portion 13 (step S3) will be described.
As shown in FIG. 11, each of the lead conductor portion 12 and the transmission conductor portion 13 is molded using the same copper alloy powder and metal 3D printer as the laminated molding of the heating conductor portion 11 in step S1.

ここで図12に示すように、リード導体部12及び伝達導体部13の断面(伝達導体部13のC−C断面、リード導体部12についても同様)は、ともに均一肉厚で略長方向であり、かつ、隅がRで繋がれた断面を有するとともに、形成時には未溶融粉で満たされた状態で造形される。なお、リード導体部12及び伝達導体部13を金属3Dプリンタから取り外し、粉末を除去することで空洞となり、冷却水の通路21となる。 Here, as shown in FIG. 12, the cross sections of the lead conductor portion 12 and the transmission conductor portion 13 (the same applies to the CC cross section of the transmission conductor portion 13 and the lead conductor portion 12) are both uniform in wall thickness and substantially in the longitudinal direction. It has a cross section in which the corners are connected by R, and is formed in a state of being filled with unmelted powder at the time of formation. The lead conductor portion 12 and the transmission conductor portion 13 are removed from the metal 3D printer, and the powder is removed to form a cavity, which becomes a cooling water passage 21.

ここで図12に示すように、リード導体部12及び伝達導体部13の形成時には、断面長方形の短辺側がベースプレート面に平行になるように配置することで、断面内部にサポートを設けなくても形状を得ることができる。一方で、コイルの外側にはサポートを設けた状態でリード導体部12及び伝達導体部13を形成するとともに、コイルの形成後にワイヤーカット加工機等によってサポートを除去することができる。 Here, as shown in FIG. 12, when the lead conductor portion 12 and the transmission conductor portion 13 are formed, the short side side of the rectangular cross section is arranged so as to be parallel to the base plate surface, so that the support is not provided inside the cross section. The shape can be obtained. On the other hand, the lead conductor portion 12 and the transmission conductor portion 13 can be formed on the outside of the coil with the support provided, and the support can be removed by a wire cutting machine or the like after the coil is formed.

なおこのステップS3に代えて、従来の誘導加熱コイルの形成を行う場合と同様に、リード導体部12及び伝達導体部13の形成に際して、純銅製のパイプを折り曲げ、接合部にろう付けを行う方法としてもよい。その場合には、後述するステップS4に示す熱処理を行う必要はない。 Instead of this step S3, a method of bending a pure copper pipe and brazing the joint portion when forming the lead conductor portion 12 and the transmission conductor portion 13 as in the case of forming the conventional induction heating coil. May be. In that case, it is not necessary to perform the heat treatment shown in step S4 described later.

次に、リード導体部12および伝達導体部13の熱処理(ステップS4)について説明する。
ステップS3で形成したリード導体部12および伝達導体部13に対して、700℃で1時間の熱処理を実行する。ここで、図13(a)、図13(b)に示すように、リード導体部12および伝達導体部13には、クロム1.2%で残銅部である合金粉末を用いられていることから、導電率90%、引張強さ300MPaとなる。
Next, the heat treatment (step S4) of the lead conductor portion 12 and the transmission conductor portion 13 will be described.
The lead conductor portion 12 and the transmission conductor portion 13 formed in step S3 are heat-treated at 700 ° C. for 1 hour. Here, as shown in FIGS. 13A and 13B, an alloy powder containing 1.2% chromium and a residual copper portion is used for the lead conductor portion 12 and the transmission conductor portion 13. Therefore, the conductivity is 90% and the tensile strength is 300 MPa.

次に、加熱導体部11に対し、リード導体部12と伝達導体部13のろう付け(ステップS5)を行う処理について説明する。
熱処理が終了した加熱導体部11に対して、熱処理が終了したリード導体部12、および熱処理が終了した伝達導体部13のろう付けを行う。ろう付け接合部14のろうには、JIS銀ろう(BAG−1A:成分配合Ag:50%、Cu:15.5%、Zn:16.5%、Cd:18%、導電率25%)を用いることができる。
Next, a process of brazing the lead conductor portion 12 and the transmission conductor portion 13 (step S5) with respect to the heating conductor portion 11 will be described.
The heated conductor portion 11 that has been heat-treated is brazed to the lead conductor portion 12 that has been heat-treated and the transmission conductor portion 13 that has been heat-treated. JIS silver wax (BAG-1A: component compound Ag: 50%, Cu: 15.5%, Zn: 16.5%, Cd: 18%, conductivity 25%) is used for the brazing joint portion 14. Can be used.

例えば、加熱導体部11と伝達導体部13とが接合される箇所には嵌合部が形成されており、嵌合部で加熱導体部11と伝達導体部13を仮固定しておく。その後、図14及び図15に示すように、嵌合部における加熱導体部11と伝達導体部13の隙間に、バーナーの炎で溶かされたろう棒のろうが入り込んだ状態とし、冷却固定することで、ろう付け接合部14abを形成することができる。なお図15は、図14のD−D断面図である。 For example, a fitting portion is formed at a portion where the heating conductor portion 11 and the transmission conductor portion 13 are joined, and the heating conductor portion 11 and the transmission conductor portion 13 are temporarily fixed at the fitting portion. After that, as shown in FIGS. 14 and 15, the brazing rod of the brazing rod melted by the flame of the burner is placed in the gap between the heating conductor portion 11 and the transmission conductor portion 13 in the fitting portion, and the brazing rod is cooled and fixed. , Brazing joint 14ab can be formed. 15 is a cross-sectional view taken along the line DD of FIG.

これにより、ろう付け接合部14は、熱疲労を留意すべき部位である誘導加熱時に高温になる加熱導体部11から遠ざけた状態にすることができる。そのため、ろう付け接合部14における疲労破壊による水漏れの発生を抑制できる。 As a result, the brazed joint portion 14 can be kept away from the heated conductor portion 11 which becomes hot during induction heating, which is a portion where thermal fatigue should be noted. Therefore, it is possible to suppress the occurrence of water leakage due to fatigue fracture at the brazing joint portion 14.

図16は、各導体部における電気伝導率と温度の関係の一例を示している。ここで、リード導体部12および伝達導体部13の導電率は高いため、電力消費量の増大を抑制することができる。 FIG. 16 shows an example of the relationship between the electric conductivity and the temperature in each conductor portion. Here, since the lead conductor portion 12 and the transmission conductor portion 13 have high conductivity, it is possible to suppress an increase in power consumption.

さらに、加熱導体部11の引張強さが高く形成されているため、加熱導体部11の疲労強度も高く、高寿命となる。図17は、図18に示す本手法により形成した誘導加熱コイル1と、図19に示す比較対象とする従来のコイルの引張強さの比較を示した図である。なお図17において図16に対応する箇所は、点線で囲んで示している、本例加熱導体部、比較例リード部、比較例加熱導体部の3つである。 Further, since the heated conductor portion 11 is formed to have a high tensile strength, the fatigue strength of the heated conductor portion 11 is also high, and the life is extended. FIG. 17 is a diagram showing a comparison of the tensile strengths of the induction heating coil 1 formed by this method shown in FIG. 18 and the conventional coil to be compared shown in FIG. In FIG. 17, there are three parts corresponding to FIG. 16: a heating conductor portion of this example, a lead portion of Comparative Example, and a heating conductor portion of Comparative Example, which are surrounded by a dotted line.

さらに図20は、図18に示した本手法により形成した誘導加熱コイル1と、図19に示した比較対象とする従来のコイルの部位ごとの導電率と、引張強さを比較した図である。なお図20は、図18、図19におけるそれぞれの丸囲み文字の位置で比較したものである。その結果、誘導加熱コイル1は、従来のコイルに比べて、特に熱疲労を留意すべき部位である加熱導体部11における引張強さが強化されていることがわかる。 Further, FIG. 20 is a diagram comparing the induction heating coil 1 formed by the present method shown in FIG. 18 with the conductivity and tensile strength of each part of the conventional coil to be compared shown in FIG. .. 20 is a comparison of the positions of the encircled characters in FIGS. 18 and 19. As a result, it can be seen that the induction heating coil 1 has a stronger tensile strength in the heating conductor portion 11, which is a portion where thermal fatigue should be particularly noted, as compared with the conventional coil.

したがって、加熱導体部11に対して熱処理を行う際に、加熱導体部11の熱処理を、リード導体部12および伝達導体部13との接続前に実行することで、リード導体部12および伝達導体部13への影響を考慮せずに、加熱導体部11の引張強さと導電率が最適となるように実行することができる。 Therefore, when the heated conductor portion 11 is heat-treated, the heat treatment of the heated conductor portion 11 is performed before the connection with the lead conductor portion 12 and the transmission conductor portion 13, so that the lead conductor portion 12 and the transmission conductor portion 12 are heat-treated. It can be executed so that the tensile strength and the conductivity of the heated conductor portion 11 are optimized without considering the influence on 13.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。すなわち上記の記載は、説明の明確化のため、適宜、省略及び簡略化がなされており、当業者であれば、実施形態の各要素を、本発明の範囲において容易に変更、追加、変換することが可能である。 The present invention is not limited to the above embodiment, and can be appropriately modified without departing from the spirit. That is, the above description has been omitted or simplified as appropriate for the purpose of clarifying the description, and those skilled in the art can easily change, add, or convert each element of the embodiment within the scope of the present invention. It is possible.

例えば上記では、他の導体部とは、リード導体部12および伝達導体部13の両方を指すものとしたが、いずれか一方であってもよい。 For example, in the above, the other conductor portion refers to both the lead conductor portion 12 and the transmission conductor portion 13, but either one may be used.

1 誘導加熱コイル
2 ワーク
11 加熱導体部
11a 第1の加熱導体部
11b 第2の加熱導体部
12 リード導体部
12a 第1のリード導体部
12b 第2のリード導体部
13 伝達導体部
13a 本体部
13b 第1の分岐部
13c 第2の分岐部
14 ろう付け接合部
14aa 第1のろう付け接合部
14ab 第2のろう付け接合部
14bb 第3のろう付け接合部
14bc 第4のろう付け接合部
15 電源
21 通路
1 Induction heating coil 2 Work 11 Heating conductor part 11a First heating conductor part 11b Second heating conductor part 12 Lead conductor part 12a First lead conductor part 12b Second lead conductor part 13 Transmission conductor part 13a Main body part 13b 1st branch 13c 2nd branch 14 Brazing joint 14aa 1st brazing joint 14ab 2nd brazing joint 14bb 3rd brazing joint 14bc 4th brazing joint 15 power supply 21 passage

Claims (1)

誘導加熱コイルの製造方法であって、
前記誘導加熱コイルは、
一体成形された加熱導体部と、
前記加熱導体部とは別体で成形された他の導体部と、
前記加熱導体部と、前記他の導体部とを接合する接合部と、を有し、
前記加熱導体部は、銅と、前記銅以外のその他の材料としてジルコニウム、クロム、銀のいずれか少なくとも1つを含む材料であって、前記その他の材料を合計10%以下で含む材料で構成されているとともに、導電率が、前記他の導体部より低く形成されており、
前記加熱導体部に対して、熱処理することで引張強さを強化するステップと、
その後、前記加熱導体部と、前記他の導体部とを接続するステップと、を有する
誘導加熱コイルの製造方法。
It is a method of manufacturing an induction heating coil.
The induction heating coil is
The integrally molded heating conductor part and
With another conductor part molded separately from the heated conductor part,
It has a joint portion for joining the heated conductor portion and the other conductor portion.
The heated conductor portion is composed of a material containing copper and at least one of zirconium, chromium, and silver as other materials other than copper, and containing the other materials in a total amount of 10% or less. At the same time, the conductivity is formed lower than that of the other conductor portions.
A step of strengthening the tensile strength of the heated conductor portion by heat treatment,
After that, a method for manufacturing an induction heating coil, comprising a step of connecting the heating conductor portion and the other conductor portion.
JP2020072409A 2020-04-14 2020-04-14 Induction heating coil manufacturing method Pending JP2021170443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020072409A JP2021170443A (en) 2020-04-14 2020-04-14 Induction heating coil manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020072409A JP2021170443A (en) 2020-04-14 2020-04-14 Induction heating coil manufacturing method

Publications (1)

Publication Number Publication Date
JP2021170443A true JP2021170443A (en) 2021-10-28

Family

ID=78119421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020072409A Pending JP2021170443A (en) 2020-04-14 2020-04-14 Induction heating coil manufacturing method

Country Status (1)

Country Link
JP (1) JP2021170443A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023066273A (en) * 2021-10-28 2023-05-15 ティーケーエンジニアリング株式会社 Heating coil for high frequency heating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023066273A (en) * 2021-10-28 2023-05-15 ティーケーエンジニアリング株式会社 Heating coil for high frequency heating device
JP7333097B2 (en) 2021-10-28 2023-08-24 ティーケーエンジニアリング株式会社 Heating coil for high frequency heating equipment

Similar Documents

Publication Publication Date Title
JP5788069B1 (en) Flat type heat pipe
JP5155420B2 (en) Cage rotor of induction motor for brazing end ring and bar and manufacturing method thereof
EP2601006B1 (en) A method for manufacturing a component by selective laser melting
CN106334797B (en) Additive manufacturing of joining preforms
CN110303154B (en) Gradient brazing filler metal layer preparation and integrated brazing process based on laser fused deposition additive manufacturing technology
JP5823069B1 (en) Method for manufacturing rocket engine combustor, rocket engine combustor, and rocket engine
SE0950966A1 (en) Composite conductors and method for manufacturing composite conductors
WO2012133406A1 (en) Die for resin molding, method for producing die for resin molding, and method for producing resin molded article
CN105903960B (en) Component and method for producing said component
JP2021170443A (en) Induction heating coil manufacturing method
JP4350753B2 (en) Heat sink member and manufacturing method thereof
JP2009218176A (en) Coil head
JP2013524955A (en) A cooking utensil having a non-deformable bottom and a method for manufacturing the same.
JP2018029090A (en) Junction structure of different types of metals, method for forming the structure, and water-cooling power conversion element having the structure
CN112045294A (en) Rigid restraint thermal self-pressure diffusion connection method and device for local induction heating
JP4794330B2 (en) Transformer and manufacturing method thereof
JP5473711B2 (en) Laminated mold for resin molding and method for producing the same
CN109004779B (en) Hollow metal member for stator of rotating electric machine, and method for manufacturing hollow metal member
JP2013063458A (en) Jointing method and jointing component
JP5686582B2 (en) Axle case manufacturing method
JP7480695B2 (en) Induction heating coil, its manufacturing method and manufacturing method for hardened products
CN107175421B (en) A kind of compressive pre-stress bimetal centrifugal is cast the welding procedures of compound pipe end flanges
CN108349141A (en) It is used to prepare the screw machine and corresponding method of plastic material
JPS59179246A (en) Production of vessel for electromagnetic induction heating
JP6730907B2 (en) Hearth roll for continuous annealing furnace and method for manufacturing hearth roll for continuous annealing furnace