JP2021170429A - Positive electrode collector for lead storage battery and lead storage battery - Google Patents

Positive electrode collector for lead storage battery and lead storage battery Download PDF

Info

Publication number
JP2021170429A
JP2021170429A JP2020072026A JP2020072026A JP2021170429A JP 2021170429 A JP2021170429 A JP 2021170429A JP 2020072026 A JP2020072026 A JP 2020072026A JP 2020072026 A JP2020072026 A JP 2020072026A JP 2021170429 A JP2021170429 A JP 2021170429A
Authority
JP
Japan
Prior art keywords
positive electrode
current collector
electrode current
storage battery
lead storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020072026A
Other languages
Japanese (ja)
Inventor
篤史 寺井
Atsushi Terai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2020072026A priority Critical patent/JP2021170429A/en
Publication of JP2021170429A publication Critical patent/JP2021170429A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

To provide a positive electrode collector for a lead storage battery and a lead storage battery, excellent in number of life cycle.SOLUTION: A positive electrode collector 21 for a lead storage battery includes a frame bone 22 and an inner bone 23 stretching inward of the frame bone 22. The positive electrode collector 21 has a Sn concentration of 1.1 wt.% or more. In the inner bone 23, the relationship of 0.4≤Y/X≤0.8 is satisfied, where Y represents a width in a first direction D1 that is a thickness direction of the positive electrode collector 21, and X represents a width in a second direction D2 that is perpendicular to the stretch direction of the inner bone 23 and the first direction D1, in a cross section perpendicular to the stretch direction.SELECTED DRAWING: Figure 4

Description

本発明は、鉛蓄電池用正極集電体および鉛蓄電池に関する。 The present invention relates to a positive electrode current collector for a lead storage battery and a lead storage battery.

鉛蓄電池は、車載用、産業用の他、様々な用途で使用されている。鉛蓄電池は、正極板と負極板とがセパレータを介して交互に積層された極板群を備える。正極板および負極板は、集電体と、集電体に保持された電極材料とで構成されている。 Lead-acid batteries are used for various purposes such as in-vehicle use and industrial use. The lead-acid battery includes a group of electrode plates in which a positive electrode plate and a negative electrode plate are alternately laminated via a separator. The positive electrode plate and the negative electrode plate are composed of a current collector and an electrode material held by the current collector.

例えば、特許文献1には、Pb−Sb系合金やPb−Ca系合金、Pb−Ca−Sn系合金等からなる集電体の格子部にペースト状の活物質を充填して形成した正極板が記載されている。また、特許文献1には、延伸方向に垂直な断面の角部が変形している、正極集電体の格子桟が記載されている。 For example, Patent Document 1 describes a positive electrode plate formed by filling a lattice portion of a current collector made of a Pb-Sb-based alloy, a Pb-Ca-based alloy, a Pb-Ca-Sn-based alloy, or the like with a paste-like active material. Is described. Further, Patent Document 1 describes a grid of a positive electrode current collector in which a corner portion of a cross section perpendicular to the stretching direction is deformed.

特開2017−139215号公報Japanese Unexamined Patent Publication No. 2017-139215

本願発明者らは、鉛蓄電池の過充電時には、正極集電体が腐食し、正極集電体に変形が生じることに着目し、本願発明を想到した。すなわち、正極集電体が腐食し、変形が生じた場合には、正極集電体と正極電極材料との間に隙間が生じる。これにより、正極電極材料が脱落し、寿命サイクル数が低下するという問題がある。 The inventors of the present application have conceived the present invention by paying attention to the fact that the positive electrode current collector corrodes and the positive electrode current collector is deformed when the lead storage battery is overcharged. That is, when the positive electrode current collector is corroded and deformed, a gap is generated between the positive electrode current collector and the positive electrode material. As a result, there is a problem that the positive electrode material falls off and the number of life cycles is reduced.

本発明は、上記の問題点に鑑みてなされたものであり、その目的は、寿命サイクル数に優れた鉛蓄電池用正極集電体および鉛蓄電池を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a positive electrode current collector for a lead storage battery and a lead storage battery having an excellent number of life cycles.

上記の課題を解決するために、本発明に係る鉛蓄電池用正極集電体は、枠骨部と、枠骨部の内側に延伸する内骨部とを備える鉛蓄電池用正極集電体であって、前記正極集電体は、Sn濃度が1.1mass%以上であり、前記内骨部は、当該内骨部の延伸方向に垂直な断面において、前記正極集電体の厚さ方向である第1方向の幅(Y)と、前記延伸方向および前記第1方向に垂直である第2方向の幅(X)とが、0.4≦Y/X≦0.8の関係を満たす。 In order to solve the above problems, the positive electrode current collector for a lead storage battery according to the present invention is a positive electrode current collector for a lead storage battery including a frame bone portion and an inner bone portion extending inward of the frame bone portion. The positive electrode current collector has a Sn concentration of 1.1 mass% or more, and the inner bone portion is in the thickness direction of the positive electrode current collector in a cross section perpendicular to the extension direction of the inner bone portion. The width (Y) in the first direction and the width (X) in the stretching direction and the second direction perpendicular to the first direction satisfy the relationship of 0.4 ≦ Y / X ≦ 0.8.

本発明によれば、寿命サイクル数に優れた鉛蓄電池を提供することができる。 According to the present invention, it is possible to provide a lead storage battery having an excellent number of life cycles.

本発明の実施形態に係る鉛蓄電池100を示す斜視図である。It is a perspective view which shows the lead-acid battery 100 which concerns on embodiment of this invention. 本発明の実施形態に係る正極集電体21の一例を示す図である。It is a figure which shows an example of the positive electrode current collector 21 which concerns on embodiment of this invention. 本発明の実施形態に係る正極集電体21における、内骨部23の延伸方向に垂直な断面を模式的に表す図であり、図2における、A−A線断面図を示す図である。FIG. 5 is a diagram schematically showing a cross section perpendicular to the stretching direction of the internal bone portion 23 in the positive electrode current collector 21 according to the embodiment of the present invention, and is a diagram showing a cross-sectional view taken along the line AA in FIG. 本発明の実施例および比較例に係る軽負荷寿命試験の結果を示す図である。It is a figure which shows the result of the light load life test which concerns on Example and comparative example of this invention.

〔実施形態〕
以下、本発明の実施形態について、図面を参照し詳細に説明する。
[Embodiment]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施形態に係る鉛蓄電池100を示す斜視図である。図1に示すように、鉛蓄電池100は、複数の極板群11と、電解液(図示せず)と、極板群11および電解液を収容し、上方が開口した電槽12と、電槽12の開口を封止する蓋15とを備える。 FIG. 1 is a perspective view showing a lead storage battery 100 according to an embodiment of the present invention. As shown in FIG. 1, the lead-acid battery 100 accommodates a plurality of electrode plate groups 11, an electrolytic solution (not shown), the electrode plate group 11, and an electrolytic solution, and has an electric tank 12 having an open upper portion and electricity. A lid 15 for sealing the opening of the tank 12 is provided.

電槽12は、上面に開口部19を有する略直方体形状の容器であり、例えば合成樹脂により形成されている。電槽12は、隔壁13を有する。電槽12の内部は、隔壁13によって、所定方向に並ぶ複数のセル室14に仕切られている。 The electric tank 12 is a substantially rectangular parallelepiped container having an opening 19 on the upper surface, and is formed of, for example, a synthetic resin. The battery case 12 has a partition wall 13. The inside of the electric tank 12 is partitioned by a partition wall 13 into a plurality of cell chambers 14 arranged in a predetermined direction.

電槽12の各セル室14には、極板群11が1つずつ収納されている。そのため、電槽12が、6つのセル室14に区画されている場合には、鉛蓄電池100は、6つの極板群を備える。また、各セル室14には、希硫酸を含む電解液が収容されており、極板群11の略全体が電解液に浸漬されている。 One electrode plate group 11 is housed in each cell chamber 14 of the electric tank 12. Therefore, when the battery case 12 is partitioned into the six cell chambers 14, the lead-acid battery 100 includes six electrode plate groups. Further, each cell chamber 14 contains an electrolytic solution containing dilute sulfuric acid, and substantially the entire electrode plate group 11 is immersed in the electrolytic solution.

電槽12の開口部19は、開口部19に対応する形状を有する蓋15で封止される。より具体的には、蓋15の下面の周縁部分と、電槽12の開口部19の周縁部分とが、例えば熱溶着により接合されている。蓋15は、負極ブッシング16および正極ブッシング17を備える。また、蓋15には、各セル室14に対応する位置に液口栓18が設けられている。鉛蓄電池100に補水を行う際には、液口栓18を外して補水液が補給される。なお、液口栓18は、セル室14内で発生したガスを鉛蓄電池100の外部に排出する機能を有してもよい。 The opening 19 of the battery case 12 is sealed with a lid 15 having a shape corresponding to the opening 19. More specifically, the peripheral edge portion of the lower surface of the lid 15 and the peripheral edge portion of the opening 19 of the electric tank 12 are joined by, for example, heat welding. The lid 15 includes a negative electrode bushing 16 and a positive electrode bushing 17. Further, the lid 15 is provided with a liquid spout 18 at a position corresponding to each cell chamber 14. When refilling the lead-acid battery 100, the liquid spout 18 is removed and the refill liquid is replenished. The liquid spout 18 may have a function of discharging the gas generated in the cell chamber 14 to the outside of the lead storage battery 100.

極板群11は、それぞれ複数枚の負極板2および正極板3を、セパレータ4を介して積層することにより構成されている。ここでは、負極板2を収容する袋状のセパレータ4を示すが、セパレータの形態は特に限定されない。すなわち、セパレータ4は、袋状でなくてもよく、また正極板3を収容していてもよい。 The electrode plate group 11 is formed by laminating a plurality of negative electrode plates 2 and positive electrode plates 3 via a separator 4, respectively. Here, the bag-shaped separator 4 accommodating the negative electrode plate 2 is shown, but the form of the separator is not particularly limited. That is, the separator 4 does not have to be bag-shaped, and may accommodate the positive electrode plate 3.

極板群11の複数の正極板3は、鉛または鉛合金により形成されたストラップ6に接続されている。これにより、複数の正極板3は、ストラップ6を介して電気的に並列に接続されている。同様に、極板群11の複数の負極板2は、鉛または鉛合金により形成されたストラップ6に接続されている。これにより、複数の負極板2は、ストラップ6を介して電気的に並列に接続されている。また、ストラップ6は、隔壁13に設けられた貫通孔を介して、隣接するセル室14同士で接続しており、これにより、隣接するセル室14同士の極板群11が直接に接続されている。 The plurality of positive electrode plates 3 of the electrode plate group 11 are connected to a strap 6 formed of lead or a lead alloy. As a result, the plurality of positive electrode plates 3 are electrically connected in parallel via the strap 6. Similarly, the plurality of negative electrode plates 2 of the electrode plate group 11 are connected to a strap 6 formed of lead or a lead alloy. As a result, the plurality of negative electrode plates 2 are electrically connected in parallel via the strap 6. Further, the strap 6 is connected to each other by the adjacent cell chambers 14 through a through hole provided in the partition wall 13, whereby the electrode plate group 11 of the adjacent cell chambers 14 is directly connected to each other. There is.

電槽12の正極端子側の端部に位置するセル室14では、複数の正極板3の耳部26(図2参照)が、接続部材5を介して略円柱形状の正極柱7に接続されている。同様に、電槽12の負極端子側の端部に位置するセル室14では、複数の負極板2の耳部が、接続部材5を介して略円柱形状の負極柱9に接続されている。 In the cell chamber 14 located at the end of the battery case 12 on the positive electrode terminal side, the ears 26 (see FIG. 2) of the plurality of positive electrode plates 3 are connected to the substantially cylindrical positive electrode column 7 via the connecting member 5. ing. Similarly, in the cell chamber 14 located at the end of the battery case 12 on the negative electrode terminal side, the ears of the plurality of negative electrode plates 2 are connected to the negative electrode column 9 having a substantially cylindrical shape via the connecting member 5.

正極柱7は、蓋15の正極ブッシング17の孔に挿入され、例えば溶接等により正極ブッシング17に接合されている。正極柱7と正極ブッシング17とにより、外部端子として機能する正極端子部が構成されている。また、負極柱9は、蓋15の負極ブッシング16の孔に挿入され、例えば溶接等により負極ブッシング16に接合されている。負極柱9と負極ブッシング16とにより、外部端子として機能する負極端子部が構成されている。 The positive electrode column 7 is inserted into the hole of the positive electrode bushing 17 of the lid 15 and is joined to the positive electrode bushing 17 by, for example, welding. The positive electrode column 7 and the positive electrode bushing 17 form a positive electrode terminal portion that functions as an external terminal. Further, the negative electrode column 9 is inserted into the hole of the negative electrode bushing 16 of the lid 15 and is joined to the negative electrode bushing 16 by, for example, welding. The negative electrode column 9 and the negative electrode bushing 16 form a negative electrode terminal portion that functions as an external terminal.

負極板2は、負極集電体と、負極集電体に支持された負極電極材料とを有する。負極集電体は、略格子状または網目状に配置された骨を有する導電性部材であり、例えば鉛または鉛合金により形成されている。また、負極集電体は、エキスパンド格子であってもよく、鋳造格子であってもよく、打ち抜き格子であってもよい。さらに、負極集電体は、その上端付近に、上方に突出する負極耳部を有している。負極電極材料は、鉛(海綿状鉛)を含んでいる。負極電極材料は、さらに公知の他の添加剤(例えば、カーボン、グラファイト、リグニン、硫酸バリウム等)を含んでいてもよい。 The negative electrode plate 2 has a negative electrode current collector and a negative electrode material supported by the negative electrode current collector. The negative electrode current collector is a conductive member having bones arranged in a substantially lattice pattern or a mesh pattern, and is formed of, for example, lead or a lead alloy. Further, the negative electrode current collector may be an expanded lattice, a cast lattice, or a punched lattice. Further, the negative electrode current collector has a negative electrode ear portion protruding upward near the upper end thereof. The negative electrode material contains lead (sponge-like lead). The negative electrode material may further contain other known additives (eg, carbon, graphite, lignin, barium sulfate, etc.).

正極板3は、正極集電体(鉛蓄電池用正極集電体)21(図2参照)と、正極集電体に支持された正極電極材料とを有する。正極集電体21は、導電性部材であり、鉛合金により形成されている。正極電極材料は、二酸化鉛を含んでいる。正極電極材料は、さらに公知の添加剤を含んでいてもよい。 The positive electrode plate 3 has a positive electrode current collector (positive electrode current collector for lead storage battery) 21 (see FIG. 2) and a positive electrode material supported by the positive electrode current collector. The positive electrode current collector 21 is a conductive member and is made of a lead alloy. The positive electrode material contains lead dioxide. The positive electrode material may further contain known additives.

図2は、本実施形態に係る正極集電体21の一例を示す図であり、正極集電体21を厚さ方向から見た平面図である。図2に示すように、正極集電体21は、枠骨部22と、枠骨部22の内側に延伸する内骨部23と、枠骨部22の上端付近に設けられ、上方へと突出する耳部26とを有している。なお、上方の「上」とは、正極集電体21において、枠骨部22から耳部26が突出している方向であり、下方の「下」とは、その逆方向である。すなわち、上下方向は、鉛蓄電池100における、ストラップ6と耳部26との接続方向である。また、水平方向とは、前記上下方向に垂直な方向である。 FIG. 2 is a diagram showing an example of the positive electrode current collector 21 according to the present embodiment, and is a plan view of the positive electrode current collector 21 as viewed from the thickness direction. As shown in FIG. 2, the positive electrode current collector 21 is provided near the frame bone portion 22, the internal bone portion 23 extending inward of the frame bone portion 22, and the upper end of the frame bone portion 22, and projects upward. It has an ear portion 26 to be formed. The upper "upper" is the direction in which the selvage portion 26 protrudes from the frame bone portion 22 in the positive electrode current collector 21, and the lower "lower" is the opposite direction. That is, the vertical direction is the connection direction between the strap 6 and the ear portion 26 in the lead-acid battery 100. The horizontal direction is a direction perpendicular to the vertical direction.

正極集電体21は、内骨部23が配置される領域の外周を囲むように設けられた枠状部材である枠骨部22を有している。本実施形態においては、枠骨部22は、略矩形状を有する。すなわち、正極集電体21は4辺に枠骨部22を備えている。枠骨部22は、上枠部22a、下枠部22b、第1縦枠部22c、および第2縦枠部22dを備える。 The positive electrode current collector 21 has a frame bone portion 22 which is a frame-shaped member provided so as to surround the outer periphery of the region where the internal bone portion 23 is arranged. In the present embodiment, the frame bone portion 22 has a substantially rectangular shape. That is, the positive electrode current collector 21 includes frame bone portions 22 on four sides. The frame bone portion 22 includes an upper frame portion 22a, a lower frame portion 22b, a first vertical frame portion 22c, and a second vertical frame portion 22d.

上枠部22aは、耳部26と接続している。また、上枠部22aは、鉛蓄電池100が、自動車等に載置された場合に、上枠部22aの延伸方向が水平方向となるように設けられている。下枠部22bは、延伸方向が上枠部22aに対して略平行となるように設けられている。 The upper frame portion 22a is connected to the ear portion 26. Further, the upper frame portion 22a is provided so that when the lead storage battery 100 is mounted on an automobile or the like, the extension direction of the upper frame portion 22a is the horizontal direction. The lower frame portion 22b is provided so that the stretching direction is substantially parallel to the upper frame portion 22a.

第1縦枠部22cは、上枠部22aと下枠部22bとを、上枠部22aおよび下枠部22bの延伸方向の一方側の端部で接続するように設けられている。第2縦枠部22dは、上枠部22aと下枠部22bとを、上枠部22aおよび下枠部22bの他方側の端部で接続するように設けられている。 The first vertical frame portion 22c is provided so as to connect the upper frame portion 22a and the lower frame portion 22b at one end of the upper frame portion 22a and the lower frame portion 22b in the extending direction. The second vertical frame portion 22d is provided so as to connect the upper frame portion 22a and the lower frame portion 22b at the other end of the upper frame portion 22a and the lower frame portion 22b.

内骨部23は、枠骨部22に対して、正極集電体21の内側に延伸するように設けられており、縦骨部24と、横骨部25とを備える。縦骨部24は、上枠部22aと下枠部22bとを繋ぐように延びており、第1縦枠部22cおよび第2縦枠部22dに対して略平行に延びている。なお、縦骨部24の構成は、これに限られるものではなく、縦骨部24は、第1縦枠部22cおよび第2縦枠部22dに対して斜めに延びていてもよく、また、縦骨部24は、上枠部22aの耳部26と接続している部分を基点として、放射状に延びていてもよい。縦骨部24が、斜め、あるいは放射状に延びている場合には、縦骨部24は、上枠部22aまたは下枠部22bと、第1縦枠部22cまたは第2縦枠部22dとを繋ぐように延びていてもよい。 The internal bone portion 23 is provided so as to extend inward of the positive electrode current collector 21 with respect to the frame bone portion 22, and includes a vertical bone portion 24 and a lateral bone portion 25. The vertical bone portion 24 extends so as to connect the upper frame portion 22a and the lower frame portion 22b, and extends substantially parallel to the first vertical frame portion 22c and the second vertical frame portion 22d. The configuration of the vertical bone portion 24 is not limited to this, and the vertical bone portion 24 may extend diagonally with respect to the first vertical frame portion 22c and the second vertical frame portion 22d. The vertical bone portion 24 may extend radially from a portion of the upper frame portion 22a connected to the ear portion 26 as a base point. When the vertical bone portion 24 extends diagonally or radially, the vertical bone portion 24 has the upper frame portion 22a or the lower frame portion 22b and the first vertical frame portion 22c or the second vertical frame portion 22d. It may extend to connect.

横骨部25は、図2に示す例では、上枠部22aおよび下枠部22bに対して斜めに延びる斜め骨と、上枠部22aと下枠部22bと略平行に延びる横骨とを備えている。しかしながら横骨部25の形状はこれに限られるものではなく、斜め骨のみを備えていてもよく、横骨のみを備えていてもよい。 In the example shown in FIG. 2, the lateral bone portion 25 includes an oblique bone extending obliquely with respect to the upper frame portion 22a and the lower frame portion 22b, and a lateral bone extending substantially parallel to the upper frame portion 22a and the lower frame portion 22b. I have. However, the shape of the lateral bone portion 25 is not limited to this, and may include only diagonal bones or only lateral bones.

図3は、図2における、A−A線矢示断面図を示すものであり、本実施形態に係る正極集電体21における、内骨部23の延伸方向に垂直な断面を模式的に表す図である。ここで、正極集電体21の厚さ方向を第1方向D1とし、内骨部23の延伸方向および第1方向D1に垂直な方向を第2方向D2とする。また、内骨部23の第1方向D1の幅を第1幅Y、内骨部23の第2方向D2の幅を第2幅Xとする。なお、内骨部23の延伸方向とは、内骨部23同士が交差する部分であるノード間における、内骨部23の延伸方向である。すなわち、図2に示す例では、縦骨部24の延伸方向は、上下方向である。 FIG. 3 shows a cross-sectional view taken along the line AA in FIG. 2, and schematically shows a cross section of the positive electrode current collector 21 according to the present embodiment, which is perpendicular to the extending direction of the internal bone portion 23. It is a figure. Here, the thickness direction of the positive electrode current collector 21 is defined as the first direction D1, and the extending direction of the internal bone portion 23 and the direction perpendicular to the first direction D1 are defined as the second direction D2. Further, the width of the internal bone portion 23 in the first direction D1 is defined as the first width Y, and the width of the internal bone portion 23 in the second direction D2 is defined as the second width X. The extension direction of the internal bone portion 23 is the extension direction of the internal bone portion 23 between the nodes which are the portions where the internal bone portions 23 intersect with each other. That is, in the example shown in FIG. 2, the extension direction of the vertical bone portion 24 is the vertical direction.

本実施形態に係る正極集電体21は、第1幅Yと第2幅Xとが、下記式(1)の関係を満たす。
0.4 ≦ Y/X ≦0.8 ・・・(1)
In the positive electrode current collector 21 according to the present embodiment, the first width Y and the second width X satisfy the relationship of the following formula (1).
0.4 ≤ Y / X ≤ 0.8 ... (1)

なお、鉛蓄電池100における第1幅Yおよび第2幅Xは、以下のようにして測定する。まず、準備した正極集電体21の全体が覆われるように、正極集電体21を熱硬化性樹脂に埋め込み、樹脂を硬化させる。次に、樹脂に埋め込まれた正極集電体21を内骨部23の延伸方向に垂直な断面で切断する。切断した正極集電体21の内骨部23の断面を、マイクロスコープ等で撮影し、撮影した画像に基づいて、第1幅Yおよび第2幅Xを算出する。このとき、第1幅Yおよび第2幅Xは、撮影した所定の画像において、最大となる値を用いる。換言すれば、撮影した画像を用いて、内骨部23に外接する、各辺が第1方向D1または第2方向D2に平行な矩形を考える。当該矩形における第1方向D1の辺の長さを第1幅Yとし、第2方向D2の辺の長さを第2幅Xとする。 The first width Y and the second width X of the lead-acid battery 100 are measured as follows. First, the positive electrode current collector 21 is embedded in a thermosetting resin so that the entire prepared positive electrode current collector 21 is covered, and the resin is cured. Next, the positive electrode current collector 21 embedded in the resin is cut in a cross section perpendicular to the stretching direction of the internal bone portion 23. The cross section of the inner bone portion 23 of the cut positive electrode current collector 21 is photographed with a microscope or the like, and the first width Y and the second width X are calculated based on the photographed images. At this time, the first width Y and the second width X use the maximum values in the captured predetermined image. In other words, using the captured image, consider a rectangle circumscribing the internal bone portion 23, each side parallel to the first direction D1 or the second direction D2. The length of the side of the first direction D1 in the rectangle is defined as the first width Y, and the length of the side of the second direction D2 is defined as the second width X.

正極集電体21における、内骨部23の断面の形状は、Y/Xが上記式(1)を満たしていれば、特に限定されるものではない。すなわち、図3においては、断面形状が八角形状である例を示したが、断面形状は、四角形等その他の多角形状であってもよい。また、正極集電体21が、例えば、鋳造により作製される鋳造格子である場合や、鉛合金からなる圧延シートを打ち抜き加工することで作製される打ち抜き格子である場合には、正極集電体21の厚さと、内骨部23の桟の太さとの関係を調整することで、Y/Xを所望の値とすることができる。さらに、鋳造格子や、打ち抜き格子である正極集電体21に対して、プレス加工等の二次加工を行い、断面の形状を変化させることで、Y/Xを所望の値としてもよい。 The shape of the cross section of the inner bone portion 23 of the positive electrode current collector 21 is not particularly limited as long as Y / X satisfies the above formula (1). That is, in FIG. 3, an example in which the cross-sectional shape is an octagonal shape is shown, but the cross-sectional shape may be another polygonal shape such as a quadrangle. Further, when the positive electrode current collector 21 is, for example, a cast lattice produced by casting or a punched lattice produced by punching a rolled sheet made of a lead alloy, the positive electrode current collector 21 is a positive electrode current collector. By adjusting the relationship between the thickness of 21 and the thickness of the crosspiece of the inner bone portion 23, Y / X can be set to a desired value. Further, the positive electrode current collector 21 which is a cast lattice or a punched lattice may be subjected to secondary processing such as press processing to change the shape of the cross section, so that Y / X may be set to a desired value.

本実施形態においては、正極集電体21は、スズ(Sn)を含む鉛合金で構成されている。正極集電体21のスズ量は、1.1mass%以上であり、1.1mass%以上、1.8mass%以下であることが好ましい。正極集電体21のスズ量は、公知の方法を用いて測定することができ、例えば、ICP(Inductively Coupled Plasma)発光分光分析法により分析することができる。また、正極集電体21は、鉛およびスズ以外の元素をさらに含んでいてもよい。例えば、Pb−Ca−Sn系合金であってもよい。Pb−Ca−Sn系の場合、Caは0.06mass%〜0.08mass%の範囲内であることが好ましい。また、正極集電体21は、Ca、Ba、Ag、Al、Bi、As、SeおよびCuからなる群から選ばれる1または複数の元素を含んでいてもよい。 In the present embodiment, the positive electrode current collector 21 is made of a lead alloy containing tin (Sn). The tin content of the positive electrode current collector 21 is preferably 1.1 mass% or more, preferably 1.1 mass% or more and 1.8 mass% or less. The tin amount of the positive electrode current collector 21 can be measured by using a known method, and can be analyzed by, for example, ICP (Inductively Coupled Plasma) emission spectroscopy. Further, the positive electrode current collector 21 may further contain elements other than lead and tin. For example, it may be a Pb-Ca-Sn-based alloy. In the case of the Pb-Ca-Sn system, Ca is preferably in the range of 0.06 mass% to 0.08 mass%. Further, the positive electrode current collector 21 may contain one or more elements selected from the group consisting of Ca, Ba, Ag, Al, Bi, As, Se and Cu.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.

〔まとめ〕
(1)本発明の一態様に係る鉛蓄電池用正極集電体は、枠骨部と、枠骨部の内側に延伸する内骨部とを備える鉛蓄電池用正極集電体であって、前記正極集電体は、Sn濃度が1.1mass%以上であり、前記内骨部は、当該内骨部の延伸方向に垂直な断面において、前記正極集電体の厚さ方向である第1方向の幅(Y)と、前記延伸方向および前記第1方向に垂直である第2方向の幅(X)とが、0.4≦Y/X≦0.8の関係を満たす。
〔summary〕
(1) The positive electrode current collector for a lead storage battery according to one aspect of the present invention is a positive electrode current collector for a lead storage battery including a frame bone portion and an inner bone portion extending inward of the frame bone portion. The positive electrode current collector has a Sn concentration of 1.1 mass% or more, and the inner bone portion is in the first direction which is the thickness direction of the positive electrode current collector in the cross section perpendicular to the extending direction of the inner bone portion. The width (Y) of the above and the width (X) in the second direction perpendicular to the stretching direction and the first direction satisfy the relationship of 0.4 ≦ Y / X ≦ 0.8.

一般に、鉛蓄電池が過充電状態となった場合等には、鉛蓄電池の正極集電体に腐食が生じ、正極集電体が変形することが知られている。正極集電体が腐食し、変形した場合には、正極集電体と正極電極材料との間に隙間が生じ、正極集電体に支持されていた正極電極材料が、正極集電体から剥離し、脱落することがある。このように、正極電極材料が脱落することで、鉛蓄電池の寿命サイクル数が低下するという問題がある。 In general, it is known that when a lead-acid battery is overcharged, the positive electrode current collector of the lead-acid battery is corroded and the positive electrode current collector is deformed. When the positive electrode current collector is corroded and deformed, a gap is created between the positive electrode current collector and the positive electrode material, and the positive electrode material supported by the positive electrode current collector is separated from the positive electrode current collector. However, it may drop out. As described above, there is a problem that the number of life cycles of the lead storage battery is reduced due to the removal of the positive electrode material.

上記の構成によれば、本発明の一態様に係る鉛蓄電池用正極集電体は、内骨部が、0.4≦Y/X≦0.8の関係を満たす正極集電体であって、Sn濃度が1.1mass%以上である。このように、正極集電体中のSn濃度を1.1mass%以上とすることで、Snによる耐食性の向上の効果が生じ、鉛蓄電池が当該正極集電体を備える場合に、正極集電体の過充電時における腐食が抑制できる。この効果は、正極集電体の内骨部の延伸方向に垂直な断面の形状を、0.4≦Y/X≦0.8の関係を満たすような形状とした場合に特に顕著となる。換言すれば、内骨部23の断面の形状を、0.4≦Y/X≦0.8を満たすように制御することで、Snによる正極集電体の腐食の抑制の効果を顕著なものとすることができる。このように、正極集電体の過充電時における腐食を抑制することにより、鉛蓄電池に用いられた場合に、過充電時における正極電極材料の脱落を抑制することが可能となり、寿命サイクル数に優れた鉛蓄電池を提供することができる。 According to the above configuration, the positive electrode current collector for a lead storage battery according to one aspect of the present invention is a positive electrode current collector whose inner bone portion satisfies the relationship of 0.4 ≦ Y / X ≦ 0.8. , Sn concentration is 1.1 mass% or more. As described above, by setting the Sn concentration in the positive electrode current collector to 1.1 mass% or more, the effect of improving the corrosion resistance by Sn is produced, and when the lead storage battery includes the positive electrode current collector, the positive electrode current collector is provided. Corrosion during overcharging can be suppressed. This effect is particularly remarkable when the shape of the cross section perpendicular to the stretching direction of the inner bone portion of the positive electrode current collector is shaped so as to satisfy the relationship of 0.4 ≦ Y / X ≦ 0.8. In other words, by controlling the shape of the cross section of the internal bone portion 23 so as to satisfy 0.4 ≦ Y / X ≦ 0.8, the effect of suppressing corrosion of the positive electrode current collector by Sn is remarkable. Can be. In this way, by suppressing the corrosion of the positive electrode current collector during overcharging, it is possible to suppress the removal of the positive electrode material during overcharging when used in a lead-acid battery, and the number of life cycles is increased. An excellent lead-acid battery can be provided.

なお、本発明の一態様に係る正極集電体においては、内骨部のすべての場所において、0.4≦Y/X≦0.8の関係を満たしている必要はない。すなわち、内骨部の少なくとも一部の場所において、0.4≦Y/X≦0.8の関係を満たしていればよい。より具体的には、少なくとも、内骨部のうち異なる10本の内骨において0.4≦Y/X≦0.8の関係を満たしていれば、本発明に含まれる。 In the positive electrode current collector according to one aspect of the present invention, it is not necessary to satisfy the relationship of 0.4 ≦ Y / X ≦ 0.8 at all places of the internal bone portion. That is, it is sufficient that the relationship of 0.4 ≦ Y / X ≦ 0.8 is satisfied at least in a part of the internal bone portion. More specifically, it is included in the present invention as long as the relationship of 0.4 ≦ Y / X ≦ 0.8 is satisfied in at least 10 different inner bones among the inner bones.

また、Y/Xの算出に用いる正極集電体は、正極電極材料を充填する前のものでもよく、鉛蓄電池を解体して取り出したものでもよい。後者の場合には、まず鉛蓄電池を解体して取り出した正極板を水洗することで、硫酸を含む電解液を除去する。次に、正極板を乾燥させ、正極板から正極電極材料を除去する。次に、正極電極材料を除去した正極集電体をアルカリ性のマンニット溶液に所定時間浸漬し、その後、水洗することで、正極集電体の表面に付着している正極電極材料および腐食生成物をさらに除去する。そして、正極電極材料および腐食生成物を除去した正極集電体を煮用いて、Y/Xを算出する。 Further, the positive electrode current collector used for calculating Y / X may be one before the positive electrode material is filled, or may be one taken out by disassembling the lead storage battery. In the latter case, first, the lead-acid battery is disassembled and the positive electrode plate taken out is washed with water to remove the electrolytic solution containing sulfuric acid. Next, the positive electrode plate is dried and the positive electrode material is removed from the positive electrode plate. Next, the positive electrode current collector from which the positive electrode material has been removed is immersed in an alkaline mannit solution for a predetermined time and then washed with water to cause the positive electrode material and corrosion products adhering to the surface of the positive electrode current collector. Is further removed. Then, Y / X is calculated by boiling the positive electrode current collector from which the positive electrode material and the corrosion product have been removed.

なお、本発明の一態様に係る正極集電体において、「枠骨部」とは、図2に示すような正極集電体の外周を構成するように設けられた矩形状のものに限られるものではない。すなわち、エキスパンド格子のように、耳と接続した上枠部や、当該上枠部と対向するように設けられた下枠部も本発明の「枠骨部」に含まれる。換言すれば、正極集電体の枠骨部は、下枠部、第1縦枠部、および/または第2縦枠部を備えていなくてもよい。また、上枠部、下枠部、第1縦枠部、および第2縦枠部のそれぞれは、必ずしも一様な太さで連続的に設けられていなくてもよい。すなわち、上枠部、下枠部、第1縦枠部、および第2縦枠部は、一部に切り欠きが設けられていてもよく、部分的に幅が変化していてもよい。 In the positive electrode current collector according to one aspect of the present invention, the "frame bone portion" is limited to a rectangular shape provided so as to form the outer circumference of the positive electrode current collector as shown in FIG. It's not a thing. That is, the "frame bone portion" of the present invention also includes an upper frame portion connected to the ear and a lower frame portion provided so as to face the upper frame portion, such as an expanding lattice. In other words, the frame bone portion of the positive electrode current collector may not include the lower frame portion, the first vertical frame portion, and / or the second vertical frame portion. Further, each of the upper frame portion, the lower frame portion, the first vertical frame portion, and the second vertical frame portion does not necessarily have to be continuously provided with a uniform thickness. That is, the upper frame portion, the lower frame portion, the first vertical frame portion, and the second vertical frame portion may be partially provided with a notch, or the width may be partially changed.

(2)本発明の一態様に係る鉛蓄電池用集電体は、前記枠骨部が、前記内骨部が配置される領域の外周を囲うように設けられていてもよい。 (2) The lead-acid battery current collector according to one aspect of the present invention may be provided so that the frame bone portion surrounds the outer periphery of the region where the inner bone portion is arranged.

上記の構成によれば、正極集電体が、内骨部の外周を囲うように設けられた枠骨部を備えている場合には、正極集電体に腐食が生じたとき、正極集電体は、正極集電体の厚さ方向に湾曲するような変形が生じ易い。これは、正極集電体が腐食し、内骨部に変形の応力が生じた場合に、枠骨部が、外周のすべての方向に設けられているため、内骨部は、枠骨部がある外周方向へ伸びる変形よりも、厚さ方向へ湾曲する変形が生じ易いためであると考えられる。 According to the above configuration, when the positive electrode current collector includes a frame bone portion provided so as to surround the outer periphery of the inner bone portion, when the positive electrode current collector is corroded, the positive electrode current collector is collected. The body is liable to be deformed so as to be curved in the thickness direction of the positive electrode current collector. This is because the frame bone is provided in all directions of the outer circumference when the positive current collector corrodes and the internal bone is deformed, so that the internal bone is the frame bone. It is considered that this is because the deformation that curves in the thickness direction is more likely to occur than the deformation that extends in the outer peripheral direction.

一方、正極集電体が、公知であるロータリー方式で作製されたエキスパンド格子である場合には、正極集電体は、上枠部および下枠部のみを備えており、縦枠部を備えていない。このように、正極集電体が、内骨部の外周を囲うように設けられた枠骨部22を備えていない場合には、正極集電体が腐食したとしても、正極集電体は、正極集電体の厚さ方向に垂直な平面内での変形が可能であり、正極集電体の厚さ方向への湾曲が生じにくい。このように、正極集電体が、正極集電体の厚さ方向に垂直な平面内での変形する場合には、正極集電体が、厚さ方向に変形する場合に比べて、正極電極材料の脱落が生じにくい。 On the other hand, when the positive electrode current collector is an expanded lattice manufactured by a known rotary method, the positive electrode current collector includes only an upper frame portion and a lower frame portion, and includes a vertical frame portion. No. As described above, when the positive electrode current collector does not include the frame bone portion 22 provided so as to surround the outer periphery of the inner bone portion, even if the positive electrode current collector is corroded, the positive electrode current collector can be used. The positive electrode current collector can be deformed in a plane perpendicular to the thickness direction of the positive electrode current collector, and the positive electrode current collector is less likely to be curved in the thickness direction. In this way, when the positive electrode current collector is deformed in a plane perpendicular to the thickness direction of the positive electrode current collector, the positive electrode electrode is compared with the case where the positive electrode current collector is deformed in the thickness direction. Material is less likely to fall off.

そのため、正極集電体が、正極集電体の厚さ方向に湾曲するような変形が生じ易い内骨部の外周を囲うように設けられた枠骨部を備えている場合において、正極集電体が、0.4≦Y/X≦0.8の関係を満たし、かつSn濃度が1.1mass%以上とすることにより、正極集電体の厚さ方向に湾曲するような変形が生じにくい、内骨部の外周を囲うように設けられた枠骨部を備えていない場合に比べて、正極電極材料の脱落抑制の効果を一層大きくすることができる。 Therefore, when the positive electrode current collector is provided with a frame bone portion provided so as to surround the outer periphery of the inner bone portion that is likely to be deformed so as to be curved in the thickness direction of the positive electrode current collector, the positive electrode current collector is provided. When the body satisfies the relationship of 0.4 ≦ Y / X ≦ 0.8 and the Sn concentration is 1.1 mass% or more, deformation such as bending in the thickness direction of the positive electrode current collector is unlikely to occur. Compared with the case where the frame bone portion provided so as to surround the outer periphery of the inner bone portion is not provided, the effect of suppressing the falling off of the positive electrode electrode material can be further increased.

(3)本発明の一態様に係る鉛蓄電池用正極集電体は、打ち抜き格子であってもよい。 (3) The positive electrode current collector for a lead storage battery according to one aspect of the present invention may be a punched lattice.

上記の構成によれば、鉛蓄電池用正極集電体が、打ち抜き格子である場合には、鋳造格子や、エキスパンド格子に比べて、正極電極材料の脱落の抑制効果が大きい。すなわち、打ち抜き格子の作製は、まず、鋳造された鉛または鉛合金からなるスラブを、圧延し圧延シートを作製する。次に、作製した圧延シートに対して、打ち抜き加工を行うことで打ち抜き格子を作製する。そのため、圧延ロールと接触する、正極集電体の厚さ方向に垂直な面(圧延面)は、表面粗さが小さくなる。ここで、正極電極材料は、主として正極集電体の厚さ方向に垂直な面と接触する。そのため、正極電極材料と主として接触する集電体表面の表面粗さが小さいことにより、打ち抜き格子においては、正極集電体と正極電極材料との密着性が良くない。 According to the above configuration, when the positive electrode current collector for a lead storage battery is a punched lattice, the effect of suppressing the falling off of the positive electrode material is greater than that of a cast lattice or an expanded lattice. That is, in the production of the punched lattice, first, a slab made of cast lead or a lead alloy is rolled to produce a rolled sheet. Next, a punching lattice is produced by punching the produced rolled sheet. Therefore, the surface roughness of the surface (rolled surface) perpendicular to the thickness direction of the positive electrode current collector that comes into contact with the rolling roll becomes small. Here, the positive electrode material mainly comes into contact with a surface perpendicular to the thickness direction of the positive electrode current collector. Therefore, since the surface roughness of the surface of the current collector that mainly contacts the positive electrode material is small, the adhesion between the positive electrode current collector and the positive electrode material is not good in the punched lattice.

また、圧延シートは、圧延時に結晶粒が圧延方向(圧延時における圧延シートの搬送方向)に伸張し、金属組織が圧延シートの厚さ方向に積層された層状組織が形成されている。そして、圧延面においては、結晶粒界が深さ方向よりも、圧延面に平行な方向に延びているため、圧延面における腐食は、表層から層状に進行する。ここで、正極集電体の腐食により形成される腐食層は、正極電極材料に対する密着性がよく、正極集電体と正極電極材料とを密着させる機能を有する。打ち抜き格子においては、腐食層が、正極集電体の表層に選択的に形成されるため、正極集電体が腐食により変形した場合には、正極集電体の表層形成された腐食層が正極集電体から層状に剥離することで、正極集電体と正極電極材用との間の密着が失われる。そのため、腐食層が正極集電体の表層に選択的に形成される、打ち抜き格子は、正極集電体の厚さ方向に腐食層が形成されている場合に比べて、正極集電体と正極電極材料との間に隙間が生じ易い。このように、打ち抜き格子においては、正極集電体と正極電極材料との密着性が良くなく、正極集電体が変形した場合に、正極電極材料の脱落が生じやすい。 Further, in the rolled sheet, crystal grains are stretched in the rolling direction (the transport direction of the rolled sheet during rolling) during rolling, and a layered structure in which metal structures are laminated in the thickness direction of the rolled sheet is formed. Then, on the rolled surface, since the crystal grain boundaries extend in the direction parallel to the rolled surface rather than the depth direction, the corrosion on the rolled surface proceeds in layers from the surface layer. Here, the corroded layer formed by the corrosion of the positive electrode current collector has good adhesion to the positive electrode material, and has a function of bringing the positive electrode current collector and the positive electrode material into close contact with each other. In the punched lattice, the corrosive layer is selectively formed on the surface layer of the positive electrode current collector. Therefore, when the positive electrode current collector is deformed by corrosion, the corroded layer formed on the surface layer of the positive electrode current collector is the positive electrode. By peeling from the current collector in layers, the adhesion between the positive electrode current collector and the positive electrode material is lost. Therefore, in the punched lattice in which the corrosive layer is selectively formed on the surface layer of the positive electrode current collector, the positive electrode current collector and the positive electrode are compared with the case where the corrosive layer is formed in the thickness direction of the positive electrode current collector. A gap is likely to occur between the electrode material and the electrode material. As described above, in the punched lattice, the adhesion between the positive electrode current collector and the positive electrode material is not good, and when the positive electrode current collector is deformed, the positive electrode material tends to fall off.

一方、正極集電体が、鋳造格子である場合を考えると、鋳造格子は、製造過程において、鋳型から集電体が離型し易くなるように、鋳型に離型材が塗布される。そのため、離型材の影響により、鋳造格子は、打ち抜き格子に比べて、正極電極材料と接触する面(正極集電体の厚さ方向に垂直な面)の表面粗さが大きくなる。また、鋳造格子は、結晶粒が圧延シートに比べて大きい。そのため、正極集電体が腐食した場合には、粒界腐食が生じ、正極集電体の内部へと腐食が進行する。腐食層が内部にまで形成される場合には、正極集電体が腐食により変形したとしても、内部にまで形成された腐食層が楔となり、正極集電体と正極電極材料との密着を担保する。そのため、鋳造格子においては、正極集電体と正極電極材料との間に隙間が生じ難い。このように、鋳造格子は、打ち抜き格子に比べて表面粗さが大きく、内部まで腐食層が形成されるため、打ち抜き格子に比べて正極電極材料との密着性がよい。 On the other hand, considering the case where the positive electrode current collector is a cast lattice, a mold release material is applied to the cast lattice so that the current collector can be easily released from the mold in the manufacturing process. Therefore, due to the influence of the mold release material, the surface roughness of the surface of the cast lattice (the surface perpendicular to the thickness direction of the positive electrode current collector) in contact with the positive electrode material is larger than that of the punched lattice. Further, in the cast lattice, the crystal grains are larger than those of the rolled sheet. Therefore, when the positive electrode current collector is corroded, intergranular corrosion occurs and the corrosion progresses to the inside of the positive electrode current collector. When the corroded layer is formed to the inside, even if the positive electrode current collector is deformed due to corrosion, the corroded layer formed to the inside becomes a wedge, ensuring the adhesion between the positive electrode current collector and the positive electrode material. do. Therefore, in the cast lattice, a gap is unlikely to occur between the positive electrode current collector and the positive electrode material. As described above, the cast lattice has a larger surface roughness than the punched lattice and a corrosive layer is formed to the inside, so that the cast lattice has better adhesion to the positive electrode material than the punched lattice.

また、エキスパンド格子は、打ち抜き格子と同様に、圧延シートを用いるものの、製造過程において、格子の内骨にねじれが生じる。そのため、エキスパンド格子においては、圧延方向に垂直な面が、格子の厚さ方向に垂直な表面に露出することとなる。そのため、エキスパンド格子においては、正極電極材料は、圧延面と、圧延方向に垂直な面との両方に接触する。圧延方向に垂直な面は、圧延面に比べて、深さ方向に深く延びる粒界が存在する。ここで、圧延方向に垂直な面は、圧延面から深さ方向に深く延びる粒界が存在し、粒界腐食が生じるため、鋳造格子の場合と同様に、深さ方向に腐食層が形成される。そのため、圧延方向に垂直な面は、圧延面に比べて、正極電極材料との密着性はよい。すなわち、エキスパンド格子においては、正極電極材料との密着性がよい圧延方向に垂直な面が、正極電極材料との密着性が求められる、正極集電体の厚さ方向に垂直な表面に露出する。以上の理由から、エキスパンド格子も、打ち抜き格子に比べて正極電極材料との密着性がよい。 Further, although the expanded lattice uses a rolled sheet like the punched lattice, the inner bone of the lattice is twisted in the manufacturing process. Therefore, in the expanding lattice, the surface perpendicular to the rolling direction is exposed to the surface perpendicular to the thickness direction of the lattice. Therefore, in the expanding lattice, the positive electrode material comes into contact with both the rolled surface and the surface perpendicular to the rolling direction. The surface perpendicular to the rolling direction has grain boundaries extending deeper in the depth direction than the rolled surface. Here, since the surface perpendicular to the rolling direction has grain boundaries extending deeply from the rolled surface in the depth direction and intergranular corrosion occurs, a corrosive layer is formed in the depth direction as in the case of the casting lattice. NS. Therefore, the surface perpendicular to the rolling direction has better adhesion to the positive electrode material than the rolled surface. That is, in the expanding lattice, the surface perpendicular to the rolling direction, which has good adhesion to the positive electrode material, is exposed to the surface perpendicular to the thickness direction of the positive electrode current collector, which is required to have adhesion to the positive electrode material. .. For the above reasons, the expanded lattice also has better adhesion to the positive electrode material than the punched lattice.

以上から、鋳造格子やエキスパンド格子に比べて正極電極材料との密着性が良くない打ち抜き格子において、正極集電体が、0.4≦Y/X≦0.8の関係を満たし、Sn濃度が1.1mass%以上であることは、鋳造格子やエキスパンド格子に比べて正極電極材料の脱落抑制の効果を一層大きくすることができる。 From the above, in the punched lattice where the adhesion to the positive electrode material is not as good as that of the cast lattice or the expanded lattice, the positive electrode current collector satisfies the relationship of 0.4 ≦ Y / X ≦ 0.8 and the Sn concentration is high. When it is 1.1 mass% or more, the effect of suppressing the dropout of the positive electrode material can be further increased as compared with the cast lattice and the expanded lattice.

(4)本発明の一態様に係る鉛蓄電池用正極集電体は、Sn濃度が、1.8mass%以下であってもよい。 (4) The positive electrode current collector for a lead storage battery according to one aspect of the present invention may have a Sn concentration of 1.8 mass% or less.

(5)本発明の一態様に係る鉛蓄電池用集電体を備える鉛蓄電池も、本発明に含まれる。 (5) A lead-acid battery including a current collector for a lead-acid battery according to one aspect of the present invention is also included in the present invention.

〔実施例および比較例〕
以下、本発明の実施形態について、実施例および比較例に基づいて、さらに具体的に説明する。しかしながら、本発明は、以下の実施例に限定されるものではない。
[Examples and Comparative Examples]
Hereinafter, embodiments of the present invention will be described in more detail based on Examples and Comparative Examples. However, the present invention is not limited to the following examples.

(正極板の作製)
まず、Sn濃度が、0.5mass%、1.1mass%、および1.8mass%のPb−0.07mass%Ca−Sn系合金の圧延シートを打ち抜き加工することにより、第1幅Y/第2幅Xが、0.2〜0.9の範囲となる打ち抜き格子の正極集電体を作製する。次に、鉛粉を含む正極ペーストを調整し、正極集電体に充填する。その後、熟成および乾燥を行い、未化成の正極板を得る。
(Manufacturing of positive electrode plate)
First, the first width Y / second by punching a rolled sheet of a Pb-0.07 mass% Ca-Sn based alloy having Sn concentrations of 0.5 mass%, 1.1 mass%, and 1.8 mass%. A positive electrode current collector of a punched lattice having a width X in the range of 0.2 to 0.9 is produced. Next, the positive electrode paste containing lead powder is prepared and filled in the positive electrode current collector. Then, it is aged and dried to obtain an unchemical positive electrode plate.

(負極板の作製)
鉛粉、水、希硫酸、硫酸バリウム、カーボンブラック、グラファイト、および有機防縮剤(リグニンスルホン酸ナトリウム)を混合して、負極ペーストを調整する。負極集電体として、Pb−Ca−Sn系合金製のエキスパンド格子に負極ペーストを充填する。その後、充填および乾燥を行い、未化成の負極板を得る。
(Manufacturing of negative electrode plate)
The negative electrode paste is prepared by mixing lead powder, water, dilute sulfuric acid, barium sulfate, carbon black, graphite, and an organic shrink proofing agent (sodium lignin sulfonate). As a negative electrode current collector, an expanding lattice made of a Pb—Ca—Sn alloy is filled with a negative electrode paste. Then, it is filled and dried to obtain an unchemical negative electrode plate.

(鉛蓄電池の作製)
未化成の各負極板を、ポリエチレン製の袋状セパレータに収容する。次に、1セル当たり未化成の負極板7枚と、未化成の正極板7枚とを交互に重ね、極板群を作製する。その後、作製した6つの極板群をポリプロピレン製の電槽の各セル室に挿入し、電解液を注入する。次に、電槽内で化成を施し、液式の鉛蓄電池を組み立てる。なお、電解液としては、硫酸水溶液を用いる。
(Making lead-acid batteries)
Each unchemical negative electrode plate is housed in a polyethylene bag-shaped separator. Next, seven unchemicald negative electrode plates and seven unchemicald positive electrode plates are alternately stacked per cell to prepare a group of electrode plates. Then, the prepared six electrode plates are inserted into each cell chamber of the polypropylene electric tank, and the electrolytic solution is injected. Next, chemical conversion is performed in the battery case to assemble a liquid lead-acid battery. An aqueous sulfuric acid solution is used as the electrolytic solution.

(軽負荷寿命試験)
作製した鉛蓄電池に対して、以下の手順で高温過充電試験を行う。
JIS D5301で指定された通常の4分−10分試験よりも過充電条件にするために、放電1分−充電10分の試験(1分−10分試験)を75℃雰囲気下で実施し、610サイクル毎にCCA性能を判定する。CCA性能の判定方法は、JIS D5301の規定に準じる。なお、放電条件および充電条件は以下の通りである。
放電:25A、1分
充電:14.8V、25A、10分
CCA性能の判定時に、放電電圧が7.2V以下まで低下した場合に寿命と判定する。また、サイクル試験の充電時において、充電電流が異常に上昇した場合も、寿命であると判定する。寿命と判定したサイクル数を寿命サイクル数とする。
(Light load life test)
A high-temperature overcharge test is performed on the produced lead-acid battery according to the following procedure.
In order to make the overcharge condition more than the normal 4-minute-10-minute test specified by JIS D5301, a 1-minute discharge-10-minute charge test (1-10-minute test) was performed in a 75 ° C atmosphere. CCA performance is determined every 610 cycles. The method for determining CCA performance conforms to the provisions of JIS D5301. The discharge conditions and charge conditions are as follows.
Discharge: 25A, 1 minute Charge: 14.8V, 25A, 10 minutes When the CCA performance is judged, the life is judged when the discharge voltage drops to 7.2V or less. Further, when the charging current is abnormally increased during charging in the cycle test, it is determined that the product has reached the end of its life. The number of cycles determined to have reached the end of its life is defined as the number of life cycles.

図4は、実施例および比較例に係る高温過充電試験の結果を示す図であり、第1幅Y/第2幅Xと、寿命サイクル数との関係を示す図である。なお、図4においては、第1幅Y/第2幅Xが0.2、Snが0.5mass%の正極集電体を使用した鉛蓄電池における寿命サイクル数を100%として結果を示している。 FIG. 4 is a diagram showing the results of a high temperature overcharge test according to Examples and Comparative Examples, and is a diagram showing the relationship between the first width Y / second width X and the number of life cycles. In FIG. 4, the result is shown with the life cycle of a lead storage battery using a positive electrode current collector having a first width Y / second width X of 0.2 and Sn of 0.5 mass% as 100%. ..

図4からわかるように、Snが1.1mass%以上の正極集電体を備える鉛蓄電池は、Snが1.1mass%未満の正極集電体を備える鉛蓄電池に比べて、高温過充電試験における、寿命サイクル数に優れていることがわかる。この傾向は特に、Y/Xが、0.4以上0.8以下の範囲において特に顕著である。 As can be seen from FIG. 4, a lead-acid battery having a positive electrode current collector having a Sn of 1.1 mass% or more has a higher temperature overcharge test than a lead-acid battery having a positive electrode current collector having a Sn of less than 1.1 mass%. It can be seen that the number of life cycles is excellent. This tendency is particularly remarkable in the range where Y / X is 0.4 or more and 0.8 or less.

21:正極集電体(鉛蓄電池用正極集電体) 22:枠骨部 23:内骨部 100:鉛蓄電池 D1:第1方向 D2:第2方向 Y:第1幅 X:第2幅 21: Positive electrode current collector (positive electrode current collector for lead storage battery) 22: Frame bone part 23: Inner bone part 100: Lead storage battery D1: 1st direction D2: 2nd direction Y: 1st width X: 2nd width

Claims (5)

枠骨部と、枠骨部の内側に延伸する内骨部とを備える鉛蓄電池用正極集電体であって、
前記正極集電体は、Sn濃度が1.1mass%以上であり、
前記内骨部は、当該内骨部の延伸方向に垂直な断面において、前記正極集電体の厚さ方向である第1方向の幅(Y)と、前記延伸方向および前記第1方向に垂直である第2方向の幅(X)とが、0.4≦Y/X≦0.8の関係を満たすことを特徴とする鉛蓄電池用正極集電体。
A positive electrode current collector for a lead storage battery including a frame bone portion and an inner bone portion extending inward of the frame bone portion.
The positive electrode current collector has a Sn concentration of 1.1 mass% or more.
The inner bone portion is perpendicular to the width (Y) in the first direction, which is the thickness direction of the positive electrode current collector, and the stretching direction and the first direction in a cross section perpendicular to the extending direction of the inner bone portion. A positive electrode current collector for a lead storage battery, wherein the width (X) in the second direction satisfies the relationship of 0.4 ≦ Y / X ≦ 0.8.
前記枠骨部は、前記内骨部が配置される領域の外周を囲うように設けられていることを特徴とする請求項1に記載の鉛蓄電池用正極集電体。 The positive electrode current collector for a lead storage battery according to claim 1, wherein the frame bone portion is provided so as to surround the outer periphery of the region where the inner bone portion is arranged. 前記正極集電体は、打ち抜き格子であることを特徴とする請求項1または2に記載の鉛蓄電池用正極集電体。 The positive electrode current collector for a lead storage battery according to claim 1 or 2, wherein the positive electrode current collector is a punched lattice. 前記正極集電体は、Sn濃度が、1.8mass%以下であることを特徴とする請求項1から3の何れか1項に記載の鉛蓄電池用正極集電体。 The positive electrode current collector for a lead storage battery according to any one of claims 1 to 3, wherein the positive electrode current collector has a Sn concentration of 1.8 mass% or less. 請求項1から4の何れか1項に記載の正極集電体を備える鉛蓄電池。 A lead-acid battery comprising the positive electrode current collector according to any one of claims 1 to 4.
JP2020072026A 2020-04-14 2020-04-14 Positive electrode collector for lead storage battery and lead storage battery Pending JP2021170429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020072026A JP2021170429A (en) 2020-04-14 2020-04-14 Positive electrode collector for lead storage battery and lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020072026A JP2021170429A (en) 2020-04-14 2020-04-14 Positive electrode collector for lead storage battery and lead storage battery

Publications (1)

Publication Number Publication Date
JP2021170429A true JP2021170429A (en) 2021-10-28

Family

ID=78119463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020072026A Pending JP2021170429A (en) 2020-04-14 2020-04-14 Positive electrode collector for lead storage battery and lead storage battery

Country Status (1)

Country Link
JP (1) JP2021170429A (en)

Similar Documents

Publication Publication Date Title
JP5387666B2 (en) Lattice plate for lead-acid battery, electrode plate and lead-acid battery provided with this electrode plate
JP2017063001A (en) Lead storage battery
JP6762895B2 (en) Lead-acid battery
KR20180034660A (en) Lead accumulator
JP6844610B2 (en) Lead-acid battery
JP6388094B1 (en) Lead acid battery
JP5935069B2 (en) Lead-acid battery grid and lead-acid battery
JP5050309B2 (en) Lead acid battery
US20170222214A1 (en) Positive electrode plate for lead-acid battery, lead-acid battery and method of manufacturing positive electrode plate for lead-acid battery
JP2021170429A (en) Positive electrode collector for lead storage battery and lead storage battery
JP2010205572A (en) Lead acid battery
JP6921037B2 (en) Lead-acid battery
WO2020080283A1 (en) Lead-acid battery current collector, lead-acid battery, and manufacturing method of lead-acid battery current collector
JP2012079609A (en) Lead storage battery
JP3637603B2 (en) Lead acid battery
JP4224756B2 (en) Lead acid battery
JP7478877B1 (en) Flooded lead-acid battery
KR102209357B1 (en) How to create grid surface protrusions of lead-acid batteries using press die corrosion
JP7318660B2 (en) lead acid battery
JP2003338273A (en) Separator for battery and lead battery using the same
JP2023108240A (en) lead acid battery
JP2022110383A (en) liquid lead acid battery
CN117957676A (en) Lead storage battery
JP2023020656A (en) Liquid type lead storage battery and manufacturing method of them
JP2014032845A (en) Lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240410