JP2021169378A - Tubular iron oxide particle, production method thereof, and antibacterial red pigment - Google Patents

Tubular iron oxide particle, production method thereof, and antibacterial red pigment Download PDF

Info

Publication number
JP2021169378A
JP2021169378A JP2020072068A JP2020072068A JP2021169378A JP 2021169378 A JP2021169378 A JP 2021169378A JP 2020072068 A JP2020072068 A JP 2020072068A JP 2020072068 A JP2020072068 A JP 2020072068A JP 2021169378 A JP2021169378 A JP 2021169378A
Authority
JP
Japan
Prior art keywords
iron
iron oxide
organic sheath
oxide particles
tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020072068A
Other languages
Japanese (ja)
Other versions
JP6798740B1 (en
Inventor
勝徳 田村
Katsunori Tamura
達生 藤井
Tatsuo Fujii
潤 高田
Jun Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okayama University NUC
Original Assignee
Okayama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okayama University NUC filed Critical Okayama University NUC
Priority to JP2020072068A priority Critical patent/JP6798740B1/en
Priority to PCT/JP2020/043974 priority patent/WO2021210212A1/en
Application granted granted Critical
Publication of JP6798740B1 publication Critical patent/JP6798740B1/en
Publication of JP2021169378A publication Critical patent/JP2021169378A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • C12P1/04Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes by using bacteria

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Materials Engineering (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Compounds Of Iron (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Catalysts (AREA)

Abstract

To provide a production method of a tubular iron oxide particle which gives a tubular structure at a substantial rate with a simple process, and to provide the tubular iron oxide particle thus given, and to provide an antibacterial red pigment, etc. having an excellent color tone and a high antibacterial property.SOLUTION: A production method of a tubular iron oxide particle comprises: an organic sheath production step of cultivating an iron-oxidizing bacterium in a culture solution in a vessel of a cultivation apparatus to produce an organic sheath on an outer periphery part of the bacterium; an iron-containing organic sheath production step of adding at least a trivalent iron compound to the culture solution having the organic sheath produced therein to deposit an iron component to thereby produce an iron-containing organic sheath containing the iron component; a separation step of separating the iron-containing organic sheath from the culture solution; and a heat treatment step of heat-treating the iron-containing organic sheath to produce at least an iron oxide.SELECTED DRAWING: Figure 1

Description

本発明は、鉄酸化細菌を利用したチューブ状酸化鉄粒子の製造方法、並びにその製造方法により得られるチューブ状酸化鉄粒子、及びそれを含む抗菌性赤色顔料に関する。 The present invention relates to a method for producing tubular iron oxide particles using iron-oxidizing bacteria, tubular iron oxide particles obtained by the production method, and an antibacterial red pigment containing the same.

粉末状赤色酸化鉄とは異なる形状を有するチューブ状酸化鉄粒子として、例えば非特許文献1に開示されたチューブ状赤色酸化鉄が知られている。このチューブ状赤色酸化鉄は、自然界に存在する微生物(鉄酸化細菌レプトスリックス・オクラセア(Leptothrix ochracea))が作るチューブ状酸化鉄(構成元素比:Fe:Si:P=73:22:5)を空気中で約800℃で加熱することによって得られたものであり、優れた色調を示すばかりでなく、耐熱性にも優れている。このチューブ状赤色酸化鉄の優れた色調は、(i)Si固溶効果、(ii)チューブ状の形態などに起因していると考えられている。 As tubular iron oxide particles having a shape different from that of powdered red iron oxide, for example, tubular red iron oxide disclosed in Non-Patent Document 1 is known. This tubular red iron oxide produces tubular iron oxide (constituent element ratio: Fe: Si: P = 73: 22: 5) produced by naturally occurring microorganisms (iron-oxidizing bacterium Leptothrix ochracea). It was obtained by heating at about 800 ° C. in air, and not only exhibits excellent color tone, but also has excellent heat resistance. It is considered that the excellent color tone of this tubular red iron oxide is due to (i) Si solid solution effect, (ii) tubular morphology and the like.

このようにして得られるチューブ状赤色酸化鉄は、構成元素比がほとんど一定であり、Si又はP元素の固溶量が変化しないので、色調も加熱温度にのみ依存し、加熱温度が一定の場合、色合いは変化しない。 The tubular red iron oxide thus obtained has an almost constant constituent element ratio and the solid dissolved amount of Si or P element does not change. Therefore, the color tone also depends only on the heating temperature, and the heating temperature is constant. , The color does not change.

このため、特許文献1には、チューブ状赤色酸化鉄の色調を調整したり、触媒活性を付与する目的で、鉄酸化細菌を培養することにより有機鞘を生成する工程と、得られた有機鞘を鉄及び他の元素を含む水溶液中に懸濁し、当該元素を含有する酸化鉄を生成する工程と、を含むチューブ状酸化鉄粒子の製造方法が提案されている。この特許文献1には、添加する鉄成分として、多種の鉄化合物が例示されているものの、実施例としては、鉄粉を使用した場合のみが具体的に記載されている。 Therefore, Patent Document 1 describes a step of forming an organic sheath by culturing iron-oxidizing bacteria for the purpose of adjusting the color tone of tubular red iron oxide and imparting catalytic activity, and the obtained organic sheath. Is suspended in an aqueous solution containing iron and other elements to produce iron oxide containing the element, and a method for producing tubular iron oxide particles containing the iron oxide particles has been proposed. Although various iron compounds are exemplified as the iron component to be added in Patent Document 1, only the case where iron powder is used is specifically described as an example.

一方、金属元素に起因する抗菌活性を利用した技術としては、銀イオンをゼオライトやシリカゲルなどに担持させて利用する方法が知られている(非特許文献2)。また、HgやCd等の重金属の中には高い抗菌活性を示すものがあるが(非特許文献3)、それらの安全性の問題から利用は極めて限られている。 On the other hand, as a technique utilizing the antibacterial activity caused by a metal element, a method of supporting silver ions on zeolite, silica gel or the like and using them is known (Non-Patent Document 2). In addition, some heavy metals such as Hg and Cd show high antibacterial activity (Non-Patent Document 3), but their use is extremely limited due to their safety problems.

特開2018−70441号公報Japanese Unexamined Patent Publication No. 2018-70441

Dyes and Pigments, 95 (3), 639−643(2012)Days and Pigments, 95 (3), 639-643 (2012) Critical Reviews in Microbiology 39, 1−11 (2012)Critical Reviews in Microbiology 39, 1-11 (2012) Applied Microbiology and Biotechnology 51, 730−750 (1999)Applied Microbiology and Biotechnology 51, 730-750 (1999)

しかしながら、特許文献1に記載されたような従来のチューブ状酸化鉄粒子の製造方法では、比較的長時間の工程や作業の煩雑さ等から、生産規模の拡大は困難であった。すなわち、酸化鉄細菌が形成した有機鞘の回収、水洗、再懸濁、元素固溶酸化鉄鞘の回収と洗浄を各々異なる容器で実施する必要があった。また、有機鞘への水酸化鉄の沈着に用いる鉄粉は漸次的で継続的な鉄成分の供給には適しているものの、鉄沈着の工程が長期化することと残余の鉄粉を除去する工程が必須であった。 However, in the conventional method for producing tubular iron oxide particles as described in Patent Document 1, it has been difficult to expand the production scale due to a relatively long process and complicated work. That is, it was necessary to recover the organic sheath formed by the iron oxide bacteria, wash with water, resuspend, and recover and wash the elemental solid-soluble iron oxide sheath in different containers. In addition, although the iron powder used for depositing iron hydroxide on the organic sheath is suitable for the gradual and continuous supply of iron components, the iron deposition process is prolonged and the residual iron powder is removed. The process was essential.

また、本発明者らの検討によると、培養液中で鉄成分を沈着させる場合、使用する鉄又は鉄化合物によっては、チューブ状の構造体が得られずに、ロッド状となったり、チューブ状の構造体の外部に異形の鉄成分が付着した構造体となり、所望の形状と性能が得られにくくなるという問題もあった。 Further, according to the study by the present inventors, when the iron component is deposited in the culture solution, depending on the iron or iron compound used, a tube-shaped structure may not be obtained, and a rod-shaped structure or a tube-shaped structure may be obtained. There is also a problem that it becomes a structure in which a deformed iron component is attached to the outside of the structure, and it becomes difficult to obtain a desired shape and performance.

そこで、本発明の目的は、1つの側面として、簡易な工程でありながら、チューブ状の構造体が十分な割合で得られるチューブ状酸化鉄粒子の製造方法、並びにその製造方法により得られるチューブ状酸化鉄粒子を提供することにある。 Therefore, an object of the present invention is, as one aspect, a method for producing tubular iron oxide particles in which a tubular structure can be obtained in a sufficient ratio, and a tubular shape obtained by the production method, although it is a simple process. The purpose is to provide iron oxide particles.

本発明の目的は、他の側面として、色調に優れ、高い抗菌性を有する、チューブ状酸化鉄粒子の製造方法、並びにその製造方法により得られるチューブ状酸化鉄粒子、及びそれを含む抗菌性赤色顔料を提供することにある。 As another aspect, an object of the present invention is a method for producing tubular iron oxide particles having excellent color tone and high antibacterial properties, and tubular iron oxide particles obtained by the production method, and an antibacterial red color containing the same. To provide pigments.

本発明者らは、培養液中で鉄成分を沈着させる際に、添加する価数の異なる鉄化合物を種々検討した結果、3価の鉄化合物によりチューブ状の構造体が十分な割合で得られ、これによって工程を簡易化できることを見出し、本発明を完成するに至った。 As a result of various studies on iron compounds having different valences to be added when the iron component is deposited in the culture solution, the present inventors obtained a tubular structure in a sufficient ratio from the trivalent iron compound. , It was found that the process could be simplified by this, and the present invention was completed.

即ち、本発明は以下のような形態を含むものである。 That is, the present invention includes the following forms.

(1) チューブ状酸化鉄粒子の製造方法であって、
培養装置の容器内の培養液中で鉄酸化細菌を培養して菌外周部に有機鞘を生成する有機鞘生成工程と、
前記有機鞘が生成した培養液に少なくとも3価の鉄化合物を添加して、鉄成分を沈着させることで、前記鉄成分を含有する含鉄有機鞘を生成する含鉄有機鞘生成工程と、
前記含鉄有機鞘を前記培養液から分離する分離工程と、
前記含鉄有機鞘を熱処理して少なくとも酸化鉄を生成する熱処理工程と、
を含むチューブ状酸化鉄粒子の製造方法。
(1) A method for producing tubular iron oxide particles.
An organic sheath formation step in which iron-oxidizing bacteria are cultured in a culture solution in a container of a culture device to form an organic sheath on the outer periphery of the bacteria.
An iron-containing organic sheath forming step of producing an iron-containing organic sheath containing the iron component by adding at least a trivalent iron compound to the culture solution produced by the organic sheath and depositing an iron component.
A separation step of separating the iron-containing organic sheath from the culture solution, and
A heat treatment step of heat-treating the iron-containing organic sheath to produce at least iron oxide,
A method for producing tubular iron oxide particles containing.

(2) 前記3価の鉄化合物が、硫酸鉄(III)、塩化鉄(III)、硝酸鉄(III)、酢酸鉄(III)、及びクエン酸鉄(III)から選ばれる1種以上である(1)に記載のチューブ状酸化鉄粒子の製造方法。 (2) The trivalent iron compound is one or more selected from iron (III) sulfate, iron (III) chloride, iron (III) nitrate, iron (III) acetate, and iron (III) citrate. The method for producing tubular iron oxide particles according to (1).

(3) 少なくとも前記有機鞘生成工程において、前記培養装置の容器内にバブリングにより酸素含有ガスを供給する(1)又は(2)に記載のチューブ状酸化鉄粒子の製造方法。 (3) The method for producing tubular iron oxide particles according to (1) or (2), wherein an oxygen-containing gas is supplied into the container of the culture apparatus by bubbling at least in the organic sheath forming step.

(4) 前記含鉄有機鞘生成工程における前記培養液に又は前記含鉄有機鞘生成工程により生成した培養液に、他の金属元素化合物を添加して、他の金属元素成分を沈着させることで、前記鉄成分及び前記他の金属元素成分を含有する含鉄有機鞘を生成させる(1)〜(3)いずれか1項に記載のチューブ状酸化鉄粒子の製造方法。 (4) The above-mentioned by adding another metal element compound to the culture solution in the iron-containing organic sheath forming step or to the culture solution generated in the iron-containing organic sheath forming step to deposit other metal element components. The method for producing tubular iron oxide particles according to any one of (1) to (3), which produces an iron-containing organic sheath containing an iron component and the other metal element component.

(5) 前記含鉄有機鞘生成工程により生成した培養液に、前記他の金属元素化合物を添加した後に、pH調整剤によりpH調整を行なう(4)に記載のチューブ状酸化鉄粒子の製造方法。 (5) The method for producing tubular iron oxide particles according to (4), wherein the pH is adjusted with a pH adjuster after adding the other metal element compound to the culture solution produced by the iron-containing organic sheath forming step.

(6) 前記他の金属元素がインジウム及び/又はモリブデンである(5)に記載のチューブ状酸化鉄粒子の製造方法。 (6) The method for producing tubular iron oxide particles according to (5), wherein the other metal element is indium and / or molybdenum.

(7) 3価の酸化鉄と、インジウム及び/又はモリブデンの酸化物とを含むチューブ状酸化鉄粒子。 (7) Tube-shaped iron oxide particles containing trivalent iron oxide and oxides of indium and / or molybdenum.

(8) α−FeとIn(MoOの結晶相を含む(7)に記載のチューブ状酸化鉄粒子。 (8) The tubular iron oxide particle according to (7), which contains a crystal phase of α-Fe 2 O 3 and In 2 (MoO 4 ) 3.

(9) (6)又は(7)に記載のチューブ状酸化鉄粒子を含む抗菌性赤色顔料。 (9) An antibacterial red pigment containing the tubular iron oxide particles according to (6) or (7).

本発明の1つの側面によれば、簡易な工程でありながら、チューブ状の構造体が十分な割合で得られるチューブ状酸化鉄粒子の製造方法、並びにその製造方法により得られるチューブ状酸化鉄粒子を提供することができる。 According to one aspect of the present invention, a method for producing tubular iron oxide particles in which a tubular structure can be obtained in a sufficient proportion, and tube-shaped iron oxide particles obtained by the production method, although it is a simple process. Can be provided.

本発明の他の側面によれば、色調に優れ、高い抗菌性を有する、チューブ状酸化鉄粒子の製造方法、並びにその製造方法により得られるチューブ状酸化鉄粒子、及びそれを含む抗菌性赤色顔料を提供することができる。 According to another aspect of the present invention, a method for producing tubular iron oxide particles having excellent color tone and high antibacterial properties, and the tubular iron oxide particles obtained by the production method, and an antibacterial red pigment containing the same. Can be provided.

実施例1〜3における各工程とそれに対応する培養液の様子を示す写真であり、(a)は各工程を示すフローチャートであり、(b)は本培養後の培養液、(c)は鉄源添加24時間後の培養液、(d)は金属塩添加24時間後の培養液を示す。It is a photograph showing the state of each step and the corresponding culture solution in Examples 1 to 3, (a) is a flowchart showing each step, (b) is a culture solution after the main culture, and (c) is iron. The culture solution 24 hours after the addition of the source and (d) show the culture solution 24 hours after the addition of the metal salt. Mo/In含有BIOXの加熱後(加熱材)の微細形態と元素組成を示し、(a)はSEM写真を示し、挿入図は鞘先端の拡大写真、(b)はEDXスペクトラムを示し、括弧内の数値は元素組成比を示す。The fine morphology and elemental composition of Mo / In-containing BIOX after heating (heating material) are shown, (a) shows an SEM photograph, the inset is an enlarged photograph of the sheath tip, and (b) shows the EDX spectrum, in parentheses. The numerical value of indicates the elemental composition ratio. Mo/In含有BIOX加熱材における元素分布を示す写真であり、(a)はHAADF像、(b)はFe分布像、(c)はIn分布像、(d)はFeとInの合成分布像を示す。It is a photograph showing the element distribution in the Mo / In-containing BIOX heating material, (a) is a HAADF image, (b) is an Fe distribution image, (c) is an In distribution image, and (d) is a synthetic distribution image of Fe and In. Is shown. Mo/In含有BIOX加熱材のXRDパターンを示す図である。It is a figure which shows the XRD pattern of the Mo / In containing BIOX heating material. Mo/In含有BIOX加熱材の抗菌活性を示すものであり、(a)は指示菌(Fusarium oxysporum Odoriko株)に対する抗糸状菌活性を示す写真、(b)は大腸菌(Escherichia coli HB101株)に対する抗菌活性を示すグラフである。ここでMo22/In16−800:Mo22%/In16%含有BIOXの800℃加熱材、Mo22/In16−600:Mo22%/In16%含有BIOXの600℃加熱材、Mo24−600:Mo24%含有BIOXの600℃加熱材、In16−800:In16%含有BIOXの800℃加熱材、cBIOX−800:他元素非含有BIOXの800℃加熱材を示す。It shows the antibacterial activity of the Mo / In-containing BIOX heating material, (a) is a photograph showing the antifilamentous activity against the indicator (Fusarium oxysporum Odoriko strain), and (b) is the antibacterial against Escherichia coli HB101 strain. It is a graph which shows the activity. Here, Mo22 / In16-800: Mo22% / In16% containing BIOX 800 ° C. heating material, Mo22 / In16-600: Mo22% / In16% containing BIOX 600 ° C. heating material, Mo24-600: Mo24% containing BIOX 600 ° C. ℃ heating material, In16-800: 800 ℃ heating material of BIOX containing 16% In, cBIOX-800: 800 ℃ heating material of BIOX containing no other element. Mo/In含有BIOX加熱材の光触媒活性を示すグラフである。図上のプロットと垂直棒は、平均値(n=6)及びSD値を示す。試料の略称は図5に同じである(但し、TiONP:酸化チタンナノ粒子(JRC−TIO−15)である)。It is a graph which shows the photocatalytic activity of the Mo / In-containing BIOX heating material. The plots and vertical bars on the figure indicate the mean (n = 6) and SD values. The abbreviation of the sample is the same as in FIG. 5 (however, TiO 2 NP: titanium oxide nanoparticles (JRC-TIO-15)). Mo/In含有BIOX加熱材の色調(CIE Lab表色図)を示す図であり、(a)は色度、(b)は明度を示す。試料の略称は図5に同じである(但し、MC−55:高彩色ベンガラ(森下弁柄工業製)である)。It is a figure which shows the color tone (CIE Lab color chart) of the Mo / In-containing BIOX heating material, (a) shows the chromaticity, and (b) shows the lightness. The abbreviation of the sample is the same as in FIG. 5 (however, MC-55: high-colored red iron oxide (manufactured by Morishita Benji Kogyo)). 実験例1で得られた産物の微細形態を示すSEM画像写真であり、(a)は酸化鉄粒子が付着したロッド状鞘(I)を示し、(b)はロッド状鞘(II)を示し、(c)は中空管状鞘(III)を示し、(d)は酸化鉄粒子が付着した不完全な中空鞘(IV)を示す。ここで、括弧内は分類型であり、スケールバーは2μmである。It is an SEM image photograph which shows the fine form of the product obtained in Experimental Example 1, (a) shows the rod-shaped sheath (I) to which iron oxide particles are attached, and (b) shows the rod-shaped sheath (II). , (C) show a hollow tubular sheath (III), and (d) shows an incomplete hollow sheath (IV) to which iron oxide particles are attached. Here, the inside of parentheses is a classification type, and the scale bar is 2 μm.

以下、本発明の幾つかの側面について詳細に説明する。 Hereinafter, some aspects of the present invention will be described in detail.

本明細書において「含む、含有する(comprise)」とは、「本質的にからなる(essentially consist of)」という意味と、「からなる(consist of)」という意味をも包含する。 As used herein, the term "comprise" also includes the meaning of "essentially consist of" and the meaning of "consist of".

本明細書において、鉄酸化細菌が生成する酸化鉄のことを「BIOX (Biogenous Iron oxides)」と称することがあり、天然の環境下で鉄酸化細菌が生成する酸化鉄を「天然系BIOX」と、単離された鉄酸化細菌を培養することにより生成される酸化鉄を「培養系BIOX」と称することもある。 In the present specification, iron oxide produced by iron-oxidizing bacteria may be referred to as "BIOX (Biogenous Iron oxides)", and iron oxide produced by iron-oxidizing bacteria in a natural environment is referred to as "natural BIOX". , Iron oxide produced by culturing isolated iron-oxidizing bacteria is sometimes referred to as "culture system BIOX".

本明細書において「鞘状」及び「チューブ状」とは同じ形状を意味する用語であって、丸く細長い中空の形状を意味する。本明細書において「ロッド状」とは、丸く細長く中空ではない形状を意味する。 As used herein, the terms "sheath" and "tube" mean the same shape, meaning a round, elongated hollow shape. As used herein, the term "rod-shaped" means a shape that is round, elongated, and not hollow.

<チューブ状酸化鉄粒子の製造方法>
本発明の1つの側面は、チューブ状酸化鉄粒子の製造方法に関する。この製造方法は、有機鞘を生成する有機鞘生成工程と、鉄成分を含有する含鉄有機鞘を生成する含鉄有機鞘生成工程と、これを培養液から分離する分離工程と、酸化鉄を生成する熱処理工程と、を含むものである。
<Manufacturing method of tubular iron oxide particles>
One aspect of the present invention relates to a method for producing tubular iron oxide particles. In this production method, an organic sheath forming step for producing an organic sheath, an iron-containing organic sheath forming step for producing an iron-containing organic sheath containing an iron component, a separation step for separating the organic sheath from the culture solution, and iron oxide are produced. It includes a heat treatment step.

チューブ状の酸化鉄粒子については、後に詳述するように、酸化鉄のみを金属酸化物成分として含むものに限られず、他の金属元素の酸化物を含む複合酸化鉄粒子を含むものである。 As will be described in detail later, the tubular iron oxide particles are not limited to those containing only iron oxide as a metal oxide component, and include composite iron oxide particles containing oxides of other metal elements.

<有機鞘生成工程>
有機鞘生成工程は、培養装置の容器内の培養液中で鉄酸化細菌を培養して菌外周部に有機鞘を生成する工程である。有機鞘生成工程に先立って、細菌数を一定以上に増加させるための前培養を実施してもよく、その場合、本培養として、この有機鞘生成工程が実施される。
<Organic sheath formation process>
The organic pod formation step is a step of culturing iron-oxidizing bacteria in a culture solution in a container of a culturing device to generate an organic pod on the outer periphery of the bacterium. Prior to the organic sheath forming step, a pre-culture for increasing the number of bacteria to a certain level or more may be carried out, and in that case, this organic sheath forming step is carried out as the main culture.

前培養は、培養装置を使用しなくても小スケールで実施できる点などが本培養と異なっており、固体培養又は液体培養のいずれでもよく、好ましくは液体培養である。前培養における液体培養は、振盪培養、攪拌培養、通気培養等によって行うことができる。 The pre-culture is different from the main culture in that it can be carried out on a small scale without using a culture device, and either solid culture or liquid culture may be used, and liquid culture is preferable. The liquid culture in the preculture can be performed by shaking culture, stirring culture, aeration culture and the like.

(鉄酸化細菌)
鉄酸化細菌としては、有機鞘を生成するものであれば特に限定されるものではない。そのような有機鞘を生成する鉄酸化細菌としては、例えば、レプトスリックス属細菌(Leptothrix sp.)及びスフェロチルス属細菌(Sphaerotilus sp.)を挙げることができる。中でも人工的に培養可能なように単離された鉄酸化細菌が好適に使用できる。レプトスリックス属細菌としては、具体的には、レプトスリックス・コロディニSP-6株、及びレプトスリックス・コロディニOUMS1株が挙げられる。レプトスリックス・コロディニOUMS1株は、2009年12月25日に、独立行政法人製品評価技術基盤機構特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2−5−8(郵便番号292-0818))に、受託番号NITE P-860として寄託されている。また、この菌株は、現在国際寄託に移管されており、その受託番号はNITEBP-860である。
(Iron oxide bacteria)
The iron-oxidizing bacterium is not particularly limited as long as it produces an organic sheath. Examples of iron-oxidizing bacteria that produce such organic sheaths include Leptothrix sp. And Sphaerotilus sp. Among them, iron-oxidizing bacteria isolated so as to be artificially cultivated can be preferably used. Specific examples of the Leptothrix bacterium include Leptothrix corodini SP-6 strain and Leptothrix corodini OUMS1 strain. Leptoslix corodini OUMS1 strain was released on December 25, 2009 by the National Institute of Technology and Evaluation Patent Microorganisms Depositary Center (2-5-8 Kazusakamatari, Kisarazu City, Chiba Prefecture, Japan (postal code 292-0818)). ), Deposited as accession number NITE P-860. In addition, this strain has now been transferred to an international deposit, and its accession number is NITEBP-860.

(有機鞘)
「有機鞘」とは、レプトスリックス属細菌、スフェロチルス属細菌などのβ-プロテオバクテリアに属する鉄酸化細菌が菌体外に形成する鞘状の構造体を意味し、この構造体は連鎖状の菌体の外周に分泌されたヘテロ多糖類とタンパク質とからなる微細繊維が密に織りたたまれた高分子重合体である(以下の文献1〜3参照)。なお、本明細書において、「有機鞘」という場合、内部に鉄酸化細菌を有するものを指す場合がある。
文献1:Emerson, D., and Ghiorse, W.C. (1993) Ultrastructure and chemical composition of the sheath of Leptothrix discophora SP-6. J. Bacteriol. 175: 7808-7818.
文献2:Takeda, M., Makita, H., Ohno, K., Nakahara, Y., and Koizumi, J. (2005) Structural analysis of the sheath of a sheathed bacterium, Leptothrix cholodnii.Int’l. J. Biol. Macromole 37: 92-98.
文献3:Kunoh, T., Kunoh, H., and Takada, J. (2015) Perspectives on the Biogenesis of Iron Oxide Complexes Produced by Leptothrix, an Iron-oxidizing Bacterium and Promising Industrial Applications for their Functions. J. Microb. Biochem. Technol. 7: 419-426.
有機鞘には、培養液(培地)に由来する、ケイ素(Si)、リン(P)、硫黄(S)、炭素(C)、窒素(N)、水素(H)などが含まれ得る。
(Organic pod)
"Organic sheath" means a sheath-like structure formed outside the cells by iron-oxidizing bacteria belonging to β-proteobacteria such as Leptothrix bacteria and Sphaerotilus bacteria, and this structure is a chain-like bacterium. It is a polymer polymer in which fine fibers composed of heteropolysaccharides and proteins secreted on the outer periphery of the body are densely woven (see Documents 1 to 3 below). In addition, in this specification, the term "organic sheath" may refer to one having iron-oxidizing bacteria inside.
Reference 1: Emerson, D., and Ghiorse, WC (1993) Ultrastructure and chemical composition of the sheath of Leptothrix discophora SP-6. J. Bacteriol. 175: 7808-7818.
Reference 2: Takeda, M., Makita, H., Ohno, K., Nakahara, Y., and Koizumi, J. (2005) Structural analysis of the sheath of a sheathed bacterium, Leptothrix cholodnii. Int'l. J. Biol. Macromole 37: 92-98.
Reference 3: Kunoh, T., Kunoh, H., and Takada, J. (2015) Perspectives on the Biogenesis of Iron Oxide Complexes Produced by Leptothrix, an Iron-oxidizing Bacterium and Promising Industrial Applications for their Functions. J. Microb. Biochem. Technol. 7: 419-426.
The organic sheath may contain silicon (Si), phosphorus (P), sulfur (S), carbon (C), nitrogen (N), hydrogen (H) and the like derived from the culture medium.

得られる有機鞘の外観形状は、内部に鉄酸化細菌を有するロッド状であり、それぞれの形状は、外径0.6〜2μm、長さ10〜1000μmが好ましく、外径0.8〜1.5μm、長さ20〜200μmであることがより好ましい。 The external shape of the obtained organic sheath is a rod shape having iron-oxidizing bacteria inside, and each shape preferably has an outer diameter of 0.6 to 2 μm and a length of 10 to 1000 μm, and has an outer diameter of 0.8 to 1. It is more preferably 5 μm and 20 to 200 μm in length.

(培養装置)
培養装置は、培養液を貯留して培養を行なう容器(ジャー、タンクなど)を備えており、容器の容量は、1〜5Lスケールのものから、100〜200Lスケールのものまで使用可能である。
(Culture device)
The culture apparatus is provided with a container (jar, tank, etc.) for storing and culturing the culture solution, and the capacity of the container can be used from 1 to 5 L scale to 100 to 200 L scale.

培養装置は、攪拌装置、培養液の温度調整装置、培養液のpH調整装置、酸素含有ガスの供給機構、送排液装置を備えることが好ましい。このような培養装置は、ジャーファーメンター、全自動微生物培養装置として市販されているものを使用することができる。このような培養装置を用いることによって、フラスコスケールと比較して、より大量のチューブ状酸化鉄粒子を製造することができる。 The culture device preferably includes a stirrer, a temperature control device for the culture solution, a pH control device for the culture solution, an oxygen-containing gas supply mechanism, and a water supply / drainage device. As such a culturing device, a commercially available jar fermenter or a fully automatic microbial culturing device can be used. By using such a culture device, a larger amount of tubular iron oxide particles can be produced as compared with the flask scale.

培養装置の酸素含有ガスの供給機構は、容器内の培養液中にバブリング可能なことが好ましく、このようなバブリングを行なうことにより、より大量のチューブ状酸化鉄粒子を製造できるようになる。 The oxygen-containing gas supply mechanism of the culture apparatus preferably allows bubbling in the culture solution in the container, and by performing such bubbling, a larger amount of tubular iron oxide particles can be produced.

バブリングを行なう際の溶存酸素濃度は、培養の状態に応じて、適宜設定することが可能である。 The dissolved oxygen concentration at the time of bubbling can be appropriately set according to the state of culture.

(培養条件)
鉄酸化細菌の培養条件は、有機鞘を生成できる限り特に制限されず、鉄酸化細菌の種類等に応じて培地の種類、培養温度、培養時間等を適宜設定することができる。前培養についても、この点は同じであり、鉄酸化細菌の種類等に応じて培地の種類、培養温度、培養時間等を適宜設定することができる。
(Culture conditions)
The culture conditions for the iron-oxidizing bacteria are not particularly limited as long as the organic sheath can be produced, and the type of medium, the culture temperature, the culture time, and the like can be appropriately set according to the type of the iron-oxidizing bacteria and the like. This point is the same for the pre-culture, and the type of medium, the culture temperature, the culture time, and the like can be appropriately set according to the type of iron-oxidizing bacteria and the like.

例えば、培養温度としては、通常15〜30℃、好ましくは20〜25℃を挙げることができる。培養時間としては、通常1〜4日間、好ましくは2〜3日間程度とすることができる。培地としては、例えば、実施例において使用しているSGP培地などを挙げることができる。 For example, the culture temperature may be usually 15 to 30 ° C, preferably 20 to 25 ° C. The culturing time can be usually about 1 to 4 days, preferably about 2 to 3 days. Examples of the medium include the SGP medium used in the examples.

<含鉄有機鞘生成工程>
含鉄有機鞘生成工程は、前記有機鞘が生成した培養液に少なくとも3価の鉄化合物を添加して、鉄成分を沈着させることで、前記鉄成分を含有する含鉄有機鞘を生成する工程である。このように、3価の鉄化合物を用いることにより、培養液中で鉄成分を有機鞘に沈着させる際に、チューブ状の構造体が十分な割合で得られ、これによって培養液をそのまま使用できるため、含鉄有機鞘を生成させるまでの工程を、大幅に簡易化できるようになる。また、一連の工程を1つの容器内で行うことができるため、大量生産にも適している。
<Iron-containing organic sheath formation process>
The iron-containing organic sheath forming step is a step of producing an iron-containing organic sheath containing the iron component by adding at least a trivalent iron compound to the culture solution produced by the organic sheath and depositing an iron component. .. As described above, by using the trivalent iron compound, a tubular structure can be obtained in a sufficient ratio when the iron component is deposited on the organic sheath in the culture solution, whereby the culture solution can be used as it is. Therefore, the process up to the formation of the iron-containing organic sheath can be greatly simplified. Further, since a series of steps can be performed in one container, it is also suitable for mass production.

(3価の鉄化合物)
3価の鉄化合物としては、硫酸鉄(III)、塩化鉄(III)、硝酸鉄(III)、酢酸鉄(III)、クエン酸鉄(III)などから選ばれる1種以上が好ましく、なかでも、硫酸鉄(III)がより好ましい。これらの鉄化合物は水溶液として添加することが好ましい。水溶液は、一時に添加してもよく、間隔を空けて添加してもよい。
(Trivalent iron compound)
As the trivalent iron compound, one or more selected from iron (III) sulfate, iron (III) chloride, iron (III) nitrate, iron (III) acetate, iron (III) citrate and the like is preferable, and among them, iron (III) sulfate is preferable. , Iron (III) sulfate is more preferable. It is preferable to add these iron compounds as an aqueous solution. The aqueous solution may be added at one time or at intervals.

添加後の培養液中の鉄化合物の濃度としては、含鉄有機鞘の生成効率の観点から、1mM以上が好ましく、5mM以上がより好ましい。また、過剰な添加による自然酸化鉄粒子の形成を抑制する観点から、20mM以下が好ましく、10mM以下がより好ましい。 The concentration of the iron compound in the culture solution after the addition is preferably 1 mM or more, more preferably 5 mM or more, from the viewpoint of the production efficiency of the iron-containing organic sheath. Further, from the viewpoint of suppressing the formation of natural iron oxide particles due to excessive addition, 20 mM or less is preferable, and 10 mM or less is more preferable.

(培養液)
培養液としては、前記有機鞘生成工程で得られた培養液をそのまま使用することもできるが、pH調整などを目的として、緩衝液を添加することが好ましい。このようなpH調整により、鉄成分を効率良く有機鞘に沈着させることができる。
(Culture solution)
As the culture solution, the culture solution obtained in the organic sheath forming step can be used as it is, but it is preferable to add a buffer solution for the purpose of pH adjustment or the like. By such pH adjustment, the iron component can be efficiently deposited on the organic sheath.

緩衝液としては、酢酸緩衝液、リン酸緩衝液、クエン酸緩衝液、クエン酸リン酸緩衝液、ホウ酸緩衝液、トリス緩衝液、HEPES緩衝液を使用することができる。 As the buffer solution, an acetate buffer solution, a phosphate buffer solution, a citrate buffer solution, a citrate phosphate buffer solution, a borate buffer solution, a Tris buffer solution, and a HEPES buffer solution can be used.

含鉄有機鞘生成工程における培養液のpHについては、特に制限されず、3価の鉄化合物や生成する酸成分の種類等に応じて適宜設定できる。例えば硫酸鉄(III)を用いて水酸化鉄を沈着させる場合、pH3〜4が好ましい。他の鉄化合物を用いる場合も、一般的な沈殿反応に応じて適宜pH設定することができる。 The pH of the culture solution in the iron-containing organic sheath forming step is not particularly limited, and can be appropriately set according to the type of trivalent iron compound and the acid component to be produced. For example, when iron hydroxide is deposited using iron (III) sulfate, pH 3 to 4 is preferable. When other iron compounds are also used, the pH can be appropriately set according to a general precipitation reaction.

(鉄成分)
生成する鉄成分には、α−FeOOH、β−FeOOH、γ−FeOOHなどに例示されるオキシ水酸化鉄、フェリハイドライトに代表される非晶質に近い構造の水酸化鉄を含む、鉄と酸素とを成分とする化合物が挙げられる。
(Iron component)
The iron components produced include iron oxyhydroxide represented by α-FeOOH, β-FeOOH, γ-FeOOH, etc., and iron hydroxide having a nearly amorphous structure represented by ferrihydrate. Examples thereof include compounds containing oxygen as a component.

従って、生成した鉄成分を含有する含鉄有機鞘には、このような鉄成分と、有機鞘に由来する成分が含有される。即ち、有機鞘に由来する成分として、ケイ素(Si)、リン(P)、硫黄(S)、炭素(C)、窒素(N)、水素(H)などが含まれ得る。 Therefore, the iron-containing organic sheath containing the produced iron component contains such an iron component and a component derived from the organic sheath. That is, as a component derived from the organic sheath, silicon (Si), phosphorus (P), sulfur (S), carbon (C), nitrogen (N), hydrogen (H) and the like can be contained.

(他の金属元素)
前記含鉄有機鞘生成工程における前記培養液に又は前記含鉄有機鞘生成工程により生成した培養液に、他の金属元素化合物を添加して、他の金属元素成分を沈着させることで、前記鉄成分及び前記他の金属元素成分を含有する含鉄有機鞘を生成させることができる。
(Other metal elements)
By adding another metal element compound to the culture solution in the iron-containing organic sheath forming step or to the culture solution produced in the iron-containing organic sheath forming step to deposit the other metal element component, the iron component and the iron component and An iron-containing organic sheath containing the other metal element component can be produced.

このように他の金属元素成分を含有する含鉄有機鞘とすることで、天然系BIOXでは得られない、抗菌作用、各種の触媒作用、特有の色調などの機能を付与することができる。 By forming an iron-containing organic sheath containing other metal element components in this way, it is possible to impart functions such as antibacterial action, various catalytic actions, and unique color tones, which cannot be obtained by natural BIOX.

特に、前記含鉄有機鞘生成工程により生成した培養液に、前記他の金属元素化合物を添加した後に、pH調整剤によりpH調整を行なうことが好ましい。pH調整を行なうことで、より効率良く他の金属元素成分を有機鞘に沈着させることができる。 In particular, it is preferable to add the other metal element compound to the culture solution produced by the iron-containing organic sheath forming step, and then adjust the pH with a pH adjuster. By adjusting the pH, other metal element components can be deposited on the organic sheath more efficiently.

他の金属元素としては、インジウム、モリブデン、タングステン、ビスマス、アルミニウム、ジルコニウム、ルテニウム、チタン、ハフニウム、ランタン、セリウム
などが挙げられる。他の金属元素は2種以上であってもよい。
Other metallic elements include indium, molybdenum, tungsten, bismuth, aluminum, zirconium, ruthenium, titanium, hafnium, lanthanum, cerium and the like. The other metal elements may be two or more kinds.

他の金属元素化合物としては、これらの金属元素の塩化物、硝酸塩、硫酸塩、オキシ硫酸塩、酸化物、オキシ塩化物、これらの水和物などが挙げられる。他の金属元素化合物は、2種以上を同時に使用してもよく、順次使用してもよい。 Examples of other metal element compounds include chlorides, nitrates, sulfates, oxysulfates, oxides, oxychlorides, and hydrates of these metal elements. Two or more kinds of other metal element compounds may be used at the same time, or may be used sequentially.

具体的な化合物としては、例えば、NaMoO、NaWO、In(NO、Bi(NO、塩化アルミニウム、硝酸アルミニウム、硫酸アルミニウム、硫酸カリウムアルミニウム、塩化ジルコニウム(IV)、酸化ジルコニウム、オキシ塩化ジルコニウム、塩化ルテニウム(III)、塩化ルテニウム(II)ビス(ジメチルスルホキシド)、酸化ルテニウム(VIII)、RuCl(CO)(P(m−CSONa)、[(C)RuCl(PTA)](R=H,Me;PTA=1,3,5−triaza−7−phosphaadamantane)、塩化チタン(III) 、塩化チタン(IV)、オキシ硫酸チタン、塩化ハフニウム(IV)、酸化ハフニウム、オキシ塩化ハフニウム、これらの水和物などが挙げられる。 Specific compounds include, for example, Na 2 MoO 4 , Na 2 WO 4 , In (NO 3 ) 3 , Bi (NO 3 ) 3 , aluminum chloride, aluminum nitrate, aluminum sulfate, potassium aluminum sulfate, zirconium chloride (IV). ), Zirconium oxide, Zirconium oxychloride, Ruthenium chloride (III), Ruthenium chloride (II) Bis (dimethyl sulfoxide), Ruthenium oxide (VIII), RuCl 2 (CO) 2 (P (m-C 6 H 4 SO 3 Na) ) 3 ) 2 , [(C 5 R 5 ) RuCl (PTA) 2 ] (R = H, Me; PTA = 1,3,5-triaza-7-phosphaadamantane), titanium chloride (III), titanium chloride (IV) ), Titanium oxysulfate, hafnium chloride (IV), hafnium oxide, hafnium oxychloride, hydrates thereof and the like.

これらの化合物を添加する際、水溶液として添加することが好ましい。添加後の培養液中の濃度としては、通常0.1〜100mM、好ましくは0.5〜20mMである。また、添加後の培養液全量中における他の金属元素化合物の濃度は、目標とする鉄元素と他の金属元素との比率に応じて決定することができる。 When adding these compounds, it is preferable to add them as an aqueous solution. The concentration in the culture solution after the addition is usually 0.1 to 100 mM, preferably 0.5 to 20 mM. In addition, the concentration of the other metal element compound in the total amount of the culture solution after the addition can be determined according to the ratio of the target iron element to the other metal element.

(pH調整剤)
pH調整剤としては、前述の緩衝液の他、NaCO溶液などを用いることができる。添加後のpHとしては、他の金属元素化合物の種類と生成する他の金属元素成分に応じて適宜設定される。例えば、NaMoO・2HO及びIn(NO・3HOを添加して、Mo成分及びIn成分を沈着させる場合、添加後のpHとして、pH3.0〜4.5が好ましく、pH3.5〜4.0がより好ましい。
(PH regulator)
As the pH adjuster, in addition to the above-mentioned buffer solution, a Na 2 CO 3 solution or the like can be used. The pH after the addition is appropriately set according to the types of other metal element compounds and other metal element components to be produced. For example, the addition of Na 2 MoO 4 · 2H 2 O and In (NO 3) 3 · 3H 2 O, when depositing Mo component and In components, as the pH after the addition, the pH3.0~4.5 Preferably, the pH is 3.5 to 4.0, more preferably.

(沈着操作)
沈着操作は、有機鞘が懸濁した状態で行なうのが好ましく、生成する鉄成分の種類等に応じて温度、時間等を適宜設定することができる。また、懸濁状態を良好にするために、攪拌操作等を行なうのが好ましい。
(Deposition operation)
The deposition operation is preferably carried out in a state where the organic sheath is suspended, and the temperature, time and the like can be appropriately set according to the type of iron component to be produced and the like. Further, in order to improve the suspension state, it is preferable to perform a stirring operation or the like.

(含鉄有機鞘)
含鉄有機鞘は、有機鞘中に水酸化鉄等の鉄成分を沈着させると同時に中空管状に成形したものである。また、他の金属元素成分を沈着させた場合、鉄成分及び他の金属元素成分を含有する含鉄有機鞘となる。なお、得られた含鉄有機鞘としては、通常、有機鞘内部の鉄酸化細菌が死滅、脱離したものであり、含鉄有機鞘中に鉄酸化細菌が存在しないものとして得ることができる。
(Iron-containing organic sheath)
The iron-containing organic sheath is formed into a hollow tubular shape at the same time as iron components such as iron hydroxide are deposited in the organic sheath. Further, when other metal element components are deposited, an iron-containing organic sheath containing an iron component and other metal element components is obtained. The obtained iron-containing organic sheath is usually one in which the iron-oxidizing bacteria inside the organic sheath are killed and desorbed, and can be obtained as if no iron-oxidizing bacteria are present in the iron-containing organic sheath.

得られる含鉄有機鞘の形状は、チューブ状であることが好ましく、チューブ状の形状の割合が大きいほど好ましい。含鉄有機鞘の形状は、外径0.8〜2μm、長さ10〜1000μm、管壁の厚み50〜300nmであることが好ましく、外径1.0〜1.2μm、長さ20〜200μm、管壁の厚み100〜200nmであることがより好ましい。 The shape of the obtained iron-containing organic sheath is preferably tubular, and the larger the proportion of the tubular shape, the more preferable. The shape of the iron-containing organic sheath is preferably 0.8 to 2 μm in outer diameter, 10 to 1000 μm in length, and 50 to 300 nm in thickness of the tube wall, and 1.0 to 1.2 μm in outer diameter and 20 to 200 μm in length. It is more preferable that the thickness of the tube wall is 100 to 200 nm.

<分離工程>
分離工程は、含鉄有機鞘を培養液から分離する工程であり、洗浄と分離とを繰り返すことが好ましい。また、分離工程の後に含鉄有機鞘の乾燥を行なってもよい。
<Separation process>
The separation step is a step of separating the iron-containing organic sheath from the culture solution, and it is preferable to repeat washing and separation. Further, the iron-containing organic sheath may be dried after the separation step.

分離工程としては、培養液を一定時間静置して含鉄有機鞘を沈殿した後、上清を廃棄するなどして、沈殿物を分離し、残った沈殿物に蒸留水等を添加して洗浄し、この沈殿・上清除去・洗浄の操作を複数回繰り返すことが好ましい。 As a separation step, the culture solution is allowed to stand for a certain period of time to precipitate an iron-containing organic sheath, and then the supernatant is discarded to separate the precipitate, and distilled water or the like is added to the remaining precipitate for washing. However, it is preferable to repeat the operations of precipitation, removal of supernatant, and washing a plurality of times.

乾燥を行なう場合、凍結乾燥させることが好ましい。凍結乾燥に先立って、予備乾燥と凍結を行なってもよい。 When drying, it is preferable to freeze-dry. Pre-drying and freezing may be performed prior to lyophilization.

<熱処理工程>
熱処理工程は、前記含鉄有機鞘を熱処理して少なくとも酸化鉄を生成する工程である。このような加熱処理を行うことで、水酸化鉄が酸化鉄となり、好ましくはα−Fe(ヘマタイト)が形成され、赤色を呈するようになる。このような赤色を呈する酸化鉄は、赤色顔料として好適に使用することができる。
<Heat treatment process>
The heat treatment step is a step of heat-treating the iron-containing organic sheath to produce at least iron oxide. By performing such a heat treatment, iron hydroxide becomes iron oxide, preferably α-Fe 2 O 3 (hematite) is formed, and the iron hydroxide becomes red. Such iron oxide exhibiting a red color can be suitably used as a red pigment.

また、含鉄有機鞘を熱処理することにより、有機鞘に含まれる有機物成分を分解、揮発等させることができる。このように除去される元素としては、硫黄(S)、炭素(C)、窒素(N)、水素(H)などが挙げられる。ケイ素(Si)、リン(P)などについては少なくとも一部が熱処理後にも残存する場合がある。 Further, by heat-treating the iron-containing organic sheath, the organic component contained in the organic sheath can be decomposed and volatilized. Examples of the element thus removed include sulfur (S), carbon (C), nitrogen (N), hydrogen (H) and the like. At least a part of silicon (Si), phosphorus (P) and the like may remain even after the heat treatment.

一方、含鉄有機鞘が他の金属元素成分を含有する場合、他の金属元素の酸化物を同時に生成させることができる。このような金属元素の酸化物は、酸化鉄と共にナノ分散した結晶相等として生成させることもできるが、他の金属元素の少なくとも一部が酸化鉄に固溶した複合金属酸化物として得ることも可能である。このような複合金属酸化物の生成についても、本発明における「少なくとも酸化鉄を生成する」に相当する。 On the other hand, when the iron-containing organic sheath contains other metal element components, oxides of other metal elements can be produced at the same time. Such an oxide of a metal element can be produced as a nano-dispersed crystal phase or the like together with iron oxide, but it can also be obtained as a composite metal oxide in which at least a part of other metal elements is dissolved in iron oxide. Is. The formation of such a composite metal oxide also corresponds to "at least producing iron oxide" in the present invention.

加熱処理の温度は、好ましくは600〜1000℃、より好ましくは650〜950℃であり、更に好ましくは700〜900℃であり、加熱処理の時間は、好ましくは0.1〜3時間、より好ましくは1〜2時間である。この範囲の加熱処理の温度及び時間により、高いa*,b*,L*値を得ることができる。加熱処理は、通常、大気中で実施される。 The heat treatment temperature is preferably 600 to 1000 ° C., more preferably 650 to 950 ° C., further preferably 700 to 900 ° C., and the heat treatment time is preferably 0.1 to 3 hours, more preferably. Is 1 to 2 hours. High a *, b *, and L * values can be obtained depending on the temperature and time of the heat treatment in this range. The heat treatment is usually carried out in the air.

更に、酸化鉄を粉砕する工程を実施することもできる。酸化鉄を粉砕することにより、酸化鉄の形状がチューブ状から粉末状になる。粉砕は、公知の手法を使用して行うことができる。粉砕を行う装置としては、例えば、ピンミル、ハンマーミル、ボールミル、ジェットミル、ローラーミルなどが挙げられる。 Further, a step of pulverizing iron oxide can also be carried out. By crushing iron oxide, the shape of iron oxide changes from tubular to powder. Grinding can be performed using a known technique. Examples of the crushing device include a pin mill, a hammer mill, a ball mill, a jet mill, a roller mill, and the like.

(チューブ状酸化鉄粒子)
熱処理工程で得られるチューブ状酸化鉄粒子の形状は、チューブ状であり、それぞれの形状の通常の大きさは、含鉄有機鞘の形状は、外径0.6〜1.5μm、長さ10〜1000μm、管壁の厚み100〜300nmであることが好ましく、外径0.8〜1.2μm、長さ20〜200μm、管壁の厚み150〜200nmであることがより好ましい。この形状は、有機鞘の形状に由来するものである。
(Tube-shaped iron oxide particles)
The shape of the tubular iron oxide particles obtained in the heat treatment step is tubular, and the normal size of each shape is that the iron-containing organic sheath has an outer diameter of 0.6 to 1.5 μm and a length of 10 to 10. The thickness of the tube wall is preferably 1000 μm and the thickness of the tube wall is 100 to 300 nm, and more preferably the outer diameter is 0.8 to 1.2 μm, the length is 20 to 200 μm, and the thickness of the tube wall is 150 to 200 nm. This shape is derived from the shape of the organic pod.

(用途)
チューブ状酸化鉄粒子がα−Fe(ヘマタイト)を含む場合は、赤色を呈するようになるため、赤色顔料として好適に使用することができる。チューブ状酸化鉄粒子の色彩は、a*(reddish)が好ましくは25以上、より好ましくは30〜50、b*(yellowish)が好ましくは25以上、より好ましくは30〜50、L*(lightness)が好ましくは30以上、より好ましくは40〜50である。ここでのパラメータL*、a*、b*は、国際照明委員会(CIE)が1976年に推奨したCIE1976 L*a*b*表色系と呼ばれる色空間に規定されたものであり、実施例に記載の方法により測定することができる。
(Use)
When the tubular iron oxide particles contain α-Fe 2 O 3 (hematite), they exhibit a red color, so that they can be suitably used as a red pigment. As for the color of the tubular iron oxide particles, a * (reddish) is preferably 25 or more, more preferably 30 to 50, b * (yellowish) is preferably 25 or more, more preferably 30 to 50, L * (lightness). Is preferably 30 or more, and more preferably 40 to 50. The parameters L *, a *, and b * here are defined in the color space called the CIE1976 L * a * b * color system recommended by the International Commission on Illumination (CIE) in 1976, and are implemented. It can be measured by the method described in the example.

顔料として使用する場合、アルミニウム(Al)、ジルコニウム(Zr)、チタン(Ti)及びハフニウム(Hf)からなる群から選択される少なくとも1種の元素を含有することが好ましい。また、インジウム及び/又はモリブデンを含有することが好ましい。 When used as a pigment, it preferably contains at least one element selected from the group consisting of aluminum (Al), zirconium (Zr), titanium (Ti) and hafnium (Hf). It also preferably contains indium and / or molybdenum.

チューブ状酸化鉄粒子が、インジウム及び/又はモリブデンをさらに含有する場合、特に、α−FeとIn(MoOの結晶相を含む場合、赤色酸化鉄の色調を著しく向上させるだけでなく、それに加えて抗菌活性及び光触媒活性を装備したものとなる。 When the tubular iron oxide particles further contain indium and / or molybdenum, especially when they contain crystal phases of α-Fe 2 O 3 and In 2 (MoO 4 ) 3 , the color tone of red iron oxide is significantly improved. Not only that, it is equipped with antibacterial activity and photocatalytic activity in addition to it.

<チューブ状酸化鉄粒子>
本発明の1つの側面は、3価の鉄酸化物と、インジウム及び/又はモリブデンの酸化物とを含むチューブ状酸化鉄粒子に関するものである。チューブ状酸化鉄粒子は、特に、α−FeとIn(MoOの結晶相を含むことが好ましい。
<Tube-shaped iron oxide particles>
One aspect of the present invention relates to tubular iron oxide particles containing trivalent iron oxides and oxides of indium and / or molybdenum. The tubular iron oxide particles preferably contain a crystal phase of α-Fe 2 O 3 and In 2 (MoO 4 ) 3.

このようなチューブ状酸化鉄粒子は、本発明の製造方法により得ることができるが、赤色酸化鉄の色調を著しく向上させるだけでなく、それに加えて抗菌活性及び光触媒活性を装備したものとなる。 Such tubular iron oxide particles, which can be obtained by the production method of the present invention, not only significantly improve the color tone of red iron oxide, but are also equipped with antibacterial activity and photocatalytic activity.

このようなチューブ状酸化鉄粒子の組成としては、粒子中において、鉄の元素比率が、原子%で50〜90%である(ここで、酸素、炭素、窒素及び水素を除く主要元素の原子%の合計を100とする、以下この段落の記載において同じである)ことが好ましく、60〜80%であることがより好ましい。また、インジウムの元素比率が、原子%で0〜20%であることが好ましく、10〜30%がより好ましい。また、モリブデンの元素比率が、原子%で0〜20%であることが好ましく、10〜30%がより好ましい。さらに、ケイ素、りんなどを含有していてもよい。 In the composition of such tubular iron oxide particles, the element ratio of iron in the particles is 50 to 90% in atomic% (here, atomic% of major elements other than oxygen, carbon, nitrogen and hydrogen). It is preferable that the total of the above is 100, which is the same in the description of this paragraph below), and more preferably 60 to 80%. The element ratio of indium is preferably 0 to 20% in atomic%, more preferably 10 to 30%. The element ratio of molybdenum is preferably 0 to 20% in terms of atomic%, more preferably 10 to 30%. Further, it may contain silicon, phosphorus and the like.

チューブ状酸化鉄粒子が、α−FeとIn(MoOの結晶相を含む場合、上記の金属元素のそれぞれの原子%の範囲に応じた、化学量論に基づく酸素を含有し得る。 When tubular iron oxide particles contain crystal phases of α-Fe 2 O 3 and In 2 (MoO 4 ) 3 , oxygen based on stoichiometry is added according to the atomic% range of each of the above metal elements. May contain.

<抗菌性赤色顔料>
本発明の1つの側面は、3価の鉄酸化物と、インジウム及び/又はモリブデンの酸化物とを含むチューブ状酸化鉄粒子を含む抗菌性赤色顔料に関するものである。チューブ状酸化鉄粒子は、特に、α−FeとIn(MoOの結晶相を含むことが好ましい。
<Antibacterial red pigment>
One aspect of the present invention relates to an antibacterial red pigment containing tubular iron oxide particles containing a trivalent iron oxide and an oxide of indium and / or molybdenum. The tubular iron oxide particles preferably contain a crystal phase of α-Fe 2 O 3 and In 2 (MoO 4 ) 3.

このようなチューブ状酸化鉄粒子は、赤色酸化鉄の色調を著しく向上させるだけでなく、それに加えて抗菌活性及び光触媒活性を装備したものとなる。抗菌性赤色顔料の組成としては、上記の如きチューブ状酸化鉄粒子と同様であることが好ましい。 Such tubular iron oxide particles not only significantly improve the color tone of red iron oxide, but are also equipped with antibacterial activity and photocatalytic activity. The composition of the antibacterial red pigment is preferably the same as that of the above-mentioned tubular iron oxide particles.

以下、本発明の幾つかの側面について、実施例等を挙げて具体的に説明するが、本発明の技術的範囲は、これらにより何ら限定されるものではない。 Hereinafter, some aspects of the present invention will be specifically described with reference to examples and the like, but the technical scope of the present invention is not limited thereto.

実験例1(有機鞘への鉄成分の沈着条件の最適化)
レプトスリックス・コロディニOUMS1株(以下、「OUMS1株」と称する)の菌体を50ml滅菌遠心チューブに入った20mlのSGP(シリコン-グルコース-ペプトン)液体培地[Minerals 5, 335−345(2015)参照]に接種し、20℃、70rpmで3日間振とう培養(前培養)した。その後、ミニジャーファーメンター(M−1000、東京理化器械社製)に入った1.5LのSGP液体培地に無菌的に添加し、空気のバブリングを行ないながら、20℃、80rpmで2日間攪拌培養(本培養)することにより、有機質成分からなる棒状鞘の集塊(有機鞘)を作製した。使用したSGP液体培地の組成は、グルコース 1g、ペプトン 1g、NaSi0・9HO 0.2g、CaCl・2HO 0.044g、MgSO・7HO 0.041g、NaHPO・12HO 0.076g、KHPO・2HO 0.02g、HEPES 2.838g、蒸留水1000ml、pH7.0であった。
Experimental Example 1 (Optimization of conditions for depositing iron components on the organic sheath)
See Minerals 5, 335-345 (2015) in 20 ml SGP (Silicon-Glucose-Peptone) liquid medium in which cells of Leptoslix corodini OUMS1 strain (hereinafter referred to as "OUMS1 strain") were placed in a 50 ml sterile centrifuge tube. ], And shake culture (preculture) at 20 ° C. and 70 rpm for 3 days. After that, it was aseptically added to 1.5 L of SGP liquid medium contained in a mini jar fermenter (M-1000, manufactured by Tokyo Rika Kikai Co., Ltd.), and stirred and cultured at 20 ° C. and 80 rpm for 2 days while bubbling air. By (main culture), agglomerates (organic sheaths) of rod-shaped sheaths composed of organic components were prepared. The composition of the SGP liquid media used, glucose 1g, peptone 1g, Na 2 Si0 3 · 9H 2 O 0.2g, CaCl 2 · 2H 2 O 0.044g, MgSO 4 · 7H 2 O 0.041g, Na 2 HPO 4 · 12H 2 O 0.076g, KH 2 PO 4 · 2H 2 O 0.02g, HEPES 2.838g, distilled water 1000 ml, was pH 7.0.

上記で得られた有機鞘を含む培養液に、終濃度10mMとなるように表1に示す鉄源を添加し、20℃、80rpmで24時間攪拌処理することにより、有機鞘中に水酸化鉄を沈着させると同時に中空管状に成形した含鉄有機鞘(以下、「BIOX」という)を作製した。なお、酢酸緩衝液でpH調整を行なったものでは、鉄源に加えて終濃度10mMの酢酸緩衝液(pH4.2)を添加した。表1には鉄源添加後のpHと産物の微細形態(分類型)を示す。 The iron source shown in Table 1 was added to the culture solution containing the organic sheath obtained above so as to have a final concentration of 10 mM, and the mixture was stirred at 20 ° C. and 80 rpm for 24 hours to form iron hydroxide in the organic sheath. At the same time as depositing, an iron-containing organic sheath (hereinafter referred to as "BIOX") formed into a hollow tubular shape was produced. In the case where the pH was adjusted with an acetate buffer, an acetate buffer (pH 4.2) having a final concentration of 10 mM was added in addition to the iron source. Table 1 shows the pH after the addition of the iron source and the fine form (classification type) of the product.

Figure 2021169378
Figure 2021169378

その結果、表1に示すように、微細形態の型別でI〜IVに分類される産物試料が得られた。すなわち、図8に示すように、I.酸化鉄粒子が付着したロッド状鞘、II.ロッド状鞘、III.中空管状鞘、IV.酸化鉄粒子が付着した不完全な中空鞘に分類されるものが得られた。したがって、酢酸緩衝液の含有下で10mM程度の硫酸鉄(III)を有機鞘懸濁液に添加することが、チューブ状酸化鉄粒子の形成に適していることが明らかになった。 As a result, as shown in Table 1, product samples classified into I to IV according to the type of fine form were obtained. That is, as shown in FIG. 8, I.I. Rod-shaped sheath with iron oxide particles attached, II. Rod-shaped sheath, III. Hollow tubular sheath, IV. Those classified as incomplete hollow sheaths to which iron oxide particles were attached were obtained. Therefore, it was clarified that adding about 10 mM iron (III) sulfate to the organic sheath suspension in the presence of an acetate buffer is suitable for forming tubular iron oxide particles.

硫酸鉄(III)を用いて得られたBIOXを800℃、2時間大気中で加熱して加熱材(熱処理物:チューブ状酸化鉄粒子)を得た。これについて、SEM−EDX法により微細形態の観察と元素組成比率の測定を行った。その結果、当該加熱材は直径約0.8μm(管壁厚約0.1μm)の中空管状鞘形状を維持していることが分かった。また、その化学組成はSi=6、P=4、S=6、Fe=94(at%)であることが示された。 The BIOX obtained using iron (III) sulfate was heated in the air at 800 ° C. for 2 hours to obtain a heating material (heat-treated product: tubular iron oxide particles). Regarding this, the fine morphology was observed and the element composition ratio was measured by the SEM-EDX method. As a result, it was found that the heating material maintained a hollow tubular sheath shape having a diameter of about 0.8 μm (tube wall thickness of about 0.1 μm). Moreover, it was shown that the chemical composition was Si = 6, P = 4, S = 6, Fe = 94 (at%).

実施例1(鉄酸化細菌に由来する有機鞘の作製)
OUMS1株の菌体を50ml滅菌遠心チューブに入った20mlのSGP(シリコン-グルコース-ペプトン)液体培地[Minerals 5, 335−345(2015)参照]に接種し、20℃、70rpmで3日間振とう培養(前培養)した。
Example 1 (Preparation of organic sheath derived from iron-oxidizing bacteria)
Inoculate the cells of the OUMS1 strain into 20 ml of SGP (silicon-glucose-peptone) liquid medium [see Minerals 5, 335-345 (2015)] in a 50 ml sterile centrifuge tube and shake at 20 ° C. and 70 rpm for 3 days. Cultured (precultured).

その後、ミニジャーファーメンター(M−1000、東京理化器械社製)に入った1.5LのSGP液体培地に無菌的に添加し、空気のバブリングを行ないながら、20℃、80rpmで2日間攪拌培養(本培養)することにより、有機質成分からなる棒状鞘の集塊(有機鞘)を作製した(図1(b))。使用したSGP液体培地の組成は、グルコース 1g、ペプトン 1g、NaSi0・9HO 0.2g、CaCl・2HO 0.044g、MgSO・7HO 0.041g、NaHPO・12HO 0.076g、KHPO・2HO 0.02g、HEPES 2.838g、蒸留水1000ml、pH7.0であった。 After that, it was aseptically added to 1.5 L of SGP liquid medium contained in a mini jar fermenter (M-1000, manufactured by Tokyo Rika Kikai Co., Ltd.), and stirred and cultured at 20 ° C. and 80 rpm for 2 days while bubbling air. By (main culture), agglomerates (organic sheaths) of rod-shaped sheaths composed of organic components were prepared (FIG. 1 (b)). The composition of the SGP liquid media used, glucose 1g, peptone 1g, Na 2 Si0 3 · 9H 2 O 0.2g, CaCl 2 · 2H 2 O 0.044g, MgSO 4 · 7H 2 O 0.041g, Na 2 HPO 4 · 12H 2 O 0.076g, KH 2 PO 4 · 2H 2 O 0.02g, HEPES 2.838g, distilled water 1000 ml, was pH 7.0.

実施例2(有機鞘への鉄成分の沈着)
上記で得られた有機鞘を含む培養液に、添加後の濃度が10mMとなるように酢酸緩衝液(pH4.2)を、及び添加後の濃度が7.6mMとなるようにFe(SOを添加し、20℃、80rpmで24時間攪拌処理することにより、有機鞘中に水酸化鉄を沈着させると同時に中空管状に成形した含鉄有機鞘(BIOX)を作製した(図1(c))。このBIOXのSEM−EDX法による主要な元素組成(C、H、Oを除く)は、Fe=84、Si=6、P=4、S=6(at%、平均値n=10)であった。
Example 2 (Deposition of iron component on the organic sheath)
To the culture solution containing the organic sheath obtained above, an acetate buffer (pH 4.2) was added so that the concentration after addition was 10 mM, and Fe 2 (SO) was added so that the concentration after addition was 7.6 mM. 4 ) By adding 3 and stirring at 20 ° C. and 80 rpm for 24 hours, iron hydroxide was deposited in the organic sheath, and at the same time, an iron-containing organic sheath (BIOX) formed into a hollow tubular shape was prepared (FIG. 1 (Fig. 1). c)). The main elemental compositions (excluding C, H, O) of this BIOX by the SEM-EDX method are Fe = 84, Si = 6, P = 4, S = 6 (at%, average value n = 10). rice field.

実施例3(含鉄有機鞘への他種元素の沈着)
上記で得られた含鉄有機鞘を含む培養液に添加後の濃度が10mMとなるようにNaMoO・2HO及び添加後の濃度が5mMとなるようにIn(NO・3HOを添加した後、1000mMのNaCO溶液を用いてpH3.5−4.0に調整し、20℃、80rpmで24時間攪拌処理した(図1(d))。
Example 3 (Deposition of other elements on the iron-containing organic sheath)
As concentration after Na 2 MoO 4 · 2H 2 O and added so that the concentration after addition to the culture medium becomes 10mM containing ferrous organic sheath obtained above is 5mM In (NO 3) 3 · 3H After adding 2 O, the pH was adjusted to 3.5-4.0 using a 1000 mM Na 2 CO 3 solution, and the mixture was stirred at 20 ° C. and 80 rpm for 24 hours (FIG. 1 (d)).

その後、上清を廃棄して、残った沈殿物を10倍量の蒸留水で洗浄する操作を3回繰り返した後、凍結乾燥機を用いてMo/In含有BIOXの粉末を調製した。なお、1.5L容量の有機鞘懸濁液から約4.8gのMo/In含有BIOXが得られた。 Then, the supernatant was discarded, and the operation of washing the remaining precipitate with 10 times the amount of distilled water was repeated three times, and then a Mo / In-containing BIOX powder was prepared using a freeze-dryer. About 4.8 g of Mo / In-containing BIOX was obtained from the 1.5 L volume of organic sheath suspension.

実施例4(Mo/In含有BIOXの加熱材の微細形態及び元素組成)
Mo及びInを含有する培養系BIOXを800℃、2時間大気中で加熱してMo/In含有BIOXの加熱材(熱処理物:チューブ状酸化鉄粒子)を得た。これについて、SEM−EDX法により微細形態の観察と元素組成比率の測定を行った。その結果、当該加熱材は直径約0.8μm(管壁厚約0.1μm)の中空管状鞘形状を維持していることが分かった(図2(a))。また、その化学組成はSi=4、P=2、Mo=22、In=16、Fe=56(at%)であることが示された(図2(b))。
Example 4 (fine form and elemental composition of Mo / In-containing BIOX heating material)
The culture system BIOX containing Mo and In was heated in the air at 800 ° C. for 2 hours to obtain a heating material (heat-treated product: tubular iron oxide particles) of BIOX containing Mo / In. Regarding this, the fine morphology was observed and the element composition ratio was measured by the SEM-EDX method. As a result, it was found that the heating material maintained a hollow tubular sheath shape having a diameter of about 0.8 μm (tube wall thickness of about 0.1 μm) (FIG. 2A). Further, it was shown that the chemical composition was Si = 4, P = 2, Mo = 22, In = 16, Fe = 56 (at%) (FIG. 2 (b)).

実施例5(Mo/In含有BIOXの加熱材における主要元素の分布)
Mo/In含有BIOXの加熱材における元素分布をSTEM−EDS分析した。その結果、各々50〜100nmのFe酸化物とIn酸化物がナノ複合体構造を形成していることが推察された(図3)。
Example 5 (Distribution of major elements in the heating material of Mo / In-containing BIOX)
The elemental distribution of Mo / In-containing BIOX in the heating material was analyzed by STEM-EDS. As a result, it was inferred that Fe oxide and In oxide having a diameter of 50 to 100 nm each formed a nanocomplex structure (Fig. 3).

実施例6(Mo/In含有BIOXの加熱材における結晶相)
Mo/In含有BIOXの800℃加熱材の結晶相を粉末XRD法により解析した。その結果、主にα−FeとIn(MoOの結晶相からなることが明らかになった(図4)。
Example 6 (Crystal phase of Mo / In-containing BIOX heating material)
The crystal phase of the Mo / In-containing BIOX 800 ° C. heating material was analyzed by the powder XRD method. As a result, it was clarified that it mainly consisted of the crystal phases of α-Fe 2 O 3 and In 2 (MoO 4 ) 3 (Fig. 4).

実施例7(Mo/In含有BIOXの加熱材の抗菌活性)
まず、Mo/In含有BIOXの加熱材の抗糸状菌活性を調査するために、子嚢菌Fusarium oxysporum Odoriko株(またはBotrytis cinerea SAS53株)の菌叢片を10倍希釈PDA平板培地の中央に置床し、その周囲に被験試料粉末を筋状に配置した後、24℃蛍光灯(10W)照射下で菌糸の伸長成長を調査した。その結果、Mo/In含有BIOXの加熱材(600℃及び800℃)の場合に菌糸の伸長が著しく抑制されることが分かった(図5(a))。
Example 7 (Antibacterial activity of Mo / In-containing BIOX heating material)
First, in order to investigate the hyphal activity of the Mo / In-containing BIOX heating material, a mycelial piece of the ascomycete Fusarium oxysporum Odoriko strain (or Botrytis cinerea SAS53 strain) was placed in the center of a 10-fold diluted PDA plate medium. After arranging the test sample powder in a streak pattern around it, the elongation and growth of hyphae were investigated under irradiation with a fluorescent lamp (10 W) at 24 ° C. As a result, it was found that the elongation of hyphae was remarkably suppressed in the case of the Mo / In-containing BIOX exothermic material (600 ° C. and 800 ° C.) (FIG. 5 (a)).

また、抗細菌活性を検定する目的で、大腸菌Escherichia coli HB101株の菌液(1〜2x10cfu/ml)に対して0.5mg/mlの被験試料を添加し、24℃で暗黒化で攪拌(120rpm)しながら、経時的に生菌数の変化を希釈平板法によって調査した。 In addition, for the purpose of testing antibacterial activity, 0.5 mg / ml of a test sample was added to a bacterial solution (1-2 x 10 6 cfu / ml) of Escherichia coli HB101 strain, and the mixture was stirred at 24 ° C. by darkening. While (120 rpm), the change in the viable cell count over time was investigated by the dilution plate method.

その結果、Mo/In含有BIOX加熱材(800℃)を処理した試験区では、生菌数の減少率が他の試験区と比較して有意に高かったことから、当該試料は高い殺菌作用を有することが明らかになった(図5(b))。 As a result, in the test group treated with the Mo / In-containing BIOX heating material (800 ° C.), the reduction rate of the viable cell count was significantly higher than that in the other test groups, so that the sample had a high bactericidal action. It was revealed to have (Fig. 5 (b)).

実施例8(Mo/In含有BIOXの加熱材の光触媒活性)
Mo/In含有BIOX加熱材の光触媒活性を可視光照射下でのメチレンブルー(MB)の除去率によって検定した。即ち、20μMのMB溶液に0.5mg/mlの被験試料を添加し、白色LED光源(600kLux、400nm−780nm、LA−HDF158A、Hayashi−Repic社)照射下で、MB濃度の経時的変化を分光光度計を用いて測定した。試験は2連で2回反復した。
Example 8 (Photocatalytic activity of Mo / In-containing BIOX heating material)
The photocatalytic activity of the Mo / In-containing BIOX heating material was tested by the removal rate of methylene blue (MB) under visible light irradiation. That is, 0.5 mg / ml of the test sample was added to a 20 μM MB solution, and the change over time in the MB concentration was separated under irradiation with a white LED light source (600 kLux, 400 nm-780 nm, LA-HDF158A, Hayashi-Repic). It was measured using a photometer. The test was repeated twice in two series.

MBの除去率は、(C−C)/Cx100によって算出した。なおC及びCは、各々MBの平衡吸着処理後及びt時間光照射後の遠心上清におけるMB濃度を表す。その結果、本試験条件下で、Mo/In含有BIOX加熱材は24時間以内にMBをほぼ完全に除去したことから、当該試料は一定程度の光触媒活性を有することが分かった(図6)。 The removal rate of MB was calculated by (C 0- C t ) / C 0 x 100. Note that C 0 and C t represent MB concentrations in the centrifugal supernatant after the equilibrium adsorption treatment of MB and after light irradiation for t hours, respectively. As a result, under the present test conditions, the Mo / In-containing BIOX heating material almost completely removed MB within 24 hours, indicating that the sample had a certain degree of photocatalytic activity (FIG. 6).

実施例9(Mo/In含有BIOXの加熱材の色調)
各加熱処理試料の色調を評価するために、分光測色計(CM−2600d、Konica−Minolta社)を用いて、D65標準光源の照射に対する反射光(正反射光を含む)を分光分析した。なお、市販の高彩色ベンガラMC−55(森下弁柄工業社)を比較対照として用いた。
Example 9 (Color tone of the heating material of BIOX containing Mo / In)
In order to evaluate the color tone of each heat-treated sample, a spectrocolorimeter (CM-2600d, Konica-Minolta) was used to spectroscopically analyze the reflected light (including the normal reflected light) with respect to the irradiation of the D65 standard light source. A commercially available high-colored Bengala MC-55 (Morishita Benji Kogyo Co., Ltd.) was used as a comparative control.

その結果、Mn/In含有BIOXの800℃加熱材(cBIOX−Mo22/In16−800)は、他の試料と比較して有意に高い彩度及び明度(L=48.3、a=37.2、b=42.5)を示した(図7)。 As a result, the Mn / In-containing BIOX 800 ° C. heating material (cBIOX-Mo22 / In16-800) had significantly higher saturation and brightness (L * = 48.3, a * = 37) as compared with other samples. .2, b * = 42.5) was shown (Fig. 7).

本明細書の開示によれば、従来の赤色酸化鉄の色調を著しく向上させるだけでなく、それに加えて抗菌活性及び光触媒活性を装備したチューブ状酸化鉄粒子を作製することができる。これにより、赤色酸化鉄の利用範囲の拡大に繋がると期待される。また、開示された製造法は、従来法に比して作業工程の短縮や簡便性に優れている上、システム構成上において規模拡大に適していることから、商業利用に向けた大量生産系への移行が容易になると考えられる。 According to the disclosure of the present specification, it is possible to produce tubular iron oxide particles equipped with antibacterial activity and photocatalytic activity in addition to significantly improving the color tone of conventional red iron oxide. This is expected to lead to the expansion of the range of use of red iron oxide. In addition, the disclosed manufacturing method is superior to the conventional method in terms of shortening and convenience of the work process, and is suitable for scale expansion in terms of system configuration. Therefore, it is suitable for mass production for commercial use. Will be easier to migrate.

Claims (9)

チューブ状酸化鉄粒子の製造方法であって、
培養装置の容器内の培養液中で鉄酸化細菌を培養して菌外周部に有機鞘を生成する有機鞘生成工程と、
前記有機鞘が生成した培養液に少なくとも3価の鉄化合物を添加して、鉄成分を沈着させることで、前記鉄成分を含有する含鉄有機鞘を生成する含鉄有機鞘生成工程と、
前記含鉄有機鞘を前記培養液から分離する分離工程と、
前記含鉄有機鞘を熱処理して少なくとも酸化鉄を生成する熱処理工程と、
を含むチューブ状酸化鉄粒子の製造方法。
A method for producing tubular iron oxide particles.
An organic sheath formation step in which iron-oxidizing bacteria are cultured in a culture solution in a container of a culture device to form an organic sheath on the outer periphery of the bacteria.
An iron-containing organic sheath forming step of producing an iron-containing organic sheath containing the iron component by adding at least a trivalent iron compound to the culture solution produced by the organic sheath and depositing an iron component.
A separation step of separating the iron-containing organic sheath from the culture solution, and
A heat treatment step of heat-treating the iron-containing organic sheath to produce at least iron oxide,
A method for producing tubular iron oxide particles containing.
前記3価の鉄化合物が、硫酸鉄(III)、塩化鉄(III)、硝酸鉄(III)、酢酸鉄(III)、及びクエン酸鉄(III)から選ばれる1種以上である請求項1に記載のチューブ状酸化鉄粒子の製造方法。 Claim 1 in which the trivalent iron compound is at least one selected from iron (III) sulfate, iron (III) chloride, iron (III) nitrate, iron (III) acetate, and iron (III) citrate. The method for producing tubular iron oxide particles according to. 少なくとも前記有機鞘生成工程において、前記培養装置の容器内にバブリングにより酸素含有ガスを供給する請求項1又は2に記載のチューブ状酸化鉄粒子の製造方法。 The method for producing tubular iron oxide particles according to claim 1 or 2, wherein oxygen-containing gas is supplied into the container of the culture apparatus by bubbling at least in the organic sheath forming step. 前記含鉄有機鞘生成工程における前記培養液に又は前記含鉄有機鞘生成工程により生成した培養液に、他の金属元素化合物を添加して、他の金属元素成分を沈着させることで、前記鉄成分及び前記他の金属元素成分を含有する含鉄有機鞘を生成させる請求項1〜3いずれか1項に記載のチューブ状酸化鉄粒子の製造方法。 By adding another metal element compound to the culture solution in the iron-containing organic sheath forming step or to the culture solution generated in the iron-containing organic sheath forming step to deposit the other metal element component, the iron component and the iron component and The method for producing tubular iron oxide particles according to any one of claims 1 to 3, wherein an iron-containing organic sheath containing the other metal element component is produced. 前記含鉄有機鞘生成工程により生成した培養液に、前記他の金属元素化合物を添加した後に、pH調整剤によりpH調整を行なう請求項4に記載のチューブ状酸化鉄粒子の製造方法。 The method for producing tubular iron oxide particles according to claim 4, wherein the pH is adjusted with a pH adjuster after adding the other metal element compound to the culture solution produced by the iron-containing organic sheath forming step. 前記他の金属元素がインジウム及び/又はモリブデンである請求項5に記載のチューブ状酸化鉄粒子の製造方法。 The method for producing tubular iron oxide particles according to claim 5, wherein the other metal element is indium and / or molybdenum. 3価の酸化鉄と、インジウム及び/又はモリブデンの酸化物とを含むチューブ状酸化鉄粒子。 Tubed iron oxide particles containing trivalent iron oxide and oxides of indium and / or molybdenum. α−FeとIn(MoOの結晶相を含む請求項7に記載のチューブ状酸化鉄粒子。 The tubular iron oxide particle according to claim 7, which comprises a crystal phase of α-Fe 2 O 3 and In 2 (MoO 4 ) 3. 請求項6又は7に記載のチューブ状酸化鉄粒子を含む抗菌性赤色顔料。 The antibacterial red pigment containing the tubular iron oxide particles according to claim 6 or 7.
JP2020072068A 2020-04-14 2020-04-14 Tube-shaped iron oxide particles, their manufacturing method, and antibacterial red pigment Active JP6798740B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020072068A JP6798740B1 (en) 2020-04-14 2020-04-14 Tube-shaped iron oxide particles, their manufacturing method, and antibacterial red pigment
PCT/JP2020/043974 WO2021210212A1 (en) 2020-04-14 2020-11-26 Tubular iron oxide particles, method for producing same, and antibacterial red pigment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020072068A JP6798740B1 (en) 2020-04-14 2020-04-14 Tube-shaped iron oxide particles, their manufacturing method, and antibacterial red pigment

Publications (2)

Publication Number Publication Date
JP6798740B1 JP6798740B1 (en) 2020-12-09
JP2021169378A true JP2021169378A (en) 2021-10-28

Family

ID=73646775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020072068A Active JP6798740B1 (en) 2020-04-14 2020-04-14 Tube-shaped iron oxide particles, their manufacturing method, and antibacterial red pigment

Country Status (2)

Country Link
JP (1) JP6798740B1 (en)
WO (1) WO2021210212A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114989008B (en) * 2022-07-06 2024-03-22 昆明理工大学 Ferrous oxalate with tubular microstructure, preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001524572A (en) * 1997-11-20 2001-12-04 バイエル・アクチエンゲゼルシヤフト Pigment preparations comprising inorganic pigments
JP2009072702A (en) * 2007-09-20 2009-04-09 Fukatsu Kinzoku Kogyo Kk Iron recovery apparatus and method, and vegetation material
WO2011074586A1 (en) * 2009-12-15 2011-06-23 国立大学法人岡山大学 Novel microorganism capable of producing oxide
WO2014148396A1 (en) * 2013-03-19 2014-09-25 国立大学法人岡山大学 Plant protection agent and method for controlling plant disease
JP2018070441A (en) * 2016-10-21 2018-05-10 国立大学法人 岡山大学 Iron oxide for red pigment and for catalyst, and method for producing the same
WO2019123670A1 (en) * 2017-12-20 2019-06-27 国立大学法人 岡山大学 Iron oxide for orange pigment and method for producing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3919881B2 (en) * 1997-06-04 2007-05-30 株式会社▲吉▼田生物研究所 Method for producing pipe-shaped fine particle iron oxide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001524572A (en) * 1997-11-20 2001-12-04 バイエル・アクチエンゲゼルシヤフト Pigment preparations comprising inorganic pigments
JP2009072702A (en) * 2007-09-20 2009-04-09 Fukatsu Kinzoku Kogyo Kk Iron recovery apparatus and method, and vegetation material
WO2011074586A1 (en) * 2009-12-15 2011-06-23 国立大学法人岡山大学 Novel microorganism capable of producing oxide
WO2014148396A1 (en) * 2013-03-19 2014-09-25 国立大学法人岡山大学 Plant protection agent and method for controlling plant disease
JP2018070441A (en) * 2016-10-21 2018-05-10 国立大学法人 岡山大学 Iron oxide for red pigment and for catalyst, and method for producing the same
WO2019123670A1 (en) * 2017-12-20 2019-06-27 国立大学法人 岡山大学 Iron oxide for orange pigment and method for producing same

Also Published As

Publication number Publication date
JP6798740B1 (en) 2020-12-09
WO2021210212A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
Srinath et al. Eco-friendly synthesis of gold nanoparticles by Bacillus subtilis and their environmental applications
Zhong et al. Ag-decorated Bi 2 O 3 nanospheres with enhanced visible-light-driven photocatalytic activities for water treatment
Kundu et al. Extracellular biosynthesis of zinc oxide nanoparticles using Rhodococcus pyridinivorans NT2: multifunctional textile finishing, biosafety evaluation and in vitro drug delivery in colon carcinoma
Miao et al. Papain-templated Cu nanoclusters: assaying and exhibiting dramatic antibacterial activity cooperating with H 2 O 2
US8795546B2 (en) Magnetic ceramic and process for production thereof
Zegeye et al. Refinement of industrial kaolin by microbial removal of iron-bearing impurities
CN109890762B (en) Iron oxide for red pigment and method for producing same
US20120315437A1 (en) Novel microorganism capable of producing oxide
CN112342029B (en) Biological heavy metal contaminated soil remediation agent and preparation method and application thereof
CN1886191A (en) Metal oxide/hydroxide materials
Khudhair et al. Phosphotungstic acid immobilized onto ZnO coated zerovalent iron (Fe@ ZnO/PW) core/shell magnetic nanocomposite for enhanced photocatalytic bacterial inactivation under visible light
Suriyaraj et al. Room temperature biosynthesis of crystalline TiO 2 nanoparticles using Bacillus licheniformis and studies on the effect of calcination on phase structure and optical properties
JP6798740B1 (en) Tube-shaped iron oxide particles, their manufacturing method, and antibacterial red pigment
Hopf et al. Influence of microorganisms on biotite dissolution: an experimental approach
Zhang et al. Ag/TiO 2 and Ag/SiO 2 composite spheres: synthesis, characterization and antibacterial properties
CN106902816A (en) A kind of Pd/ZnO composite nano materials with photocatalysis performance and its preparation method and application
CN113173575A (en) Copper nanoparticle/fullerol nanocomposite and preparation method and application thereof
Elmi et al. Thermal decomposition synthesis of Zn-HAP (extracted from fish scale) nanopowder and its photocatalytic and antibacterial activities under visible light
Durán et al. Microbial syntheses of metallic sulfide nanoparticles: an overview
Yücel et al. Synthesis and characterization of whitlockite from sea urchin skeleton and investigation of antibacterial activity
Mardin et al. Zn-containing wollastonite with well-defined microstructural and good antifungal activity
Langumier et al. Formation of Fe (III)-containing mackinawite from hydroxysulphate green rust by sulphate reducing bacteria
CN116672362A (en) Preparation method and antibacterial application of copper nanoparticle/flaky fullerol nanocomposite
Wilson et al. Aspergillus flavus mediated silver nanoparticles synthesis and evaluation of ITS antimicrobial activity against different human pathogens
Liang et al. Synthesis of spindle‐shaped α‐FeOOH and α‐Fe2O3 nanocrystals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200424

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200424

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201112

R150 Certificate of patent or registration of utility model

Ref document number: 6798740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250