JP2021169128A - Screw fastening device and screw fastening method - Google Patents

Screw fastening device and screw fastening method Download PDF

Info

Publication number
JP2021169128A
JP2021169128A JP2020072303A JP2020072303A JP2021169128A JP 2021169128 A JP2021169128 A JP 2021169128A JP 2020072303 A JP2020072303 A JP 2020072303A JP 2020072303 A JP2020072303 A JP 2020072303A JP 2021169128 A JP2021169128 A JP 2021169128A
Authority
JP
Japan
Prior art keywords
torque
virtual seating
seating point
screw member
rotation angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020072303A
Other languages
Japanese (ja)
Inventor
正澄 宮郷
Masazumi Miyago
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2020072303A priority Critical patent/JP2021169128A/en
Publication of JP2021169128A publication Critical patent/JP2021169128A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)

Abstract

To provide a screw fastening device and a screw fastening method which can improve precision of axial tension of a screw member as much as possible.SOLUTION: During control of fastening a screw member, a virtual seating point is calculated from torque and a rotation angle, for each preset rotation angle specified value, and a most probable virtual seating point is set from a mode value in an approximate normal distribution of the virtual seating points, and control of fastening the screw member is performed until a rotation angle thereof reaches a rotation angle target value on the basis of the virtual seating point, so that high-precision control of fastening the screw member in accordance with a torque tension method is performed.SELECTED DRAWING: Figure 5

Description

本発明は、ねじ締付装置及びねじ締付方法、特に、軸力精度を高めることが可能なねじ締付装置及びねじ締付方法に関する。 The present invention relates to a screw tightening device and a screw tightening method, particularly a screw tightening device and a screw tightening method capable of improving axial force accuracy.

近年の自動車製造業では、例えば車両に要求されるダウンサイジングに伴い、車両の種々の部材の剛性が低下する傾向にある。こうした車両用部材をボルト部材やナット部材といったねじ部材で締結する場合、ねじ締付の重要な管理項目は、締付トルクよりも、ボルト部材に生じる軸力である。すなわち、ねじ部材の軸力を管理することで、例えば締結対象部材の変形に係る応力を管理することが可能となる。 In the automobile manufacturing industry in recent years, for example, with the downsizing required for a vehicle, the rigidity of various members of the vehicle tends to decrease. When such a vehicle member is fastened with a screw member such as a bolt member or a nut member, an important control item for screw tightening is not the tightening torque but the axial force generated in the bolt member. That is, by managing the axial force of the screw member, for example, it is possible to manage the stress related to the deformation of the member to be fastened.

この軸力は、ボルト部材などの軸部材に生じる引張力であり、例えば、ナットやボルト頭部などのねじ部材の座面が締付対象となる部材(以下、締付対象部材と記す)に当接してからのねじ部材の締付回転角度に比例する。 This axial force is a tensile force generated in a shaft member such as a bolt member. For example, a member whose seat surface of a screw member such as a nut or a bolt head is to be tightened (hereinafter referred to as a tightening target member). It is proportional to the tightening rotation angle of the screw member after contact.

従来、ねじ部材締付の多くは、トルク角度法と呼ばれる締付方法に則って行われる。このトルク角度法によるねじ締付は、ねじ部材の座面が締付対象部材に当接(以下、着座ともいう)し、所定のトルク(スナッグトルクともいう)が生じてから所定回転角度だけねじ部材を回転して締付けるものである。しかしながら、このトルク角度法では、ねじ部材着座からスナッグトルクが生じるまでのねじ部材の回転角度が不明である。 Conventionally, most of the screw member tightening is performed according to a tightening method called a torque angle method. In screw tightening by this torque angle method, the seat surface of the screw member comes into contact with the member to be tightened (hereinafter, also referred to as seating), and after a predetermined torque (also referred to as snag torque) is generated, the screw is screwed by a predetermined rotation angle. The member is rotated and tightened. However, in this torque angle method, the rotation angle of the screw member from the seating of the screw member to the generation of snag torque is unknown.

これは、ねじ部材の締付トルクだけを監視しても、ねじ部材の着座を正確に検出することが困難であることに加え、ねじ部材着座からスナッグトルク発生までのねじ部材回転角度は、ねじ部材の座面と締付対象部材との間の摩擦係数によって変化するからである。従って、トルク角度法では、ねじ部材着座からのねじ部材の締付回転角度を正確に管理することができない。前述のように、ねじ締付の軸力は、ねじ部材着座からのねじ部材の締付回転角度に比例することから、トルク角度法では、ねじ部材の軸力精度を高めることが困難である。 This is because it is difficult to accurately detect the seating of the screw member by monitoring only the tightening torque of the screw member, and the rotation angle of the screw member from the seating of the screw member to the generation of the snag torque is the screw. This is because it changes depending on the coefficient of friction between the seat surface of the member and the member to be tightened. Therefore, in the torque angle method, it is not possible to accurately control the tightening rotation angle of the screw member from the seating of the screw member. As described above, since the axial force of screw tightening is proportional to the tightening rotation angle of the screw member from the seating of the screw member, it is difficult to improve the axial force accuracy of the screw member by the torque angle method.

これに対し、下記特許文献1に記載されるねじ締付方法では、ねじ部材の着座を求めることが可能であることから、ねじ部材の締付回転角度を所定回転角度に管理することが可能となり、結果としてねじ部材の軸力精度を高めることが可能である。このねじ締付方法は、トルクテンション法とも呼ばれ、具体的には、スナッグトルクが生じてからねじ部材を規定された締付回転角度だけ締付け、その時点のトルクとスナッグトルクとの差及びその所定締付回転角度からねじ部材回転角度に対するトルク増大率を求め、このトルク増大率と例えばスナッグトルクからねじ部材の着座点(仮想着座点と規定する)を求める。これにより、仮想着座点からスナッグトルク発生までのねじ部材の回転角度を求めることが可能となるので、仮想着座点からのねじ部材締付回転角度を回転角度目標値にすることができ、結果として、ねじ部材の軸力精度を高めることができる。 On the other hand, in the screw tightening method described in Patent Document 1 below, since it is possible to obtain the seating of the screw member, it is possible to manage the tightening rotation angle of the screw member to a predetermined rotation angle. As a result, it is possible to improve the axial force accuracy of the screw member. This screw tightening method is also called a torque tension method. Specifically, after the snag torque is generated, the screw member is tightened by a specified tightening rotation angle, and the difference between the torque at that time and the snag torque and the difference thereof. The torque increase rate with respect to the screw member rotation angle is obtained from the predetermined tightening rotation angle, and the seating point (defined as a virtual seating point) of the screw member is obtained from this torque increase rate and, for example, the snag torque. This makes it possible to obtain the rotation angle of the screw member from the virtual seating point to the generation of the snag torque, so that the screw member tightening rotation angle from the virtual seating point can be set as the rotation angle target value, and as a result. , The axial force accuracy of the screw member can be improved.

特開昭62−102978号公報Japanese Unexamined Patent Publication No. 62-102978

しかしながら、トルクトランスデューサなどのトルク検出器で検出されるトルク値はノイズを伴い、そのノイズは、例えば、ねじ部材の座面と締付対象部材の接触状態に応じて大小さまざまである。上記特許文献1では、スナッグトルクが生じてからねじ部材を規定された締付回転角度だけ締付けたとき、すなわち特定の時点におけるトルク増大量と回転角度増大量からトルク増大率を求めて仮想着座点を求めることとしているから、検出されるトルク値にノイズが乗っていると、仮想着座点を正確に求めることができず、結果としてねじ部材の軸力精度を高めることができない。 However, the torque value detected by a torque detector such as a torque transducer is accompanied by noise, and the noise varies in magnitude depending on, for example, the contact state between the seat surface of the screw member and the member to be tightened. In Patent Document 1, when the screw member is tightened by a specified tightening rotation angle after the snag torque is generated, that is, the torque increase rate is obtained from the torque increase amount and the rotation angle increase amount at a specific time point, and a virtual seating point is obtained. Therefore, if noise is added to the detected torque value, the virtual seating point cannot be accurately obtained, and as a result, the axial force accuracy of the screw member cannot be improved.

本発明は、上記課題に鑑みてなされたものであり、その目的は、ねじ部材の軸力精度を可及的に高めることのできるねじ締付装置及びねじ締付方法を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a screw tightening device and a screw tightening method capable of improving the axial force accuracy of a screw member as much as possible.

上記目的を達成するため本発明のねじ締付装置は、
ねじ締付時におけるねじ部材の回転角度とねじ締付のトルクを検出し、前記回転角度に対する前記トルクのトルク増大率から該ねじ部材の座面の仮想着座点を求め、該仮想着座点から回転角度目標値まで前記ねじ部材を締付けるねじ締付装置において、
予め設定された前記ねじ部材の回転角度規定値毎に前記仮想着座点を算出する仮想着座点算出手段と、前記仮想着座点算出手段で算出された仮想着座点の分布を正規分布で近似する正規分布近似手段と、前記正規分布近似手段で近似された仮想着座点の正規分布の最頻値に相当する仮想着座点を最も確からしい仮想着座点に設定する仮想着座点設定手段と、前記仮想着座点設定手段で設定された仮想着座点に基づいて前記ねじ部材の締付けを制御する制御手段と、を備えたことを特徴とする。なお、正規分布における最頻値は、中央値であり、また平均値でもある。
In order to achieve the above object, the screw tightening device of the present invention
The rotation angle of the screw member and the torque of screw tightening at the time of screw tightening are detected, the virtual seating point of the seating surface of the screw member is obtained from the torque increase rate of the torque with respect to the rotation angle, and rotation is performed from the virtual seating point. In a screw tightening device that tightens the screw member to an angle target value,
A normal seating point calculation means that calculates the virtual seating point for each preset rotation angle specified value of the screw member and a normal distribution that approximates the distribution of the virtual seating point calculated by the virtual seating point calculating means with a normal distribution. The distribution approximating means, the virtual seating point setting means for setting the virtual seating point corresponding to the most frequent value of the normal distribution of the virtual seating points approximated by the normal distribution approximating means as the most probable virtual seating point, and the virtual seating point. It is characterized by including a control means for controlling the tightening of the screw member based on a virtual seating point set by the point setting means. The mode value in the normal distribution is the median value and also the average value.

この構成によれば、ねじ部材の締付制御中、予め設定された回転角度規定値毎にトルクと回転角度から仮想着座点を算出し、その仮想着座点の近似正規分布の最頻値から最も確からしい仮想着座点を設定して、その仮想着座点に基づいて回転角度目標値までねじ部材の締付制御を行うことで、トルクテンション法に則ったねじ部材締付制御がなされる。このとき、検出されるトルク値に乗っているノイズは、本来、検出されるべきトルク値の近傍で増減しているものであるから、近似正規分布の最頻値から設定される仮想着座点も度数(データ数)が増えればノイズの影響が低減される。したがって、ねじ部材締付制御の進行に伴って、近似正規分布の最頻値から設定される仮想着座点は最も確からしい仮想着座点として精度が向上し、この精度の高い仮想着座点に基づいて回転角度目標値までねじ部材の締付制御を行うことで高精度のトルクテンション法が達成され、これによりねじ部材の軸力精度を可及的に高めることができる。 According to this configuration, during the tightening control of the screw member, the virtual seating point is calculated from the torque and the rotation angle for each preset rotation angle specified value, and the most frequent value of the approximate normal distribution of the virtual seating point is used. By setting a probable virtual seating point and performing tightening control of the screw member up to the rotation angle target value based on the virtual seating point, the screw member tightening control according to the torque tension method is performed. At this time, since the noise on the detected torque value originally increases or decreases in the vicinity of the torque value to be detected, the virtual seating point set from the mode value of the approximate normal distribution is also included. As the frequency (number of data) increases, the effect of noise is reduced. Therefore, as the screw member tightening control progresses, the virtual seating point set from the mode of the approximate normal distribution improves in accuracy as the most probable virtual seating point, and is based on this highly accurate virtual seating point. By controlling the tightening of the screw member up to the rotation angle target value, a highly accurate torque tension method is achieved, and the axial force accuracy of the screw member can be improved as much as possible.

また、本発明の他の構成は、前記仮想着座点設定手段は、前記仮想着座点の正規分布の最頻値に代えて、該最頻値の直近で該最頻値よりも値の大きい側の複数の仮想着座点データを結ぶ直線と該最頻値の直近で該最頻値よりも値の小さい側の複数の仮想着座点データを結ぶ直線との交点に相当する仮想着座点を前記最も確からしい仮想着座点に設定することを特徴とする。 Further, in another configuration of the present invention, the virtual seating point setting means replaces the mode of the normal distribution of the virtual seating points on the side closest to the mode and having a value larger than the mode. The virtual seating point corresponding to the intersection of the straight line connecting the plurality of virtual seating point data and the straight line connecting the plurality of virtual seating point data on the side closest to the mode and smaller than the mode is the most. It is characterized by setting a certain virtual seating point.

この構成によれば、算出された仮想着座点の分布を正規分布で近似できなくても、それらの仮想着座点を、例えばヒストグラムにすることはできるので、このヒストグラムの最頻値の直近で値の大きい側と小さい側のそれぞれの複数の仮想着座点を結ぶ直線の交点を仮想着座点とすることで、上記と同様に、ねじ締付制御の進行に伴い、近似正規分布の最頻値に近い仮想着座点を最も確からしい仮想着座点に設定することができる。したがって、ねじ締付装置の演算処理能力がさほど高くなくとも、トルクテンション法に則ったねじ締付制御を達成することができ、これによりねじ部材の軸力精度を可及的に高めることができる。 According to this configuration, even if the calculated distribution of virtual seating points cannot be approximated by a normal distribution, those virtual seating points can be made into a histogram, for example, so that the value closest to the mode value of this histogram is used. By setting the intersection of the straight lines connecting the multiple virtual seating points on the large side and the small side of the virtual seating point as the virtual seating point, the mode becomes the mode of the approximate normal distribution as the screw tightening control progresses, as described above. The closest virtual seating point can be set as the most probable virtual seating point. Therefore, even if the arithmetic processing capacity of the screw tightening device is not so high, the screw tightening control according to the torque tension method can be achieved, and thereby the axial force accuracy of the screw member can be improved as much as possible. ..

本発明の更なる構成は、前記制御手段は、予め設定された前記ねじ部材の回転角度に対する前記トルクの増大率が予め設定されたトルク増大率規定値未満である場合に、前記トルクが予め設定されたトルク規定値になってから予め設定された所定回転角度だけ前記ねじ部材を回転するねじ部材締付制御に切換えることを特徴とする。 A further configuration of the present invention is that the control means presets the torque when the torque increase rate with respect to the preset rotation angle of the screw member is less than the preset torque increase rate specified value. It is characterized in that the screw member is switched to the screw member tightening control for rotating the screw member by a predetermined rotation angle set in advance after the torque becomes a specified value.

この構成によれば、ねじ部材締付制御の切換え後には、トルク規定値、例えばスナッグトルクになってから予め設定された所定回転角度だけねじ部材を回転する、上記トルク角度法に則ったねじ部材締付制御がなされる。上記仮想着座点は、ねじ部材の回転角度に対するトルク増大率から求めるが、ねじ部材の座面と締付対象部材との間の摩擦係数が小さいほどトルク増大率も小さい。このトルク増大率が著しく小さい場合には、着座後の締付対象部材に対するねじ部材の回転角度を0とする仮想着座点の算出精度が低下し、その結果、上記トルクテンション法に則ったねじ締付制御によるねじ部材の軸力精度が低下する。したがって、ねじ部材の回転角度に対するトルク増大率がトルク増大率規定値未満である場合にトルク角度法に則ったねじ締付制御とすることで、ねじ部材の軸力精度を確保することができる。 According to this configuration, after switching the screw member tightening control, the screw member is rotated by a predetermined rotation angle set in advance after reaching a specified torque value, for example, a snag torque, according to the torque angle method. Tightening control is performed. The virtual seating point is obtained from the torque increase rate with respect to the rotation angle of the screw member. The smaller the friction coefficient between the seat surface of the screw member and the member to be tightened, the smaller the torque increase rate. When this torque increase rate is extremely small, the calculation accuracy of the virtual seating point where the rotation angle of the screw member with respect to the tightening target member after seating is 0 is lowered, and as a result, the screw tightening according to the torque tension method is performed. The axial force accuracy of the threaded member due to the attachment control is reduced. Therefore, when the torque increase rate with respect to the rotation angle of the screw member is less than the specified value of the torque increase rate, the screw tightening control according to the torque angle method can ensure the axial force accuracy of the screw member.

また、本発明の他の構成は、ねじ締付時におけるねじ部材の回転角度とねじ締付のトルクを検出し、前記回転角度に対する前記トルクのトルク増大率から該ねじ部材の座面の仮想着座点を求め、該仮想着座点から回転角度目標値まで前記ねじ部材を締付けるねじ締付方法において、
予め設定された前記ねじ部材の回転角度規定値毎に前記仮想着座点を算出する仮想着座点算出ステップと、前記仮想着座点算出ステップで算出された仮想着座点の分布を正規分布で近似する正規分布近似ステップと、前記正規分布近似ステップで近似された仮想着座点の正規分布の最頻値に相当する仮想着座点を最も確からしい仮想着座点に設定する仮想着座点設定ステップと、前記仮想着座点設定ステップで設定された仮想着座点に基づいて前記ねじ部材の締付けを制御する制御ステップと、を備えたことを特徴とする。
Further, another configuration of the present invention detects the rotation angle of the screw member and the torque of screw tightening at the time of screw tightening, and virtually seats the seat surface of the screw member from the torque increase rate of the torque with respect to the rotation angle. In a screw tightening method in which a point is obtained and the screw member is tightened from the virtual seating point to a rotation angle target value.
A normal distribution that approximates the distribution of the virtual seating points calculated in the virtual seating point calculation step for calculating the virtual seating point for each preset rotation angle specified value of the screw member and the virtual seating point calculation step. The distribution approximation step, the virtual seating point setting step that sets the virtual seating point corresponding to the most frequent value of the normal distribution of the virtual seating points approximated by the normal distribution approximation step as the most probable virtual seating point, and the virtual seating point. It is characterized by including a control step for controlling tightening of the screw member based on a virtual seating point set in the point setting step.

この構成によれば、ねじ部材の締付制御中、予め設定された回転角度規定値毎にトルクと回転角度から仮想着座点を算出し、その仮想着座点の近似正規分布の最頻値から最も確からしい仮想着座点を設定して、その仮想着座点に基づいて回転角度目標値までねじ部材の締付制御を行うことで、トルクテンション法に則ったねじ部材締付制御がなされる。このとき、検出されるトルク値に乗っているノイズは、本来、検出されるべきトルク値の近傍で増減しているものであるから、近似正規分布の最頻値から設定される仮想着座点も度数(サンプリング数)が増えればノイズの影響が低減される。したがって、ねじ部材締付制御の進行に伴って、近似正規分布の最頻値から設定される仮想着座点は最も確からしい仮想着座点として精度が向上し、この精度の高い仮想着座点に基づいて回転角度目標値までねじ部材の締付制御を行うことで高精度のトルクテンション法が達成され、これによりねじ部材の軸力精度を可及的に高めることができる。 According to this configuration, during the tightening control of the screw member, the virtual seating point is calculated from the torque and the rotation angle for each preset rotation angle specified value, and the most frequent value of the approximate normal distribution of the virtual seating point is used. By setting a probable virtual seating point and performing tightening control of the screw member up to the rotation angle target value based on the virtual seating point, the screw member tightening control according to the torque tension method is performed. At this time, since the noise on the detected torque value originally increases or decreases in the vicinity of the torque value to be detected, the virtual seating point set from the mode value of the approximate normal distribution is also included. As the frequency (sampling number) increases, the effect of noise is reduced. Therefore, as the screw member tightening control progresses, the virtual seating point set from the mode of the approximate normal distribution improves in accuracy as the most probable virtual seating point, and is based on this highly accurate virtual seating point. By controlling the tightening of the screw member up to the rotation angle target value, a highly accurate torque tension method is achieved, and the axial force accuracy of the screw member can be improved as much as possible.

以上説明したように、本発明によれば、検出トルク値のノイズの影響をねじ部材締付制御の進行と共に低減して、最も確からしい仮想着座点を高精度に設定し、高精度のトルクテンション法に則ってねじ部材の軸力精度を可及的に高めることができる。そして、その結果、車両のダウンサイジングを支障なく推進することが可能となる。 As described above, according to the present invention, the influence of noise of the detected torque value is reduced as the screw member tightening control progresses, the most probable virtual seating point is set with high accuracy, and the torque tension with high accuracy is achieved. According to the law, the axial force accuracy of the screw member can be improved as much as possible. As a result, it becomes possible to promote the downsizing of the vehicle without any trouble.

本発明のねじ締付装置及びねじ締付方法が適用されたねじ締付装置の一実施の形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the screw tightening apparatus and the screw tightening apparatus to which the screw tightening method of this invention is applied. 図1のねじ締付装置で行われるねじ締付方法の説明図である。It is explanatory drawing of the screw tightening method performed by the screw tightening apparatus of FIG. 図1のトルク検出器で検出されるトルク値の説明図である。It is explanatory drawing of the torque value detected by the torque detector of FIG. 図2のねじ締付方法でねじ部材のスリップが発生したときの説明図である。It is explanatory drawing when slip of a screw member occurs by the screw tightening method of FIG. 図1の制御装置で行われる演算処理のフローチャートである。It is a flowchart of the arithmetic processing performed by the control device of FIG. 図4の演算処理の作用の説明図である。It is explanatory drawing of the operation of the arithmetic processing of FIG. 図4の演算処理で最も確からしい仮想着座点を設定する他の例の説明図である。It is explanatory drawing of another example which sets the most probable virtual seating point in the arithmetic processing of FIG. 従来のねじ締付方法の説明図である。It is explanatory drawing of the conventional screw tightening method.

以下に、本発明のねじ締付装置及びねじ締付方法の一実施の形態について図面を参照して詳細に説明する。図1は、この実施の形態のねじ締付装置の概略構成図であり、例えば車両のエンジンの組立に用いられる。このねじ締付装置の部材構成は、従来既存のねじ締付装置と同等又はほぼ同等である。このねじ締付装置は、例えばボルト部材の頭部やナット部材に被嵌されて、それらねじ部材を回転するソケット10と、このソケット10を回転する電動モータ12と、電動モータ12によるねじ部材の締付トルクを検出する、トルクトランスデューサなどのトルク検出器14と、ねじ部材の回転角度を検出する回転角度センサ16を備えて構成され、電動モータ12の駆動は制御装置18によって行われる。また、トルク検出器14で検出された締付トルクや、回転角度センサ16で検出された回転角度は制御装置18に読込まれる。 Hereinafter, an embodiment of the screw tightening device and the screw tightening method of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram of a screw tightening device according to this embodiment, and is used, for example, for assembling a vehicle engine. The member configuration of this screw tightening device is the same as or almost the same as that of the conventional screw tightening device. This screw tightening device is, for example, a socket 10 that is fitted on the head of a bolt member or a nut member and rotates the screw member, an electric motor 12 that rotates the socket 10, and a screw member by the electric motor 12. A torque detector 14 such as a torque transducer that detects the tightening torque and a rotation angle sensor 16 that detects the rotation angle of the screw member are provided, and the electric motor 12 is driven by the control device 18. Further, the tightening torque detected by the torque detector 14 and the rotation angle detected by the rotation angle sensor 16 are read by the control device 18.

制御装置18は、マイクロプロセッサなどの図示しないコンピュータシステムを搭載して構成される。このコンピュータシステムは、周知のコンピュータシステムと同様に、高度な演算処理機能を有する演算処理装置に加え、例えばプログラムを記憶する記憶装置や、センサ信号を読込んだり、他の制御装置と相互通信を行ったりするための入出力装置を備えて構成される。自動車製造業で用いられるコンピュータシステムには、例えばプログラマブルロジックコントローラがある。 The control device 18 is configured to include a computer system (not shown) such as a microprocessor. Similar to a well-known computer system, this computer system has, in addition to an arithmetic processing unit having an advanced arithmetic processing function, for example, a storage device for storing a program, reading a sensor signal, and intercommunication with other control devices. It is configured with an input / output device for doing things. Computer systems used in the automobile manufacturing industry include, for example, programmable logic controllers.

この実施の形態のねじ締付装置で行うねじ締付方法を説明する前に、上記従来のトルク角度法によるねじ締付方法について、図8を用いて説明する。トルク角度法では、ねじ部材が締付対象部材に着座し、締付の検出トルク値が予め設定されたトルク規定値、例えば上記スナッグトルクSTに到達してから所定締付回転角度φだけねじ部材を回転して締付を完了する。検出トルク値は、ねじ部材が締付対象部材に着座した時点から発生するものとする。例えば、図に実線で示す直線が、平均(中間値)的な締付トルク−回転角度特性であるとして、この特性は、例えばねじ部材の座面と締付対象部材との間(以下、座面間とも記す)の摩擦係数に応じて変化する(当然、ねじ山の摩擦係数も影響する)。 Before explaining the screw tightening method performed by the screw tightening device of this embodiment, the screw tightening method by the conventional torque angle method will be described with reference to FIG. The torque angle method, the screw member is seated on the target member tightening, the detected torque value of the tightening preset torque prescribed value, for example, only the snug torque rotation angle phi 0 with a predetermined clamping after reaching the ST screw Rotate the member to complete the tightening. The detected torque value shall be generated from the time when the screw member is seated on the member to be tightened. For example, assuming that the straight line shown by the solid line in the figure is the average (intermediate value) tightening torque-rotation angle characteristic, this characteristic is, for example, between the seat surface of the screw member and the member to be tightened (hereinafter, seat). It changes according to the coefficient of friction (also referred to as between faces) (of course, the coefficient of friction of the thread also affects it).

例えば、図8に一点鎖線で示すように座面間の摩擦係数が大きい(図では高μ)場合には、ねじ部材着座からスナッグトルク発生までのねじ部材回転角度が小さい。一方、図に二点鎖線で示すように座面間の摩擦係数が小さい(図では低μ)場合には、ねじ部材着座からスナッグトルク発生までのねじ部材回転角度が大きい。後述するように、実際の検出トルク値は、図のように簡易な直線(曲線)ではなく、細かいノイズを伴う上に、ねじ部材着座の際には、波形の乱れることが多く、どの時点をもってねじ部材着座と判定するかが困難である。例えば摩擦係数の大きい場合と小さい場合で、スナッグトルク発生時までのねじ部材回転角度に角度差Δφがあると、上記所定締付回転角度φだけねじ部材を回転させてねじ締付けを完了したとき、実際のねじ部材の着座からの回転角度はこの角度差Δφだけ異なる。ねじ部材の軸力は、ねじ部材着座からの締付回転角度に依存するから、締付完了時の締付回転角度が角度差Δφだけ異なると、両者の軸力もその分だけ異なる。従って、トルク角度法によるねじ締付では、ねじ部材の軸力精度を高めることが困難である。 For example, when the coefficient of friction between the seat surfaces is large (high μ in the figure) as shown by the alternate long and short dash line in FIG. 8, the rotation angle of the screw member from the seating of the screw member to the generation of snag torque is small. On the other hand, when the friction coefficient between the seat surfaces is small (low μ in the figure) as shown by the alternate long and short dash line in the figure, the rotation angle of the screw member from the seating of the screw member to the generation of snag torque is large. As will be described later, the actual detected torque value is not a simple straight line (curve) as shown in the figure, but is accompanied by fine noise, and when the screw member is seated, the waveform is often disturbed. It is difficult to determine that the screw member is seated. For example, in the case when the friction coefficient larger and a small, if there is an angular difference Δφ on the threaded member rotation angle until snug torque occurs, by rotating the rotation angle phi 0 only threaded member with the predetermined tightening when completed the tightening screw , The actual rotation angle of the screw member from the seating differs by this angle difference Δφ. Since the axial force of the screw member depends on the tightening rotation angle from the seating of the screw member, if the tightening rotation angle at the completion of tightening differs by the angle difference Δφ, the axial force of both differs accordingly. Therefore, it is difficult to improve the axial force accuracy of the screw member by tightening the screw by the torque angle method.

図2は、この実施の形態のねじ締付装置で行うねじ締付方法の原理の説明図であり、具体的には上記トルクテンション法によるねじ締付方法である。このトルクテンション法によるねじ締付方法では、ねじ部材が締付対象部材に着座し、締付トルクの検出トルク値がスナッグトルクSTに到達したら回転角度増大初期値φだけねじ部材を回転する。そして、その時点の検出トルク値とスナッグトルクの差分値を上記回転角度増大初期値φで除して単位回転当たりのトルク増大率を求める。図から明らかなように、スナッグトルク到達から回転角度増大初期値φだけねじ部材を回転したときの到達トルク値は、座面間の摩擦係数が大きい場合(高μ)と小さい場合(低μ)とで異なるが、その時点の検出トルク値とスナッグトルクの差分値を回転角度増大初期値φで除したトルク増大率は、夫々の座面間摩擦係数を反映したものとなり、摩擦係数が大きければ大きく、小さければ小さくなる。 FIG. 2 is an explanatory diagram of the principle of the screw tightening method performed by the screw tightening device of this embodiment, and specifically, is a screw tightening method by the torque tension method. In the screw tightening method based on this torque tension method, when the screw member is seated on the member to be tightened and the detected torque value of the tightening torque reaches the snag torque ST, the screw member is rotated by the initial value φ i for increasing the rotation angle. Then, the difference value between the detected torque value and the snag torque at that time is divided by the rotation angle increase initial value φ i to obtain the torque increase rate per unit rotation. As is clear from the figure, the torque value reached when the screw member is rotated by the initial value φ i, which increases the rotation angle from the arrival of the snag torque, is when the coefficient of friction between the seat surfaces is large (high μ) and when it is small (low μ). ), But the torque increase rate obtained by dividing the difference value between the detected torque value and the snag torque at that time by the initial value φ i for increasing the rotation angle reflects the friction coefficient between the seating surfaces, and the friction coefficient is The larger it is, the larger it is, and the smaller it is, the smaller it is.

従って、このトルク増大率で各締付トルク−回転角度曲線(直線)をさかのぼれば、検出トルク値が0となる、すなわち着座後の締付対象部材に対するねじ部材の回転角度を0とする、曲線(直線)の切片を求めることができ、これが仮想着座点となる。従って、図解的には、この仮想着座点と例えばスナッグトルクから、ねじ部材着座からスナッグトルク発生までのねじ部材の回転角度を求めることができる。また、スナッグトルクをトルク増大率で除すことで、ねじ部材着座からスナッグトルク発生までのねじ部材の回転角度を直接的に求めることもできる。ねじ部材の軸力はねじ部材着座からの回転角度目標値φで規定することができるから、この回転角度目標値φからスナッグトルク発生までのねじ部材回転角度と上記回転角度増大初期値φを減じた回転角度が、残りの回転すべきねじ部材の締付回転角度になる。 Therefore, if each tightening torque-rotation angle curve (straight line) is traced back by this torque increase rate, the detected torque value becomes 0, that is, the rotation angle of the screw member with respect to the member to be tightened after sitting is 0. A (straight line) section can be obtained, and this is the virtual seating point. Therefore, graphically, the rotation angle of the screw member from the seating of the screw member to the generation of the snag torque can be obtained from this virtual seating point and, for example, the snag torque. Further, by dividing the snag torque by the torque increase rate, the rotation angle of the screw member from the seating of the screw member to the generation of the snag torque can be directly obtained. Since the axial force of the screw member can be defined by the rotation angle target value φ T from the seating of the screw member, the rotation angle of the screw member from this rotation angle target value φ T to the generation of the snag torque and the rotation angle increase initial value φ The rotation angle obtained by subtracting i is the tightening rotation angle of the remaining screw member to be rotated.

しかしながら、上記トルク検出器14で検出されるトルク値は、高い周波数のノイズが乗っている。図3は、ねじ締付制御中に検出されるトルク値の説明図であり、同図から明らかなように、検出トルク値は細かいノイズを伴って変動する。上記トルクテンション法によるねじ締付制御は、スナッグトルク発生から上記回転角度増大初期値φだけねじ部材を回転させたとき、すなわち特定の時点のトルク増大率に基づいているので、その時点の検出トルク値がノイズを含んでいれば、算出されるトルク増大率も仮想着座点もノイズの影響によって不確かなものとなる。しかしながら、図3からも推察されるように、検出されるトルク値に乗っているノイズは、本来検出されるべきトルク値の真値の近傍で増減するだけのものであり、ノイズが均されれば検出トルク値も確からしいものとなる。すなわち、例えば、仮想着座点を多数算出し、その分布の度数が大きくなればなるほど、確からしい仮想着座点を設定することができる。 However, the torque value detected by the torque detector 14 has high frequency noise. FIG. 3 is an explanatory diagram of a torque value detected during screw tightening control, and as is clear from the figure, the detected torque value fluctuates with fine noise. The screw tightening control by the torque tension method is based on the torque increase rate at a specific time when the screw member is rotated by the rotation angle increase initial value φ i from the snag torque generation, so that the detection at that time is detected. If the torque value includes noise, both the calculated torque increase rate and the virtual seating point become uncertain due to the influence of the noise. However, as can be inferred from FIG. 3, the noise on the detected torque value only increases or decreases in the vicinity of the true value of the torque value that should be originally detected, and the noise is leveled. If so, the detected torque value will be certain. That is, for example, a large number of virtual seating points can be calculated, and the larger the frequency of the distribution, the more probable virtual seating points can be set.

図4は、例えば図2の締付トルク−回転角度曲線の実際の波形を一部模式的に示したものである。図の細かい波形が、上記検出トルク値に乗っているノイズを示す。このトルク曲線では、摩擦係数が大きい(図の高μ)締付トルク−回転角度曲線に表れる一時的な大きな変動が上記ねじ部材のスリップを表す。もし、このスリップ発生中にトルク増大率を算出すると、そのトルク増大率で求めた締付トルク−回転角度曲線は図に一点鎖線で示すようなものになってしまう。これは、例えば図に二点鎖線で示す摩擦係数の小さい(低μ)の締付トルク−回転角度曲線のものと同等になってしまうことから、そのトルク増大率を用いて求めた仮想着座点は実際の仮想着座点と異なる。しかしながら、上記ねじ部材のスリップ発生率は極めて小さいので、仮にスリップ発生によって実際の仮想着座点と異なる仮想着座点が算出されたとしても、上記算出仮想着座点の正規分布では極めて度数が小さく、実質的に確からしい仮想着座点としては計数されない。 FIG. 4 schematically shows a part of the actual waveform of the tightening torque-rotation angle curve of FIG. 2, for example. The fine waveform in the figure shows the noise on the detected torque value. In this torque curve, a large temporary fluctuation appearing in the tightening torque-rotation angle curve having a large friction coefficient (high μ in the figure) represents the slip of the screw member. If the torque increase rate is calculated during the slip occurrence, the tightening torque-rotation angle curve obtained by the torque increase rate will be as shown by the alternate long and short dash line in the figure. For example, since this is equivalent to that of the tightening torque-rotation angle curve with a small friction coefficient (low μ) shown by the alternate long and short dash line in the figure, the virtual seating point obtained by using the torque increase rate. Is different from the actual virtual seating point. However, since the slip occurrence rate of the screw member is extremely small, even if a virtual seating point different from the actual virtual seating point is calculated due to slipping, the frequency is extremely small in the normal distribution of the calculated virtual seating point, which is substantially the same. It is not counted as a virtual seating point that seems to be probable.

一方で、上記図2からも推察されるように、トルク増大率に基づいてトルク増大曲線(直線)をさかのぼり、着座後の締付対象部材に対するねじ部材の回転角度を0とする仮想着座点は、トルク増大率が小さいほど、つまり座面間摩擦係数が小さいほど、ばらつきが大きく、算出精度が低下する。また、座面間摩擦係数が小さいほど、スナッグトルク発生から回転角度目標値φまでに残されたねじ部材の回転角度も小さいので、その間に算出される仮想着座点の数も小さく、仮想着座点の正規分布の最頻値の度数も小さいことから、その最頻値から設定される仮想着座点の確からしさも低下する。そこで、この実施の形態では、スナッグトルク発生時のトルク増大率を求め、このトルク増大率が予め設定されたトルク増大率規定値未満である場合には、トルクテンション法をやめてトルク角度法でねじ部材を締付ける。ねじ部材の仮想着座点があいまいなまま行われるトルクテンション法よりも、トルク角度法の方が、ねじ部材の軸力精度は高い。したがって、上記トルク増大率規定値には、仮想着座点を正確に求めることが困難なほど座面間摩擦係数が小さい場合のトルク増大率が該当される。 On the other hand, as inferred from FIG. 2, the virtual seating point where the torque increase curve (straight line) is traced back based on the torque increase rate and the rotation angle of the screw member with respect to the tightening target member after seating is 0 is The smaller the torque increase rate, that is, the smaller the coefficient of friction between the seat surfaces, the larger the variation and the lower the calculation accuracy. Further, the smaller the coefficient of friction between the seating surfaces, the smaller the rotation angle of the screw member left from the generation of the snag torque to the rotation angle target value φ T. Therefore, the number of virtual seating points calculated during that period is also small, and the virtual seating is performed. Since the frequency of the mode of the normal distribution of points is also small, the certainty of the virtual seating point set from the mode is also reduced. Therefore, in this embodiment, the torque increase rate when snag torque is generated is obtained, and if this torque increase rate is less than the preset torque increase rate specified value, the torque tension method is stopped and the screw is screwed by the torque angle method. Tighten the member. The torque angle method has higher axial force accuracy of the screw member than the torque tension method in which the virtual seating point of the screw member remains ambiguous. Therefore, the torque increase rate specified value corresponds to the torque increase rate when the friction coefficient between the seat surfaces is so small that it is difficult to accurately obtain the virtual seating point.

図5は、ねじ部材のねじ締付制御を行うために上記制御装置18で行われる演算処理のフローチャートである。この演算処理は、上記制御装置18内で、例えば1deg.といったねじ部材の回転角度毎に実行される。なお、上記エンコーダなどの回転角度センサ16で検出されるねじ部材の回転角度、及び、トランスジューサなどのトルク検出器14で検出されるトルクは非常に短いサンプリング周期で制御装置18に読込まれ、上記記憶装置内に記憶される。また、このフローチャートでは、算出されたデータを分布図にプロットしたり、そのプロットデータを正規分布で近似したりしているが、これらの処理は、実際には演算処理装置及び記憶装置の内部だけで行われるようにしてもよい。 FIG. 5 is a flowchart of an arithmetic process performed by the control device 18 in order to control screw tightening of a screw member. This arithmetic processing is performed in the control device 18, for example, 1 deg. It is executed for each rotation angle of the screw member. The rotation angle of the screw member detected by the rotation angle sensor 16 such as the encoder and the torque detected by the torque detector 14 such as the transducer are read into the control device 18 in a very short sampling cycle and stored in the above memory. Stored in the device. Further, in this flowchart, the calculated data is plotted on a distribution map and the plotted data is approximated by a normal distribution, but these processes are actually performed only inside the arithmetic processing unit and the storage device. It may be done in.

この演算処理は、例えばねじ部材の締付開始で開始され、まずステップS1で、ねじ部材の回転角度及びトルクの検出値を読込む。以下では、ねじ部材の回転角度を単に回転角度と称する。 This arithmetic processing is started, for example, at the start of tightening of the screw member, and first, in step S1, the detected values of the rotation angle and torque of the screw member are read. Hereinafter, the rotation angle of the screw member is simply referred to as a rotation angle.

次にステップS2に移行して、制御フラグFが0のリセット状態であるか否かを判定し、制御フラグFが0のリセット状態である場合にはステップS3に移行し、そうでない場合にはステップS6に移行する。 Next, the process proceeds to step S2 to determine whether or not the control flag F is in the reset state of 0. If the control flag F is in the reset state of 0, the process proceeds to step S3. If not, the process proceeds to step S3. The process proceeds to step S6.

上記ステップS3では、検出されたトルク値にスナッグトルクSTが検出されたか否かを判定し、スナッグトルクSTが検出された場合にはステップS4に移行し、そうでない場合には復帰する。 In step S3, it is determined whether or not the snag torque ST is detected in the detected torque value, and if the snag torque ST is detected, the process proceeds to step S4, and if not, the process returns.

上記ステップS4では、上記スナッグトルクSTが検出されたときの回転角度を回転角度基準値に設定してからステップS5に移行する。 In step S4, the rotation angle when the snag torque ST is detected is set to the rotation angle reference value, and then the process proceeds to step S5.

上記ステップS5では、上記記憶装置に記憶されている回転角度とトルクからスナッグトルク検出までの回転角度に対するトルク増大率を算出してからステップS6に移行する。 In step S5, the process proceeds to step S6 after calculating the torque increase rate with respect to the rotation angle and torque stored in the storage device and the rotation angle from the snag torque detection to the detection.

上記ステップS6では、ステップS5で算出されたトルク増大率が予め設定されたトルク増大率規定値以上であるか否かを判定し、トルク増大率がトルク増大率以上である場合にはステップS7に移行し、そうでない場合、すなわちトルク増大率がトルク増大率規定値未満である場合にはステップS19に移行する。トルク増大率規定値は、仮想着座点を正確に求めることが困難なほど座面間摩擦係数が小さい場合のトルク増大率とする。 In step S6, it is determined whether or not the torque increase rate calculated in step S5 is equal to or higher than the preset torque increase rate specified value, and if the torque increase rate is equal to or higher than the torque increase rate, step S7 is performed. If not, that is, if the torque increase rate is less than the specified torque increase rate, the process proceeds to step S19. The specified value of the torque increase rate is the torque increase rate when the friction coefficient between the seat surfaces is so small that it is difficult to accurately obtain the virtual seating point.

上記ステップS7では、上記制御フラグFを1のセット状態としてから上記ステップS8に移行する。 In step S7, the control flag F is set to 1, and then the process proceeds to step S8.

上記ステップS8では、上記回転角度基準値から予め設定された上記回転角度増大初期値(φ)以上、回転角度が増大したか否かを判定し、回転角度増大初期値以上、回転角度が増大した場合にはステップS9に移行し、そうでない場合には復帰する。 In step S8, it is determined from the rotation angle reference value whether or not the rotation angle has increased by the preset rotation angle increase initial value (φ i ) or more, and the rotation angle increases by the rotation angle increase initial value or more. If so, the process proceeds to step S9, and if not, the process returns.

上記ステップS9では、回転角度今回値と回転角度前回値、並びにトルク今回値とトルク前回値を設定する。具体的には、現在、検出されているトルク値をトルク今回値とする。また、上記回転角度基準値を0として、そこから現在、検出されている回転角度までの回転角度を回転角度今回値とする。また、現在の回転角度(回転角度今回値)よりも上記回転角度増大初期値だけ以前のねじ部材の回転角度を回転角度前回値に設定すると共に、その回転角度前回値の回転角度で検出されたトルク値をトルク前回値に設定する。 In step S9, the rotation angle current value and the rotation angle previous value, and the torque current value and the torque previous value are set. Specifically, the currently detected torque value is used as the current torque value. Further, the rotation angle reference value is set to 0, and the rotation angle from that to the currently detected rotation angle is set as the rotation angle this time value. In addition, the rotation angle of the screw member that is earlier than the current rotation angle (rotation angle current value) by the initial value for increasing the rotation angle is set to the rotation angle previous value, and the rotation angle is detected by the rotation angle of the previous rotation angle. Set the torque value to the previous torque value.

次にステップS10に移行して、現在の回転角度前回値を含み、その回転角度前回値から上記回転角度基準値までの間で過去に回転角度前回値に設定された全ての回転角度(=回転角度前回値)と回転角度今回値の回転角度差分値を求めてからステップS11に移行する。 Next, the process proceeds to step S10, including the current rotation angle previous value, and all rotation angles (= rotation) previously set to the rotation angle previous value between the rotation angle previous value and the above rotation angle reference value. After obtaining the rotation angle difference value between the angle previous value) and the rotation angle current value, the process proceeds to step S11.

上記ステップS11では、現在のトルク前回値を含み、そのトルク前回値から上記スナッグトルクまでの間で過去にトルク前回値に設定された全てのトルク値(=トルク前回値)とトルク今回値とのトルク差分値を求めてからステップS12に移行する。 In step S11, the current torque previous value is included, and all torque values (= torque previous value) set to the torque previous value in the past from the torque previous value to the snag torque are combined with the torque current value. After obtaining the torque difference value, the process proceeds to step S12.

上記ステップS12では、上記ステップS10及びステップS11で算出された、対応する全ての回転角度差分値とトルク差分値から仮想着座点を算出してからステップS13に移行する。具体的には、全ての回転角度差分値を対応するトルク差分値で除して回転角度に対するトルク増大率(傾き)の逆比を求め、そのトルク増大率の逆比にトルク今回値を乗じた値を回転角度今回値から減じて仮想着座点を求める。なお、制御装置18の演算能力によっては、演算処理毎に求める仮想着座点の数に制限を設けてもよい(但し、後述する分布図にプロットするデータの数は制限しない)。 In step S12, the virtual seating point is calculated from all the corresponding rotation angle difference values and torque difference values calculated in steps S10 and S11, and then the process proceeds to step S13. Specifically, all the rotation angle difference values were divided by the corresponding torque difference values to obtain the inverse ratio of the torque increase rate (slope) with respect to the rotation angle, and the inverse ratio of the torque increase rate was multiplied by the current torque value. The value is subtracted from the rotation angle this time to obtain the virtual seating point. Depending on the computing power of the control device 18, the number of virtual seating points obtained for each arithmetic processing may be limited (however, the number of data plotted on the distribution map described later is not limited).

上記ステップS13では、上記ステップS12で求めた仮想着座点を分布図にプロットしてからステップS14に移行する。 In step S13, the virtual seating points obtained in step S12 are plotted on the distribution map, and then the process proceeds to step S14.

上記ステップS14では、上記ステップS13で分布図にプロットされた仮想着座点のデータを正規分布で近似してからステップS15に移行する。この仮想着座点データの積分布近似は、周知のアプリケーションを用いて、上記コンピュータシステムで実行することができる。 In step S14, the data of the virtual seating points plotted on the distribution map in step S13 is approximated by a normal distribution, and then the process proceeds to step S15. This product distribution approximation of the virtual seating point data can be performed in the above computer system using a well-known application.

上記ステップS15では、図示しない個別の演算処理に従って、上記近似正規分布における最も確からしい仮想着座点を算出・設定してからステップS16に移行する。この例では、多数の算出仮想着座点を正規分布で近似できることが前提となっているので、この正規分布の最頻値に相当する仮想着座点を最も確からしい仮想着座点に設定する。なお、周知のように、正規分布では、最頻値は、中央値であり、また平均値である。 In step S15, the most probable virtual seating point in the approximate normal distribution is calculated and set according to individual arithmetic processing (not shown), and then the process proceeds to step S16. In this example, it is assumed that a large number of calculated virtual seating points can be approximated by a normal distribution, so the virtual seating points corresponding to the mode values of this normal distribution are set as the most probable virtual seating points. As is well known, in the normal distribution, the mode is the median and the mean.

上記ステップS16では、上記ステップS15で設定された仮想着座点と回転角度今回値の回転角度増大量が上記回転角度目標値(φ)に達したか否かを判定し、回転角度増大量が回転角度目標値に達した場合にはステップS17に移行し、そうでない場合には復帰する。 In step S16, it is determined whether or not the rotation angle increase amount of the virtual seating point and rotation angle current value set in step S15 has reached the rotation angle target value (φ T ), and the rotation angle increase amount is increased. If the rotation angle target value is reached, the process proceeds to step S17, and if not, the process returns.

上記ステップS17では、上記トルクテンション法に則ったねじ部材締付制御を終了してからステップS18に移行する。 In step S17, the process proceeds to step S18 after the screw member tightening control according to the torque tension method is completed.

上記ステップS18では、上記制御フラグFを0にリセットしてから復帰する。 In step S18, the control flag F is reset to 0 and then returned.

一方、上記ステップS19では、図示しない演算処理に従って、トルク角度法によるねじ締付制御を行ってからステップS20に移行する。 On the other hand, in step S19, the screw tightening control by the torque angle method is performed according to a calculation process (not shown), and then the process proceeds to step S20.

上記ステップS20では、上記回転角度基準値(スナッグトルク発生回転角度)から所定回転角度だけねじ部材を締付けたか否かを判定し、回転角度基準値から所定回転角度だけねじ部材を締付けた場合には復帰し、そうでない場合には上記ステップS19に移行する。 In step S20, it is determined from the rotation angle reference value (snag torque generation rotation angle) whether or not the screw member is tightened by a predetermined rotation angle, and when the screw member is tightened by a predetermined rotation angle from the rotation angle reference value, If not, the process proceeds to step S19.

この演算処理によれば、スナッグトルク発生から上記回転角度増大量初期値だけ回転角度が増大したら、例えば1deg.に設定された上記回転角度規定値毎に、過去に回転角度前回値に設定された全ての回転角度と回転角度今回値との差分値、並びに過去にトルク前回値に設定された全てのトルク値とトルク今回値との差分値の全てに基づいて、仮想着座点を算出する。この算出された多数の仮想着座点は分布図にプロットされ、更に正規分布で近似される。この正規分布で近似される仮想着座点のデータは、例えば図6に示すように、ねじ締付制御の進行に伴って次第に増加すると共に、上記トルク値に乗っているノイズの影響でばらつく仮想着座点の値の変動も、データ数(度数)の累積に伴って、ノイズの影響が低減されて収束していく。したがって、算出される仮想着座点のデータ数が増加するほど、正規分布の最頻値から設定される仮想着座点の確からしさも増大する。その結果、上記演算処理では、回転角度目標値が達成されたときの仮想着座点が最も確からしい仮想着座点であり、この最も確からしい仮想着座点から回転角度目標値だけ回転されたねじ部材の軸力精度が最も高い。 According to this arithmetic processing, if the rotation angle increases by the initial value of the increase amount of the rotation angle from the generation of the snag torque, for example, 1 deg. For each of the above-mentioned rotation angle specified values set in, the difference value between all the rotation angles set in the past rotation angle previous value and the rotation angle current value, and all the torque values set in the past torque previous value. The virtual seating point is calculated based on all the differences between the torque and the torque current value. The large number of calculated virtual seating points are plotted on the distribution map and further approximated by a normal distribution. As shown in FIG. 6, for example, the data of the virtual seating points approximated by this normal distribution gradually increases as the screw tightening control progresses, and the virtual seating points vary due to the influence of noise on the torque value. Fluctuations in point values also converge as the number of data (frequency) accumulates, reducing the effects of noise. Therefore, as the number of calculated virtual seating point data increases, the certainty of the virtual seating point set from the mode value of the normal distribution also increases. As a result, in the above arithmetic processing, the virtual seating point when the rotation angle target value is achieved is the most probable virtual seating point, and the screw member rotated by the rotation angle target value from this most probable virtual seating point. Axial force accuracy is the highest.

上記説明では、制御装置の演算処理能力が高く、算出された多数の仮想着座点データを正規分布で近似することが前提となっているが、制御装置の演算処理能力がさほど高くない場合には、それら多数の仮想着座点データを正規分布で近似することが困難な場合もあり得る。そうした場合には、例えば、上記多数の仮想着座点データをヒストグラムに表し、図7に示すように、そのヒストグラムの最頻値の直近で、その最頻値よりも値の大きい側の複数の仮想着座点データを結ぶ直線と、その最頻値よりも値の小さい側の複数の仮想着座点データを結ぶ直線との交点を最も確からしい仮想着座点に設定するようにしてもよい。この仮想着座点データを結ぶ直線の設定には、例えば周知の最小二乗法などを用いることができる。 In the above explanation, it is assumed that the arithmetic processing capacity of the control device is high and a large number of calculated virtual seating point data are approximated by a normal distribution. However, when the arithmetic processing capacity of the control device is not so high, , It may be difficult to approximate those many virtual seating point data with a normal distribution. In such a case, for example, the above-mentioned large number of virtual seating point data are represented in a histogram, and as shown in FIG. 7, a plurality of virtuals that are closest to the mode of the histogram and have a value larger than the mode. The intersection of the straight line connecting the seating point data and the straight line connecting the plurality of virtual seating point data whose values are smaller than the mode may be set as the most probable virtual seating point. For example, a well-known least squares method can be used to set a straight line connecting the virtual seating point data.

また、上記演算処理では、前述のように、スナッグトルク発生時(検出)のトルク増大率を算出し、そのトルク増大率が予め設定されたトルク増大率規定値未満である場合には、上記トルクテンション法からトルク角度法に切換えてねじ締付制御を行う。仮想着座点があいまいなままトルクテンション法でねじ部材を締付けるよりも、トルク角度法でねじ部材を締付けた方が、ねじ部材の軸力精度は高い。 Further, in the above calculation process, as described above, the torque increase rate when the snag torque is generated (detected) is calculated, and when the torque increase rate is less than the preset torque increase rate specified value, the torque is increased. The screw tightening control is performed by switching from the tension method to the torque angle method. The axial force accuracy of the screw member is higher when the screw member is tightened by the torque angle method than when the screw member is tightened by the torque tension method while the virtual seating point is ambiguous.

このように、この実施の形態のねじ締付装置によれば、ねじ部材の締付制御中、予め設定された回転角度規定値毎にトルクと回転角度から仮想着座点を算出し、その仮想着座点の近似正規分布の最頻値から最も確からしい仮想着座点を設定して、その仮想着座点に基づいて回転角度目標値までねじ部材の締付制御を行うことで、トルクテンション法に則ったねじ部材締付制御がなされる。このとき、検出されるトルク値に乗っているノイズは、本来、検出されるべきトルク値の近傍で増減しているものであるから、近似正規分布の最頻値から設定される仮想着座点も度数(データ数)が増えればノイズの影響が低減される。したがって、ねじ部材締付制御の進行に伴って、近似正規分布の最頻値から設定される仮想着座点は最も確からしい仮想着座点として精度が向上し、この精度の高い仮想着座点に基づいて回転角度目標値までねじ部材の締付制御を行うことで高精度のトルクテンション法が達成され、これによりねじ部材の軸力精度を可及的に高めることができる。 As described above, according to the screw tightening device of this embodiment, the virtual seating point is calculated from the torque and the rotation angle for each preset rotation angle specified value during the tightening control of the screw member, and the virtual seating point is calculated. The torque tension method is followed by setting the most probable virtual seating point from the mode of the approximate normal distribution of points and performing tightening control of the screw member to the rotation angle target value based on the virtual seating point. Screw member tightening control is performed. At this time, since the noise on the detected torque value originally increases or decreases in the vicinity of the torque value to be detected, the virtual seating point set from the mode value of the approximate normal distribution is also included. As the frequency (number of data) increases, the effect of noise is reduced. Therefore, as the screw member tightening control progresses, the virtual seating point set from the mode of the approximate normal distribution improves in accuracy as the most probable virtual seating point, and is based on this highly accurate virtual seating point. By controlling the tightening of the screw member up to the rotation angle target value, a highly accurate torque tension method is achieved, and the axial force accuracy of the screw member can be improved as much as possible.

また、算出された仮想着座点の分布を正規分布で近似できなくても、それらの仮想着座点を、例えばヒストグラムにすることはできるので、このヒストグラムの最頻値の直近で値の大きい側と小さい側のそれぞれの複数の仮想着座点を結ぶ直線の交点を仮想着座点とすることで、上記と同様に、ねじ締付制御の進行に伴い、近似正規分布の最頻値に近い仮想着座点を最も確からしい仮想着座点に設定することができる。したがって、ねじ締付装置の演算処理能力がさほど高くなくとも、トルクテンション法に則ったねじ締付制御を達成することができ、これによりねじ部材の軸力精度を可及的に高めることができる。 Also, even if the calculated distribution of virtual seating points cannot be approximated by a normal distribution, those virtual seating points can be made into a histogram, for example. By setting the intersection of the straight lines connecting the plurality of virtual seating points on the smaller side as the virtual seating points, the virtual seating points close to the mode of the approximate normal distribution as the screw tightening control progresses, as described above. Can be set as the most probable virtual seating point. Therefore, even if the arithmetic processing capacity of the screw tightening device is not so high, the screw tightening control according to the torque tension method can be achieved, and thereby the axial force accuracy of the screw member can be improved as much as possible. ..

また、ねじ部材の回転角度に対するトルク増大率がトルク増大率規定値未満である場合に、ねじ部材締付制御を切換え、ねじ部材締付制御の切換え後には、トルク規定値、例えばスナッグトルクになってから予め設定された所定回転角度だけねじ部材を回転する、上記トルク角度法に則ったねじ部材締付制御がなされる。これにより、本来のトルクテンション法ほど高くなくとも、ねじ部材の軸力精度を可及的に高めることができる。 Further, when the torque increase rate with respect to the rotation angle of the screw member is less than the torque increase rate specified value, the screw member tightening control is switched, and after the screw member tightening control is switched, the torque specified value, for example, snag torque is obtained. After that, the screw member is tightened according to the torque angle method, in which the screw member is rotated by a predetermined rotation angle set in advance. As a result, the axial force accuracy of the screw member can be improved as much as possible even if the torque tension method is not as high as the original torque tension method.

以上、実施の形態に係るねじ締付装置及びねじ締付方法について説明したが、本件発明は、上記実施の形態で述べた構成に限定されるものではなく、本件発明の要旨の範囲内で種々変更が可能である。例えば、仮想着座点を算出するために用いられる回転角度やトルク値は上記のタイミングのものに限定されない。 Although the screw tightening device and the screw tightening method according to the embodiment have been described above, the present invention is not limited to the configuration described in the above embodiment and varies within the scope of the gist of the present invention. It can be changed. For example, the rotation angle and torque value used to calculate the virtual seating point are not limited to those at the above timing.

10 ソケット
12 電動モータ
14 トルク検出器
16 回転角度センサ
18 制御装置
10 Socket 12 Electric motor 14 Torque detector 16 Rotation angle sensor 18 Control device

Claims (4)

ねじ締付時におけるねじ部材の回転角度とねじ締付のトルクを検出し、前記回転角度に対する前記トルクのトルク増大率から該ねじ部材の座面の仮想着座点を求め、該仮想着座点から回転角度目標値まで前記ねじ部材を締付けるねじ締付装置において、
予め設定された前記ねじ部材の回転角度規定値毎に前記仮想着座点を算出する仮想着座点算出手段と、
前記仮想着座点算出手段で算出された仮想着座点の分布を正規分布で近似する正規分布近似手段と、
前記正規分布近似手段で近似された仮想着座点の正規分布の最頻値に相当する仮想着座点を最も確からしい仮想着座点に設定する仮想着座点設定手段と、
前記仮想着座点設定手段で設定された仮想着座点に基づいて前記ねじ部材の締付けを制御する制御手段と、を備えたことを特徴とするねじ締付装置。
The rotation angle of the screw member and the torque of screw tightening at the time of screw tightening are detected, the virtual seating point of the seating surface of the screw member is obtained from the torque increase rate of the torque with respect to the rotation angle, and rotation is performed from the virtual seating point. In a screw tightening device that tightens the screw member to an angle target value,
A virtual seating point calculation means for calculating the virtual seating point for each preset rotation angle specified value of the screw member, and
A normal distribution approximating means that approximates the distribution of virtual seating points calculated by the virtual seating point calculating means with a normal distribution, and
A virtual seating point setting means that sets a virtual seating point corresponding to the mode of the normal distribution of the virtual seating points approximated by the normal distribution approximating means as the most probable virtual seating point, and a virtual seating point setting means.
A screw tightening device comprising: a control means for controlling tightening of the screw member based on a virtual seating point set by the virtual seating point setting means.
前記仮想着座点設定手段は、前記仮想着座点の正規分布の最頻値に代えて、該最頻値の直近で該最頻値よりも値の大きい側の複数の仮想着座点データを結ぶ直線と該最頻値の直近で該最頻値よりも値の小さい側の複数の仮想着座点データを結ぶ直線との交点に相当する仮想着座点を前記最も確からしい仮想着座点に設定することを特徴とする請求項1に記載のねじ締付装置。 The virtual seating point setting means is a straight line connecting a plurality of virtual seating point data on the side closest to the mode and having a value larger than the mode, instead of the mode of the normal distribution of the virtual seating point. And the virtual seating point corresponding to the intersection with the straight line connecting the plurality of virtual seating point data on the side closest to the mode and smaller than the mode is set as the most probable virtual seating point. The screw tightening device according to claim 1, wherein the screw tightening device is characterized. 前記制御手段は、予め設定された前記ねじ部材の回転角度に対する前記トルクの増大率が予め設定されたトルク増大率規定値未満である場合に、前記トルクが予め設定されたトルク規定値になってから予め設定された所定回転角度だけ前記ねじ部材を回転するねじ部材締付制御に切換えることを特徴とする請求項1又は2に記載のねじ締付装置。 When the torque increase rate with respect to the preset rotation angle of the screw member is less than the preset torque increase rate specified value, the control means becomes the preset torque specified value. The screw tightening device according to claim 1 or 2, wherein the screw member is switched to a screw member tightening control that rotates the screw member by a predetermined rotation angle set in advance. ねじ締付時におけるねじ部材の回転角度とねじ締付のトルクを検出し、前記回転角度に対する前記トルクのトルク増大率から該ねじ部材の座面の仮想着座点を求め、該仮想着座点から回転角度目標値まで前記ねじ部材を締付けるねじ締付方法において、
予め設定された前記ねじ部材の回転角度規定値毎に前記仮想着座点を算出する仮想着座点算出ステップと、
前記仮想着座点算出ステップで算出された仮想着座点の分布を正規分布で近似する正規分布近似ステップと、
前記正規分布近似ステップで近似された仮想着座点の正規分布の最頻値に相当する仮想着座点を最も確からしい仮想着座点に設定する仮想着座点設定ステップと、
前記仮想着座点設定ステップで設定された仮想着座点に基づいて前記ねじ部材の締付けを制御する制御ステップと、を備えたことを特徴とするねじ締付方法。
The rotation angle of the screw member and the torque of screw tightening at the time of screw tightening are detected, the virtual seating point of the seating surface of the screw member is obtained from the torque increase rate of the torque with respect to the rotation angle, and rotation is performed from the virtual seating point. In the screw tightening method for tightening the screw member to the angle target value,
A virtual seating point calculation step for calculating the virtual seating point for each preset rotation angle specified value of the screw member, and a virtual seating point calculation step.
A normal distribution approximation step that approximates the distribution of virtual seating points calculated in the virtual seating point calculation step with a normal distribution, and
A virtual seating point setting step that sets the virtual seating point corresponding to the mode of the normal distribution of the virtual seating points approximated by the normal distribution approximation step as the most probable virtual seating point, and a virtual seating point setting step.
A screw tightening method comprising: a control step for controlling tightening of the screw member based on a virtual seating point set in the virtual seating point setting step.
JP2020072303A 2020-04-14 2020-04-14 Screw fastening device and screw fastening method Pending JP2021169128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020072303A JP2021169128A (en) 2020-04-14 2020-04-14 Screw fastening device and screw fastening method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020072303A JP2021169128A (en) 2020-04-14 2020-04-14 Screw fastening device and screw fastening method

Publications (1)

Publication Number Publication Date
JP2021169128A true JP2021169128A (en) 2021-10-28

Family

ID=78149953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020072303A Pending JP2021169128A (en) 2020-04-14 2020-04-14 Screw fastening device and screw fastening method

Country Status (1)

Country Link
JP (1) JP2021169128A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024009826A1 (en) * 2022-07-07 2024-01-11 パナソニックホールディングス株式会社 Power tool system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299084A (en) * 1985-10-23 1987-05-08 マツダ株式会社 Screw clamping controller
JPS6374577A (en) * 1986-09-19 1988-04-05 株式会社日立製作所 High-precision axial-tension control method in screw driving
JPH01171775A (en) * 1987-12-25 1989-07-06 Hitachi Ltd Snug torque value decision method
JPH03161286A (en) * 1989-11-16 1991-07-11 Mazda Motor Corp Screw fastening method
US5105519A (en) * 1985-06-19 1992-04-21 Daiichi Dentsu Kabushiki Kaisha Tension control method for nutrunner
JP2004074307A (en) * 2002-08-09 2004-03-11 Mazda Motor Corp Bolt fastening method and device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5105519A (en) * 1985-06-19 1992-04-21 Daiichi Dentsu Kabushiki Kaisha Tension control method for nutrunner
JPS6299084A (en) * 1985-10-23 1987-05-08 マツダ株式会社 Screw clamping controller
JPS6374577A (en) * 1986-09-19 1988-04-05 株式会社日立製作所 High-precision axial-tension control method in screw driving
JPH01171775A (en) * 1987-12-25 1989-07-06 Hitachi Ltd Snug torque value decision method
JPH03161286A (en) * 1989-11-16 1991-07-11 Mazda Motor Corp Screw fastening method
JP2004074307A (en) * 2002-08-09 2004-03-11 Mazda Motor Corp Bolt fastening method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024009826A1 (en) * 2022-07-07 2024-01-11 パナソニックホールディングス株式会社 Power tool system

Similar Documents

Publication Publication Date Title
JPS6144635B2 (en)
EP2042263A1 (en) Bolt fastening method, computer program product and apparatus
JP7096544B2 (en) Screw tightening device and screw tightening method
US11486781B2 (en) Method and device for monitoring the clamping of an assembly by a threaded fastener
JPH0549434B2 (en)
JPH0369667B2 (en)
JP2021169128A (en) Screw fastening device and screw fastening method
JP2647480B2 (en) Screw tightening method
JP4229823B2 (en) Gear breakage detection device and gear breakage detection method
JP5304630B2 (en) Fastening torque inspection method and fastening torque inspection system for fastening members
US10668603B2 (en) Impulse wrench rotation detection
JP2022087925A (en) Screw fastening determination system and screw fastening determination method
JP2001162548A (en) Screw fastening device and foreign matter bite-in judging method for the device
JP2658487B2 (en) Screw tightening method
JPH07256566A (en) Nut tightening device
JPH05107130A (en) Method for measuring clamping force
JP5098542B2 (en) Bolt fastening method and apparatus
JP2770107B2 (en) Abnormal bolt / nut tightening detection method
JPS61103784A (en) Screwing controller for screw member
JP3637688B2 (en) Screw tightening control method
JP2000141240A (en) Screw fastening axial tension measuring method, screw fastening method using this measuring method and their devices
JP7541716B2 (en) Work support device, work support program, and fastening tool
JP2009131925A (en) Tightening torque inspection device for bolt and tightening torque inspection method
JPS60201882A (en) Method of clamping bolt
JP2697240B2 (en) Screw tightening method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240618

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241001