JP2021165504A - Power generating system - Google Patents

Power generating system Download PDF

Info

Publication number
JP2021165504A
JP2021165504A JP2020069651A JP2020069651A JP2021165504A JP 2021165504 A JP2021165504 A JP 2021165504A JP 2020069651 A JP2020069651 A JP 2020069651A JP 2020069651 A JP2020069651 A JP 2020069651A JP 2021165504 A JP2021165504 A JP 2021165504A
Authority
JP
Japan
Prior art keywords
groundwater
well
ground water
production well
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020069651A
Other languages
Japanese (ja)
Inventor
健太郎 恒賀
Kentaro Tsunega
隆弘 岡村
Takahiro Okamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2020069651A priority Critical patent/JP2021165504A/en
Publication of JP2021165504A publication Critical patent/JP2021165504A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a power generation system that performs hydraulic power generation by circulating ground water without using siphon pipes.SOLUTION: A power generation system 100 is composed of: a production well 110 fluidly connected to a position 112 with a large quantity of ground water in a confined layer where a relatively large quantity of the ground water W is reserved; an injection well 120 fluidly connected to a position 122 with a small quantity of the ground water where a relatively small quantity of the ground water W is reserved and being at a lower position than that of the production well 110; a water channel 130 guiding at least a part of the ground water W from the production well 110 to the injection well 120; and a generator 150 generating electricity by receiving kinetic energy of the ground water W. A level of the ground water is returned to the position 112 with a large quantity of the ground water supplied to the injection well 120 by pumping up the ground water W from the production well 110 to lower a water level at the position 112 with a large quantity of ground water and also by supplying at least a part of the ground water W to the injection well 120 to raise the water level of the position 122 with a small quantity of the ground water.SELECTED DRAWING: Figure 1

Description

本発明は、水力による比較的小規模な発電量を生じさせる発電システムに関する。 The present invention relates to a power generation system that produces a relatively small amount of power generated by hydraulic power.

従前より、特許文献1に開示されているように、上部帯水層に形成された揚水井から、当該上部帯水層より下方にある下部帯水層に形成された注入井に対して、サイホン管を用いることによって地下水を流し、この地下水の流れで発電を行うシステムが開発されている。 Conventionally, as disclosed in Patent Document 1, from a pumping well formed in the upper aquifer to an injection well formed in the lower aquifer below the upper aquifer, a siphon A system has been developed in which groundwater flows by using a pipe and power is generated by this flow of groundwater.

特開2011−185778号公報Japanese Unexamined Patent Publication No. 2011-185778

しかしながら、特許文献1に開示された発電システムのように、揚水井の地下水をサイホン管で一時的に高い位置まで持ち上げてから、より低い位置にある注入井に戻すシステムの場合、例えば注入井の水位が下がってサイホン管における注入井側の端が地下水から露出してしまい、当該サイホン管内にエアが入ってしまうと、サイホン管内における地下水の流れが止まってしまい、発電も止まってしまうという問題があった。 However, in the case of a system such as the power generation system disclosed in Patent Document 1, in which the groundwater in the pumping well is temporarily lifted to a higher position by a siphon pipe and then returned to the injection well at a lower position, for example, the injection well If the water level drops and the end of the injection well side of the siphon pipe is exposed from the groundwater and air enters the siphon pipe, the flow of groundwater in the siphon pipe will stop and power generation will also stop. there were.

本発明は、かかる問題を解決するためになされたものであり、その目的は、サイホン管を用いることなく地下水を循環させることによって水力発電を行う発電システムを提供することにある。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a power generation system that generates hydroelectric power by circulating groundwater without using a siphon pipe.

本発明の一局面に従うと、
被圧層における、比較的多くの地下水が賦存されている地下水多量位置に対して流体的に連結された生産井と、
前記被圧層における、前記地下水が賦存されている量が比較的少ない地下水少量位置に流体的に連結されており、前記生産井よりも低い位置に形成されている還元井と、
前記生産井から汲み上げられた前記地下水の少なくとも一部を前記還元井に導く水路と、
前記水路に配置され、前記地下水の運動エネルギーを受けて発電を行う発電機とを備える発電システムであって、
前記生産井から前記地下水を汲み上げることによって前記地下水多量位置の水位を下げるとともに、前記還元井に少なくとも一部の前記地下水を供給することによって前記地下水少量位置の水位を上げることにより、水位を下げる動きをする前記地下水多量位置に前記還元井に供給した前記地下水を戻すようになっていることを特徴とする
発電システムが提供される。
According to one aspect of the invention,
A production well that is fluidly connected to a large amount of groundwater in the pressure layer where a relatively large amount of groundwater is endowed.
A reduction well that is fluidly connected to a small amount of groundwater in the pressure layer where the amount of groundwater endowed is relatively small and is formed at a position lower than that of the production well.
A channel that guides at least a part of the groundwater pumped from the production well to the reduction well,
A power generation system that is arranged in the waterway and includes a generator that receives the kinetic energy of the groundwater to generate power.
A movement to lower the water level at the large amount of groundwater by pumping the groundwater from the production well and to raise the water level at the small amount of groundwater by supplying at least a part of the groundwater to the reduction well. Provided is a power generation system characterized in that the groundwater supplied to the reduction well is returned to the position of a large amount of groundwater.

本発明に係る発電システムによれば、比較的多くの地下水が賦存されている地下水多量位置の地層と地下水が賦存されている量が比較的少ない地下水少量位置の地層とを適切な距離で設定して、生産井から前記地下水を汲み上げることによって地下水多量位置の水位を下げるとともに、還元井に少なくとも一部の地下水を供給することによって地下水少量位置の水位を上げることにより、水位を下げる動きをする地下水多量位置に還元井に供給した地下水を戻すようになっているので、地下水多量位置と地下水少量位置との間で地下水が循環する作用を生じさせることができる。 According to the power generation system according to the present invention, a layer at a large amount of groundwater endowed with a relatively large amount of groundwater and a layer at a small amount of groundwater endowed with a relatively small amount of groundwater are separated from each other at an appropriate distance. By setting and pumping the groundwater from the production well, the water level at the large amount of groundwater is lowered, and at least a part of the groundwater is supplied to the reduction well to raise the water level at the small amount of groundwater, thereby lowering the water level. Since the groundwater supplied to the reduction well is returned to the position where the amount of groundwater is large, the action of circulating the groundwater between the position where the amount of groundwater is large and the position where the amount of groundwater is small can be generated.

これにより、サイホン管を用いることなく地下水を循環させることによって水力発電を行うことができる。 This makes it possible to generate hydroelectric power by circulating groundwater without using a siphon pipe.

また、単に、高い位置にある貯水池やダム等から低い位置にある河川や海等に水を放流して発電を行う水力発電とは異なり、生産井から汲み上げた地下水を還元井に戻すことで当該発電システムを設けた山等の全体の水分量を保つことができ、地層や地域の環境を大きく変化させることのない発電システムを供給できる。 Also, unlike hydroelectric power generation, which simply discharges water from a high reservoir or dam to a low river or sea to generate electricity, the groundwater pumped from the production well is returned to the reduction well. It is possible to maintain the total amount of water in the mountains where the power generation system is installed, and to supply a power generation system that does not significantly change the geological formation or the local environment.

本発明が適用された実施形態に係る発電システム100の一例を示す図である。It is a figure which shows an example of the power generation system 100 which concerns on embodiment to which this invention is applied.

(発電システム100の構成)
本発明が適用された実施形態に係る発電システム100は、図1に示すように、大略、生産井110と、還元井120と、水路130と、発電機140と、揚水ポンプ150とを備えている。
(Configuration of power generation system 100)
As shown in FIG. 1, the power generation system 100 according to the embodiment to which the present invention is applied generally includes a production well 110, a reduction well 120, a water channel 130, a generator 140, and a pump 150. There is.

生産井110は、山間部等の比較的標高が高い地点から穿設された井戸であり、地下の地層の被圧層における、比較的多くの地下水Wが賦存されている地下水多量位置112に対して流体的に連結されている。 The production well 110 is a well drilled from a relatively high altitude point such as a mountainous area, and is located at a large amount of groundwater W in the pressure layer of the underground stratum where a relatively large amount of groundwater W is endowed. On the other hand, it is fluidly connected.

還元井120は、山間部等において生産井110よりも標高が低い地点から穿設された井戸であり、地下の地層の被圧層における、地下水Wが賦存されている量が比較的少ない地下水少量位置122に流体的に連結されている。 The reduction well 120 is a well drilled from a point lower than the production well 110 in a mountainous area or the like, and the amount of groundwater W endowed in the pressure layer of the underground stratum is relatively small. It is fluidly connected to the small amount position 122.

水路130は、生産井110から汲み上げられた地下水Wの少なくとも一部を還元井120に導くものであり、生産井110や還元井120が設けられた山間部等の地表に形成された凹所であってもよいし、当該地表から所定の高さに設けられた水道管でもよいし、当該地表よりもやや低い位置に形成された暗渠であってもよい。 The water channel 130 guides at least a part of the groundwater W pumped from the production well 110 to the reduction well 120, and is a recess formed on the ground surface such as a mountainous area where the production well 110 and the reduction well 120 are provided. It may be a water pipe provided at a predetermined height from the ground surface, or it may be a culvert formed at a position slightly lower than the ground surface.

発電機140は、水路130に配置されており、生産井110から汲み上げられた地下水Wが還元井120に向けて流れる際の運動エネルギーを受けて発電を行う機械であり、公知の水力発電用発電機が使用されている。 The generator 140 is a machine that is arranged in the water channel 130 and receives the kinetic energy when the groundwater W pumped from the production well 110 flows toward the reduction well 120 to generate power, and is a known power generation for hydroelectric power generation. The machine is being used.

揚水ポンプ150は、生産井110の近傍に配置されており、本実施形態に係る発電システム100を起動させる際に、生産井110から地下水Wを汲み上げて地下水多量位置112の水位を下げることを目的として使用される。還元井120から生産井110への地下水Wの循環が成立した後は、当該揚水ポンプ150による地下水Wの汲み上げ動作が不要となるので、揚水ポンプ150の動作を停止させることになる。 The pump 150 is arranged in the vicinity of the production well 110, and when the power generation system 100 according to the present embodiment is started, the purpose is to pump up the groundwater W from the production well 110 and lower the water level at the groundwater large amount position 112. Used as. After the circulation of the groundwater W from the reduction well 120 to the production well 110 is established, the pumping operation of the groundwater W by the pump 150 becomes unnecessary, so that the operation of the pump 150 is stopped.

なお、揚水ポンプ150の動力は、電力であれば、商用電力や太陽光発電による電力を使用することができる。もちろん、電力以外にも内燃機関等の動力を使用するポンプを揚水ポンプ150として使用することも考えられる。 As for the power of the pump 150, if it is electric power, commercial electric power or electric power generated by solar power generation can be used. Of course, it is also conceivable to use a pump that uses power such as an internal combustion engine as the pump 150 in addition to electric power.

(還元井120から生産井110への地下水Wの循環について)
次に、還元井120から生産井110への地下水Wの循環メカニズムについて、図2を用いて説明する。基本的な原理は、比較的多くの地下水Wが賦存されている地下水多量位置112の地層と、地下水Wが賦存されている量が比較的少ない地下水少量位置122の地層とを適切な距離で設定して、生産井110から地下水Wを汲み上げることによって地下水多量位置112の水位を下げるとともに、還元井120に少なくとも一部の地下水Wを供給する(戻す)ことによって地下水少量位置122の水位を上げることにより、水位が下がる動きをする地下水多量位置112に還元井120に供給した地下水Wを戻すことにある。
(Regarding the circulation of groundwater W from the reduction well 120 to the production well 110)
Next, the circulation mechanism of the groundwater W from the reduction well 120 to the production well 110 will be described with reference to FIG. The basic principle is an appropriate distance between the groundwater large amount position 112 where a relatively large amount of groundwater W is endowed and the groundwater small amount position 122 layer where a relatively small amount of groundwater W is endowed. By pumping groundwater W from the production well 110, the water level at the groundwater large amount position 112 is lowered, and at least a part of the groundwater W is supplied (returned) to the reduction well 120 to lower the water level at the groundwater small amount position 122. By raising the water level, the groundwater W supplied to the reduction well 120 is returned to the groundwater large amount position 112 where the water level moves to decrease.

被圧層の中には、上述のように、同一の地層の中でも地下水Wを多く含んでいる部分(地下水多量位置112)と地下水Wが少ない部分(地下水少量位置122)とがある。このため、同じ地層の中でも地下水Wを多く含んでいる部分と地下水Wが少ない部分とで圧力差が生じていることになる。もちろん、被圧層は地下にある圧力がかかっている地層であるから、一方が正圧、他方が負圧といった意味ではなく、あくまで「圧力に差がある」という意味である。 As described above, the pressure layer includes a portion of the same stratum containing a large amount of groundwater W (groundwater large amount position 112) and a portion having a small amount of groundwater W (groundwater small amount position 122). Therefore, even in the same stratum, there is a pressure difference between the portion containing a large amount of groundwater W and the portion containing a small amount of groundwater W. Of course, since the pressure layer is an underground layer under pressure, it does not mean that one is positive pressure and the other is negative pressure, but that there is a difference in pressure.

本実施形態に係る発電システム100は、この圧力差を利用して、地下水多量位置112にある地下水Wを汲み上げるとともに、地下水少量位置122に当該地下水Wを戻すことにより、同一あるいは近傍の地層中における地下水Wの対流を物理的に作り出して当該地下水Wを循環させることをポイントとしている。 The power generation system 100 according to the present embodiment uses this pressure difference to pump up the groundwater W at the groundwater large amount position 112 and return the groundwater W to the groundwater small amount position 122 in the same or nearby strata. The point is to physically create convection of groundwater W and circulate the groundwater W.

還元井120に戻す地下水Wの量は、生産井110から汲み上げた地下水Wを100%戻す訳ではなく、生産井110からの汲み上げによって地下水多量位置112の水位が低下し、あるいは、地下水Wの含有量が比較的高い領域が縮小された方向に、地下水少量位置122からの地下水Wが誘水される働きを利用して、生産井110から汲み上げた地下水Wの60%から70%を還元井120に戻すようになっている。なお、還元井120に戻さずに余った地下水Wは、他の表層水と同様に地下還元される。 The amount of groundwater W returned to the reduction well 120 does not mean that 100% of the groundwater W pumped from the production well 110 is returned. 60% to 70% of the groundwater W pumped from the production well 110 is returned to the reduction well 120 by utilizing the function of attracting the groundwater W from the small amount of groundwater position 122 in the direction in which the area where the amount is relatively high is reduced. It is designed to return to. The surplus groundwater W that has not been returned to the reduction well 120 is returned underground in the same manner as other surface water.

このように、地下水多量位置112や地下水Wの含有量が比較的高い領域に対して、還元井120に戻された地下水Wが誘水される作用は、低水位の水が高水位の水の位置に戻ろうとする位置エネルギーを利用している。 In this way, the action of attracting the groundwater W returned to the reduction well 120 to the region where the large amount of groundwater is located 112 or the content of the groundwater W is relatively high is that the low water level water is the high water level water. It uses the position energy to return to the position.

(発電システム100による発電の手順)
次に、上述した発電システム100を用いて発電する手順を簡単に説明する。最初に適切な場所に生産井110および還元井120を設けた後、生産井110と還元井120との間に水路130を設ける。然る後、水路130に発電機140を配置するとともに、揚水ポンプ150を生産井110の近傍に配置することで発電システム100が完成する。
(Procedure of power generation by power generation system 100)
Next, a procedure for generating power using the power generation system 100 described above will be briefly described. First, the production well 110 and the reduction well 120 are provided at appropriate locations, and then the water channel 130 is provided between the production well 110 and the reduction well 120. After that, the power generation system 100 is completed by arranging the generator 140 in the water channel 130 and arranging the pump 150 in the vicinity of the production well 110.

そして、最初に、揚水ポンプ150を稼働させることにより、生産井110から地下水Wを汲み上げていく。すると、生産井110が設けられた地下水多量位置112の水位が下がりだしていく。 Then, first, the groundwater W is pumped from the production well 110 by operating the pump 150. Then, the water level at the groundwater mass position 112 where the production well 110 is provided begins to drop.

また、汲み上げた地下水Wを水路130に流して、当該地下水Wの運動エネルギーによって発電機140を動作させて発電するとともに、少なくとも一部の地下水Wを還元井120に戻す。 Further, the pumped groundwater W is flowed into the water channel 130, and the generator 140 is operated by the kinetic energy of the groundwater W to generate electricity, and at least a part of the groundwater W is returned to the reduction well 120.

すると、上述したように、生産井110から地下水Wを汲み上げることによって地下水多量位置112の水位が下げられており、かつ、還元井120に少なくとも一部の地下水Wが戻されて地下水少量位置122の水位が上がることにより、還元井120に供給した地下水Wを地下水多量位置112に戻っていき、地下水Wの循環が始まる。 Then, as described above, the water level of the groundwater large amount position 112 is lowered by pumping the groundwater W from the production well 110, and at least a part of the groundwater W is returned to the reduction well 120 to the groundwater small amount position 122. When the water level rises, the groundwater W supplied to the reduction well 120 is returned to the groundwater mass position 112, and the circulation of the groundwater W starts.

地下水の循環が始まり、揚水ポンプ150による地下水Wの汲み上げ動作が不要になった時点で当該揚水ポンプ150の動作を停止する。 When the circulation of groundwater starts and the pumping operation of the groundwater W by the pump 150 becomes unnecessary, the operation of the pump 150 is stopped.

以後は、地下水Wの循環により、生産井110から還元井120への水路130を通した地下水Wの流れが続くので、発電機140による発電を引き続き行うことができる。 After that, due to the circulation of the groundwater W, the flow of the groundwater W through the water channel 130 from the production well 110 to the reduction well 120 continues, so that the power generation by the generator 140 can be continued.

このように、本実施形態に係る発電システム100によれば、サイホン管を用いることなく地下水Wを循環させることによって水力発電を行うことができる。 As described above, according to the power generation system 100 according to the present embodiment, hydroelectric power generation can be performed by circulating the groundwater W without using a siphon pipe.

また、単に、高い位置にある貯水池やダム等から低い位置にある河川や海等に水を放流して発電を行う水力発電とは異なり、生産井110から汲み上げた地下水Wを還元井120に戻すことで当該発電システム100を設けた山等の全体の水分量を保つことができ、地層や地域の環境を大きく変化させることのない発電システム100を供給できる。 Also, unlike hydroelectric power generation, which simply discharges water from a reservoir or dam at a high position to a river or sea at a low position to generate electricity, the groundwater W pumped from the production well 110 is returned to the reduction well 120. As a result, the total water content of the mountain or the like on which the power generation system 100 is provided can be maintained, and the power generation system 100 that does not significantly change the geological formation or the local environment can be supplied.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments disclosed this time are exemplary in all respects and not restrictive. The scope of the present invention is shown not by the above description but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

100…発電システム
110…生産井、112…地下水多量位置
120…還元井、122…地下水少量位置
130…水路
140…発電機
150…揚水ポンプ
W…地下水

100 ... Power generation system 110 ... Production well, 112 ... Large amount of groundwater 120 ... Reduction well, 122 ... Small amount of groundwater 130 ... Waterway 140 ... Generator 150 ... Pump W ... Groundwater

本発明の一局面に従うと、
被圧層における、比較的多くの地下水が賦存されている地下水多量位置に対して流体的に連結された生産井と、
前記被圧層における、前記地下水が賦存されている量が比較的少ない地下水少量位置に流体的に連結されており、前記生産井よりも標高が低い位置に形成されている還元井と、
前記生産井から汲み上げられた前記地下水の少なくとも一部を前記還元井に導く水路と、
前記水路に配置され、前記地下水の運動エネルギーを受けて発電を行う発電機とを備える発電システムであって、
前記還元井が設けられた前記地下水少量位置における前記被圧層の上端から地表までの厚さが、前記生産井が設けられた前記地下水多量位置における前記被圧層の上端から地表までの厚さよりも厚いことにより、前記地下水少量位置の地層における圧力が前記地下水多量位置の地層における圧力よりも高くなっており、
前記生産井から前記地下水を汲み上げることによって前記地下水多量位置の水位を下げて前記地下水多量位置の地層における圧力を下げるとともに、前記還元井に少なくとも一部の前記地下水を供給することによって前記地下水少量位置の水位を上げて前記地下水少量位置の地層における圧力を上げることにより、前記地下水多量位置の地層における圧力と前記地下水少量位置の地層における圧力との差によって水位を下げる動きをする前記地下水多量位置に前記還元井に供給した前記地下水を戻すようになっていることを特徴とする
発電システムが提供される。
According to one aspect of the invention,
A production well that is fluidly connected to a large amount of groundwater in the pressure layer where a relatively large amount of groundwater is endowed.
Wherein in the pressure layer, the ground water are fluidly connected to a relatively small groundwater minor position amounts being endowments, and reinjection wells formed in the elevation position lower than the production well,
A channel that guides at least a part of the groundwater pumped from the production well to the reduction well,
A power generation system that is arranged in the waterway and includes a generator that receives the kinetic energy of the groundwater to generate power.
The thickness from the upper end of the pressure layer to the ground surface at the position where the reduction well is provided in the small amount of groundwater is larger than the thickness from the upper end of the pressure layer to the ground surface at the position where the production well is provided in the large amount of groundwater. Because of the thickness, the pressure in the stratum at the small amount of groundwater is higher than the pressure in the stratum at the large amount of groundwater.
By pumping the groundwater from the production well, the water level at the large amount of groundwater is lowered to lower the pressure in the stratum at the large amount of groundwater, and at least a part of the groundwater is supplied to the reduction well to reduce the small amount of groundwater. the resulting in higher pressure at the formation of the groundwater minor position by raising the water level of the ground water multimeric position movement of lowering the water level by the difference between the pressure in the formation of pressure and the groundwater minor position in the formation of the ground water multimeric positions Provided is a power generation system characterized in that the groundwater supplied to the reduction well is returned to the groundwater.

本発明に係る発電システムによれば、被圧層において、比較的多くの地下水が賦存されている地下水多量位置の地層と地下水が賦存されている量が比較的少ない地下水少量位置の地層とを適切な距離で設定し、かつ、生産井よりも標高が低い位置に還元井を形成することによって還元井を設けた地下水少量位置における被圧層の上端から地表までの厚さが生産井を設けた地下水多量位置における被圧層の上端から地表までの厚さより厚くなるように設定し、被圧層の上端から表面までの厚さの違いによって地下水少量位置の地層における圧力が地下水多量位置の地層における圧力よりも高くなっていることに加えて、生産井から前記地下水を汲み上げることによって地下水多量位置の水位を下げて当該地下水多量位置の地層における圧力を下げるとともに、還元井に少なくとも一部の地下水を供給することによって地下水少量位置の水位を上げて当該地下水少量位置の地層における圧力を上げることにより、地下水多量位置の地層における圧力と地下水少量位置の地層における圧力との差によって水位を下げる動きをする地下水多量位置に還元井に供給した地下水を戻すようになっているので、地下水多量位置と地下水少量位置との間で地下水が循環する作用を生じさせることができる。
According to the power generation system according to the present invention, in the pressure layer, a layer at a large amount of groundwater endowed with a relatively large amount of groundwater and a layer at a small amount of groundwater endowed with a relatively small amount of groundwater. The thickness from the upper end of the pressure layer to the ground surface at the position of a small amount of groundwater where the reduction well is provided by setting the reduction well at an appropriate distance and forming the reduction well at a position lower than the production well makes the production well. It is set to be thicker than the thickness from the upper end of the pressure layer to the ground surface at the provided groundwater large amount position, and the pressure at the groundwater small amount position is the groundwater large amount position due to the difference in the thickness from the upper end to the surface of the groundwater large amount position. In addition to being higher than the pressure in the formation , pumping the groundwater from the production well lowers the water level in the groundwater abundant position to lower the pressure in the groundwater abundant position, and at least a part of the reduction well. the isosamples raising the water level of the groundwater minor position raised pressure in the formation of the groundwater minor position by supplying groundwater, lowering the water level by the difference between the pressure in the formation of pressure and groundwater minor position in a subterranean formation water multimeric positions Since the groundwater supplied to the reduction well is returned to the position where the amount of groundwater is moving, it is possible to cause the action of circulating the groundwater between the position where the amount of groundwater is large and the position where the amount of groundwater is small.

(還元井120から生産井110への地下水Wの循環について)
次に、還元井120から生産井110への地下水Wの循環メカニズムについて、図を用いて説明する。基本的な原理は、被圧層において、比較的多くの地下水Wが賦存されている地下水多量位置112の地層と、地下水Wが賦存されている量が比較的少ない地下水少量位置122の地層とを適切な距離で設定し、かつ、生産井110よりも標高が低い位置に還元井120を形成することによって還元井120を設けた地下水少量位置122における被圧層の上端から地表までの厚さが生産井110を設けた地下水多量位置112における被圧層の上端から地表までの厚さより厚くなるように設定し、被圧層の上端から表面までの厚さの違いによって地下水少量位置122の地層における圧力が地下水多量位置112の地層における圧力よりも高くなっていることに加えて、生産井110から地下水Wを汲み上げることによって地下水多量位置112の水位を下げて当該地下水多量位置112の地層における圧力を下げるとともに、生産井110よりも標高が低い位置に形成されている還元井120に少なくとも一部の地下水Wを供給する(戻す)ことによって地下水少量位置122の水位を上げて当該地下水少量位置122の地層における圧力を上げることにより、地下水多量位置112の地層における圧力と地下水少量位置122の地層における圧力との差によって水位が下がる動きをする地下水多量位置112に還元井120に供給した地下水Wを戻すことにある。
(Regarding the circulation of groundwater W from the reduction well 120 to the production well 110)
Next, the circulation mechanism of groundwater W from reinjection wells 120 to production wells 110 will be described with reference to FIG. The basic principle in the pressure layer, a relatively large number of ground water W is endowment is the formation of groundwater multimeric position 112 is, formation of the ground water W amount is endowment is relatively small groundwater minor position 122 The thickness from the upper end of the pressure layer to the ground surface at the groundwater small amount position 122 where the reduction well 120 is provided by setting the reduction well 120 at an appropriate distance and forming the reduction well 120 at a position lower than the production well 110. The thickness is set to be thicker than the thickness from the upper end of the pressure layer to the ground surface at the groundwater large amount position 112 where the production well 110 is provided, and the groundwater small amount position 122 is set according to the difference in the thickness from the upper end to the surface of the pressure layer. In addition to the pressure in the groundwater being higher than the pressure in the groundwater mass position 112, the water level in the groundwater mass position 112 is lowered by pumping the groundwater W from the production well 110, and in the groundwater mass position 112. By lowering the pressure and supplying (returning) at least a part of the groundwater W to the reduction well 120 formed at a position lower than the production well 110, the water level of the groundwater small amount position 122 is raised to the groundwater small amount position. the resulting in higher pressure at 122 formations, groundwater supplied to the groundwater multimeric positions 112 to reinjection well 120 for the movement of the water level is lowered by the difference between the pressure in the formation of pressure and groundwater minor position 122 in the subterranean formation water multimeric positions 112 It is to return W.

このように、地下水多量位置112や地下水Wの含有量が比較的高い領域に対して、還元井120に戻された地下水Wが誘水される作用は、地下水多量位置112の地層における圧力と地下水少量位置122の地層における圧力との差によって、地下水少量位置122における低水位の水が地下水多量位置112における高水位の水の位置に戻ろうとする位置エネルギーを利用している。
As described above, the action of attracting the groundwater W returned to the reduction well 120 to the region where the groundwater large amount position 112 and the groundwater W content are relatively high is the pressure in the groundwater at the groundwater large amount position 112 and the groundwater. Due to the difference from the pressure in the groundwater at the small amount position 122 , the position energy that the low water level water at the groundwater small amount position 122 tries to return to the high water level water position at the groundwater large amount position 112 is used.

Claims (1)

被圧層における、比較的多くの地下水が賦存されている地下水多量位置に対して流体的に連結された生産井と、
前記被圧層における、前記地下水が賦存されている量が比較的少ない地下水少量位置に流体的に連結されており、前記生産井よりも低い位置に形成されている還元井と、
前記生産井から汲み上げられた前記地下水の少なくとも一部を前記還元井に導く水路と、
前記水路に配置され、前記地下水の運動エネルギーを受けて発電を行う発電機とを備える発電システムであって、
前記生産井から前記地下水を汲み上げることによって前記地下水多量位置の水位を下げるとともに、前記還元井に少なくとも一部の前記地下水を供給することによって前記地下水少量位置の水位を上げることにより、水位を下げる動きをする前記地下水多量位置に前記還元井に供給した前記地下水を戻すようになっていることを特徴とする
発電システム。
A production well that is fluidly connected to a large amount of groundwater in the pressure layer where a relatively large amount of groundwater is endowed.
A reduction well that is fluidly connected to a small amount of groundwater in the pressure layer where the amount of groundwater endowed is relatively small and is formed at a position lower than that of the production well.
A channel that guides at least a part of the groundwater pumped from the production well to the reduction well,
A power generation system that is arranged in the waterway and includes a generator that receives the kinetic energy of the groundwater to generate power.
A movement to lower the water level at the large amount of groundwater by pumping the groundwater from the production well and to raise the water level at the small amount of groundwater by supplying at least a part of the groundwater to the reduction well. A power generation system characterized in that the groundwater supplied to the reduction well is returned to the position of a large amount of groundwater.
JP2020069651A 2020-04-08 2020-04-08 Power generating system Pending JP2021165504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020069651A JP2021165504A (en) 2020-04-08 2020-04-08 Power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020069651A JP2021165504A (en) 2020-04-08 2020-04-08 Power generating system

Publications (1)

Publication Number Publication Date
JP2021165504A true JP2021165504A (en) 2021-10-14

Family

ID=78021875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020069651A Pending JP2021165504A (en) 2020-04-08 2020-04-08 Power generating system

Country Status (1)

Country Link
JP (1) JP2021165504A (en)

Similar Documents

Publication Publication Date Title
CN101884163B (en) Hydroelectric pumped-storage
JP4852492B2 (en) Methane hydrate decomposition promotion and methane gas collection system
CN111271035B (en) Natural gas hydrate exploitation well structure
US11053927B2 (en) Underground energy generating method
CN102317616A (en) Atmospheric pressure hydropower plant
CN105422055B (en) A kind of system of co-development natural gas, Water Soluble Gas and gas hydrates
CN113464098B (en) CO (carbon monoxide) 2 Geological storage method and system thereof
CN108952776A (en) A kind of method of the equidistant horizontal orientation concordant bored grouting transformation dual limestone of roof and floor
CN104929597A (en) Horizontal well chemical flooding mining method
KR100576394B1 (en) A heat exchanging system of underground energy having a water-replenishment unit
CN110055937A (en) A kind of city hydroenergy storage station
CN101446107A (en) Layered drainage structure of underground powerhouse chamber of hydropower station in water-rich region and construction method thereof
JP2021165504A (en) Power generating system
CN109915082A (en) A kind of device and method for exploiting Offshore Heavy Oil Field oil reservoir
US4808029A (en) System for subterranean storage of energy
CN102644261B (en) Surge shaft construction method combining impedance with overflow
US20020180215A1 (en) Method of producing electricity through injection of water into a well
CN108677894B (en) Power generation system utilizing pipeline type karst groundwater and design method
JP2023038547A (en) Power generating system
CN209783024U (en) Shallow geothermal energy utilization device based on underground water flow system
JP2014062516A (en) Floating type hydraulic power generating system
CN208563277U (en) It is a kind of to utilize pipeline type karstic ground water electricity generation system
RU2377436C1 (en) Well pumped-storage installation
GB2488158A (en) Water driven reciprocating engine
RU2704685C1 (en) Downhole water pumping method for oil formation flooding purposes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200430

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200430

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210805

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210805

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210916

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210921

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20211126

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20211130

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220329

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220412

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220531

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220706

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20221004

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20221101

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20221101