JP2021164927A - Method for detecting cast slab defect in continuous casting - Google Patents

Method for detecting cast slab defect in continuous casting Download PDF

Info

Publication number
JP2021164927A
JP2021164927A JP2020068149A JP2020068149A JP2021164927A JP 2021164927 A JP2021164927 A JP 2021164927A JP 2020068149 A JP2020068149 A JP 2020068149A JP 2020068149 A JP2020068149 A JP 2020068149A JP 2021164927 A JP2021164927 A JP 2021164927A
Authority
JP
Japan
Prior art keywords
temperature
slab
depletion
width direction
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020068149A
Other languages
Japanese (ja)
Other versions
JP7469623B2 (en
Inventor
航也 上田
Koya Ueda
慎 高屋
Makoto Takaya
敏彦 村上
Toshihiko Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2020068149A priority Critical patent/JP7469623B2/en
Publication of JP2021164927A publication Critical patent/JP2021164927A/en
Application granted granted Critical
Publication of JP7469623B2 publication Critical patent/JP7469623B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

To provide a method for detecting a cast slab defect in continuous casting, which can accurately detect depletion of a cast slab and displays the occurrence prediction position of depletion as a map of a cast slab surface.SOLUTION: A plurality of temperature sensors are installed laterally in a row in a cast slab width direction inside a mold wall. A temperature changing speed is calculated by time-differentiating the measured temperature time change of each temperature sensor. A time region where the temperature changing speed has become equal to or lower than a preset critical temperature changing speed is set as a depletion detection time region. The time when each longitudinal position of a cast slab passes the temperature sensor is associated with the depletion detection time region to set a depletion detection region 20 of the cast slab. The depletion detection region 20 on the surface of the cast slab is identified in a two-dimensional region in the cast slab width direction and a casting direction to generate a depletion position prediction map 21.SELECTED DRAWING: Figure 4

Description

本発明は、連続鋳造における鋳片欠陥の検出方法に関し、特にディプレッションと呼ばれる鋳片表面の凹み欠陥を鋳片欠陥として検出する方法に関するものである。 The present invention relates to a method for detecting slab defects in continuous casting, and more particularly to a method for detecting dent defects on the surface of slabs called compression as slab defects.

溶融金属を連続鋳造した鋳片の表面には、種々の表面欠陥が発生する。表面欠陥の一種として、ディプレッションと呼ばれる鋳片表面の凹み欠陥が知られている。ディプレッションは、C含有量が0.07〜0.18質量%程度のいわゆる包晶カーボン鋼、あるいはC含有量が0.5%前後の中炭素鋼において発生し易い。また、連続鋳造条件、例えば鋳型内で使用するモールドパウダーの品質の変化などによって、ディプレッションの発生傾向が変化することがある。 Various surface defects occur on the surface of slabs in which molten metal is continuously cast. As a kind of surface defect, a dent defect on the surface of a slab called depletion is known. Depression is likely to occur in so-called periteum carbon steel having a C content of about 0.07 to 0.18% by mass, or medium carbon steel having a C content of about 0.5%. In addition, the tendency of depletion to occur may change due to continuous casting conditions, for example, changes in the quality of the mold powder used in the mold.

連続鋳造機での鋳片の凹み測定は、高温条件下かつ多量の水蒸気のためにセンサーによる測定は困難である。そのため通常は、連続鋳造後に鋳片を冷却し、冷片を測定するのが一般的である。しかし、この手法ではディプレッション発見までに時間がかかるため、ディプレッションを発見した際にはすでに多くの鋳片を同条件で鋳造してしまっている。そのため、鋳造条件の変化でディプレッションが多発しているような場合、操業条件の適正化が遅れ、多量の鋳片でディプレッション多発異常が発生する結果となっている。 It is difficult to measure the dent of a slab with a continuous casting machine under high temperature conditions and due to the large amount of water vapor. Therefore, it is common to cool the slab after continuous casting and measure the cold slab. However, with this method, it takes time to find the depletion, so when the depletion is found, many slabs have already been cast under the same conditions. Therefore, when the depletion occurs frequently due to the change of the casting conditions, the optimization of the operating conditions is delayed, and the result is that the depletion occurrence abnormality occurs in a large amount of slabs.

また、ディプレッション箇所は、凝固シェルの窪んだ部分では割れが存在しているリスクを伴う場合が多い。割れが発生した鋳片を、そのまま後工程で圧延を行うと、製品の表面欠陥の原因となることがある。そのため、ディプレッション部を確認し、有害な割れが発生している可能性を除去するためには、鋳片段階でディプレッション深さよりも若干深くハンドスカーフ等で手入れすることが必要である。従来、冷片のディプレッションを目視観察して特定し、割れ発生箇所をハンドスカーフなどで除去する作業を行っていた。この方法では、鋳片表面の全面を詳細に目視観察することが必要であり、手間がかかるとともに、検知漏れが発生しやすいとの問題もあった。 In addition, the depletion portion often carries the risk of the presence of cracks in the recessed portion of the coagulation shell. If the cracked slab is rolled as it is in the subsequent process, it may cause surface defects of the product. Therefore, in order to confirm the depletion portion and eliminate the possibility that harmful cracks have occurred, it is necessary to clean it with a hand scarf or the like at the slab stage slightly deeper than the depletion depth. Conventionally, the decompression of cold pieces has been visually observed and identified, and the cracked portion has been removed with a hand scarf or the like. In this method, it is necessary to visually observe the entire surface of the slab in detail, which is troublesome and has a problem that detection omission is likely to occur.

ディプレッションが生成すると、鋳型と鋳片の接触状態が悪化し、鋳型銅板温度が下がる。この温度低下を検知することでディプレッションの発生を検知する方法が知られている。 When the depletion is generated, the contact state between the mold and the slab deteriorates, and the temperature of the mold copper plate drops. A method of detecting the occurrence of compression by detecting this temperature drop is known.

特許文献1には、C=0.08〜0.15%含有の溶鋼を連続鋳造するに際して連続鋳造鋳型の湯面下所定位置における鋳型壁温度が、正常時の所定値より20°以上30°未満下降し、これに続いて上記所定値に向う上昇に変わり、その上昇変化率が2℃/秒を越えることをもって、該鋳型内の凝固シェル表層部に、鋳造後の幅圧延の際割れに連がる縦又は横凹みが発生していることを検出する、モールド内鋳片の凝固収縮による異常凹の検出方法が開示されている。 According to Patent Document 1, when continuously casting molten steel containing C = 0.08 to 0.15%, the mold wall temperature at a predetermined position below the molten metal surface of the continuous casting mold is 20 ° or more and 30 ° from the predetermined value in the normal state. It descends by less than, and then changes to an increase toward the above-mentioned predetermined value, and when the rate of increase change exceeds 2 ° C./sec, the surface layer of the solidified shell in the mold is cracked during width rolling after casting. A method for detecting an abnormal dent due to solidification shrinkage of a slab in a mold for detecting the occurrence of a continuous vertical or horizontal dent is disclosed.

特許文献2には、モールドの内面の温度を全周に亘って連続的に計測し、測定部位における計測温度曲線が、時間の経過につれて急激に下降した後再び急激に上昇する形態の下向きのピーク波形を示すことをもって縦方向ディプレッションの発生を検知する方法が開示されている。 In Patent Document 2, the temperature of the inner surface of the mold is continuously measured over the entire circumference, and the measured temperature curve at the measurement site rapidly decreases with the passage of time and then rapidly rises again. A method of detecting the occurrence of vertical depletion by showing a waveform is disclosed.

特許文献3には、鋳型の側面に配置された第1温度センサと、その下流に配置された第2温度センサとを備え、前後して検出された第1温度間の第1温度差が連続して負を示す第1期間、当該期間中の落ち込み度合いを指標化した第1指標を算出するとともに、第1温度センサよりも遅いタイミングで第2温度センサの温度を検出して第2温度差を算出した上で落ち込み度合いを第2指標とし、第1指標と第2指標とを乗算して第3指標を生成し、第3指標に基づいて鋳片の表面にディプレッションが発生したか否かを判定する方法が開示されている。 Patent Document 3 includes a first temperature sensor arranged on the side surface of the mold and a second temperature sensor arranged downstream thereof, and the first temperature difference between the first temperatures detected before and after is continuous. Then, in the first period showing a negative value, the first index that indexes the degree of depression during the period is calculated, and the temperature of the second temperature sensor is detected at a timing later than that of the first temperature sensor to detect the second temperature difference. Is calculated and the degree of depression is used as the second index, and the first index and the second index are multiplied to generate the third index. A method for determining the temperature is disclosed.

特公平3−77944号公報Special Fair 3-77944 Gazette 特開平10−193065号公報Japanese Unexamined Patent Publication No. 10-193065 特開2010−279957号公報Japanese Unexamined Patent Publication No. 2010-279957

特許文献1、2に記載の方法により、ディプレッションの発生をある程度予知できる一方、有害なディプレッションが発生しているのに検知できない場合(「不検出」という。)、ディプレッション発生を予知したが実際には有害なディプレッションが発生していない場合(「過検出」という。)が、無視できない頻度で発生していた。また、特許文献3に記載の方法は、鋳型の上下に第1温度センサと第2温度センサを設けることが必要であり、検出装置の構成が煩雑となっていた。本発明は、検出装置を過度に煩雑にすることなく、鋳片のディプレッション発生をより精度良く検出することのできる、連続鋳造における鋳片欠陥の検出方法を提供することを第1の目的とする。 By the methods described in Patent Documents 1 and 2, the occurrence of depletion can be predicted to some extent, but when harmful depletion is generated but cannot be detected (referred to as "not detected"), the occurrence of depletion is predicted but actually. Occurred at a non-negligible frequency when no harmful depletion occurred (referred to as "overdetection"). Further, the method described in Patent Document 3 requires that a first temperature sensor and a second temperature sensor are provided above and below the mold, which complicates the configuration of the detection device. A first object of the present invention is to provide a method for detecting slab defects in continuous casting, which can more accurately detect the occurrence of slab compression without making the detection device excessively complicated. ..

ディプレッション箇所は、初期凝固シェルの窪んだ部分では割れが存在しているリスクを伴う場合が多い。従って、鋳片欠陥の検出を行うに際し、ディプレッションの発生予測位置を鋳片表面のマップとして表示することができれば、手入れ操作者が迅速に鋳片表面の割れを発見することができるので好ましい。本発明は、ディプレッションの発生予測位置を鋳片表面のマップとして表示することのできる、連続鋳造における鋳片欠陥の検出方法を提供することを第2の目的とする。 Depression sites often carry the risk of cracks being present in the recessed portion of the initial solidification shell. Therefore, when detecting slab defects, it is preferable if the predicted position of occurrence of depletion can be displayed as a map of the slab surface, because the maintenance operator can quickly find cracks on the slab surface. A second object of the present invention is to provide a method for detecting slab defects in continuous casting, which can display the predicted occurrence position of compression as a map of the slab surface.

即ち、本発明の要旨とするところは以下のとおりである。
[1]鋼の連続鋳造において、鋳型壁の内部に、鋳片幅方向に横一列に複数の温度センサーを設置し、
予め臨界温度変化速度を負の値として定め、
各温度センサーの測定温度経時変化を時間微分した温度変化速度を求め、前記温度変化速度が前記臨界温度変化速度以下となった時間領域をディプレッション検出時間領域とし、鋳造した鋳片の長さ方向各位置が前記温度センサーを通過した時刻と前記ディプレッション検出時間領域とを対応させて鋳片のディプレッション検出領域とし、鋳片表面におけるディプレッション検出領域を鋳片幅方向と鋳造方向にわたる2次元の領域で特定することを特徴とする、連続鋳造における鋳片欠陥の検出方法。
[2]鋳片幅方向に設けた前記温度センサーのうち、互いに隣接する温度センサーの間の空間については、当該空間で幅方向に温度が直線的に変化するものとして幅方向各位置の温度を推定し、幅方向各位置において前記ディプレッション検出時間領域を求め、ディプレッション検出領域の前記特定に用いることを特徴とする、[1]に記載の連続鋳造における鋳片欠陥の検出方法。
That is, the gist of the present invention is as follows.
[1] In continuous steel casting, a plurality of temperature sensors are installed in a horizontal row in the slab width direction inside the mold wall.
Set the critical temperature change rate as a negative value in advance.
The temperature change rate obtained by time-differentiating the measured temperature change with time of each temperature sensor is obtained, and the time range in which the temperature change rate is equal to or lower than the critical temperature change rate is defined as the compression detection time range, and each of the cast slabs in the length direction. The time when the position passes the temperature sensor and the compression detection time region are made to correspond to each other as a slab compression detection region, and the compression detection region on the slab surface is specified by a two-dimensional region extending in the slab width direction and the casting direction. A method for detecting slab defects in continuous casting.
[2] Of the temperature sensors provided in the width direction of the slab, regarding the space between the temperature sensors adjacent to each other, the temperature at each position in the width direction is assumed to change linearly in the width direction in the space. The method for detecting slab defects in continuous casting according to [1], wherein the depletion detection time region is estimated at each position in the width direction and used for the identification of the depletion detection region.

本発明は、鋳型壁の内部に、鋳片幅方向に横一列に複数の温度センサーを設置し、各温度センサーの測定温度経時変化を時間微分した温度変化速度を求め、温度変化速度があらかじめ定めた臨界温度変化速度以下となった時間領域をディプレッション検出時間領域とし、鋳造した鋳片の長さ方向各位置が前記温度センサーを通過した時刻とディプレッション検出時間領域とを対応させて鋳片のディプレッション検出領域とし、鋳片表面におけるディプレッション検出領域を鋳片幅方向と鋳造方向にわたる2次元の領域で特定することにより、鋳片のディプレッション発生をより精度良く検出することができるとともに、ディプレッションの発生予測位置を鋳片表面のマップとして表示することができる。 In the present invention, a plurality of temperature sensors are installed in a horizontal row in the width direction of the slab inside the mold wall, the temperature change rate obtained by time-differentiating the measured temperature change with time of each temperature sensor is obtained, and the temperature change rate is predetermined. The time region where the critical temperature change rate is equal to or less than the critical temperature change rate is defined as the depletion detection time region, and the time when each position in the length direction of the cast slab passes through the temperature sensor and the depletion detection time region are associated with each other to correspond the slab depletion. By specifying the compression detection region on the slab surface as the detection region as a two-dimensional region extending in the slab width direction and the casting direction, it is possible to detect the occurrence of slab compression more accurately and predict the occurrence of depletion. The position can be displayed as a map of the slab surface.

鋳型における温度センサー設置位置を示す図である。It is a figure which shows the temperature sensor installation position in a mold. 鋳片のディプレッション発生位置と温度測定結果とを対応させた図であり、(A)は鋳片のディプレッション発生位置、(B)は温度測定位置における温度の経時変化、(C)は温度測定位置における温度変化速度の経時変化を示す図である。It is the figure which corresponded the decompression occurrence position of a slab and the temperature measurement result, (A) is the decompression occurrence position of a slab, (B) is the time-dependent change of temperature at a temperature measurement position, (C) is a temperature measurement position. It is a figure which shows the time-dependent change of the temperature change rate in. (A)は鋳片のディプレッション発生位置を示す図であり、(B)は鋳片の温度変化速度の2次元分布をマップとして示す図である。(A) is a figure which shows the decompression occurrence position of a slab, and (B) is a figure which shows the two-dimensional distribution of the temperature change rate of a slab as a map. (A)は鋳片のディプレッション発生位置を示す図であり、(B−1)〜(B−4)は臨界温度変化速度よりも冷却速度(負の温度変化速度)が速い部位の2次元分布をマップとして表示する図である。(A) is a diagram showing the compression generation position of the slab, and (B-1) to (B-4) are two-dimensional distributions of parts where the cooling rate (negative temperature change rate) is faster than the critical temperature change rate. Is displayed as a map.

鋳造する鋳片幅が600mm、鋳片厚さが100mmとなる鋳型形状を有する連続鋳造装置を用い、連続鋳造を行った。鋳型の高さ(鋳型上端2から鋳型下端3までの距離)は700mmである(図1参照)。鋳型内のメニスカス4位置は、鋳型上端2から80mmの位置とする。鋳型の一方の鋳型長辺1には、図1に示すような位置に、鋳片幅方向に横一列に温度センサー(5A〜5G)を設置している。温度センサーの高さ方向配置位置は、鋳型上端2から615mm、メニスカス4から535mmの位置である。温度センサーとしてはFBG(Fiber Bragg Grating)を用い、鋳型表面からの深さ5.6mmに設けている。 Continuous casting was performed using a continuous casting apparatus having a mold shape in which the width of the slab to be cast was 600 mm and the thickness of the slab was 100 mm. The height of the mold (distance from the upper end 2 of the mold to the lower end 3 of the mold) is 700 mm (see FIG. 1). The position of the meniscus 4 in the mold is 80 mm from the upper end 2 of the mold. On one of the long sides 1 of the mold, temperature sensors (5A to 5G) are installed in a horizontal row in the slab width direction at positions as shown in FIG. The position of the temperature sensor in the height direction is 615 mm from the upper end 2 of the mold and 535 mm from the meniscus 4. An FBG (Fiber Bragg Grating) is used as the temperature sensor, and the temperature sensor is provided at a depth of 5.6 mm from the mold surface.

鋳造する溶鋼成分は表1に示すとおりであり、鋳片表面にディプレッションが発生し易い成分組成を選択している。鋳造速度は1m/minとした。 The molten steel components to be cast are as shown in Table 1, and a component composition in which compression is likely to occur on the surface of the slab is selected. The casting speed was 1 m / min.

Figure 2021164927
Figure 2021164927

連続鋳造中において、温度センサー(5A〜5G)で計測した温度を記録するとともに、鋳造した鋳片のディプレッションの目視検査を行った。鋳片8の長辺面におけるディプレッション発生位置9を図2(A)の白丸として表示した。図2(A)の長手方向が鋳造方向であり、その直交方向が鋳片8の幅方向である。温度センサー5Gの温度測定結果を図2(B)に示す。図2(A)において、「温度測定位置(5G)」と記載した直線部分が、温度センサー5Gで温度を計測した鋳片部位である。鋳造速度を1m/min一定としたので、図2(A)の鋳造方向の位置と、図2(B)の横軸(時間軸)の位置を、一対一で対応させることができる。さらに、温度センサー5Gで計測した温度の時間微分を縦軸として、図2(C)を描いた。 During continuous casting, the temperature measured by the temperature sensor (5A to 5G) was recorded, and the depletion of the cast slab was visually inspected. The compression generation position 9 on the long side surface of the slab 8 is indicated as a white circle in FIG. 2 (A). The longitudinal direction of FIG. 2A is the casting direction, and the orthogonal direction thereof is the width direction of the slab 8. The temperature measurement result of the temperature sensor 5G is shown in FIG. 2 (B). In FIG. 2A, the straight line portion described as “temperature measurement position (5G)” is the slab portion where the temperature was measured by the temperature sensor 5G. Since the casting speed is constant at 1 m / min, the position in the casting direction in FIG. 2 (A) and the position on the horizontal axis (time axis) in FIG. 2 (B) can be made to correspond one-to-one. Further, FIG. 2C is drawn with the time derivative of the temperature measured by the temperature sensor 5G as the vertical axis.

図2(A)の「温度測定位置(5G)」の直線とディプレッション発生位置9の白丸とが重なっている部分(図2(B)(C)において下矢印で表示)について、図2(B)の温度の挙動、および図2(C)の温度変化の挙動を対比すると、図2(A)のディプレッション発生位置9で図2(B)の温度が時間とともに下降しており、同じ時間軸位置で図2(C)の温度変化が負の極大位置と対応していることがわかった。図2(C)には、温度変化が−4℃/secの位置に一点鎖線を引き、一点鎖線よりも温度変化速度が負の値の大きい部分を「温度高速低下領域10」と表示している。図2(A)のディプレッション発生位置9において、図2(C)の温度変化速度が負の方向で−4℃/secを上回っている(温度変化速度の絶対値が4℃/secを上回っている)ことが明らかである。 Regarding the portion where the straight line of the “temperature measurement position (5G)” in FIG. 2 (A) and the white circle at the compression generation position 9 overlap (indicated by the down arrow in FIGS. 2 (B) and 2 (C)), FIG. 2 (B) ) And the behavior of the temperature change in FIG. 2 (C), the temperature in FIG. 2 (B) decreases with time at the compression generation position 9 in FIG. 2 (A), and the same time axis. It was found that the temperature change in FIG. 2C corresponds to the negative maximum position at the position. In FIG. 2C, a alternate long and short dash line is drawn at a position where the temperature change is -4 ° C / sec, and the portion where the temperature change rate is larger than the alternate long and short dash line is displayed as “Temperature high-speed decrease region 10”. There is. At the compression generation position 9 in FIG. 2 (A), the temperature change rate in FIG. 2 (C) exceeds -4 ° C / sec in the negative direction (the absolute value of the temperature change rate exceeds 4 ° C / sec). It is clear.

次に、鋳型の幅方向一列に並べた温度センサー(5A〜5G)すべての温度計測結果を用い、鋳片表面における温度変化のマップ作成を試みた。図3(A)は図2(A)と同じであり、鋳片8表面のディプレッション発生位置9を白丸で示している。 Next, using the temperature measurement results of all the temperature sensors (5A to 5G) arranged in a row in the width direction of the mold, an attempt was made to create a map of the temperature change on the surface of the slab. FIG. 3A is the same as FIG. 2A, and the compression generation position 9 on the surface of the slab 8 is indicated by a white circle.

鋳片幅方向において、温度測定は7個の温度センサー(5A〜5G)によって離散的に温度測定がなされている。温度変化のマップを作成するに当たり、隣り合う温度センサー間の空間(例えば温度センサー5Aと温度センサー5Bの間の空間)については、両温度センサー間の幅方向の温度変化が直線であるとして幅方向各位置の温度を推定した。
また、鋳片の鋳造速度実績に基づいて、鋳造した鋳片の長さ方向各位置が温度センサーを通過した時刻と温度センサーでの温度測定結果とを対応づける。
その上で、鋳片表面(鋳造方向および鋳片幅方向)の各位置における温度変化速度について、図3(B)の下部に記載した明るさ分布で鋳片表面の2次元マップを作成したところ、図3(B)に示すマップが得られた。図3(A)と図3(B)は、鋳片の幅方向及び鋳造方向の位置関係がお互いに対応している。図3(B)のマップの白っぽい部分(温度変化が負の方向で大きい部分)は、図3(A)においてディプレッション発生位置9として認められた白丸部分と位置関係の対応がとれていることが分かる。図3(A)と図3(B)それぞれの一点鎖線は、温度センサー5Gの計測箇所を示す。温度センサー5Gは鋳片幅方向で最外端の温度測定箇所であり、それよりも外側については温度の推定を行っていないので、図3(B)においてマップで白抜き部が描かれた幅方向端部は温度センサー5Gの位置となっている。
In the slab width direction, the temperature is measured discretely by seven temperature sensors (5A to 5G). When creating a map of temperature change, regarding the space between adjacent temperature sensors (for example, the space between temperature sensor 5A and temperature sensor 5B), the width direction is assumed that the temperature change in the width direction between both temperature sensors is a straight line. The temperature at each position was estimated.
Further, based on the actual casting speed of the slab, the time when each position of the cast slab in the length direction passes through the temperature sensor is associated with the temperature measurement result by the temperature sensor.
Then, a two-dimensional map of the slab surface was created with the brightness distribution shown at the bottom of FIG. 3 (B) for the temperature change rate at each position on the slab surface (casting direction and slab width direction). , The map shown in FIG. 3 (B) was obtained. In FIGS. 3 (A) and 3 (B), the positional relationships of the slabs in the width direction and the casting direction correspond to each other. The whitish portion of the map of FIG. 3 (B) (the portion where the temperature change is large in the negative direction) has a positional relationship with the white circle portion recognized as the compression generation position 9 in FIG. 3 (A). I understand. The alternate long and short dash line in each of FIGS. 3 (A) and 3 (B) indicates the measurement point of the temperature sensor 5G. Since the temperature sensor 5G is the outermost temperature measurement point in the slab width direction and the temperature is not estimated for the outside of the temperature sensor 5G, the width in which the white part is drawn on the map in FIG. The directional end is the position of the temperature sensor 5G.

次に、臨界温度変化速度を、−3℃/secから−6℃/secまで1℃/secピッチで負の値として定め、図3(B)と同じマップ上において、温度変化速度が負の値で臨界温度変化速度以下となった部分(温度高速低下領域10)を白抜き、それ以外を黒色として、図4(B−1)〜(B−4)に描いた(以下「温度高速低下マップ11」という。)。図4(B−1)は臨界温度変化速度が−3℃/sec、図4(B−4)は臨界温度変化速度が−6℃/secであり、図ごとに臨界温度変化速度が1℃/secピッチで異なっている。臨界温度変化速度が負の値として小さい値(例えば図4(B−1)(臨界温度変化速度が−3℃/sec))のときは白抜き部分が多く、実際のディプレッション発生位置9に加え、ディプレッションが観察されなかった部分も含まれ、この部分はディプレッションの過検出となる。一方、臨界温度変化速度が負の値として大きい値(例えば図4(B−4)(臨界温度変化速度が−6℃/sec))のときは白抜き部分が少なく、ディプレッションが観察されたにもかかわらず白抜き部分として明示されなかった箇所があり、この部分はディプレッションの不検出となる。そして、臨界温度変化速度には適正量が存在し、例えば図4に示す例では、図4(B−2)(臨界温度変化速度が−4℃/sec)が、温度計測結果に基づいて算出したマップの白抜き部分と、実際の鋳片で観察されたディプレッション発生位置9との対応が最も良好であった。 Next, the critical temperature change rate is set as a negative value at a pitch of 1 ° C./sec from -3 ° C / sec to -6 ° C / sec, and the temperature change rate is negative on the same map as in FIG. 3 (B). The part where the value is below the critical temperature change rate (temperature high-speed decrease region 10) is outlined, and the other part is black, and is drawn in FIGS. 4 (B-1) to (B-4) (hereinafter, “temperature high-speed decrease”). It is called "Map 11". FIG. 4 (B-1) shows a critical temperature change rate of -3 ° C / sec, FIG. 4 (B-4) shows a critical temperature change rate of -6 ° C / sec, and each figure has a critical temperature change rate of 1 ° C. It differs at the / sec pitch. When the critical temperature change rate is a small negative value (for example, FIG. 4 (B-1) (critical temperature change rate is -3 ° C / sec)), there are many white areas, and in addition to the actual compression generation position 9. , The part where the depletion was not observed is also included, and this part is the over-detection of the depletion. On the other hand, when the critical temperature change rate is a large negative value (for example, FIG. 4 (B-4) (critical temperature change rate is -6 ° C / sec)), there are few white areas and compression is observed. Nevertheless, there is a part that is not specified as a white part, and this part is not detected as a depletion. Then, there is an appropriate amount in the critical temperature change rate. For example, in the example shown in FIG. 4, FIG. 4 (B-2) (critical temperature change rate is -4 ° C./sec) is calculated based on the temperature measurement result. The correspondence between the white part of the map and the compression occurrence position 9 observed in the actual slab was the best.

以上のとおりであるから、実際の鋳片で観察されたディプレッションの位置との対応に基づいて、予め臨界温度変化速度の最も好ましい値を負の値として定めることができる。以下「選定臨界温度変化速度」ともいう。その上で、各温度センサーの測定温度経時変化を時間微分した温度変化速度を求め、温度変化速度が臨界温度変化速度(選定臨界温度変化速度)以下となった時間領域をディプレッション検出時間領域とし、鋳造した鋳片の長さ方向各位置が温度センサーを通過した時刻とディプレッション検出時間領域とを対応させて鋳片のディプレッション検出領域20とし、鋳片表面におけるディプレッション検出領域20を鋳片幅方向と鋳造方向にわたる2次元の領域で特定することができる。以下「ディプレッション位置予測マップ21」という。図4に示す例では、選定臨界温度変化速度が−4℃/secであり、図4(B−2)(臨界温度変化速度が−4℃/sec)がディプレッション位置予測マップ21となる。 As described above, the most preferable value of the critical temperature change rate can be determined in advance as a negative value based on the correspondence with the position of the depletion observed in the actual slab. Hereinafter, it is also referred to as “selected critical temperature change rate”. Then, the temperature change rate obtained by time-differentiating the measured temperature with time of each temperature sensor is obtained, and the time range in which the temperature change rate is equal to or less than the critical temperature change rate (selected critical temperature change rate) is defined as the compression detection time range. The time when each position in the length direction of the cast slab passes through the temperature sensor and the compression detection time region correspond to each other to form the slab compression detection region 20, and the compression detection region 20 on the slab surface is defined as the slab width direction. It can be specified in a two-dimensional region over the casting direction. Hereinafter, it is referred to as "depression position prediction map 21". In the example shown in FIG. 4, the selected critical temperature change rate is -4 ° C./sec, and FIG. 4B-2 (critical temperature change rate is -4 ° C./sec) is the compression position prediction map 21.

鋳型幅方向に設置する温度センサーの間隔が狭い場合には、温度センサーの間の空間についてデータを補完する処理を行うことなく、温度センサー設置位置の温度測定結果のみによって温度高速低下マップ11(ディプレッション位置予測マップ21)を描くことができる。また、温度センサー設置位置に対応する直線部分において温度高速低下領域10を定めた上で、隣接する温度センサー間については、温度センサー位置の温度高速低下領域10の境界を直線で結んで2次元の温度高速低下領域10(ディプレッション検出領域20)とすることもできる。鋳型幅方向の温度センサーの間隔が50mm以下であれば、以上のようなデータ処理を行うことによってディプレッション位置予測マップを作成することができる。 When the distance between the temperature sensors installed in the mold width direction is narrow, the temperature high-speed decrease map 11 (depression) is based only on the temperature measurement result of the temperature sensor installation position without performing the processing to supplement the data for the space between the temperature sensors. The position prediction map 21) can be drawn. Further, after defining the temperature high-speed drop region 10 in the straight line portion corresponding to the temperature sensor installation position, the boundary of the temperature high-speed drop region 10 at the temperature sensor position is connected by a straight line between the adjacent temperature sensors in a two-dimensional manner. It can also be set to the temperature high-speed drop region 10 (depression detection region 20). If the distance between the temperature sensors in the mold width direction is 50 mm or less, the compression position prediction map can be created by performing the above data processing.

鋳型幅方向に設置する温度センサーの間隔が広い場合には、隣接する温度センサーの間の空間については、幅方向の温度変化が直線であるとして幅方向各位置の温度を推定し、幅方向各位置において前記ディプレッション検出時間領域を求め、ディプレッション検出領域20の特定に用いることとしてもよい。鋳型幅方向の温度センサーの間隔が150mm以下であれば、以上のようなデータ処理を行うことによってディプレッション位置予測マップを作成することができる。 When the distance between the temperature sensors installed in the mold width direction is wide, the temperature at each position in the width direction is estimated assuming that the temperature change in the width direction is a straight line for the space between adjacent temperature sensors, and each in the width direction. The depletion detection time region may be obtained at the position and used for specifying the depletion detection region 20. If the distance between the temperature sensors in the mold width direction is 150 mm or less, the compression position prediction map can be created by performing the above data processing.

本発明で用いる温度センサーについて好適な実施の形態を説明する。
温度センサーを設置する鋳型壁については、当該連続鋳造設備で鋳造する鋳片でのディプレッション発生状況によって定めれば良い。鋳片の長辺面のディプレッションのみを検出すれば足りる場合には、温度センサーを鋳型の長辺面のみに設置すれば良い。鋳片の短辺面のディプレッション発生位置の検出が必要なのであれば、鋳型の短辺面にも温度センサーを設置する。
Suitable embodiments of the temperature sensor used in the present invention will be described.
The mold wall on which the temperature sensor is installed may be determined according to the state of occurrence of compression in the slabs cast in the continuous casting facility. If it is sufficient to detect only the compression on the long side of the slab, the temperature sensor may be installed only on the long side of the mold. If it is necessary to detect the position where the compression occurs on the short side surface of the slab, install a temperature sensor on the short side surface of the mold.

温度センサーを設置する鋳型の高さ方向の設置位置については、メニスカスより下方であれば問題ないが、鋳型下端に近くなるほど高精度となるため、鋳型下端に近い位置に設置するのが望ましい。鋳型の溶鋼側表面から温度センサーまでの深さについては、鋳型摩耗による内面切削もあるので少なくとも5mmとすれば良い。温度センサーの種類としては、FBG(Fiber Bragg Grating)、あるいは熱電対を用いることができる。 There is no problem with the installation position of the temperature sensor in the height direction of the mold as long as it is below the meniscus, but it is desirable to install it at a position closer to the lower end of the mold because the accuracy becomes higher as it gets closer to the lower end of the mold. The depth from the surface of the mold on the molten steel side to the temperature sensor may be at least 5 mm because the inner surface may be cut due to wear of the mold. As a type of temperature sensor, an FBG (Fiber Bragg Grating) or a thermocouple can be used.

以下、本発明の考え方について説明を補足する。
本発明は、鋳片の表面欠陥であるディプレッションは鋳型内で発生するという知見に基づいている。ディプレッションが生成すると、鋳型と鋳片の接触状態が悪化し、鋳型銅板温度が下がる。この温度低下を検知することでディプレッションを検知するという着想により本発明はなされたものである。この温度変化は鋳型銅板に複数(幅方向)設置された温度センサー(熱電対等、やFBGセンサー)によって測温する。
Hereinafter, the description of the concept of the present invention will be supplemented.
The present invention is based on the finding that depletion, which is a surface defect of slabs, occurs in the mold. When the depletion is generated, the contact state between the mold and the slab deteriorates, and the temperature of the mold copper plate drops. The present invention was made based on the idea of detecting depletion by detecting this temperature drop. This temperature change is measured by a plurality of temperature sensors (thermoelectric pair, etc., FBG sensor) installed on the mold copper plate (in the width direction).

1 鋳型長辺
2 鋳型上端
3 鋳型下端
4 メニスカス
5A〜5G 温度センサー
8 鋳片
9 ディプレッション発生位置
10 温度高速低下領域
11 温度高速低下マップ
20 ディプレッション検出領域
21 ディプレッション位置予測マップ
1 Long side of the mold 2 Upper end of the mold 3 Lower end of the mold 4 Meniscus 5A-5G Temperature sensor 8 Shards 9 Depression generation position 10 High-speed decrease area 11 Temperature high-speed decrease map 20 Depression detection area 21 Depression position prediction map

Claims (2)

鋼の連続鋳造において、鋳型壁の内部に、鋳片幅方向に横一列に複数の温度センサーを設置し、
予め臨界温度変化速度を負の値として定め、
各温度センサーの測定温度経時変化を時間微分した温度変化速度を求め、前記温度変化速度が前記臨界温度変化速度以下となった時間領域をディプレッション検出時間領域とし、鋳造した鋳片の長さ方向各位置が前記温度センサーを通過した時刻と前記ディプレッション検出時間領域とを対応させて鋳片のディプレッション検出領域とし、鋳片表面におけるディプレッション検出領域を鋳片幅方向と鋳造方向にわたる2次元の領域で特定することを特徴とする、連続鋳造における鋳片欠陥の検出方法。
In continuous steel casting, multiple temperature sensors are installed in a horizontal row in the slab width direction inside the mold wall.
Set the critical temperature change rate as a negative value in advance.
The temperature change rate obtained by time-differentiating the measured temperature change with time of each temperature sensor is obtained, and the time range in which the temperature change rate is equal to or lower than the critical temperature change rate is defined as the compression detection time range, and each of the cast slabs in the length direction. The time when the position passes the temperature sensor and the compression detection time region are made to correspond to each other as a slab compression detection region, and the compression detection region on the slab surface is specified by a two-dimensional region extending in the slab width direction and the casting direction. A method for detecting slab defects in continuous casting.
鋳片幅方向に設けた前記温度センサーのうち、互いに隣接する温度センサーの間の空間については、当該空間で幅方向に温度が直線的に変化するものとして幅方向各位置の温度を推定し、幅方向各位置において前記ディプレッション検出時間領域を求め、ディプレッション検出領域の前記特定に用いることを特徴とする、請求項1に記載の連続鋳造における鋳片欠陥の検出方法。 Of the temperature sensors provided in the slab width direction, for the space between the temperature sensors adjacent to each other, the temperature at each position in the width direction is estimated assuming that the temperature changes linearly in the width direction in the space. The method for detecting slab defects in continuous casting according to claim 1, wherein the compression detection time region is obtained at each position in the width direction and used for the identification of the compression detection region.
JP2020068149A 2020-04-06 2020-04-06 Detection method for defects in slab during continuous casting Active JP7469623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020068149A JP7469623B2 (en) 2020-04-06 2020-04-06 Detection method for defects in slab during continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020068149A JP7469623B2 (en) 2020-04-06 2020-04-06 Detection method for defects in slab during continuous casting

Publications (2)

Publication Number Publication Date
JP2021164927A true JP2021164927A (en) 2021-10-14
JP7469623B2 JP7469623B2 (en) 2024-04-17

Family

ID=78021451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020068149A Active JP7469623B2 (en) 2020-04-06 2020-04-06 Detection method for defects in slab during continuous casting

Country Status (1)

Country Link
JP (1) JP7469623B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192243A (en) * 1986-02-17 1987-08-22 Nippon Kokan Kk <Nkk> Detection of casting slab longitudinal cracking in continuous casting
JPH01143748A (en) * 1987-11-30 1989-06-06 Kawasaki Steel Corp Continuous casting method
JPH0957413A (en) * 1995-08-30 1997-03-04 Sumitomo Metal Ind Ltd Method for preventing cracking and breakout of cast slab in continuous casting
JP2004181466A (en) * 2002-11-29 2004-07-02 Jfe Steel Kk Method for detecting surface defect on continuously cast slab
JP2005007460A (en) * 2003-06-20 2005-01-13 Jfe Steel Kk Method for detecting surface defect on continuously cast steel billet
JP2005305511A (en) * 2004-04-22 2005-11-04 Jfe Steel Kk Method and unit for observing restrictiv property break-out
JP2017030029A (en) * 2015-08-04 2017-02-09 Jfeスチール株式会社 Breakout prediction method, breakout prediction device and continuous casting method
JP2017094350A (en) * 2015-11-20 2017-06-01 株式会社神戸製鋼所 Processing method of casting piece
JP2017154155A (en) * 2016-03-02 2017-09-07 Jfeスチール株式会社 Restrictive breakout monitoring device and monitoring method using same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192243A (en) * 1986-02-17 1987-08-22 Nippon Kokan Kk <Nkk> Detection of casting slab longitudinal cracking in continuous casting
JPH01143748A (en) * 1987-11-30 1989-06-06 Kawasaki Steel Corp Continuous casting method
JPH0957413A (en) * 1995-08-30 1997-03-04 Sumitomo Metal Ind Ltd Method for preventing cracking and breakout of cast slab in continuous casting
JP2004181466A (en) * 2002-11-29 2004-07-02 Jfe Steel Kk Method for detecting surface defect on continuously cast slab
JP2005007460A (en) * 2003-06-20 2005-01-13 Jfe Steel Kk Method for detecting surface defect on continuously cast steel billet
JP2005305511A (en) * 2004-04-22 2005-11-04 Jfe Steel Kk Method and unit for observing restrictiv property break-out
JP2017030029A (en) * 2015-08-04 2017-02-09 Jfeスチール株式会社 Breakout prediction method, breakout prediction device and continuous casting method
JP2017094350A (en) * 2015-11-20 2017-06-01 株式会社神戸製鋼所 Processing method of casting piece
JP2017154155A (en) * 2016-03-02 2017-09-07 Jfeスチール株式会社 Restrictive breakout monitoring device and monitoring method using same

Also Published As

Publication number Publication date
JP7469623B2 (en) 2024-04-17

Similar Documents

Publication Publication Date Title
JP5579709B2 (en) Method for predicting the occurrence of vertical cracks during continuous casting.
JP6358215B2 (en) Method and apparatus for determining surface defects of continuous cast slab, and method for manufacturing steel slab using the surface defect determination method
JP5673100B2 (en) Breakout prediction method
Balogun et al. Shell measurements and mold thermal mapping approach to characterize steel shell formation in peritectic grade steels
JP5407987B2 (en) Method for detecting longitudinal cracks in slabs
JP2021164927A (en) Method for detecting cast slab defect in continuous casting
EP3909703B1 (en) Method for continuous casting of slab
JP7115240B2 (en) Breakout prediction method in continuous casting
CN111421119A (en) Online prediction method for longitudinal cracks on surface of continuous casting slab
JP2000317595A (en) Method for predicting surface flaw of continuously cast slab
JP2003010950A (en) Detecting method for surface flaw in continuous casting, and continuous casting method
JP6119807B2 (en) Method and apparatus for determining surface defects of continuous cast slab, and method for producing steel slab using the surface defect determination method
JP2005007460A (en) Method for detecting surface defect on continuously cast steel billet
JPH06154982A (en) Method and device for monitoring mold temperature in continuous casting
JPH0771726B2 (en) Continuous casting method
JP2005205462A (en) Method for preventing longitudinal crack on continuously cast piece
JP2004181466A (en) Method for detecting surface defect on continuously cast slab
JP5375622B2 (en) Breakout prediction method for continuous casting
KR101388219B1 (en) Method for inspecting slab
WO2024070088A1 (en) Casting mold, control equipment, and continuous casting method for steel
JP2022190572A (en) Slab defect detection method for continuous casting
JPS62192243A (en) Detection of casting slab longitudinal cracking in continuous casting
Geerkens et al. Special technologies and new developments to improve slab quality
JP2008073748A (en) Method for detecting longitudinal cracking based on thermal flux of mold, and continuous casting method
JP2895603B2 (en) Surface defect judgment method for continuous cast slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240318

R150 Certificate of patent or registration of utility model

Ref document number: 7469623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150