JP2021164042A - Luminous flux separation imaging device - Google Patents

Luminous flux separation imaging device Download PDF

Info

Publication number
JP2021164042A
JP2021164042A JP2020063413A JP2020063413A JP2021164042A JP 2021164042 A JP2021164042 A JP 2021164042A JP 2020063413 A JP2020063413 A JP 2020063413A JP 2020063413 A JP2020063413 A JP 2020063413A JP 2021164042 A JP2021164042 A JP 2021164042A
Authority
JP
Japan
Prior art keywords
image
transmitted light
reflected light
separation
image sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020063413A
Other languages
Japanese (ja)
Inventor
辰郎 三井
Tatsuro Mitsui
琢磨 久米田
Takuma Kumeda
純 南
Jun Minami
真一 津川
Shinichi Tsugawa
直樹 樫村
Naoki Kashimura
貴明 斎藤
Takaaki Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ikegami Tsushinki Co Ltd
Mitsui Optical Manufacturing Co Ltd
Original Assignee
Ikegami Tsushinki Co Ltd
Mitsui Optical Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ikegami Tsushinki Co Ltd, Mitsui Optical Manufacturing Co Ltd filed Critical Ikegami Tsushinki Co Ltd
Priority to JP2020063413A priority Critical patent/JP2021164042A/en
Publication of JP2021164042A publication Critical patent/JP2021164042A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cameras In General (AREA)
  • Structure And Mechanism Of Cameras (AREA)
  • Studio Devices (AREA)

Abstract

To capture a circular image of a medical camera or the like with high resolution by combining a relatively inexpensive imaging element which is inferior in resolution instead of an expensive high-resolution imaging element.SOLUTION: A luminous flux separation imaging device includes a luminous flux separation prism 10 including a first prism 11 having an incident surface 11a, a separation surface 11b on which a separation film 13 is formed, and an exit surface 11c, and an angle θ formed by the incident surface 11a and the separation surface 11b is smaller than 45 degrees, and a second prism 12 having an incident surface 12a and an exit surface 12b, a reflected light imaging element 1 that faces the exit surface 11c of the first prism 11 and captures at least half of the image of an object, a transmitted light imaging element 2 that faces the exit surface 12b of the second prism 12 and captures at least the other half of the image of the object, and a signal processing unit that synthesizes an image signal from the reflected light imaging element 1 and the transmitted light imaging element 2 into one image signal corresponding to the image of the object, and a normal image is acquired by the reflected light imaging element 1 and the transmitted light imaging element 2.SELECTED DRAWING: Figure 2

Description

この発明は、光束分離光学系を用いて対象物の像を複数に分割して撮像する光束分離撮像装置に関する。 The present invention relates to a luminous flux separation imaging device that divides an image of an object into a plurality of images using a luminous flux separation optical system and images the image.

近年、ビデオカメラの撮像素子は、アスペクト比16:9のワイドディスプレイ用の映像に対応し、1920×1080画素のハイビジョン、HDとも称される2K用、3840×2160画素の4K用、7680×4320の8K用のように次第に高解像度化し、数多くの種類の製品が汎用製品として容易に入手できるようになってきている。これらの撮像素子は、2K、4K、8Kと解像度が高くなるにつれて高価になっている。 In recent years, the image pickup element of a video camera corresponds to an image for a wide display having an aspect ratio of 16: 9, and has 1920 × 1080 pixels for high-definition, 2K, which is also called HD, 3840 × 2160 pixels for 4K, 7680 × 4320. The resolution is gradually increasing, such as for 8K, and many types of products are easily available as general-purpose products. These image pickup devices become more expensive as the resolution increases to 2K, 4K, and 8K.

内視鏡、ダーモスコープ、顕微鏡などに使用する医療用カメラ、望遠鏡などに使用する天体用カメラ、双眼鏡などにおいても、対象物の像を取得するために撮像素子が利用されている。これらの医療用カメラなどでは円形の視野で像を取得するため、円形の像に適合するように、SDとも称されるアスペクト比4:3の従来の標準解像度の撮像素子や、アスペクト比1:1のほぼ専用の撮像装置が好まれ多用されている。 Image sensors are also used to acquire images of objects in medical cameras used for endoscopes, dermoscopes, microscopes, etc., astronomical cameras used for telescopes, binoculars, and the like. Since these medical cameras acquire an image with a circular field of view, a conventional standard resolution image pickup device with an aspect ratio of 4: 3, also called SD, or an aspect ratio of 1: 1 is used to match the circular image. The almost dedicated imaging device of No. 1 is preferred and frequently used.

医療用カメラなどにおいても、高解像度の映像を取得することが試みられている。例えば、図1(a)に示すように、汎用製品として入手できるワイドディスプレイ用のアスペクト比16:9の高解像度の撮像素子を利用し、撮像領域の内で円形の像に相当する部分を使用して撮像されることがある。また、図1(b)に示すように、高価な高解像度の撮像素子を解像度は劣るが比較的安価な2個の撮像素子で置き換え、円形の像をハーフミラーで反射光と透過光とに分割して反射光像と透過光像とを2個の撮像素子で撮像し、撮像した2個の映像を合成して円形の映像を取得することも考えられる。このように分割して撮像した映像を合成する手法は、アスペクト比を変換する手法として知られている(例えば特許文献1を参照。)。標準解像度の撮像素子を組み合わせて高解像度の映像を得る技術も提供されている(特許文献2を参照。)。 Attempts have also been made to acquire high-resolution images in medical cameras and the like. For example, as shown in FIG. 1A, a high-resolution image sensor with an aspect ratio of 16: 9 for a wide display, which is available as a general-purpose product, is used, and a portion corresponding to a circular image is used in the image pickup area. May be imaged. Further, as shown in FIG. 1 (b), an expensive high-resolution image sensor is replaced with two image sensors that are inferior in resolution but relatively inexpensive, and a circular image is converted into reflected light and transmitted light by a half mirror. It is also conceivable to divide and image the reflected light image and the transmitted light image with two image sensors, and combine the two captured images to acquire a circular image. The method of synthesizing the images divided and captured in this way is known as a method of converting the aspect ratio (see, for example, Patent Document 1). A technique for obtaining a high-resolution image by combining a standard-resolution image sensor is also provided (see Patent Document 2).

特開平7−140954号公報Japanese Unexamined Patent Publication No. 7-140954 特開平6−269010号公報Japanese Unexamined Patent Publication No. 6-269010

しかしながら、図1(a)のようにワイドディスプレイ用のアスペクト比16:9の高解像度の撮像素子の撮像領域の一部を使用して円形の像を撮像する場合には、撮像領域の中央部分のみが撮像に使用される。このため、高価な高解像度の撮像素子において、撮像領域の相当な部分が撮像に使用されずに無駄になってしまう。 However, when a circular image is imaged using a part of the image pickup area of the high resolution image pickup element having an aspect ratio of 16: 9 for a wide display as shown in FIG. 1A, the central portion of the image pickup area is taken. Only used for imaging. Therefore, in an expensive high-resolution image sensor, a considerable part of the image pickup area is not used for image pickup and is wasted.

図1(b)のように像をハーフミラーで反射光と透過光に分割して2枚の撮像素子を組み合わせてそれぞれ撮像し、撮像した映像を合成する場合には、ハーフミラーにおいて角度に依存した反射特性の変化が生じ、反射光像と透過光像とが同一の画質ではなくなることがあった。また、反射光像はハーフミラーによる反射によって鏡像(裏像)になり、透過光像と同様の正像(表像)に戻すため、光学部材を追加したり、信号処理を施したりする必要があった。 As shown in FIG. 1B, when the image is divided into reflected light and transmitted light by a half mirror, two image pickup elements are combined to take an image, and the captured images are combined, the half mirror depends on the angle. Due to the change in the reflection characteristics, the reflected light image and the transmitted light image may not have the same image quality. In addition, the reflected light image becomes a mirror image (back image) due to reflection by the half mirror and returns to a normal image (front image) similar to the transmitted light image, so it is necessary to add an optical member or perform signal processing. there were.

この発明は、上述の実情に鑑みて提供されるものであって、高価な高解像度の撮像素子に代えて解像度が劣るが比較的安価な撮像素子を組み合わせて医療用カメラなどの円形の像を高解像度で撮像することができるような光束分離撮像装置を提供することを目的とする。 The present invention is provided in view of the above circumstances, and a circular image such as a medical camera can be obtained by combining an image sensor having a lower resolution but a relatively low cost in place of an expensive high-resolution image sensor. It is an object of the present invention to provide a luminous flux separation image pickup device capable of taking an image with high resolution.

上述の課題を解決するために、この出願に係る光束分離撮像装置は、対象物の像を撮像し、対象物からの入射光を透過光と反射光とに分離する光束分離プリズムであって、光軸に沿って進む入射光が入射する入射面と、分離膜が形成され、分離膜は入射光の一部を反射光として入射面に向かって反射するとともに残りを透過光として透過させる分離面と、分離膜によって反射され、入射面で全反射された反射光が出射する出射面とを含み、入射面と分離面とが形成する角度が45°より小さい第1プリズムと、第1プリズムの分離面に分離膜を介して接し、第1プリズムの分離面の分離膜を透過した透過光が入射する入射面と、光軸に沿って進む透過光が出射する出射面とを含む第2プリズムとを含む光束分離プリズムと、第1プリズムの出射面に対向して設置され、反射光から対象物の像の少なくとも半分を撮像する反射光撮像素子と、第2プリズムの出射面に対向して設置され、透過光から対象物の像の少なくとも他の半分を撮像する透過光撮像素子と、反射光撮像素子からの反射光映像信号と、透過光撮像素子からの透過光映像信号とを対象物の像に相当する一つの映像信号に合成する信号処理ユニットとを含み、反射光撮像素子及び透過光撮像素子では正像が取得される。 In order to solve the above-mentioned problems, the light beam separation imaging device according to the present application is a light beam separation prism that captures an image of an object and separates incident light from the object into transmitted light and reflected light. An incident surface on which incident light traveling along the optical axis is incident and a separation film are formed, and the separation film reflects a part of the incident light toward the incident surface as reflected light and the rest as transmitted light. A first prism and a first prism whose angle formed by the incident surface and the separation surface is smaller than 45 °, including an exit surface from which the reflected light reflected by the separation film and totally reflected by the incident surface is emitted. A second prism that includes an incident surface that is in contact with the separation surface via a separation film and that is incident with transmitted light that has passed through the separation film of the separation surface of the first prism, and an exit surface that emits transmitted light that travels along the optical axis. A light beam separation prism including A transmitted light image pickup element that is installed and images at least the other half of the image of the object from the transmitted light, a reflected light image signal from the reflected light image pickup element, and a transmitted light image signal from the transmitted light image pickup element. A signal processing unit that synthesizes a single video signal corresponding to the image of the above is included, and a normal image is acquired by the reflected light imaging element and the transmitted light imaging element.

反射光撮像素子は反射光から対象物の像の少なくとも上半分を撮像し、透過光撮像素子は透過光から対象物の像の少なくとも下半分を撮像してもよい。反射光撮像素子は反射光から対象物の像の少なくとも下半分を撮像し、透過光撮像素子は透過光から対象物の像の少なくとも上半分を撮像してもよい。 The reflected light image sensor may image at least the upper half of the image of the object from the reflected light, and the transmitted light image sensor may image at least the lower half of the image of the object from the transmitted light. The reflected light image sensor may image at least the lower half of the image of the object from the reflected light, and the transmitted light image sensor may image at least the upper half of the image of the object from the transmitted light.

対象物の像は円形であり、反射光撮像素子が撮像する対象物の像の少なくとも半分は少なくとも半円の像を含み、透過光撮像素子が撮像する対象物の像の少なくとも他の半分は少なくとも他の半円の像を含んでもよい。 The image of the object is circular, at least half of the image of the object imaged by the reflected light image sensor contains at least a semicircular image, and at least the other half of the image of the object imaged by the transmitted light image sensor is at least. Other semicircular images may be included.

反射光撮像素子及び透過光撮像素子は、アスペクト比が16:9であってもよい。反射光撮像素子及び透過光撮像素子は、1920×1080画素又は3840×2160画素を有してもよい。 The reflected light image sensor and the transmitted light image sensor may have an aspect ratio of 16: 9. The reflected light image sensor and the transmitted light image sensor may have 1920 × 1080 pixels or 3840 × 2160 pixels.

光束分離撮像装置は、Cマウントアダプターに適合するフランジバック長を有してもよい。 The luminous flux separation imaging device may have a flange back length suitable for the C mount adapter.

この発明によると、高価な高解像度の撮像素子に代えて解像度が劣るが比較的安価な撮像素子を組み合わせて医療用カメラなどの円形の像を高解像度で撮像することができる。 According to the present invention, it is possible to capture a circular image of a medical camera or the like with high resolution by combining an expensive high-resolution image sensor with an inferior but relatively inexpensive image sensor.

円形の像をワイドディスプレイ用の高解像度の撮像素子で撮像する従来の技術を説明する図である。It is a figure explaining the conventional technique which image | image | image | image | image | image | image | image | image of a circular image with a high-resolution image sensor for a wide display. 本実施の形態の光束分離撮像装置の概略的な構成を示す図である。It is a figure which shows the schematic structure of the luminous flux separation image pickup apparatus of this embodiment. 本実施の形態の光束分離撮像装置の透過光撮像素子及び反射光撮像素子の撮像領域と結像した像との関係を示す模式図である。It is a schematic diagram which shows the relationship between the image pickup area of the transmitted light image sensor and the reflected light image sensor of the light flux separation image sensor of this embodiment, and the image image | formed. 本実施の形態の光束分離撮像装置から出力された映像信号をディスプレイに表示する一つの態様を示す図である。It is a figure which shows one aspect which displays the video signal output from the luminous flux separation image pickup apparatus of this embodiment on a display. 本実施の形態の光束分離撮像装置から出力された映像信号をディスプレイに表示する他の態様を示す図である。It is a figure which shows the other aspect which displays the video signal output from the luminous flux separation image pickup apparatus of this embodiment on a display.

以下、本実施の形態の光束分離撮像装置について、図面を参照して詳細に説明する。本実施の形態においては、撮像する対象物の像として、医療用カメラなどから提供される円形の像を想定している。また、本実施の形態の光束分離撮像装置は、入射光を透過光と反射光に分離する光束分離光学系を含み、光束分離光学系で分離した透過光と反射光とで像を分割してそれぞれ汎用製品の撮像素子を用いて撮像している。なお、本明細書では、撮像素子に結像する対象物の光学像を像といい、撮像素子で光学像を光電変換して取得された動画像を映像ということにする。 Hereinafter, the luminous flux separation imaging device of the present embodiment will be described in detail with reference to the drawings. In the present embodiment, a circular image provided by a medical camera or the like is assumed as an image of an object to be imaged. Further, the luminous flux separation imaging device of the present embodiment includes a luminous flux separation optical system that separates incident light into transmitted light and reflected light, and divides an image into transmitted light and reflected light separated by the luminous flux separation optical system. Each image is taken using an image pickup element of a general-purpose product. In the present specification, the optical image of the object to be imaged on the image sensor is referred to as an image, and the moving image acquired by photoelectric conversion of the optical image by the image sensor is referred to as an image.

撮像素子には、高価な7680×4320画素の8K用のものに代えて解像度が劣るが比較的安価な3840×2160画素の4K用の撮像素子を2個組み合わせ、それぞれで透過光像及び反射光像を撮像し、透過光像及び反射光像を合成して8Kの解像度に相当する円形の映像を取得することを想定している。 The image sensor is a combination of two 4K image sensors with 3840 x 2160 pixels, which are inferior in resolution but relatively inexpensive, in place of the expensive 7680 x 4320 pixel image sensor for 8K, and each has a transmitted light image and reflected light. It is assumed that an image is imaged and a transmitted light image and a reflected light image are combined to obtain a circular image corresponding to a resolution of 8K.

図2は、本実施の形態の光束分離撮像装置の概略的な構成を示す図である。光束分離撮像装置は、入射光100を反射光101と透過光102とに分離する光束分離光学系を有している。光束分離光学系は、第1プリズム11及び第2プリズム12を有する光束分離プリズム10によって構成されている。光束分離プリズム10において、光軸Lに沿って入射光100が進む向きに第1プリズム11及び第2プリズム12が設けられている。 FIG. 2 is a diagram showing a schematic configuration of the luminous flux separation imaging device of the present embodiment. The luminous flux separation imaging device has a luminous flux separation optical system that separates the incident light 100 into the reflected light 101 and the transmitted light 102. The luminous flux separation optical system is composed of a luminous flux separation prism 10 having a first prism 11 and a second prism 12. In the luminous flux separation prism 10, the first prism 11 and the second prism 12 are provided in the direction in which the incident light 100 travels along the optical axis L.

第1プリズム11は、ガラス素材によって形成され、光軸Lに対して直交し、入射光100が入射される入射面11aを有している。また、第1プリズム11は、表面に分離膜13が形成され、入射面11aと45度より小さい角度θを形成して図中の下方で交わる分離面11bを有している。分離膜13は、入射面11aからの入射光100の一部を反射光101として反射するとともに、残りを透過光102として透過させている。分離膜13は、反射光101と透過光102とが同一の特性を有して一対一の光量で分離されるように入射光100を分離している。 The first prism 11 is formed of a glass material, is orthogonal to the optical axis L, and has an incident surface 11a on which the incident light 100 is incident. Further, the first prism 11 has a separation surface 11b in which a separation film 13 is formed on the surface thereof, forms an angle θ smaller than 45 degrees with the incident surface 11a, and intersects at the lower part in the drawing. The separation film 13 reflects a part of the incident light 100 from the incident surface 11a as the reflected light 101, and transmits the rest as the transmitted light 102. The separation film 13 separates the incident light 100 so that the reflected light 101 and the transmitted light 102 have the same characteristics and are separated by a one-to-one amount of light.

第1プリズム11は、入射面11a及び分離面11bと図中の上方で交わる出射面11cを有している。分離面11bの分離膜13で反射された反射光101は、入射面11aで全反射され、出射面11cから出射される。出射面11cは、出射される反射光101に対して直交している。出射面11cから出射された反射光101は、分離面11bの分離膜13と入射面11aとで2回にわたり反射され、正像(表像)を与える。 The first prism 11 has an exit surface 11c that intersects the entrance surface 11a and the separation surface 11b at the upper part in the drawing. The reflected light 101 reflected by the separation film 13 of the separation surface 11b is totally reflected by the incident surface 11a and emitted from the emission surface 11c. The exit surface 11c is orthogonal to the emitted reflected light 101. The reflected light 101 emitted from the exit surface 11c is reflected twice by the separation film 13 of the separation surface 11b and the incident surface 11a to give a normal image (representation image).

第2プリズム12は、ガラス素材によって構成され、光軸Lに沿って延び、第1プリズム11の分離面11bに対向して分離膜13を挟んで接する入射面12aと、入射面12aに対向する出射面12bとを有している。出射面12bは、光軸Lに対して直交している。入射面12aには、第1プリズム11の分離面11bに形成された分離膜13を透過した透過光102が入射し、透過光102は光軸Lに沿って進んで出射面12bから出射される。出射面12bから出射された透過光102は、反射されていないため正像を与える。 The second prism 12 is made of a glass material, extends along the optical axis L, faces the incident surface 11b of the first prism 11, and faces the incident surface 12a and the incident surface 12a that are in contact with each other with the separation film 13 interposed therebetween. It has an exit surface 12b. The exit surface 12b is orthogonal to the optical axis L. The transmitted light 102 transmitted through the separation film 13 formed on the separation surface 11b of the first prism 11 is incident on the incident surface 12a, and the transmitted light 102 travels along the optical axis L and is emitted from the emission surface 12b. .. The transmitted light 102 emitted from the exit surface 12b gives a normal image because it is not reflected.

光束分離撮像装置は、第1プリズム11の出射面11cに対向して設けられた反射光撮像素子1と、第2プリズム12の出射面12bに対向して設けられた透過光撮像素子2とを有している。反射光撮像素子1及び透過光撮像素子2は、いずれもワイドディスプレイ用アスペクト比16:9、3840×2160画素の4K用の撮像素子で構成されている。反射光撮像素子1及び透過光撮像素子2は、反射光101及び透過光102による像をそれぞれ撮像し、反射光映像信号及び透過光映像信号に光電変換して提供している。 The luminous flux separation imaging device includes a reflected light imaging element 1 provided so as to face the emission surface 11c of the first prism 11 and a transmitted light imaging element 2 provided so as to face the emission surface 12b of the second prism 12. Have. Both the reflected light imaging element 1 and the transmitted light imaging element 2 are composed of a 4K image pickup element having an aspect ratio of 16: 9 for a wide display and 3840 × 2160 pixels. The reflected light imaging element 1 and the transmitted light imaging element 2 capture images of the reflected light 101 and the transmitted light 102, respectively, and provide them by photoelectrically converting them into a reflected light image signal and a transmitted light image signal.

反射光撮像素子1は、撮像領域に反射光像の上半分が結像し、反射光101による像の上半分が撮像されるように、第1プリズム11の出射面11cに所定の間隙を挟んで、出射面11cの略上半面に対向するように設置されている。透過光撮像素子2は、撮像領域に透過光像の下半分が結像し、透過光102による像の下半分が撮像されるように、第2プリズム12の出射面12bに所定の間隙を挟んで、出射面12bの略下半面に対向するように設置されている。 The reflected light image sensor 1 sandwiches a predetermined gap in the emission surface 11c of the first prism 11 so that the upper half of the reflected light image is imaged in the imaging region and the upper half of the image by the reflected light 101 is imaged. Therefore, it is installed so as to face substantially the upper half surface of the exit surface 11c. The transmitted light image sensor 2 sandwiches a predetermined gap between the exit surface 12b of the second prism 12 so that the lower half of the transmitted light image is imaged in the imaging region and the lower half of the image by the transmitted light 102 is imaged. Therefore, it is installed so as to face substantially the lower half surface of the exit surface 12b.

図2の上部の模式図Aには、透過光撮像素子2の撮像領域に反射光撮像素子1の撮像領域をそれぞれの長手方向が並行するように積み重ねて配置したときに、反射光撮像素子1に結像した反射光像PRと透過光撮像素子2に結像した透過光像PTとの位置関係を示している。図3は、模式図Aに示した反射光撮像素子1に結像した反射光像PRと透過光撮像素子2に結像した透過光像PTとの位置関係をより詳細に示す模式図である。反射光撮像素子1には、対象物の円形の像の上半分に相当する上半円状の反射光像PRが結像している。透過光撮像素子2には、対象物の円形の像の下半分に相当する下半円状の透過光像PTが結像している。反射光像PR及び透過光像PTは、いずれも正像である。 In the schematic view A at the upper part of FIG. 2, when the image pickup areas of the reflected light image sensor 1 are stacked and arranged in parallel to each other in the image pickup area of the transmitted light image sensor 2, the reflected light image sensor 1 The positional relationship between the reflected light image PR imaged in 1 and the transmitted light image PT imaged on the transmitted light image sensor 2 is shown. FIG. 3 is a schematic diagram showing in more detail the positional relationship between the reflected light image PR imaged on the reflected light image sensor 1 and the transmitted light image PT imaged on the transmitted light image sensor 2 shown in the schematic diagram A. .. The reflected light image sensor 1 is formed with an upper semicircular reflected light image PR corresponding to the upper half of the circular image of the object. A lower semicircular transmitted light image PT corresponding to the lower half of the circular image of the object is formed on the transmitted light image sensor 2. Both the reflected light image PR and the transmitted light image PT are normal images.

図3に示すように、反射光撮像素子1及び透過光撮像素子2はいずれもアスペクト比H1:V1は16:9であり、これら反射光撮像素子1及び透過光撮像素子2を併せるとアスペクト比H1:V2が16:18である。一方、上半円状の反射光像PR及び下半円状の透過光像PTを併せた円形の像はアスペクト比H1:H2=1:1である。反射光撮像素子1及び透過光撮像素子2を併せたアスペクト比H1:V2=16:18は円形の映像のアスペクト比H1:H2=1:1に近く、反射光撮像素子1及び透過光撮像素子2の撮像領域の大部分は円形の像の撮像のために有効に使用されているといえる。 As shown in FIG. 3, both the reflected light image sensor 1 and the transmitted light image sensor 2 have an aspect ratio of H1: V1 of 16: 9, and when these the reflected light image sensor 1 and the transmitted light image sensor 2 are combined, the aspect ratio is H1: V2 is 16:18. On the other hand, the circular image in which the upper semicircular reflected light image PR and the lower semicircular transmitted light image PT are combined has an aspect ratio of H1: H2 = 1: 1. The aspect ratio H1: V2 = 16:18 of the reflected light imaging element 1 and the transmitted light imaging element 2 combined is close to the aspect ratio H1: H2 = 1: 1 of the circular image, and the reflected light imaging element 1 and the transmitted light imaging element 1 and the transmitted light imaging element It can be said that most of the imaging region of No. 2 is effectively used for imaging a circular image.

光束分離撮像装置は、反射光撮像素子1で撮像した反射光像PRと、透過光撮像素子2で撮像した透過光像PTとから対象物の像を合成する図示しない信号処理ユニットを有している。信号処理ユニットは、反射光撮像素子1からの対象物の円形の像の上半円の反射光像PRを電気信号に変換した反射光映像信号と、透過光撮像素子2からの対象物の円形の像の下半円の透過光像PTを電気信号に変換した透過光映像信号とを合成し、対象物の円形の像に相当する合成映像信号を出力している。信号処理ユニットは、例えばデジタル信号プロセッサ(DSP)を含む適切な構成の電子回路によって実現することができる。 The luminous flux separation imaging device includes a signal processing unit (not shown) that synthesizes an image of an object from the reflected light image PR imaged by the reflected light imaging element 1 and the transmitted light image PT imaged by the transmitted light imaging element 2. There is. The signal processing unit includes a reflected light image signal obtained by converting the reflected light image PR of the upper half circle of the circular image of the object from the reflected light imaging element 1 into an electric signal, and a circular image of the object from the transmitted light imaging element 2. The transmitted light image PT of the lower half circle of the image is combined with the transmitted light image signal converted into an electric signal, and the combined image signal corresponding to the circular image of the object is output. The signal processing unit can be implemented by a well-configured electronic circuit, including, for example, a digital signal processor (DSP).

光束分離撮像装置は、Cマウント4のレンズマウントにレンズ5を取り付けることができるように、Cマウントアダプターに対応する17.526mmのフランジバック長を構成していてもよい。また、光束分離撮像装置の光路上に、紫外線カットフィルタ又は赤外線カットフィルタなどの各種フィルタを取り付けてもよい。 The luminous flux separation imaging device may have a flange back length of 17.526 mm corresponding to the C mount adapter so that the lens 5 can be attached to the lens mount of the C mount 4. Further, various filters such as an ultraviolet cut filter or an infrared cut filter may be attached on the optical path of the luminous flux separation imaging device.

光束分離撮像装置においては、対象物からの入射光100を光束分離プリズム10で反射光101及び透過光102に分離し、反射光像及び透過光像をそれぞれ反射光撮像素子1及び透過光撮像素子2で撮像して対象物に相当する一つの像に合成している。ここで、反射光像には、分離膜13での反射により分離面11bが入射面11aと形成する角度θに応じて増加するような角度に依存する反射特性の変化が生じるが、角度θを45度よりも小さくすることによって反射特性の変化を抑制し、透過光像と同等の画質が得られるようにしている。同等の画質の反射光像と透過光像を合成することにより、均一な画質を有する対象物の像が得られる。 In the light beam separation imaging device, the incident light 100 from the object is separated into the reflected light 101 and the transmitted light 102 by the light beam separating prism 10, and the reflected light image and the transmitted light image are separated into the reflected light imaging element 1 and the transmitted light imaging element, respectively. It is imaged in 2 and combined into one image corresponding to the object. Here, in the reflected light image, the reflection characteristic changes depending on the angle such that the separation surface 11b increases with the incident surface 11a due to the reflection by the separation film 13, but the angle θ is changed. By making it smaller than 45 degrees, the change in the reflection characteristic is suppressed so that the image quality equivalent to that of the transmitted light image can be obtained. By synthesizing the reflected light image and the transmitted light image having the same image quality, an image of an object having a uniform image quality can be obtained.

一方、第1プリズム11の出射面11cに対向して反射光撮像素子1が設けられ、反射光撮像素子1は、出射面11cから出射された反射光101から円形の像の上半分を撮像し得るように映像の上半分に対応している。反射光撮像素子1に反射光101を供給するため、反射光撮像素子1に相当するような一定の寸法の出射面11cを確保する必要がある。このため、第1プリズム11の入射面11aと分離面11bとが形成する角度θは、上述した反射光撮像素子1が対象物の像の略半分を取得できる範囲を確保できるものであればよい。 On the other hand, the reflected light image sensor 1 is provided so as to face the exit surface 11c of the first prism 11, and the reflected light image sensor 1 images the upper half of the circular image from the reflected light 101 emitted from the emission surface 11c. It corresponds to the upper half of the image so that you can get it. In order to supply the reflected light 101 to the reflected light image sensor 1, it is necessary to secure an emission surface 11c having a certain size corresponding to the reflected light image sensor 1. Therefore, the angle θ formed by the incident surface 11a and the separating surface 11b of the first prism 11 may be such that the above-mentioned reflected light image sensor 1 can secure a range in which substantially half of the image of the object can be acquired. ..

なお、光束分離撮像装置において、反射光撮像素子1及び透過光撮像素子2には、撮像領域に円形の像の上半分及び下半分がそれぞれ結像し、円形の反射光101及び透過光102の像の上半分及び下半分が撮像されるが、このような構成に限られない。反射光撮像素子1及び透過光撮像素子2には、撮像領域に円形の像の少なくとも下半分及び少なくとも上半分がそれぞれ結像するようにし、円形の反射光101及び透過光102の像の少なくとも下半分及び少なくとも上半分が撮像されるようにしてもよい。このような場合、反射光撮像素子1は、撮像領域に円形の反射光像の下半分が結像するように、第1プリズム11の出射面11cの略下半面に対向するように設置されてもよい。透過光撮像素子2は、撮像領域に円形の透過光像の上半分が結像するように、第2プリズム12の出射面12bの略上半面に対向するように設置されてもよい。反射光撮像素子1及び透過光撮像素子2からの反射光映像信号及び透過光映像信号は、像の下半分を超えた部分又は上半分を超えた部分が含まれてオーバーラップすることがあるが、像のオーバーラップする部分は信号処理ユニットで除去すればよい。 In the luminous flux separation image sensor, the reflected light image sensor 1 and the transmitted light image sensor 2 are formed with the upper half and the lower half of a circular image in the imaging region, respectively, and the circular reflected light 101 and the transmitted light 102 are formed. The upper and lower halves of the image are imaged, but the configuration is not limited to this. The reflected light image sensor 1 and the transmitted light image sensor 2 are formed so that at least the lower half and at least the upper half of the circular image are imaged in the imaging region, respectively, and at least below the image of the circular reflected light 101 and the transmitted light 102. Half and at least the upper half may be imaged. In such a case, the reflected light image sensor 1 is installed so as to face substantially the lower half surface of the exit surface 11c of the first prism 11 so that the lower half of the circular reflected light image is formed in the imaging region. May be good. The transmitted light imaging element 2 may be installed so as to face substantially the upper half surface of the exit surface 12b of the second prism 12 so that the upper half of the circular transmitted light image is formed in the imaging region. The reflected light image signal and the transmitted light image signal from the reflected light image sensor 1 and the transmitted light image sensor 2 may overlap with each other including a portion exceeding the lower half or a portion exceeding the upper half of the image. , The overlapping part of the image may be removed by the signal processing unit.

本実施の形態の光束分離撮像装置は、内視鏡などに使用する医療用カメラで得られるような円形の像について、高価な7680×4320画素の8K用の撮像素子1個を使用するよりは解像度に劣るが比較的安価な汎用製品の3840×2160画素の4K用の撮像素子を2個組み合わせて透過光像及び反射光像をそれぞれ撮像し、透過光像及び反射光像を信号処理により8Kの解像度に相当する円形の映像に合成している。8K用の撮像素子は高価なため、比較的安価な2個の4K用の撮像素子を使用することにより撮像素子に要するコストを抑えることができる。また、2個の4K用の撮像素子で撮像した像を合成することにより、8Kに相当する映像を実現している。なお、2個の4K用の撮像素子に代えて1920×1080画素の2K用の撮像素子を2個使用し、これら撮像素子で撮像した像を合成することにより4Kに相当する映像を実現してもよい。 The light beam separation image sensor of the present embodiment is more than using one expensive 7680 × 4320 pixel 8K image sensor for a circular image such as that obtained by a medical camera used for an endoscope or the like. A general-purpose product with inferior resolution but relatively inexpensive 3840 x 2160 pixel 4K image sensor is combined to capture a transmitted light image and a reflected light image, respectively, and the transmitted light image and the reflected light image are 8K by signal processing. It is combined with a circular image corresponding to the resolution of. Since the 8K image sensor is expensive, the cost required for the image sensor can be suppressed by using two relatively inexpensive 4K image sensors. Further, by synthesizing the images captured by the two 4K image sensors, an image corresponding to 8K is realized. In addition, instead of the two 4K image sensors, two 2K image sensors of 1920 × 1080 pixels are used, and the images captured by these image sensors are combined to realize an image equivalent to 4K. May be good.

光束分離光学系を構成する光束分離プリズム10は、上述のような構成により、対象物からの入射光100を反射光101と透過光102とに分離して取得したそれぞれの像の画質を同様なものとして維持することを可能にしている。また、光束分離プリズム10は、反射光101と透過光102とについて、反射光像と透過光像とをいずれも正像(表像)として与える。このため、光束の分離にハーフミラーを使用した場合のように、光学部材や信号処理によって鏡像(裏像)を正像(表像)に復元する必要がなく、鏡像(裏像)を正像(表像)に復元するために光学部材を設けたり、信号処理で鏡像(裏像)を正像(表像)に変換したりする必要はない。 The luminous flux separation prism 10 constituting the luminous flux separation optical system has the same image quality of each image acquired by separating the incident light 100 from the object into the reflected light 101 and the transmitted light 102 by the above-described configuration. It makes it possible to maintain it as a thing. Further, the luminous flux separation prism 10 gives both the reflected light image and the transmitted light image as normal images (front images) of the reflected light 101 and the transmitted light 102. Therefore, unlike the case where a half mirror is used to separate the luminous flux, it is not necessary to restore the mirror image (back image) to a normal image (front image) by optical members or signal processing, and the mirror image (back image) is a normal image. It is not necessary to provide an optical member to restore the (front image), or to convert the mirror image (back image) into a normal image (front image) by signal processing.

また、光束分離プリズム10は、ハーフミラーによる構成と比較して振動や動きなどによるブレなどの影響を受け難く堅牢で小型化が可能である。このため、光束分離光学系に光束分離プリズムを使用している光束分離撮像装置も、このような堅牢性を有し、小型化が可能であるため、振動や動きにより生じ得るブレに敏感な医療用途での使用に好適である。 Further, the luminous flux separation prism 10 is less susceptible to blurring due to vibration or movement as compared with the configuration using a half mirror, and can be robust and miniaturized. For this reason, the luminous flux separation imaging device that uses the luminous flux separation prism for the luminous flux separation optical system also has such robustness and can be miniaturized, so that medical treatment that is sensitive to blurring that may occur due to vibration or movement. Suitable for use in applications.

本実施の形態の光束分離撮像装置は、内視鏡、顕微鏡、ダーモスコープなどに使用される小型化が望まれる医療用カメラに広範な応用範囲が期待される。そのため、光束分離撮像装置は、Cマウント4に対応し、レンズ5にはCマウント4に適合するフランジバックが短い17.526mmの交換レンズを使用し、小型化してもよい。 The luminous flux separation imaging device of the present embodiment is expected to have a wide range of applications for medical cameras used in endoscopes, microscopes, dermoscopes, etc., for which miniaturization is desired. Therefore, the luminous flux separation imaging device may be miniaturized by using an interchangeable lens having a flange back of 17.526 mm, which is compatible with the C mount 4 and has a short flange back, which is compatible with the C mount 4.

図4は、本実施の形態の光束分離撮像装置で取得した高解像度の円形の映像をディスプレイに表示する一つの態様を示す図である。このディスプレイは、本実施の形態の光束分離撮像装置から出力された合成映像信号を表示するものである。光束分離撮像装置は4K用の撮像素子2個を使用して取得した映像を8K相当の映像に合成するものとし、ディスプレイは高解像度でアスペクト比H3:V2=16:9のワイドディスプレイとして7680×4320画素の8Kの使用を想定している。ディスプレイにおいて、両側から幅ABの表示領域をそれぞれ取り除いたアスペクト比H1:V2=16:18の中央の表示領域が、円形映像の表示に使用される。 FIG. 4 is a diagram showing one aspect of displaying a high-resolution circular image acquired by the luminous flux separation imaging device of the present embodiment on a display. This display displays a composite video signal output from the luminous flux separation imaging device of the present embodiment. The light beam separation image pickup device shall synthesize the image acquired by using two 4K image pickup elements into an image equivalent to 8K, and the display is a wide display with a high resolution and an aspect ratio of H3: V2 = 16: 9, which is 7680 ×. It is assumed that 4320 pixels of 8K will be used. In the display, the central display area having an aspect ratio of H1: V2 = 16:18, which is obtained by removing the display areas of width AB from both sides, is used for displaying a circular image.

図5は、本実施の形態の光束分離撮像装置で取得した高解像度の円形の映像をディスプレイに表示する他の態様を示す図である。このディスプレイは、本実施の形態の光束分離撮像装置から出力された合成映像信号を表示するものである。光束分離撮像装置は4K用の撮像素子2個を使用して取得した映像を8K相当の映像に合成するものとし、ディスプレイは高解像度でアスペクト比16:9のワイドディスプレイとして7680×4320画素の8Kの使用を想定している。ディスプレイの表示領域は、右側と左側とに横方向に二等分することができる。表示領域の右側と左側とには同じ円形の映像を表示してもよいし、右側と左側とに比較分析すべき映像を表示してもよい。また、一方に撮影条件や映像説明用テキスト情報を表示するようにしてもよい。 FIG. 5 is a diagram showing another aspect of displaying a high-resolution circular image acquired by the luminous flux separation imaging device of the present embodiment on a display. This display displays a composite video signal output from the luminous flux separation imaging device of the present embodiment. The light beam separation imaging device synthesizes the image acquired by using two 4K imaging elements into an image equivalent to 8K, and the display is 8K with 7680 x 4320 pixels as a wide display with a high resolution and an aspect ratio of 16: 9. Is supposed to be used. The display area of the display can be horizontally divided into two equal parts, one on the right side and the other on the left side. The same circular image may be displayed on the right side and the left side of the display area, or the image to be comparatively analyzed may be displayed on the right side and the left side. Further, the shooting conditions and the text information for explaining the video may be displayed on one side.

この発明は、円形の視野の内視鏡などに使用する医療用カメラなどに利用することができる。 The present invention can be applied to a medical camera or the like used for an endoscope having a circular field of view or the like.

1 反射光撮像素子
2 透過光撮像素子
10 光束分離プリズム
11 第1プリズム
12 第2プリズム
13 分離膜
100 入射光
101 反射光
102 透過光
1 Reflected light imaging element 2 Transmitted light imaging element 10 Light beam separation prism 11 First prism 12 Second prism 13 Separation film 100 Incident light 101 Reflected light 102 Transmitted light

Claims (7)

対象物を撮像する光束分離撮像装置において、
対象物からの入射光を透過光と反射光とに分離する光束分離プリズムであって、
光軸に沿って進む入射光が入射する入射面と、分離膜が形成され、前記分離膜は前記入射光の一部を反射光として前記入射面に向かって反射するとともに残りを透過光として透過させる分離面と、前記分離膜によって反射され、前記入射面で全反射された前記反射光が出射する出射面とを含み、前記入射面と前記分離面とが形成する角度が45°より小さい第1プリズムと、
前記第1プリズムの分離面に前記分離膜を介して接し、前記第1プリズムの分離面の分離膜を透過した透過光が入射する入射面と、前記光軸に沿って進む前記透過光が出射する出射面とを含む第2プリズムと
を含む光束分離プリズムと、
前記第1プリズムの出射面に対向して設置され、前記反射光から前記対象物の像の少なくとも半分を撮像する反射光撮像素子と、
前記第2プリズムの出射面に対向して設置され、前記透過光から前記対象物の像の少なくとも他の半分を撮像する透過光撮像素子と、
前記反射光撮像素子からの反射光映像信号と、前記透過光撮像素子からの透過光映像信号とを前記対象物の像に相当する一つの映像信号に合成する信号処理ユニットと
を含み、前記反射光撮像素子及び前記透過光撮像素子では正像が取得される光束分離撮像装置。
In a light beam separation imaging device that images an object
A luminous flux separation prism that separates incident light from an object into transmitted light and reflected light.
An incident surface on which incident light traveling along the optical axis is incident and a separation film are formed, and the separation film reflects a part of the incident light toward the incident surface as reflected light and the rest as transmitted light. The angle formed between the incident surface and the separated surface is smaller than 45 °. 1 prism and
An incident surface that is in contact with the separation surface of the first prism via the separation film and is incident with transmitted light transmitted through the separation film of the separation surface of the first prism, and the transmitted light traveling along the optical axis are emitted. A light beam separation prism including a second prism including an exit surface and
A reflected light image sensor that is installed facing the exit surface of the first prism and captures at least half of the image of the object from the reflected light.
A transmitted light image sensor which is installed facing the exit surface of the second prism and images at least the other half of the image of the object from the transmitted light.
The reflection includes a signal processing unit that synthesizes a reflected light image signal from the reflected light image sensor and a transmitted light image signal from the transmitted light image sensor into one image signal corresponding to an image of the object. A light beam separation image sensor in which a normal image is acquired by an optical image sensor and the transmitted light image sensor.
前記反射光撮像素子は前記反射光から前記対象物の像の少なくとも上半分を撮像し、前記透過光撮像素子は前記透過光から前記対象物の像の少なくとも下半分を撮像する請求項1に記載の光束分離撮像装置。 The first aspect of claim 1, wherein the reflected light image sensor images at least the upper half of the image of the object from the reflected light, and the transmitted light image sensor images at least the lower half of the image of the object from the transmitted light. Luminous flux separation image sensor. 前記反射光撮像素子は前記反射光から前記対象物の像の少なくとも下半分を撮像し、前記透過光撮像素子は前記透過光から前記対象物の像の少なくとも上半分を撮像する請求項1に記載の光束分離撮像装置。 The first aspect of claim 1, wherein the reflected light image sensor images at least the lower half of the image of the object from the reflected light, and the transmitted light image sensor images at least the upper half of the image of the object from the transmitted light. Luminous flux separation image sensor. 前記対象物の像は円形であり、前記反射光撮像素子が撮像する前記対象物の像の少なくとも半分は少なくとも半円の像を含み、前記透過光撮像素子が撮像する前記対象物の像の少なくとも他の半分は少なくとも他の半円の像を含む請求項1から3のいずれか一項に記載の光束分離撮像装置。 The image of the object is circular, at least half of the image of the object imaged by the reflected light imaging element includes an image of at least a semicircle, and at least the image of the object imaged by the transmitted light imaging element. The luminous flux separation imaging device according to any one of claims 1 to 3, wherein the other half includes at least an image of another semicircle. 前記反射光撮像素子及び前記透過光撮像素子は、アスペクト比が16:9である請求項1から4のいずれか一項に記載の光束分離撮像装置。 The luminous flux separation imaging device according to any one of claims 1 to 4, wherein the reflected light imaging element and the transmitted light imaging element have an aspect ratio of 16: 9. 前記反射光撮像素子及び前記透過光撮像素子は、1920×1080画素又は3840×2160画素を有する請求項5に記載の光束分離撮像装置。 The luminous flux separation imaging device according to claim 5, wherein the reflected light image sensor and the transmitted light image sensor have 1920 × 1080 pixels or 3840 × 2160 pixels. Cマウントアダプターに適合するフランジバック長を有する請求項1から6のいずれか一項に記載の光束分離撮像装置。 The luminous flux separation imaging device according to any one of claims 1 to 6, which has a flange back length suitable for a C-mount adapter.
JP2020063413A 2020-03-31 2020-03-31 Luminous flux separation imaging device Pending JP2021164042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020063413A JP2021164042A (en) 2020-03-31 2020-03-31 Luminous flux separation imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020063413A JP2021164042A (en) 2020-03-31 2020-03-31 Luminous flux separation imaging device

Publications (1)

Publication Number Publication Date
JP2021164042A true JP2021164042A (en) 2021-10-11

Family

ID=78005171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020063413A Pending JP2021164042A (en) 2020-03-31 2020-03-31 Luminous flux separation imaging device

Country Status (1)

Country Link
JP (1) JP2021164042A (en)

Similar Documents

Publication Publication Date Title
KR100220524B1 (en) Video camera
US8953084B2 (en) Plural focal-plane imaging
US8687045B2 (en) Three-dimensional image-capturing apparatus
KR100910175B1 (en) Image sensor for generating a three dimensional image
CN110754081B (en) Apparatus for imaging a local field of view, multi-aperture imaging apparatus and methods of providing these apparatus
US20160120397A1 (en) Endoscope image-acquisition device
US9229238B2 (en) Three-chip camera apparatus
JP2012133311A (en) Stereoscopic photographing device and electronic apparatus equipped with the same
JP2007295326A (en) Multi-focus imaging apparatus
US20180188502A1 (en) Panorama image capturing device having at least two camera lenses and panorama image capturing module thereof
JP2009088844A (en) Color separation stereo camera
KR102214199B1 (en) Mobile communication terminal
JP6751426B2 (en) Imaging device
JP2011215545A (en) Parallax image acquisition device
JP2021164042A (en) Luminous flux separation imaging device
JP2007163724A (en) Image coincidence type range finder using ccd, camera with range finder, and photographing system
JP2013044893A (en) Compound-eye imaging device, and distance image acquisition device
WO2023132222A1 (en) Imaging device, and electronic apparatus
JP2012027228A (en) Color imaging optical system
JP6022428B2 (en) Image photographing apparatus and image photographing method
CN206514949U (en) A kind of multispectral imaging device
JP2015106773A (en) Imaging device with array optical system
WO2012117619A1 (en) 3d imaging device
JP2003161879A (en) Imaging optical system and image photographing device using the same
JP2013097079A (en) Stereoscopic photographing device and electronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240507