JP2021163810A - Organic semiconductor device - Google Patents

Organic semiconductor device Download PDF

Info

Publication number
JP2021163810A
JP2021163810A JP2020062138A JP2020062138A JP2021163810A JP 2021163810 A JP2021163810 A JP 2021163810A JP 2020062138 A JP2020062138 A JP 2020062138A JP 2020062138 A JP2020062138 A JP 2020062138A JP 2021163810 A JP2021163810 A JP 2021163810A
Authority
JP
Japan
Prior art keywords
organic semiconductor
type
fullerenes
pcbm
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020062138A
Other languages
Japanese (ja)
Inventor
理恵子 藤田
Rieko Fujita
和弘 毛利
Kazuhiro Mori
済 佐藤
Wataru Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2020062138A priority Critical patent/JP2021163810A/en
Publication of JP2021163810A publication Critical patent/JP2021163810A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Light Receiving Elements (AREA)

Abstract

To provide an organic semiconductor device with high external quantum efficiency (EQE).SOLUTION: An organic semiconductor device includes a p-type conjugated polymer, an n-type fullerene, and an n-type compound represented by the following formula (I) in an active layer (in the formula (I), X represents a carbon or silicon atom; Y1, Y2, Z1, and Z2 each independently represent a linear or branched hydrocarbon group having 6 or more and 20 or less carbon atoms; A and B each independently represent a fluorine atom or a chlorine atom; m and n independently represent an integer of 1 or more and 4 or less; p and q independently represent an integer of 0 or 1).SELECTED DRAWING: None

Description

本発明は、有機半導体デバイスに関し、より詳しくは、赤外線フォトディテクタに適した有機半導体デバイスに関する。 The present invention relates to an organic semiconductor device, and more particularly to an organic semiconductor device suitable for an infrared photodetector.

イメージセンサーに求められる役割は多様化しており、特に機械処理による作動認識、空間計測、空間マッピング、形状認識などで利用される機会が増加している。センサーによる認識としては、可視光のみならず人間が感知できない赤外光の反射光を処理することが行われているが、近赤外領域での光電変換効率が不十分であった(例えば非特許文献1、2参照)。
近赤外領域での光電変換効率(外部量子効率)を向上させるため、これまでのところ、CMOSの光電変換の原理に基づき、光電変換層が光を吸収して励起子を発生させ電荷分離させるため、内部量子効率を向上させた吸光度の高い光電変換層とすること、或いは、光電変換層を厚膜化して吸光度を向上させること、が検討されてきている。
非特許文献1、2には、近赤外を検知する光電変換装置の総論が記載され、特に、スクアレン系ドナー材料を用いた例が記載されている。そして、近赤外の光を吸収して、光電変換して感知するものの例が記載されている。そして非特許文献3には、バンドギャップが狭められた非フラーレン化合物、及びその合成方法が記載されている。
また、特許文献1、2には、有機半導体を用いて撮像素子とした光電変換素子が記載されている。
The roles required of image sensors are diversifying, and there are increasing opportunities for them to be used in motion recognition, spatial measurement, spatial mapping, shape recognition, etc. by mechanical processing. As recognition by the sensor, not only visible light but also reflected light of infrared light that cannot be perceived by humans is processed, but the photoelectric conversion efficiency in the near infrared region is insufficient (for example, non-transmissive light). See Patent Documents 1 and 2).
In order to improve the photoelectric conversion efficiency (external quantum efficiency) in the near-infrared region, so far, the photoelectric conversion layer absorbs light to generate an exciter and separates the charge based on the principle of photoelectric conversion of CMOS. Therefore, it has been studied to use a photoelectric conversion layer having high absorbance with improved internal quantum efficiency, or to thicken the photoelectric conversion layer to improve the absorbance.
Non-Patent Documents 1 and 2 describe a general remarks on a photoelectric conversion device that detects near infrared rays, and in particular, describe an example using a squalene-based donor material. Then, an example of a device that absorbs near-infrared light, performs photoelectric conversion, and senses the light is described. Non-Patent Document 3 describes a non-fullerene compound having a narrow bandgap and a method for synthesizing the non-fullerene compound.
Further, Patent Documents 1 and 2 describe a photoelectric conversion element which is an image pickup element using an organic semiconductor.

特開2018−129505号公報JP-A-2018-129505 特開2019−36641号公報JP-A-2019-36641

DOI:10.1021/acs.chemmater.9b00966、Chem.Mater.(2019)DOI: 10.1021 / acs. chemmator. 9b90066, Chem. Mater. (2019) ACS Appl.Mater.Interfaces 2018、10、11063−11069ACS Appl. Mater. Interfaces 2018, 10, 11063-11569 Adv.Energy Mater.、8巻、1801212(2018年)Adv. Energy Matter. , Volume 8, 1801212 (2018)

より高い効率の半導体デバイス、特に外部量子効率(EQE)の高い光電変換素子が得るため、新たな有機半導体の研究が行われてきている。有機半導体デバイスの外部量子効率を向上させるための有機半導体としては、n型化合物の開発が行われてきている。しかしながら、n型化合物は、低分子内で、ドナー部とアクセプター部位を有することから電子の局在化がおこり、電子の移動度が十分ではない。
本発明の課題は、上記問題を解決し、外部量子効率の高い有機半導体デバイスを提供することである。
Research on new organic semiconductors has been conducted in order to obtain semiconductor devices with higher efficiency, particularly photoelectric conversion elements having high external quantum efficiency (EQE). As an organic semiconductor for improving the external quantum efficiency of an organic semiconductor device, an n-type compound has been developed. However, since the n-type compound has a donor part and an acceptor part in a small molecule, electron localization occurs and the electron mobility is not sufficient.
An object of the present invention is to solve the above problems and provide an organic semiconductor device having high external quantum efficiency.

本発明者らは、鋭意検討した結果、p型共役高分子とn型化合物に、n型フラーレン類を加えた活性層を構築することにより、外部量子効率(EQE)の高い有機半導体デバイ
スが得られることを見出し、本発明に到達した。すなわち、本発明の要旨は以下の通りである。
As a result of diligent studies, the present inventors have obtained an organic semiconductor device having high external quantum efficiency (EQE) by constructing an active layer in which n-type fullerenes are added to a p-type conjugated polymer and an n-type compound. We have arrived at the present invention. That is, the gist of the present invention is as follows.

[1]
p型共役高分子、n型フラーレン類、および、下記式(I)で表されるn型化合物を活
性層に含有する、有機半導体デバイス。

Figure 2021163810
(式(I)中、Xは、炭素又はケイ素原子を表し;Y1、Y2、Z1及びZ2は、それぞれ独立に炭素数6以上20以下の直鎖又は分岐の炭化水素基を表し;A及びBは、それぞれ独立にフッ素原子又は塩素原子を表し;m及びnは、それぞれ独立に1以上4以下の整数を表し;p及びqは、それぞれ独立に0又は1の整数を表す。)
[2]
前記n型フラーレン類が、[60]フラーレン、[70]フラーレン、[60]PCBM、[70]PCBM、bis[60]PCBM、bis[70]PCBM、[60]SIMEF、[70]SIMEF、[60]ICBA、[70]ICBA、[60]ICMA、および[70]ICMAからなる群より選択される少なくとも1種類の化合物である、[1]に記載の有機半導体デバイス。
[3]
前記活性層が、多環芳香族化合物又は1,8−ジヨードオクタンからなる添加物を含有する、[1]又は[2]に記載の有機半導体デバイス。
[4]
前記有機半導体デバイスが光電変換素子である、[1]〜[3]のいずれかに記載の有機半導体デバイス。
[5]
波長940nmの光を照射した際の外部量子効率(EQE)が50%以上である、[1]〜[4]のいずれかに記載の有機半導体デバイス。
[6]
p型共役高分子、n型フラーレン類、および、下記式(I)で表されるn型化合物を含
有し、
前記n型フラーレン類が、[60]フラーレン、[70]フラーレン、[60]PCBM、[70]PCBM、bis[60]PCBM、bis[70]PCBM、[60]SIMEF、[70]SIMEF、[60]ICBA、[70]ICBA、[60]ICMA、および[70]ICMAからなる群より選択される少なくとも1種類の化合物であり、
前記n型化合物に対する前記n型フラーレン類の重量比が、1.0以下である、有機半導体インク。
Figure 2021163810
(式(I)中、Xは、炭素又はケイ素原子を表し;Y1、Y2、Z1及びZ2は、それぞれ独立に炭素数6以上20以下の直鎖又は分岐の炭化水素基を表し;A及びBは、それぞれ独立にフッ素原子又は塩素原子を表し;m及びnは、それぞれ独立に1以上4以下の整数を表し;p及びqは、それぞれ独立に0又は1の整数を表す。)
[7]
多環芳香族化合物又は1,8−ジヨードオクタンからなる添加物をさらに含有する、[6]に記載の有機半導体インク。
[8]
[1]〜[5]のいずれかに記載の有機半導体デバイスを用いたフォトディテクタ。
[9]
波長700〜1000nmの光を検知するために用いる、[8]に記載のフォトディテクタ。 [1]
An organic semiconductor device containing a p-type conjugated polymer, n-type fullerenes, and an n-type compound represented by the following formula (I) in an active layer.
Figure 2021163810
(In formula (I), X represents a carbon or silicon atom; Y1, Y2, Z1 and Z2 each independently represent a linear or branched hydrocarbon group having 6 or more and 20 or less carbon atoms; A and B. Represents a fluorine atom or a chlorine atom independently; m and n independently represent an integer of 1 or more and 4 or less; p and q each independently represent an integer of 0 or 1).
[2]
The n-type fullerenes are [60] fullerenes, [70] fullerenes, [60] PCBM, [70] PCBM, bis [60] PCBM, bis [70] PCBM, [60] SIMEF, [70] SIMEF, [ The organic semiconductor device according to [1], which is at least one compound selected from the group consisting of 60] ICBA, [70] ICBA, [60] ICMA, and [70] ICMA.
[3]
The organic semiconductor device according to [1] or [2], wherein the active layer contains an additive consisting of a polycyclic aromatic compound or 1,8-diiodooctane.
[4]
The organic semiconductor device according to any one of [1] to [3], wherein the organic semiconductor device is a photoelectric conversion element.
[5]
The organic semiconductor device according to any one of [1] to [4], wherein the external quantum efficiency (EQE) when irradiated with light having a wavelength of 940 nm is 50% or more.
[6]
It contains a p-type conjugated polymer, n-type fullerenes, and an n-type compound represented by the following formula (I).
The n-type fullerenes are [60] fullerenes, [70] fullerenes, [60] PCBM, [70] PCBM, bis [60] PCBM, bis [70] PCBM, [60] SIMEF, [70] SIMEF, [ At least one compound selected from the group consisting of 60] ICBA, [70] ICBA, [60] ICMA, and [70] ICMA.
An organic semiconductor ink in which the weight ratio of the n-type fullerenes to the n-type compound is 1.0 or less.
Figure 2021163810
(In formula (I), X represents a carbon or silicon atom; Y1, Y2, Z1 and Z2 each independently represent a linear or branched hydrocarbon group having 6 or more and 20 or less carbon atoms; A and B. Represents a fluorine atom or a chlorine atom independently; m and n independently represent an integer of 1 or more and 4 or less; p and q each independently represent an integer of 0 or 1).
[7]
The organic semiconductor ink according to [6], further containing an additive consisting of a polycyclic aromatic compound or 1,8-diiodooctane.
[8]
A photodetector using the organic semiconductor device according to any one of [1] to [5].
[9]
The photodetector according to [8], which is used to detect light having a wavelength of 700 to 1000 nm.

本発明によれば、外部量子効率(EQE)の高い有機半導体デバイスを提供することができる。 According to the present invention, it is possible to provide an organic semiconductor device having high external quantum efficiency (EQE).

以下、本発明について詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施形態の一例(代表例)であり、本発明はこれらの内容に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, the present invention will be described in detail, but the description of the constituent elements described below is an example (representative example) of the embodiment of the present invention, and the present invention is not limited to these contents. It can be implemented with various modifications within the scope of the abstract.

本発明の一実施形態である有機半導体デバイスは種々の形態をとりうるが、典型的な形態として、フォトディテクタに使用される光電変換素子として以下説明する。そのため、有機半導体デバイスは光電変換素子のみに限定されるものではない。 The organic semiconductor device according to the embodiment of the present invention may take various forms, but as a typical form, a photoelectric conversion element used in a photodetector will be described below. Therefore, the organic semiconductor device is not limited to the photoelectric conversion element.

本発明の一実施形態である光電変換素子は、有機半導体としてp型共役高分子、フラーレン類及びn型化合物を含有する活性層(光電変換層)を有する。
また、本実施形態に係る光電変換素子は、近赤外領域の光を受けて光電変換する光電変換層を備える光電変換素子であってよく、その場合には光電変換層は近赤外吸収材料を含み得る。近赤外とは、可視領域と赤外領域との間に位置する光の波長範囲であり、一般的には700nm以上2500nm以下の領域をさし、本発明では、700nm以上1200nm以下の範囲をさす。
The photoelectric conversion element according to the embodiment of the present invention has an active layer (photoelectric conversion layer) containing a p-type conjugated polymer, fullerenes and n-type compounds as an organic semiconductor.
Further, the photoelectric conversion element according to the present embodiment may be a photoelectric conversion element including a photoelectric conversion layer that receives light in the near infrared region and performs photoelectric conversion, in which case the photoelectric conversion layer is a near infrared absorbing material. May include. The near infrared is a wavelength range of light located between the visible region and the infrared region, and generally refers to a region of 700 nm or more and 2500 nm or less, and in the present invention, a range of 700 nm or more and 1200 nm or less. As expected.

(n型化合物)
本実施形態に係る有機半導体デバイスの活性層は、n型有機半導体として、下記一般式(I)で表されるn型化合物を含有する。n型化合物は、溶液中の吸収極大が850nm以上1050nm以下の範囲にあり、赤外線フォトディテクタ用の光電変換素子として適切なバンドギャップを有する。
(N-type compound)
The active layer of the organic semiconductor device according to the present embodiment contains an n-type compound represented by the following general formula (I) as an n-type organic semiconductor. The n-type compound has an absorption maximum in the solution in the range of 850 nm or more and 1050 nm or less, and has a band gap suitable as a photoelectric conversion element for an infrared photodetector.

Figure 2021163810
Figure 2021163810

式(I)中、Xは、炭素又はケイ素原子を表し;Y1、Y2、Z1及びZ2は、それぞれ独立に炭素数6以上20以下の直鎖又は分岐の炭化水素基を表し;A及びBは、それぞれ独立にフッ素原子又は塩素原子を表し;m及びnは、それぞれ独立に1以上4以下の整数を表し;p及びqは、それぞれ独立に0又は1の整数を表す。 In formula (I), X represents a carbon or silicon atom; Y1, Y2, Z1 and Z2 each independently represent a linear or branched hydrocarbon group having 6 or more and 20 or less carbon atoms; A and B are. , Representing a fluorine atom or a chlorine atom independently; m and n independently represent an integer of 1 or more and 4 or less; p and q each independently represent an integer of 0 or 1.

Xは、安定的な溶解性の観点から、ケイ素原子であることが好ましい。
Y1、Y2、Z1及びZ2で表される炭素数6以上20以下の直鎖又は分岐の炭化水素基の炭素数は、好ましくは7以上、より好ましくは8以上であり、また、好ましくは15以下であり、より好ましくは12以下である。
炭素数6以上20以下の直鎖又は分岐の炭化水素基としては、n−オクチル基、n−デシル基、ラウリル基、ミリスチル基、パルミチル基等の直鎖アルキル基;2−エチルヘキシル基、2−ブチルオクチル基等の分岐を有する1級アルキル基;2−オクチル基、2−ノニル基、2−デシル基等の2級アルキル基;等が挙げられる。
これらのうち、Y1、Y2、Z1及びZ2は、1級の分岐鎖炭化水素基であることが好ましい。
A及びBは、溶解性を向上させる観点からはフッ素原子であることが好ましく、活性層を形成したときの分子配列の面から、塩素原子であることが好ましい。
m及びnは、2であることが好ましい。
p及びqは、1であることが好ましい。
X is preferably a silicon atom from the viewpoint of stable solubility.
The carbon number of the linear or branched hydrocarbon group represented by Y1, Y2, Z1 and Z2 having 6 or more and 20 or less carbon atoms is preferably 7 or more, more preferably 8 or more, and preferably 15 or less. It is more preferably 12 or less.
Examples of the linear or branched hydrocarbon group having 6 to 20 carbon atoms include a linear alkyl group such as an n-octyl group, an n-decyl group, a lauryl group, a myristyl group and a palmityl group; 2-ethylhexyl group and 2-ethylhexyl group. Examples thereof include a primary alkyl group having a branch such as a butyl octyl group; a secondary alkyl group such as a 2-octyl group, a 2-nonyl group, and a 2-decyl group; and the like.
Of these, Y1, Y2, Z1 and Z2 are preferably primary branched chain hydrocarbon groups.
A and B are preferably fluorine atoms from the viewpoint of improving solubility, and are preferably chlorine atoms from the viewpoint of the molecular arrangement when the active layer is formed.
m and n are preferably 2.
p and q are preferably 1.

一般式(I)で表されるn型化合物は、非特許文献3(Adv.Energy Mater.、8巻、1801212(2018年))に記載の方法により合成できる。 The n-type compound represented by the general formula (I) can be synthesized by the method described in Non-Patent Document 3 (Adv. Energy Meter., Vol. 8, 1801212 (2018)).

(n型フラーレン類)
本実施形態に係る有機半導体デバイスの活性層は、n型有機半導体として、n型フラーレン類を含有する。n型フラーレン類は、1種単独又は2種以上を混合して用いることができる。本実施形態においては、p型共役高分子及びn型化合物を含有する活性層に、n型フラーレン類を加えることで、電子移動度の向上とn型化合物の近赤外領域の吸収とを両立させることができる。また、活性層にn型フラーレン類を含有させることで、p型共役高分子とのバルクヘテロジャンクションを効率的に構築して電荷分離効率を向上させる効果、ホールと電子の移動度の均衡を得る効果等も期待できる。
(N-type fullerenes)
The active layer of the organic semiconductor device according to the present embodiment contains n-type fullerenes as an n-type organic semiconductor. The n-type fullerenes can be used alone or in combination of two or more. In the present embodiment, by adding n-type fullerenes to the active layer containing the p-type conjugated polymer and the n-type compound, both the improvement of electron mobility and the absorption of the n-type compound in the near infrared region are achieved at the same time. Can be made to. Further, by including n-type fullerenes in the active layer, the effect of efficiently constructing a bulk heterojunction with the p-type conjugated polymer to improve the charge separation efficiency and the effect of obtaining the balance between the mobility of holes and electrons. Etc. can also be expected.

n型フラーレン類は、特に限定されず、n型半導体として公知のフラーレン類を用いることができる。公知のフラーレン類としては、フラーレン−C60、フラーレン−C70、フラーレン−C76、フラーレン−C78、フラーレン−C84、フラーレン−C240、フラーレン−C540、ミックスドフラーレン、フラーレンナノチューブ等の無修飾フラーレン;及びこれらの一部が水素原子、ハロゲン原子、アルキル基、アルケニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、アミノ基、シリル基等によって置換されたフラーレン誘導体;が挙げられる。これらのうち、後述す
る有機溶媒(例えばクロロベンゼン)1mLに対し、10mg以上溶解するフラーレン類が好ましく、15mg以上溶解するフラーレン類がより好ましく、25mg以上溶解するフラーレン類が特に好ましい。
具体的なフラーレン誘導体としては、[60]PCBM、[70]PCBM、bis[60]PCBM、bis[70]PCBM、[60]SIMEF、[70]SIMEF、[60]ICBA、[70]ICBA、[60]ICMA、[70]ICMA、MP−C60、[60]PCBiB、[60]PCBH等が挙げられる。
これらのうち、無修飾フラーレンは、[60]フラーレン又は[70]フラーレンであることが好ましい。
また、フラーレン誘導体は、[60]PCBM、[70]PCBM、bis[60]PCBM、bis[70]PCBM、[60]SIMEF、[70]SIMEF、[60]ICBA、[70]ICBA、[60]ICMA、又は[70]ICMAであることが好ましく、[60]PCBM、[70]PCBM、又は[60]SIMEFであることがより好ましい。
The n-type fullerenes are not particularly limited, and fullerenes known as n-type semiconductors can be used. Known fullerenes include unmodified fullerenes such as fullerenes-C60, fullerenes-C70, fullerenes-C76, fullerenes-C78, fullerenes-C84, fullerenes-C240, fullerenes-C540, mixed fullerenes, fullerenes nanotubes; and these. Examples thereof include fullerene derivatives in which a part is substituted with a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an aryl group, a heteroaryl group, a cycloalkyl group, a silyl group, an ether group, an amino group, a silyl group and the like. Of these, fullerenes that dissolve 10 mg or more, more preferably fullerenes that dissolve 15 mg or more, and fullerenes that dissolve 25 mg or more are particularly preferable with respect to 1 mL of an organic solvent (for example, chlorobenzene) described later.
Specific fullerene derivatives include [60] PCBM, [70] PCBM, bis [60] PCBM, bis [70] PCBM, [60] SIMEF, [70] SIMEF, [60] ICBA, [70] ICBA, Examples thereof include [60] ICMA, [70] ICMA, MP-C60, [60] PCBiB, and [60] PCBH.
Of these, the unmodified fullerene is preferably [60] fullerene or [70] fullerene.
The fullerene derivatives are [60] PCBM, [70] PCBM, bis [60] PCBM, bis [70] PCBM, [60] SIMEF, [70] SIMEF, [60] ICBA, [70] ICBA, [60]. ] ICMA, or [70] ICMA, more preferably [60] PCBM, [70] PCBM, or [60] SIMEF.

活性層中におけるn型化合物に対するn型フラーレン類の重量比は、特に限定されず、通常0.2以上、好ましくは0.3以上、より好ましくは0.5以上、さらに好ましくは0.6以上、また、通常1.0以下、好ましくは0.9以下、より好ましくは0.85以下、さらに好ましくは0.8以下である。当該重量比を上記範囲内とすることにより、活性層の混合溶液中での溶解性を担保することができる。 The weight ratio of n-type fullerenes to n-type compounds in the active layer is not particularly limited, and is usually 0.2 or more, preferably 0.3 or more, more preferably 0.5 or more, still more preferably 0.6 or more. In addition, it is usually 1.0 or less, preferably 0.9 or less, more preferably 0.85 or less, still more preferably 0.8 or less. By setting the weight ratio within the above range, the solubility of the active layer in the mixed solution can be ensured.

(p型共役高分子)
本実施形態に係る有機半導体デバイスの活性層は、p型有機半導体として、p型共役高分子を含有する。p型共役高分子としては、例えば正孔輸送性高分子が挙げられ、電子を供与しやすい性質がある構成単位を有する正孔輸送性高分子であることが好ましい。また、p型共役高分子は、n型有機半導体と混合して塗布により膜を形成できるものであることが好ましい。
正孔輸送性高分子中、正孔輸送性に優れる部分構造としては、具体的には、ベンゾジチオフェン構造、チオフェン構造、カルバゾール構造、ジベンゾフラン構造、トリアリールアミン構造、ナフタレン構造、フェナントレン構造又はピレン構造が挙げられる。
具体的なp型共役高分子としては、例えば一般式(II)で表されるp型共役高分子が挙げられる。なお、式(II)中、nは正の数である。
(P-type conjugated polymer)
The active layer of the organic semiconductor device according to the present embodiment contains a p-type conjugated polymer as a p-type organic semiconductor. Examples of the p-type conjugated polymer include a hole-transporting polymer, and a hole-transporting polymer having a structural unit having a property of easily donating electrons is preferable. Further, the p-type conjugated polymer is preferably one that can be mixed with an n-type organic semiconductor to form a film by coating.
Specific examples of the partial structure having excellent hole transportability in the hole transport polymer include a benzodithiophene structure, a thiophene structure, a carbazole structure, a dibenzofuran structure, a triarylamine structure, a naphthalene structure, a phenanthrene structure or pyrene. The structure can be mentioned.
Specific examples of the p-type conjugated polymer include a p-type conjugated polymer represented by the general formula (II). In formula (II), n is a positive number.

Figure 2021163810
Figure 2021163810

活性層中、p型共役高分子に対するn型化合物の重量比は、通常0.5以上、好ましくは0.6以上、より好ましくは0.65以上、また、通常1.5以下、好ましくは1.3以下、より好ましくは1.0以下である。
また、活性層中、p型共役高分子に対するn型フラーレン類の重量比は、通常0.4以上、好ましくは0.5以上、より好ましくは0.6以上、また、通常2.0以下、好ましくは1.5以下、より好ましくは1.0以下である。
The weight ratio of the n-type compound to the p-type conjugated polymer in the active layer is usually 0.5 or more, preferably 0.6 or more, more preferably 0.65 or more, and usually 1.5 or less, preferably 1. It is 0.3 or less, more preferably 1.0 or less.
The weight ratio of n-type fullerenes to the p-type conjugated polymer in the active layer is usually 0.4 or more, preferably 0.5 or more, more preferably 0.6 or more, and usually 2.0 or less. It is preferably 1.5 or less, more preferably 1.0 or less.

活性層の形成方法は、特に限定されず、既知の方法により成膜できるが、典型的には塗布法である。
塗布法で活性層を成膜する場合、有機溶媒に、有機半導体であるp型共役高分子、n型フラーレン類、及びn型化合物に加え、添加物としてその他必要な物質を溶解して有機半導体インクを調製し、該有機半導体インクをスピンコート法などにより基板上に塗布し、乾燥することで形成する。スピンコートの条件は、有機半導体インクの粘度等を考慮して、定法に従い、適宜決定すればよい。乾燥の条件は、有機半導体インク中の有機溶媒を除去できる限り特に限定されず、例えば有機半導体インクを大気圧下、70℃〜130℃で5分〜20分間加熱アニールすることにより有機半導体インクを乾燥することができる。
The method for forming the active layer is not particularly limited, and a film can be formed by a known method, but it is typically a coating method.
When the active layer is formed by the coating method, the organic semiconductor is dissolved in an organic solvent by dissolving p-type conjugated polymers, n-type fullerenes, and n-type compounds, which are organic semiconductors, and other necessary substances as additives. An ink is prepared, the organic semiconductor ink is applied onto a substrate by a spin coating method or the like, and the mixture is dried to form the ink. The spin coating conditions may be appropriately determined according to a conventional method in consideration of the viscosity of the organic semiconductor ink and the like. The drying conditions are not particularly limited as long as the organic solvent in the organic semiconductor ink can be removed. For example, the organic semiconductor ink is heated and annealed at 70 ° C. to 130 ° C. for 5 to 20 minutes under atmospheric pressure to obtain the organic semiconductor ink. Can be dried.

有機半導体インク中のp型共役高分子、n型フラーレン類及びn型化合物の含有量はは、塗布により活性層を形成できれば特段限定されない。
有機半導体インク中のp型共役高分子の含有量は、通常0.5質量%以上であり、0.7質量%以上であってもよく、また、通常1.5質量%以下であり、1.3質量%以下であってもよい。
有機半導体インク中のn型フラーレン類の含有量は、通常0.3質量%以上であり、0.4質量%以上であってもよく、また、通常1.5質量%以下であり、1.0質量%以下であってもよい。
また、有機半導体インク中のn型化合物の含有量は、通常0.7質量%以上であり、1.0質量%以上であってもよく、また、通常2.0質量%以下であり、1.8質量%以下であってもよい。
本実施形態において、有機半導体インク中のn型化合物に対するn型フラーレン類の重量比は、通常0.2以上、好ましくは0.3以上、より好ましくは0.5以上、さらに好ましくは0.6以上、また、通常1.0以下、好ましくは0.9以下、より好ましくは0
.85以下、さらに好ましくは0.8以下である。当該重量比を上記範囲内とすることにより、n型フラーレンの高電子移動度によるEQE向上の効果がある。
The contents of the p-type conjugated polymer, n-type fullerenes and n-type compounds in the organic semiconductor ink are not particularly limited as long as the active layer can be formed by coating.
The content of the p-type conjugated polymer in the organic semiconductor ink is usually 0.5% by mass or more, may be 0.7% by mass or more, and is usually 1.5% by mass or less. It may be 3% by mass or less.
The content of n-type fullerenes in the organic semiconductor ink is usually 0.3% by mass or more, may be 0.4% by mass or more, and is usually 1.5% by mass or less. It may be 0% by mass or less.
The content of the n-type compound in the organic semiconductor ink is usually 0.7% by mass or more, may be 1.0% by mass or more, and is usually 2.0% by mass or less. It may be 0.8% by mass or less.
In the present embodiment, the weight ratio of n-type fullerene to the n-type compound in the organic semiconductor ink is usually 0.2 or more, preferably 0.3 or more, more preferably 0.5 or more, still more preferably 0.6. Above, usually 1.0 or less, preferably 0.9 or less, more preferably 0
.. It is 85 or less, more preferably 0.8 or less. By setting the weight ratio within the above range, there is an effect of improving EQE due to the high electron mobility of the n-type fullerene.

有機半導体インクに用いられる有機溶媒としては、特に限定されず、一般的に有機半導体デバイスの活性層を形成するための塗布液に用いられる有機溶媒を使用することができる。具体的には、クロロホルム、ジクロロエタンなどのハロゲン溶媒、トルエン、キシレン、クロロベンゼン、ジクロロベンゼンなどの芳香族炭化水素溶媒、THF、ジブチルエーテル等のエーテル溶媒の有機溶媒が挙げられる。一般に、有機半導体は、これらの有機溶媒への溶解性が高いためである。また、これらの有機溶媒を用いることで、光電変換効率の向上も期待できる。
上記有機溶媒のうち、有機溶媒は、有機半導体の種類にもよるが、キシレン、クロロベンゼンまたはクロロホルムであることが好ましい。また、溶解性を調整する場合には、有機溶媒は、2種類以上の混合有機溶媒であってもよい。なお、含有比は特段限定されず、1:9〜9:1の範囲であればよい。これらの有機溶媒は、沸点の差が、50℃以下が好ましく、40℃以下がより好ましく、30℃以下がさらに好ましい。
The organic solvent used for the organic semiconductor ink is not particularly limited, and an organic solvent generally used for a coating liquid for forming an active layer of an organic semiconductor device can be used. Specific examples thereof include halogen solvents such as chloroform and dichloroethane, aromatic hydrocarbon solvents such as toluene, xylene, chlorobenzene and dichlorobenzene, and organic solvents such as ether solvents such as THF and dibutyl ether. This is because organic semiconductors are generally highly soluble in these organic solvents. Further, by using these organic solvents, improvement in photoelectric conversion efficiency can be expected.
Among the above organic solvents, the organic solvent is preferably xylene, chlorobenzene or chloroform, although it depends on the type of the organic semiconductor. When adjusting the solubility, the organic solvent may be a mixed organic solvent of two or more kinds. The content ratio is not particularly limited and may be in the range of 1: 9 to 9: 1. The difference in boiling points of these organic solvents is preferably 50 ° C. or lower, more preferably 40 ° C. or lower, and even more preferably 30 ° C. or lower.

有機半導体インクは、p型共役高分子、n型フラーレン類、およびn型化合物に加え、バルクへテロ構造を安定化する目的から、添加物を含有することが好ましい。
添加物としては、p型有機半導体の芳香族部位及びn型有機半導体の芳香族部位のスタッキングを促進し、またp型有機半導体とn型有機半導体とのバルクヘテロ構造形成を促進することができる化合物が挙げられ、例えば多環芳香族化合物、1,8−ジヨードオクタン等が挙げられる。
多環芳香族化合物としては、ナフタレン、アントラセン、ピレンなどが挙げられる。これらのうち、添加物は、1−クロロナフタレンなどの2環式縮合環であることが好ましい。
有機半導体インク中の添加物の含有量は、インク中に通常1.5質量%以上、好ましくは2.0質量%以上、また、通常4.0質量%以下、好ましくは3.5質量%以下である。
The organic semiconductor ink preferably contains an additive in addition to the p-type conjugated polymer, n-type fullerenes, and n-type compound for the purpose of stabilizing the bulk heterostructure.
As an additive, a compound capable of promoting the stacking of the aromatic portion of the p-type organic semiconductor and the aromatic moiety of the n-type organic semiconductor, and promoting the formation of a bulk heterostructure between the p-type organic semiconductor and the n-type organic semiconductor. For example, a polycyclic aromatic compound, 1,8-diiodooctane and the like can be mentioned.
Examples of the polycyclic aromatic compound include naphthalene, anthracene, and pyrene. Of these, the additive is preferably a bicyclic fused ring such as 1-chloronaphthalene.
The content of the additive in the organic semiconductor ink is usually 1.5% by mass or more, preferably 2.0% by mass or more, and usually 4.0% by mass or less, preferably 3.5% by mass or less. Is.

さらに、有機半導体インクは、本発明の効果を阻害しない範囲でその他の成分を含有してもよい。その他成分の含有量は、通常、有機溶媒に対し2.0質量%以下である。 Further, the organic semiconductor ink may contain other components as long as the effects of the present invention are not impaired. The content of other components is usually 2.0% by mass or less with respect to the organic solvent.

有機半導体デバイスが光電変換素子の場合、光電変換素子の構造は、例えば特開2007−324587号公報の記載などを参照することができ、特段限定されず、例えば、透明基板上に、透明電極、電子輸送層、活性層(光電変換層)、正孔輸送層、及び金属電極の順に積層された構造であってよく、透明基板上に、透明電極、正孔輸送層、活性層(光電変換層)、電子輸送層、及び金属電極の順に積層された構造であってもよい。 When the organic semiconductor device is a photoelectric conversion element, the structure of the photoelectric conversion element can be referred to, for example, the description of JP-A-2007-324587, and is not particularly limited. The structure may be such that an electron transport layer, an active layer (photoelectric conversion layer), a hole transport layer, and a metal electrode are laminated in this order, and a transparent electrode, a hole transport layer, and an active layer (photoelectric conversion layer) are placed on a transparent substrate. ), The electron transport layer, and the metal electrode may be laminated in this order.

透明電極は、450nm以上の可視光において、平均透過率が80%以上である材料からなる電極である。透明電極を形成する材料としては、透明電極を形成できれば特段の制限はないが、スズをドープしたインジウム酸化物(ITO)、亜鉛をドープしたインジウム酸化物(IZO)、タングステンをドープしたインジウム酸化物(IWO)、亜鉛とアルミニウムとの酸化物(AZO)、酸化インジウム(In)、酸化亜鉛(ZnO)、酸化チタン(TiO)等があげられる。 The transparent electrode is an electrode made of a material having an average transmittance of 80% or more in visible light of 450 nm or more. The material for forming the transparent electrode is not particularly limited as long as the transparent electrode can be formed, but tin-doped indium oxide (ITO), zinc-doped indium oxide (IZO), and tungsten-doped indium oxide are used. (IWO), oxide of zinc and aluminum (AZO), indium oxide (In 2 O 3 ), zinc oxide (ZnO), titanium oxide (TiO 2 ) and the like.

金属電極は、上記透明電極と対をなす電極である。金属電極を構成する材料としては特段限定されず、金、白金、銀、アルミニウム、ニッケル、チタン、マグネシウム、カルシウム、バリウム、ナトリウム、クロム、銅、コバルトの等の金属又はその合金が挙げられる。
金属電極が透明電極である形態、すなわち一対の電極が透明電極であることが好ましい
。この場合、金属電極は、上記透明電極を形成する材料で形成され、一対の電極が同じ材料から形成されていてもよく、異なっていてもよい。
金属電極の膜厚は、特に限定されず、透明性を出したい場合には通常10nm程度であればよい。一方、透明性を求めないのであれば、耐久性等を考慮して40nm以上、さらに好ましくは、100nm以上にしてもよい。
The metal electrode is an electrode paired with the transparent electrode. The material constituting the metal electrode is not particularly limited, and examples thereof include metals such as gold, platinum, silver, aluminum, nickel, titanium, magnesium, calcium, barium, sodium, chromium, copper, and cobalt, or alloys thereof.
It is preferable that the metal electrode is a transparent electrode, that is, the pair of electrodes is a transparent electrode. In this case, the metal electrode is formed of the material forming the transparent electrode, and the pair of electrodes may be formed of the same material or may be different.
The film thickness of the metal electrode is not particularly limited, and if it is desired to obtain transparency, it may be usually about 10 nm. On the other hand, if transparency is not required, it may be 40 nm or more, more preferably 100 nm or more in consideration of durability and the like.

電子輸送層及び正孔輸送層の構成部材及びその製造方法について特段の制限はなく、周知技術を用いることができる。例えば、国際公開第2013/171517号、国際公開第2013/180230号又は特開2012−191194号公報等の公知文献に記載の部材及びその製造方法を使用することができる。 There are no particular restrictions on the constituent members of the electron transport layer and the hole transport layer and the manufacturing method thereof, and well-known techniques can be used. For example, the members described in publicly known documents such as International Publication No. 2013/171517, International Publication No. 2013/180230, and Japanese Patent Application Laid-Open No. 2012-191194, and methods for producing the same can be used.

有機半導体デバイスが光電変換素子である場合、光電変換素子は、フォトディテクタとして光センサーや撮像素子に備えられ、使用される。その場合の光センサー及び撮像素子の構成は、既知のものを適用すればよい。
本実施形態に係る有機半導体デバイスは、p型有機半導体に適切なn型有機半導体と組み合わせて活性層を形成することで、700〜1000nmにおける外部量子効率(EQE)を少なくともその一部の波長で50%以上とすることができ、より好ましくは波長940nmにおけるEQEが50%以上、さらに好ましくは700〜1000nmの全ての波長でEQEを50%以上とすることができる。
このような活性層を有する有機半導体デバイス(光電変換素子)を用いることで、波長700〜1000nmの光を検知するために用いるフォトディテクタを得ることができる。
When the organic semiconductor device is a photoelectric conversion element, the photoelectric conversion element is provided and used as a photodetector in an optical sensor or an image pickup element. In that case, known configurations of the optical sensor and the image sensor may be applied.
The organic semiconductor device according to the present embodiment forms an active layer in combination with an n-type organic semiconductor suitable for a p-type organic semiconductor, thereby achieving external quantum efficiency (EQE) at at least a part of wavelengths at 700 to 1000 nm. The EQE can be 50% or more, more preferably 50% or more at a wavelength of 940 nm, and even more preferably 50% or more at all wavelengths of 700 to 1000 nm.
By using an organic semiconductor device (photoelectric conversion element) having such an active layer, a photodetector used for detecting light having a wavelength of 700 to 1000 nm can be obtained.

以下に、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

[n型化合物の合成]
(合成例1)

Figure 2021163810
[Synthesis of n-type compounds]
(Synthesis Example 1)
Figure 2021163810

窒素気流下、500mL四つ口フラスコに3−メトキシチオフェン11.4g(100mmol)、2−エチルヘキサノール19.5g(150mmol)、p−トルエンスルホン酸1.72g(10mmol)及びトルエン200mLを入れ、ディーンスターク装置にて水を除去しながら130℃のオイルバスで8時間加熱した。反応液を水100mLと混合し、反応生成物を酢酸エチル100mLで抽出した。抽出液を、飽和食塩水で洗浄した、抽出液から溶媒を留去した。得られた残渣を、展開溶媒としてヘキサン:酢酸エチル=95:5の溶媒を用い、カラムクロマトグラフィーにより精製することで、3−(2−エチルヘキシルオキ)チオフェン17.1g(収率81%)を得た。 Under a nitrogen stream, 11.4 g (100 mmol) of 3-methoxythiophene, 19.5 g (150 mmol) of 2-ethylhexanol, 1.72 g (10 mmol) of p-toluenesulfonic acid and 200 mL of toluene were placed in a 500 mL four-necked flask, and Dean was placed. The mixture was heated in an oil bath at 130 ° C. for 8 hours while removing water with a Stark apparatus. The reaction was mixed with 100 mL of water and the reaction product was extracted with 100 mL of ethyl acetate. The extract was washed with saturated brine, and the solvent was distilled off from the extract. The obtained residue was purified by column chromatography using a solvent of hexane: ethyl acetate = 95: 5 as a developing solvent to obtain 17.1 g (yield 81%) of 3- (2-ethylhexyl oki) thiophene. Obtained.

(合成例2)

Figure 2021163810
(Synthesis Example 2)
Figure 2021163810

200mL四つ口フラスコに、3−(2−エチルヘキシルオキ)チオフェン4.3g(20mmol)及びN,N−ジメチルホルムアミド60mLを入れ、氷浴下、N−ブロモスクシンイミド3.6g(20mmol)のDMF40mL溶液をゆっくり滴下した。1時間攪拌したのち氷水100mLにあけ、酢酸エチル100mLで抽出した。飽和塩化アンモニア水、飽和重曹水、飽和食塩水で洗浄し、濃縮後ヘキサン:酢酸エチル=98:2でカラム精製を行い、2−ブロモ−3−(2−エチルヘキシルオキシ)チオフェン6.0gを定量的に得た。 In a 200 mL four-necked flask, 4.3 g (20 mmol) of 3- (2-ethylhexyl oki) thiophene and 60 mL of N, N-dimethylformamide are placed, and a solution of 3.6 g (20 mmol) of N-bromosuccinimide in 40 mL of DMF under an ice bath. Was slowly added dropwise. After stirring for 1 hour, the mixture was poured into 100 mL of ice water and extracted with 100 mL of ethyl acetate. Wash with saturated aqueous ammonia chloride, saturated aqueous sodium hydrogen carbonate, and saturated brine, and after concentration, perform column purification with hexane: ethyl acetate = 98: 2 to quantify 6.0 g of 2-bromo-3- (2-ethylhexyloxy) thiophene. I got it.

(合成例3)

Figure 2021163810
(Synthesis Example 3)
Figure 2021163810

窒素気流下、200mL四つ口フラスコに、2−ブロモ−3−(2−エチルヘキシルオキシ)チオフェン3.8g(13mmol)及びテトラヒドロフラン40mLを入れ、−78℃に冷却した。得られた溶液に、リチウムジイソプロピルアミドのヘキサン−テトラヒドロフラン溶液14.8mL(1.1M、16.3mmol)を滴下し、1時間攪拌した後、N、N−ジメチルホルムアミド2.5mL(33mmol)を添加し、さらに1時間撹拌した。反応液を室温に戻した後、氷水と混合し、反応生成物を酢酸エチル100mLで抽出した。抽出液を、飽和塩化アンモニア水及び飽和食塩水で順次洗浄し、抽出液から溶媒を留去した。得られた残渣を、展開溶媒としてヘキサン:酢酸エチル=90:10の混合溶媒を用い、カラムクロマトグラフィーにより精製することで、5−ブロモ−4−(2−エチルヘキシルオキシ)−2−チオフェンカルボキシアルデヒド2.3g(収率55%)を得た。 3.8 g (13 mmol) of 2-bromo-3- (2-ethylhexyloxy) thiophene and 40 mL of tetrahydrofuran were placed in a 200 mL four-necked flask under a nitrogen stream and cooled to −78 ° C. To the obtained solution, 14.8 mL (1.1 M, 16.3 mmol) of a hexane-tetrahydrofuran solution of lithium diisopropylamide was added dropwise, and after stirring for 1 hour, 2.5 mL (33 mmol) of N, N-dimethylformamide was added. Then, the mixture was further stirred for 1 hour. After returning the reaction solution to room temperature, it was mixed with ice water, and the reaction product was extracted with 100 mL of ethyl acetate. The extract was washed successively with saturated aqueous ammonia chloride and saturated brine, and the solvent was distilled off from the extract. The obtained residue was purified by column chromatography using a mixed solvent of hexane: ethyl acetate = 90:10 as a developing solvent, and thus 5-bromo-4- (2-ethylhexyloxy) -2-thiophenecarboxyaldehyde. 2.3 g (yield 55%) was obtained.

(合成例4)

Figure 2021163810
(Synthesis Example 4)
Figure 2021163810

窒素気流下、100mL四つ口フラスコに4,5−ジフルオロフタル酸無水物5.5g(30mmol)、無水酢酸30mL及びトリエチルアミン15mLを入れた。得られた溶液に、氷浴下で、アセト酢酸ブチル5.9mL(36mmol)を添加し、一晩放置した後、冷却した6N塩酸120mLにゆっくり滴下した。得られた溶液を80℃で1時間加熱し、室温まで放冷した後、氷水400mLと混合した。析出した薄茶色固体を濾別し、5,6−ジフルオロインデン−1,3−ジオンを4.8g(収率87%)をた。 Under a nitrogen stream, 5.5 g (30 mmol) of 4,5-difluorophthalic anhydride, 30 mL of acetic anhydride and 15 mL of triethylamine were placed in a 100 mL four-necked flask. To the obtained solution, 5.9 mL (36 mmol) of butyl acetate was added under an ice bath, the mixture was allowed to stand overnight, and then slowly added dropwise to 120 mL of cooled 6N hydrochloric acid. The obtained solution was heated at 80 ° C. for 1 hour, allowed to cool to room temperature, and then mixed with 400 mL of ice water. The precipitated light brown solid was filtered off to give 4.8 g (yield 87%) of 5,6-difluoroindene-1,3-dione.

(合成例5)

Figure 2021163810
(Synthesis Example 5)
Figure 2021163810

200mL四つ口フラスコに5,6−ジフルオロインデン−1,3−ジオン3.6g(20mmol)、エタノール60mLを入れ、攪拌下、マロノニトリル2.5mL(40mmol)を添加した。さらに酢酸ナトリウム2.5g(30mmol)を添加し、60℃で6時間加熱攪拌した。室温まで放冷したのち、水60mLにあけ、濃塩酸14mLを添加した。析出した固体を濾別し、クロロホルム50mLに溶解させ不溶分を濾別したのち濃縮し、2−(5,6−ジフルオロ−2,3−ジヒドロ−3−オキソ−1H−インデン−1−イリデン)−マロノニトリル3.6g(収率78%)を薄茶色固体として得た。 3.6 g (20 mmol) of 5,6-difluoroindene-1,3-dione and 60 mL of ethanol were placed in a 200 mL four-necked flask, and 2.5 mL (40 mmol) of malononitrile was added under stirring. Further, 2.5 g (30 mmol) of sodium acetate was added, and the mixture was heated and stirred at 60 ° C. for 6 hours. After allowing to cool to room temperature, the mixture was poured into 60 mL of water and 14 mL of concentrated hydrochloric acid was added. The precipitated solid was filtered off, dissolved in 50 mL of chloroform, the insoluble matter was filtered off, and then concentrated to concentrate 2- (5,6-difluoro-2,3-dihydro-3-oxo-1H-indene-1-iriden). -3.6 g (78% yield) of malononitrile was obtained as a light brown solid.

(合成例6)

Figure 2021163810
(Synthesis Example 6)
Figure 2021163810

窒素気流下、300mL四つ口フラスコに4,4−ビス(2−エチルヘキシル)−ジチエノ[3,2−b:2’,3’−d]シロール3.0g(7.2mmol)、テトラヒドロフラン42mLを入れ、−78℃に冷却した。得られた溶液に、リチウムジイソプロピルアミドのヘキサン−テトラヒドロフラン溶液7.7mL(1.1M、8.6mmol)を滴下し、30分攪拌した後、さらにトリメチルクロロスズの1Mテトラヒドロフラン溶液8.6mL(8.6mmol)を添加した。四つ口フラスコを冷却バスを外し、反応液を室温に戻した。続いて、反応液を氷水200mLと混合し、反応生成物をヘキサンで抽
出した。抽出液を飽和食塩水で洗浄し、抽出液から溶媒を留去することで、4,4−ビス(2−エチルヘキシル)−2,6−ビス(トリメチルスタニル)ジチエノ[3,2−b:2’,3’−d]シロール4.2g(収率79%)を薄緑色オイルとして得た。
In a 300 mL four-necked flask under a nitrogen stream, 3.0 g (7.2 mmol) of 4,4-bis (2-ethylhexyl) -dithieno [3,2-b: 2', 3'-d] silol, 42 mL of tetrahydrofuran was placed. And cooled to −78 ° C. To the obtained solution, 7.7 mL (1.1 M, 8.6 mmol) of a hexane-tetrahydrofuran solution of lithium diisopropylamide was added dropwise, and after stirring for 30 minutes, 8.6 mL (8. 6 mmol) was added. The four-necked flask was removed from the cooling bath and the reaction solution was returned to room temperature. Subsequently, the reaction solution was mixed with 200 mL of ice water, and the reaction product was extracted with hexane. By washing the extract with saturated brine and distilling off the solvent from the extract, 4,4-bis (2-ethylhexyl) -2,6-bis (trimethylstanyl) dithieno [3,2-b: 4.2 g (yield 79%) of 2', 3'-d] silol was obtained as a light green oil.

(合成例7)

Figure 2021163810
(Synthesis Example 7)
Figure 2021163810

窒素気流下、100mL四つ口フラスコに4,4−ビス(2−エチルヘキシル)−2,6−ビス(トリメチルスタニル)ジチエノ[3,2−b:2’,3’−d]シロール2.22g(2.98mmol)、5−ブロモ−4−(2−エチルヘキシルオキシ)−2−チオフェンカルボキシアルデヒド2.0g(6.26mmol)、テトラキストリフェニルホスフィンパラジウム(0)3mol%及びトルエン30mLを入れ、80℃で5時間加熱した。その後、反応液を室温まで放冷し、反応液から溶媒を留去した。得られた残渣を、展開溶媒としてヘキサン:酢酸エチル=90:10の混合溶媒を用い、カラムクロマトグラフィーにより精製することで、5,5’−(4,4−ビス(2−エチルヘキシル)4H−シローロ(3,2−b:4,5−b’)ジチオフェン−2,6−ジイル)ビス(4−((2−エチルヘキシル)オキシ)チオフェン−2−カルボアルデヒド2.1g(収率78%)を朱色オイルとして得た。 4,4-Bis (2-ethylhexyl) -2,6-bis (trimethylstanyl) dithieno [3,2-b: 2', 3'-d] silol in a 100 mL four-necked flask under a nitrogen stream. 22 g (2.98 mmol), 5-bromo-4- (2-ethylhexyloxy) -2-thiophenecarboxyaldehyde 2.0 g (6.26 mmol), tetrakistriphenylphosphine palladium (0) 3 mol% and toluene 30 mL were added. It was heated at 80 ° C. for 5 hours. Then, the reaction solution was allowed to cool to room temperature, and the solvent was distilled off from the reaction solution. The obtained residue was purified by column chromatography using a mixed solvent of hexane: ethyl acetate = 90:10 as a developing solvent, thereby purifying 5,5'-(4,4-bis (2-ethylhexyl) 4H-). Shiroro (3,2-b: 4,5-b') dithiophene-2,6-diyl) bis (4-((2-ethylhexyl) oxy) thiophen-2-carbaldehyde 2.1 g (yield 78%)) Was obtained as a vermilion oil.

(合成例8)

Figure 2021163810
(Synthesis Example 8)
Figure 2021163810

窒素気流下、200mL四つ口フラスコ中で、5,5’−(4,4−ビス(2−エチルヘキシル)4H−シローロ(3,2−b:4,5−b’)ジチオフェン−2、6−ジイル)ビス(4−((2−エチルヘキシル)オキシ)チオフェン−2−カルボアルデヒド1.0g(1.1mmol)及び2−(5,6−ジフルオロ−2,3−ジヒドロ−3−オキソ−1H−インデン−1−イリデン)−マロノニトリル0.77g(3.3mmol)を、
クロロホルム40mLに完溶させた。得られた溶液に、ピリジン1.1mLを添加し、60℃で5時間加熱した。その後、反応液を室温まで放冷した後、反応液とメタノール80mLとを混合した。続いて、析出した沈殿を濾別しすることで、2,2’−[(2Z,2’Z)−{(5,5’−(4,4−ビス(2−エチルヘキシル)4H−シローロ(3,2−b:4,5−b’)ジチオフェン−2、6−ジイル)ビス(4−((2−エチルヘキシル)オキシ)チオフェン−5,2−ジイル))ビス(メタニルイリデン)}ビス(5,6−ジフルオロ−3−オキソ−2,3−ジヒドロ−1H−インデン−2,1−ジイリデン)]ジマロノニトリル1.2g(収率82%)を得た。下記実施例及び比較例では、この化合物をn型化合物として用いた。
5,5'-(4,4-bis (2-ethylhexyl) 4H-sirolo (3,2-b: 4,5-b') dithiophene-2,6 in a 200 mL four-necked flask under a nitrogen stream -Diyl) bis (4-((2-ethylhexyl) oxy) thiophene-2-carbaldehyde 1.0 g (1.1 mmol) and 2- (5,6-difluoro-2,3-dihydro-3-oxo-1H) -Inden-1-iriden) -0.77 g (3.3 mmol) of malononitrile,
It was completely dissolved in 40 mL of chloroform. To the obtained solution, 1.1 mL of pyridine was added, and the mixture was heated at 60 ° C. for 5 hours. Then, the reaction solution was allowed to cool to room temperature, and then the reaction solution and 80 mL of methanol were mixed. Subsequently, by filtering the precipitated precipitate, 2,2'-[(2Z, 2'Z)-{(5,5'-(4,54-bis (2-ethylhexyl)) 4H-sirolo ( 3,2-b: 4,5-b') dithiophene-2,6-diyl) bis (4-((2-ethylhexyl) oxy) thiophene-5,2-diyl)) bis (methanylylidene)} bis (5) , 6-Difluoro-3-oxo-2,3-dihydro-1H-inden-2,1-diylidene)] Dimarononitrile 1.2 g (yield 82%) was obtained. In the following Examples and Comparative Examples, this compound was used as an n-type compound.

得られた化合物の1H NMRの測定結果を以下に示す。
1H NMR (500MHz, CDCl3, ppm): δ 8.70 (s, 2H), 8.51 (q, 2H), 7.74 (s, 2H), 7.65 (t, 2H), 7.52 (s, 2H), 4.16 (t, 4H), 1.89 (t, 2H), 1.54 - 1.70 (m, 8H), 1.35 - 1.45 (br.s, 8H), 1.14 - 1.28 (m, 20H), 0.95 - 1.04 (m, 14H), 0.79 - 0.82 (m, 12H)
The measurement results of 1 H NMR of the obtained compound are shown below.
1 H NMR (500MHz, CDCl 3 , ppm): δ 8.70 (s, 2H), 8.51 (q, 2H), 7.74 (s, 2H), 7.65 (t, 2H), 7.52 (s, 2H), 4.16 ( t, 4H), 1.89 (t, 2H), 1.54 --1.70 (m, 8H), 1.35 --1.45 (br.s, 8H), 1.14 --1.28 (m, 20H), 0.95 --1.04 (m, 14H), 0.79 --0.82 (m, 12H)

[光電変換素子の製造]
(実施例1)
(有機半導体インクの調製)
重量比が3:2:1となるように、合成例8で得られたn型化合物(12mg)、上記一般式(II)で表されるp型共役高分子(ポリ([2,6′−4,8−ジ(5−エチルヘキシルチエニル)ベンゾ[1,2−b;3,3−b]ジチオフェン]{3−フルオロ−2[(2−エチルヘキシルl)カルボニル]チエノ[3,4−b]チオフェンジイル}、PCE10と略す、8mg)及びフラーレン誘導体[70]PCBM(4mg)をバイアルに量りとった。次いで、クロロベンゼン1mLを前記バイアルに加えた。さらに、構造を調整するため(すなわち、p型有機半導体の芳香族部位及びn型有機半導体の芳香族部位のスタッキングを促進し、またp型有機半導体とn型有機半導体のバルクヘテロ構造形成を促進するため)の添加物として1−クロロナフタレンを溶媒量に対して2重量%加え、得られた混合溶液を75℃で24時間撹拌した。撹拌後の溶液をPTFEオートバイアル(孔径0.45μm)で濾過することにより、有機半導体インクを調製した。
[Manufacturing of photoelectric conversion element]
(Example 1)
(Preparation of organic semiconductor ink)
The n-type compound (12 mg) obtained in Synthesis Example 8 and the p-type conjugated polymer represented by the above general formula (II) so that the weight ratio is 3: 2: 1 (poly ([2,6')). -4,8-di (5-ethylhexyltienyl) benzo [1,2-b; 3,3-b] dithiophene] {3-fluoro-2 [(2-ethylhexyl l) carbonyl] thieno [3,4-b ] Thiophene diyl}, abbreviated as PCE10, 8 mg) and fullerene derivative [70] PCBM (4 mg) were weighed into the vial, then 1 mL of chlorobenzene was added to the vial to further adjust the structure (ie, p. 1-Chloronaphthalene as an additive (to promote stacking of aromatic moieties of type organic semiconductors and aromatic moieties of n-type organic semiconductors, and to promote bulk heterostructure formation between p-type organic semiconductors and n-type organic semiconductors) 2% by weight was added to the amount of the solvent, and the obtained mixed solution was stirred at 75 ° C. for 24 hours. The stirred solution was filtered through a PTFE motorcycle al (pore size 0.45 μm) to prepare an organic semiconductor ink. ..

(光電変換素子の作成)
パターニングされた酸化インジウム(ITO)透明導電膜を備えるガラス基板(ジオマテック社製)に対し、洗浄剤(横浜油脂工業社製、精密ガラス基板用洗浄剤セミクリーンM−LO)を用いた超音波洗浄を行い、その後超純水による洗浄、窒素ブローによる乾燥、および、塗布前直前に、UV−オゾン処理を行った。
(Creation of photoelectric conversion element)
Ultrapure cleaning of a glass substrate (manufactured by Geomatec) provided with a patterned indium oxide (ITO) transparent conductive film using a cleaning agent (manufactured by Yokohama Yushi Kogyo Co., Ltd., semi-clean M-LO). After that, washing with ultrapure water, drying with a nitrogen blow, and UV-ozone treatment immediately before application were performed.

次に、ZnOのナノ分散溶液(Abantama社製)を体積比1:1でイソプロパノールと混合し、超音波処理を10分行った後、オートバイアル(孔径0.2μm)で濾過した。ZnOナノ分散溶液を室温で上記基板上に、500rpmで3秒、2000rpmで20秒、4000rpmで20秒スピンコートを大気中で行い、電子取り出し層を形成した。得られた基板を90℃で20分間加熱した。 Next, a nanodispersed solution of ZnO 2 (manufactured by Avantama) was mixed with isopropanol at a volume ratio of 1: 1 and ultrasonically treated for 10 minutes, and then filtered through a motorcycle al (pore diameter 0.2 μm). A ZnO 2 nanodisperse solution was spin-coated on the substrate at room temperature at 500 rpm for 3 seconds, 2000 rpm for 20 seconds, and 4000 rpm for 20 seconds to form an electron extraction layer. The obtained substrate was heated at 90 ° C. for 20 minutes.

続いて、基板を大気中、室温まで冷却後、有機半導体インクを用いて1500rpmで20秒、および4000rpmで20秒でスピンコートして活性層を形成した。得られた基板を110℃で大気中、20分間加熱した。 Subsequently, the substrate was cooled to room temperature in the air, and then spin-coated with an organic semiconductor ink at 1500 rpm for 20 seconds and 4000 rpm for 20 seconds to form an active layer. The obtained substrate was heated at 110 ° C. in the air for 20 minutes.

次に、MoOを、抵抗加熱型真空蒸着法によりパターニングマスクを用いて活性層上に蒸着させ、厚さ7nmの正孔取り出し層を形成した。 Next, MoO 3 was vapor-deposited on the active layer using a patterning mask by a resistance heating type vacuum vapor deposition method to form a hole extraction layer having a thickness of 7 nm.

最後に、電極として、銀を、抵抗加熱型真空蒸着法によりパターニングマスクを用いて
正孔取り出し層上に蒸着させ、厚さ100nmの銀電極を形成した。こうして、25×30mm角の光電変換素子を作成した。
Finally, as an electrode, silver was vapor-deposited on the hole extraction layer by a resistance heating type vacuum vapor deposition method using a patterning mask to form a silver electrode having a thickness of 100 nm. In this way, a 25 × 30 mm square photoelectric conversion element was produced.

(実施例2)
有機半導体インクを調製する際にフラーレン誘導体[70]PCBMの代わりに[60]PCBMを用いた以外は実施例1と同様にして光電変換素子を作成した。
(Example 2)
A photoelectric conversion element was produced in the same manner as in Example 1 except that [60] PCBM was used instead of the fullerene derivative [70] PCBM when preparing the organic semiconductor ink.

(実施例3)
有機半導体インクを調製する際にフラーレン誘導体[70]PCBMの代わりに[60]フラーレンを用いた以外は実施例1と同様にして光電変換素子を作成した。
(Example 3)
A photoelectric conversion element was produced in the same manner as in Example 1 except that [60] fullerene was used instead of the fullerene derivative [70] PCBM when preparing the organic semiconductor ink.

(実施例4)
有機半導体インクを調製する際にフラーレン誘導体[70]PCBMの代わりに[70]フラーレンを用いた以外は実施例1と同様にして光電変換素子を作成した。
(Example 4)
A photoelectric conversion element was produced in the same manner as in Example 1 except that [70] fullerene was used instead of the fullerene derivative [70] PCBM when preparing the organic semiconductor ink.

(実施例5)
有機半導体インクを調製する際にフラーレン誘導体[70]PCBMの代わりに[60]SIMEFを用いた以外は実施例1と同様にして光電変換素子を作成した。
(Example 5)
A photoelectric conversion element was produced in the same manner as in Example 1 except that [60] SIMEF was used instead of the fullerene derivative [70] PCBM when preparing the organic semiconductor ink.

(実施例6)
有機半導体インクを調製する際に、合成例8で得られたn型化合物(12mg)、上記一般式(II)で表されるp型共役高分子(PCE10、8mg)及びフラーレン誘導体[70]PCBM(4mg)の重量比3:2:2の混合物を有機半導体として用いた以外は実施例1と同様にして光電変換素子を作成した。
(Example 6)
When preparing an organic semiconductor ink, the n-type compound (12 mg) obtained in Synthesis Example 8, the p-type conjugated polymer (PCE10, 8 mg) represented by the above general formula (II), and the fullerene derivative [70] PCBM. A photoelectric conversion element was produced in the same manner as in Example 1 except that a mixture having a weight ratio of (4 mg) of 3: 2: 2 was used as the organic semiconductor.

(実施例7)
有機半導体インクを調製する際に、合成例8で得られたn型化合物(12mg)、上記一般式(II)で表されるp型共役高分子(PCE10、8mg)及びフラーレン誘導体[70]PCBM(4mg)の重量比2:2:2の混合物を有機半導体として用いた以外は実施例1と同様にして光電変換素子を作成した。
(Example 7)
When preparing an organic semiconductor ink, the n-type compound (12 mg) obtained in Synthesis Example 8, the p-type conjugated polymer (PCE10, 8 mg) represented by the above general formula (II), and the fullerene derivative [70] PCBM. A photoelectric conversion element was produced in the same manner as in Example 1 except that a mixture having a weight ratio of (4 mg) of 2: 2: 2 was used as the organic semiconductor.

(比較例1)
有機半導体インクを調製する際に、合成例8で得られたn型化合物(12mg)及び上記一般式(2)で表されるp型共役高分子(PCE10、8mg)の重量比3:2の混合物を有機半導体として用いた以外は実施例1と同様にして光電変換素子を作成した。
(Comparative Example 1)
When preparing the organic semiconductor ink, the weight ratio of the n-type compound (12 mg) obtained in Synthesis Example 8 and the p-type conjugated polymer (PCE10, 8 mg) represented by the above general formula (2) is 3: 2. A photoelectric conversion element was produced in the same manner as in Example 1 except that the mixture was used as an organic semiconductor.

[光電変換素子の評価]
実施例と比較例で得られた光電変換素子に1mm角のメタルマスクをつけ、ITO電極と銀電極の間における、電流−電圧特性を測定した。バイアス−1Vを印加したときの、波長940nmにおける外部量子効率(EQE)を表1に示す。
[Evaluation of photoelectric conversion element]
A 1 mm square metal mask was attached to the photoelectric conversion elements obtained in Examples and Comparative Examples, and the current-voltage characteristics between the ITO electrode and the silver electrode were measured. Table 1 shows the external quantum efficiency (EQE) at a wavelength of 940 nm when a bias of -1 V is applied.

Figure 2021163810
Figure 2021163810

比較例1で、フラーレン類を用いずに得られた光電変換素子の波長940nmにおけるEQEは、49%であった。
一方、活性層にn型フラーレン類を含有する実施例1〜7の光電変換素子は、55%以上の高いEQEを示した。このように高いEQEは、n型フラーレン類が[60]PCBMの場合と[70]PCBMの場合とで同程度の高いEQEを与えていることから(実施例1及び2)、フラーレン類自体の光吸収ではなく、フラーレン類が電子移動度を促進したことに起因するものであると考えられる。また、修飾されていないフラーレン類である[60]フラーレン及び[70]フラーレンは、クロロベンゼン溶媒に良好に溶解して有機半導体インクを調製できたことから(実施例3及び4)、[60]PCBM及び[70]PCBMと同様の電子移動促進効果を奏したと考えられる。さらに、実施例5では、[60]SIMEFの溶解度がPCBMより高いため、EQEが向上したと考えられる。実施例6は、[70]PCBMの使用量を、実施例1の2倍に上げた実験例である。実施例6では、インク中に[70]PCBMが完全に溶解しなかったために、実施例1よりもEQEが若干低い結果になったものと考えられる。実施例7は、n型化合物の使用量を、実施例1の2/3の8mgとした実験例である。実施例7では、実施例1とほぼ同じEQEを示したことから、[70]PCBMは、電子の移動度を上げる効果が大きいと考えられる。
以上より、活性層にn型フラーレン類を含有させることで、バルクヘテロジャンクションを効率的に構築でき、電荷分離効率が向上し、さらにはホールと電子との移動度のバランスをよりよく保つことができると考えられる。
In Comparative Example 1, the EQE of the photoelectric conversion element obtained without using fullerenes at a wavelength of 940 nm was 49%.
On the other hand, the photoelectric conversion elements of Examples 1 to 7 containing n-type fullerenes in the active layer showed a high EQE of 55% or more. Since the n-type fullerenes give the same high EQE in the case of [60] PCBM and the case of [70] PCBM (Examples 1 and 2), such a high EQE of the fullerenes themselves. It is considered that this is not due to light absorption but due to the fact that fullerenes promoted electron mobility. Further, since the unmodified fullerenes [60] fullerene and [70] fullerene were successfully dissolved in the chlorobenzene solvent to prepare an organic semiconductor ink (Examples 3 and 4), [60] PCBM. And [70] It is considered that the same electron movement promoting effect as that of PCBM was exhibited. Further, in Example 5, since the solubility of [60] SIMEF is higher than that of PCBM, it is considered that EQE is improved. Example 6 is an experimental example in which the amount of [70] PCBM used is double that of Example 1. In Example 6, it is probable that the EQE was slightly lower than that in Example 1 because [70] PCBM was not completely dissolved in the ink. Example 7 is an experimental example in which the amount of the n-type compound used is 8 mg, which is 2/3 of that of Example 1. Since the EQE of Example 7 was almost the same as that of Example 1, it is considered that [70] PCBM has a great effect of increasing the mobility of electrons.
From the above, by including n-type fullerenes in the active layer, bulk heterojunction can be efficiently constructed, charge separation efficiency is improved, and the mobility balance between holes and electrons can be better maintained. it is conceivable that.

Claims (9)

p型共役高分子、n型フラーレン類、および、下記式(I)で表されるn型化合物を活
性層に含有する、有機半導体デバイス。
Figure 2021163810
(式(I)中、Xは、炭素又はケイ素原子を表し;Y1、Y2、Z1及びZ2は、それぞれ独立に炭素数6以上20以下の直鎖又は分岐の炭化水素基を表し;A及びBは、それぞれ独立にフッ素原子又は塩素原子を表し;m及びnは、それぞれ独立に1以上4以下の整数を表し;p及びqは、それぞれ独立に0又は1の整数を表す。)
An organic semiconductor device containing a p-type conjugated polymer, n-type fullerenes, and an n-type compound represented by the following formula (I) in an active layer.
Figure 2021163810
(In formula (I), X represents a carbon or silicon atom; Y1, Y2, Z1 and Z2 each independently represent a linear or branched hydrocarbon group having 6 or more and 20 or less carbon atoms; A and B. Represents a fluorine atom or a chlorine atom independently; m and n independently represent an integer of 1 or more and 4 or less; p and q each independently represent an integer of 0 or 1).
前記n型フラーレン類が、[60]フラーレン、[70]フラーレン、[60]PCBM、[70]PCBM、bis[60]PCBM、bis[70]PCBM、[60]SIMEF、[70]SIMEF、[60]ICBA、[70]ICBA、[60]ICMA、および[70]ICMAからなる群より選択される少なくとも1種類の化合物である、請求項1に記載の有機半導体デバイス。 The n-type fullerenes are [60] fullerenes, [70] fullerenes, [60] PCBM, [70] PCBM, bis [60] PCBM, bis [70] PCBM, [60] SIMEF, [70] SIMEF, [ The organic semiconductor device according to claim 1, which is at least one compound selected from the group consisting of 60] ICBA, [70] ICBA, [60] ICMA, and [70] ICMA. 前記活性層が、多環芳香族化合物又は1,8−ジヨードオクタンからなる添加物を含有する、請求項1又は2に記載の有機半導体デバイス。 The organic semiconductor device according to claim 1 or 2, wherein the active layer contains an additive consisting of a polycyclic aromatic compound or 1,8-diiodooctane. 前記有機半導体デバイスが光電変換素子である、請求項1〜3のいずれか1項に記載の有機半導体デバイス。 The organic semiconductor device according to any one of claims 1 to 3, wherein the organic semiconductor device is a photoelectric conversion element. 波長940nmの光を照射した際の外部量子効率(EQE)が50%以上である、請求項1〜4のいずれか1項に記載の有機半導体デバイス。 The organic semiconductor device according to any one of claims 1 to 4, wherein the external quantum efficiency (EQE) when irradiated with light having a wavelength of 940 nm is 50% or more. p型共役高分子、n型フラーレン類、および、下記式(I)で表されるn型化合物を含
有し、
前記n型フラーレン類が、[60]フラーレン、[70]フラーレン、[60]PCBM、[70]PCBM、bis[60]PCBM、bis[70]PCBM、[60]SIMEF、[70]SIMEF、[60]ICBA、[70]ICBA、[60]ICMA、および[70]ICMAからなる群より選択される少なくとも1種類の化合物であり、
前記n型化合物に対する前記n型フラーレン類の重量比が、1.0以下である、有機半導体インク。
Figure 2021163810
(式(I)中、Xは、炭素又はケイ素原子を表し;Y1、Y2、Z1及びZ2は、それぞれ独立に炭素数6以上20以下の直鎖又は分岐の炭化水素基を表し;A及びBは、それぞれ独立にフッ素原子又は塩素原子を表し;m及びnは、それぞれ独立に1以上4以下の整数を表し;p及びqは、それぞれ独立に0又は1の整数を表す。)
It contains a p-type conjugated polymer, n-type fullerenes, and an n-type compound represented by the following formula (I).
The n-type fullerenes are [60] fullerenes, [70] fullerenes, [60] PCBM, [70] PCBM, bis [60] PCBM, bis [70] PCBM, [60] SIMEF, [70] SIMEF, [ At least one compound selected from the group consisting of 60] ICBA, [70] ICBA, [60] ICMA, and [70] ICMA.
An organic semiconductor ink in which the weight ratio of the n-type fullerenes to the n-type compound is 1.0 or less.
Figure 2021163810
(In formula (I), X represents a carbon or silicon atom; Y1, Y2, Z1 and Z2 each independently represent a linear or branched hydrocarbon group having 6 or more and 20 or less carbon atoms; A and B. Represents a fluorine atom or a chlorine atom independently; m and n independently represent an integer of 1 or more and 4 or less; p and q each independently represent an integer of 0 or 1).
多環芳香族化合物又は1,8−ジヨードオクタンからなる添加物をさらに含有する、請求項6に記載の有機半導体インク。 The organic semiconductor ink according to claim 6, further containing an additive consisting of a polycyclic aromatic compound or 1,8-diiodooctane. 請求項1〜5のいずれか1項に記載の有機半導体デバイスを用いたフォトディテクタ。 A photodetector using the organic semiconductor device according to any one of claims 1 to 5. 波長700〜1000nmの光を検知するために用いる、請求項8に記載のフォトディテクタ。 The photodetector according to claim 8, which is used for detecting light having a wavelength of 700 to 1000 nm.
JP2020062138A 2020-03-31 2020-03-31 Organic semiconductor device Pending JP2021163810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020062138A JP2021163810A (en) 2020-03-31 2020-03-31 Organic semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020062138A JP2021163810A (en) 2020-03-31 2020-03-31 Organic semiconductor device

Publications (1)

Publication Number Publication Date
JP2021163810A true JP2021163810A (en) 2021-10-11

Family

ID=78003722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020062138A Pending JP2021163810A (en) 2020-03-31 2020-03-31 Organic semiconductor device

Country Status (1)

Country Link
JP (1) JP2021163810A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164128A (en) * 2015-03-06 2016-09-08 株式会社リコー Organic compound, organic material thin film, photoelectric conversion layer, solution for forming photoelectric conversion layer, and photoelectric conversion element
CN109096312A (en) * 2018-08-09 2018-12-28 杭州师范大学 A kind of A-D-A type small organic molecule and its preparation and application
CN109749059A (en) * 2017-11-03 2019-05-14 华南协同创新研究院 A kind of condensed ring N-shaped polymer of main chain cyano-containing indone and its application
US20190157581A1 (en) * 2017-11-02 2019-05-23 The Regents Of The University Of California Narrow bandgap non-fullerene acceptors and devices including narrow bandgap non-fullerene acceptors
JP2019533044A (en) * 2016-10-05 2019-11-14 メルク パテント ゲーエムベーハー Organic photodetector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164128A (en) * 2015-03-06 2016-09-08 株式会社リコー Organic compound, organic material thin film, photoelectric conversion layer, solution for forming photoelectric conversion layer, and photoelectric conversion element
JP2019533044A (en) * 2016-10-05 2019-11-14 メルク パテント ゲーエムベーハー Organic photodetector
US20190157581A1 (en) * 2017-11-02 2019-05-23 The Regents Of The University Of California Narrow bandgap non-fullerene acceptors and devices including narrow bandgap non-fullerene acceptors
CN109749059A (en) * 2017-11-03 2019-05-14 华南协同创新研究院 A kind of condensed ring N-shaped polymer of main chain cyano-containing indone and its application
CN109096312A (en) * 2018-08-09 2018-12-28 杭州师范大学 A kind of A-D-A type small organic molecule and its preparation and application

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HUANG, JIANFEI ET AL.: "A High‐Performance Solution‐Processed Organic Photodetector for Near‐Infrared Sensing", ADVANCED MATERIALS, vol. 32, JPN6023022621, 12 November 2019 (2019-11-12), pages 1906027 - 1, ISSN: 0005149461 *
LEE, JAEWON ET AL.: "Bandgap Narrowing in Non‐Fullerene Acceptors: Single Atom Substitution Leads to High Optoelectronic", ADVANCED ENERGY MATERIALS, vol. 8, JPN6023022620, 2018, pages 1801212, ISSN: 0005149460 *
LI, WEI ET AL.: "Visible to Near-Infrared Photodetection Based on Ternary OrganicHeterojunctions", ADVANCED FUNCTIONAL MATERIALS, vol. 29, JPN6023037189, 26 March 2019 (2019-03-26), pages 1808948, ISSN: 0005149458 *
QU, JIANFEI ET AL.: "Chlorine Atom-Induced Molecular Interlocked Network in a Non-Fullerene Acceptor", ACS APPLIED MATERIALS & INTERFACES, vol. 10, JPN6023022618, 2018, pages 39992 - 40000, ISSN: 0005076474 *
ZHANG, YUANXUN ET AL.: "Cyclopentadithiophene cored A-π-D-π-A non-fullerene electron acceptor in ternary polymer solar cel", ORGANIC ELECTRONICS, vol. 77, JPN6023022622, 31 October 2019 (2019-10-31), pages 105530 - 1, ISSN: 0005076473 *

Similar Documents

Publication Publication Date Title
ES2707886T3 (en) Electronic devices that use small molecule organic semiconductor compounds
JP2022030124A (en) Organic semiconductor device, organic semiconductor ink and photodetector
TW201002755A (en) Electron donative organic material, material for photovoltaic element and photovoltaic element
JP6332644B2 (en) Compound, polymer compound, organic semiconductor material, organic semiconductor device, compound synthesis method, polymer compound synthesis method
JP2011093848A (en) Fullerene derivative
TW201622197A (en) Photoelectric conversion element, and image sensor, solar cell, single color detection sensor and flexible sensor each of which uses said photoelectric conversion element
JP2021034449A (en) Organic semiconductor device and compound used therefor
JP7516973B2 (en) Photoelectric conversion element and optical sensor
JP2021132132A (en) Organic semiconductor device
JPWO2019039369A1 (en) Polymer compound, method for producing the same, organic semiconductor material containing the same, and organic solar cell containing the same
JP2021163810A (en) Organic semiconductor device
JP2021044448A (en) Organic semiconductor device and compound used therefor
JP2021061327A (en) Manufacturing method of organic semiconductor device
JP2015013844A (en) Fullerene derivative
JP2017119805A (en) Method for producing conjugated polymer having specific thienothiophene-benzodithiophene as unit segment
JP5673333B2 (en) Organic photoelectric conversion element
JP2021163811A (en) Organic semiconductor device
JP7029721B2 (en) Compounds, organic semiconductor materials, organic semiconductor devices, organic solar cells and organic transistors
JP2022028177A (en) Organic semiconductor device
KR20140083969A (en) Bibenzo[b]furan compound, photoelectric conversion material, and photoelectric conversion element
WO2012099097A1 (en) Fullerene derivative and photoelectric transducer using same
US10344028B2 (en) Organic semiconductor compound, production method thereof, and organic electronic device using the same
JP5927965B2 (en) Manufacturing method of organic photoelectric conversion element
JP5637985B2 (en) Diazaborol compound and field effect transistor containing the same
JP5503184B2 (en) Fullerene derivative, composition and organic photoelectric conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240305