JP2021162706A - Mirror device - Google Patents

Mirror device Download PDF

Info

Publication number
JP2021162706A
JP2021162706A JP2020063861A JP2020063861A JP2021162706A JP 2021162706 A JP2021162706 A JP 2021162706A JP 2020063861 A JP2020063861 A JP 2020063861A JP 2020063861 A JP2020063861 A JP 2020063861A JP 2021162706 A JP2021162706 A JP 2021162706A
Authority
JP
Japan
Prior art keywords
pair
mirror body
mirror
yoke
swing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020063861A
Other languages
Japanese (ja)
Other versions
JP7477344B2 (en
Inventor
友崇 矢部
Tomotaka Yabe
新吾 岩崎
Shingo Iwasaki
清朗 大島
Kiyoaki Oshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Pioneer Smart Sensing Innovations Corp
Original Assignee
Pioneer Electronic Corp
Pioneer Smart Sensing Innovations Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp, Pioneer Smart Sensing Innovations Corp filed Critical Pioneer Electronic Corp
Priority to JP2020063861A priority Critical patent/JP7477344B2/en
Publication of JP2021162706A publication Critical patent/JP2021162706A/en
Application granted granted Critical
Publication of JP7477344B2 publication Critical patent/JP7477344B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

To provide a mirror device that can oscillate a mirror member at a desired resonance frequency regardless of a change in environmental temperature.SOLUTION: A mirror device according to the present invention has: a mirror body that can oscillate around one axis, has a reflection surface formed on one face, is provided with a first permanent magnet at the center of the other face, and is provided with a pair of second permanent magnets arranged across the one axis on the other face; a driving part that is arranged in an area on the other face of the mirror body and includes a first yoke having a pair of end parts opposite across the first permanent magnet; and an adjustment part that is arranged in the area on the other face of the mirror body and includes a pair of second yokes each having an end part opposite to each of the pair of second permanent magnets.SELECTED DRAWING: Figure 1

Description

本発明は、反射面を有するミラーを揺動するミラー装置に関する。 The present invention relates to a mirror device that swings a mirror having a reflecting surface.

光を偏向しつつ所定の領域に向けて出射し、当該所定の領域から戻ってきた光を検出することによって、当該所定の領域内に位置する物体に関する種々の情報を得る走査装置が知られている。 There is known a scanning device that obtains various information about an object located in the predetermined region by emitting light toward a predetermined region while deflecting the light and detecting the light returned from the predetermined region. There is.

このような走査装置として、光を偏向するMEMS(Micro Electro Mechanical System)ミラー等の可動式のミラー部材に、磁気等により外部から力を加えることでトーションバーを捻り回転軸としてミラー往復振動させるものが提案されている(例えば、特許文献1参照)。かかる光走査装置では、ミラー部材の慣性モーメントとトーションバーのバネ定数から決まる共振周波数でミラー部材が揺動することになる。 As such a scanning device, a torsion bar is twisted by applying an external force to a movable mirror member such as a MEMS (Micro Electro Mechanical System) mirror that deflects light by magnetic force or the like to reciprocate the mirror as a rotation axis. Has been proposed (see, for example, Patent Document 1). In such an optical scanning device, the mirror member swings at a resonance frequency determined by the moment of inertia of the mirror member and the spring constant of the torsion bar.

ところで、トーションバーのバネ定数は温度により変化するため、温度変化に伴いミラー部材の共振周波数も変化してしまう。 By the way, since the spring constant of the torsion bar changes with temperature, the resonance frequency of the mirror member also changes with the temperature change.

そこで、上記した光走査装置では、ミラー部材を熱的に隔離させるために、当該ミラー部材をカバー部材で覆うようにしている。 Therefore, in the above-mentioned optical scanning device, in order to thermally isolate the mirror member, the mirror member is covered with a cover member.

特開2009−69676号公報JP-A-2009-69676

しかしながら、上記したようなカバー部材でミラー部材を覆った場合、外部環境の急激な温度変化に対してその温度変化を緩やかにできるものの、カバー部材だけでは実質的にミラー部材の周囲の温度を一定に保つことはできない。 However, when the mirror member is covered with the cover member as described above, the temperature change can be moderated in response to a sudden temperature change in the external environment, but the temperature around the mirror member is substantially constant with the cover member alone. Can't be kept in.

よって、かかる光走査装置でも外部環境の温度変化の影響を受けてミラー部材の共振周波数が変化することになる。 Therefore, even in such an optical scanning device, the resonance frequency of the mirror member changes due to the influence of the temperature change in the external environment.

そこで、本発明は、環境温度の変化に拘らず所望の共振周波数でミラー部材を揺動させることが可能なミラー装置を提供することを目的の一つとしている。 Therefore, one of the objects of the present invention is to provide a mirror device capable of swinging a mirror member at a desired resonance frequency regardless of a change in environmental temperature.

請求項1に記載の発明は、1の軸周りに揺動可能であり、一方の面に反射面が形成され、他方の面の中央に第1の永久磁石が設けられ、かつ前記他方の面において前記1の軸を挟んで配された一対の第2の永久磁石が設けられたミラー体と、前記ミラー体の他方の面側の領域に配されかつ前記第1の永久磁石を挟んで対向している一対の端部を有する第1のヨークを含む駆動部と、前記ミラー体の他方の面側の領域に配されかつ各々が前記一対の第2の永久磁石の各々と対向している端部を有する一対の第2のヨークを含む調整部と、を有する。 The invention according to claim 1 is swingable about one axis, has a reflective surface formed on one surface, a first permanent magnet is provided in the center of the other surface, and the other surface. A mirror body provided with a pair of second permanent magnets arranged across the first axis, and a mirror body arranged in a region on the other surface side of the mirror body and facing each other across the first permanent magnet. A drive unit including a first yoke having a pair of end portions and a region on the other side of the mirror body, each facing each of the pair of second permanent magnets. It has an adjusting portion including a pair of second yokes having an end portion.

請求項7に記載の発明は、一方の面に反射面が形成され他方の面の中央に永久磁石が設けられ、かつ1の軸周りに揺動可能なミラー体と、前記ミラー体の他方の面側の領域に配され前記第1の永久磁石を挟んで対向している一対の端部を有し且つコイルが巻かれたヨークを含む駆動部と、を有するミラー装置であって、前記駆動部は、前記ミラー体の揺動時の揺動周波数に対応した直流成分を交流電流に重畳した電流を、前記ヨークに巻かれている前記コイルに印加する。 The invention according to claim 7 is a mirror body in which a reflective surface is formed on one surface, a permanent magnet is provided in the center of the other surface, and the mirror body can swing around one axis, and the other mirror body. A mirror device having a pair of ends that are arranged in a region on the surface side and face each other across the first permanent magnet, and a drive unit that includes a yoke around which a coil is wound. The unit applies a current obtained by superimposing a DC component corresponding to the swing frequency of the mirror body on the alternating current to the coil wound around the yoke.

実施例1に係るミラー装置としてのミラースキャナの全体構成を示す図である。It is a figure which shows the whole structure of the mirror scanner as the mirror device which concerns on Example 1. FIG. ミラー部の平面図である。It is a top view of the mirror part. ミラー駆動回路及び揺動周波数調整回路の内部構成の一例を示すブロック図である。It is a block diagram which shows an example of the internal structure of a mirror drive circuit and a swing frequency adjustment circuit. 揺動検出信号の一例を示す波形図である。It is a waveform figure which shows an example of a swing detection signal. 揺動時におけるミラー体と、各ヨークとの位置関係を表す図である。It is a figure which shows the positional relationship between a mirror body and each yoke at the time of swinging. 揺動時におけるミラー体と、各ヨークとの他の位置関係を表す図である。It is a figure which shows the other positional relationship between a mirror body and each yoke at the time of swinging. ミラー体の共振周波数が基準周波数より高い場合での各ヨークの状態と、ミラー体に及ぼす作用を説明するための図である。It is a figure for demonstrating the state of each yoke when the resonance frequency of a mirror body is higher than a reference frequency, and the action which exerts on a mirror body. ミラー体の共振周波数が基準周波数より高い場合での各ヨークの状態と、ミラー体に及ぼす作用を説明するための他の図である。It is another figure for demonstrating the state of each yoke when the resonance frequency of a mirror body is higher than a reference frequency, and the action which exerts on a mirror body. ミラー体の共振周波数が基準周波数以下となる場合での各ヨークの状態と、ミラー体に及ぼす作用を説明するための図である。It is a figure for demonstrating the state of each yoke when the resonance frequency of a mirror body becomes less than a reference frequency, and the action which exerts on a mirror body. ミラー体の共振周波数が基準周波数以下となる場合での各ヨークの状態と、ミラー体に及ぼす作用を説明するための他の図である。It is another figure for demonstrating the state of each yoke in the case where the resonance frequency of a mirror body becomes less than a reference frequency, and the action which exerts on a mirror body. 実施例2に係るミラー装置としてのミラースキャナの全体構成の一例を示す図である。It is a figure which shows an example of the whole structure of the mirror scanner as the mirror device which concerns on Example 2. FIG. ミラー駆動回路の内部構成の他の一例を示すブロック図である。It is a block diagram which shows another example of the internal structure of a mirror drive circuit.

以下に本発明の好適な実施例を詳細に説明する。なお、以下の各実施例における説明及び添付図面においては、実質的に同一または等価な部分には同一の参照符号を付している Preferred embodiments of the present invention will be described in detail below. In the description and the accompanying drawings in each of the following examples, substantially the same or equivalent parts are designated by the same reference numerals.

図1は、ミラー装置としての第1の実施例に係るミラースキャナ100の全体構成の一例を示す図である。ミラースキャナ100は、例えば磁気駆動型のMEMS(Micro Electro Mechanical System)装置であり、光偏向を行う板状のミラー部10と、ミラー部10を揺動させための磁界を発生させる磁界発生源である磁気回路20と、を有する。 FIG. 1 is a diagram showing an example of the overall configuration of the mirror scanner 100 according to the first embodiment as a mirror device. The mirror scanner 100 is, for example, a magnetically driven MEMS (Micro Electro Mechanical System) device, which is a plate-shaped mirror portion 10 that performs light deflection and a magnetic field generation source that generates a magnetic field for swinging the mirror portion 10. It has a magnetic circuit 20 and a certain magnetic circuit 20.

図2は、図1に示す白抜き矢印の方向からミラー部10を眺めたミラー部10の平面図である。 FIG. 2 is a plan view of the mirror portion 10 when the mirror portion 10 is viewed from the direction of the white arrow shown in FIG.

図2に示すように、ミラー部10は、光反射面RFを有するミラー体10S、ミラー体10Sを囲む環状の枠体10W、及び当該ミラー体10Sを、揺動軸AY(一点鎖線にて示す)の周りに揺動可能な状態で支持するトーションバー10Tを有する。 As shown in FIG. 2, the mirror unit 10 indicates a mirror body 10S having a light reflecting surface RF, an annular frame body 10W surrounding the mirror body 10S, and the mirror body 10S by a rocking axis AY (dashed line). ) Has a torsion bar 10T that supports it in a swingable state.

ミラー体10Sにおける光反射面RFの反対の面上には、図1及び図2に示すように、永久磁石13、15a及び15bが固着されている。 Permanent magnets 13, 15a and 15b are fixed to the surface of the mirror body 10S opposite to the light reflecting surface RF, as shown in FIGS. 1 and 2.

永久磁石13は、ミラー体10Sにおける光反射面RFの反対の面上の中央の位置に固着されている。 The permanent magnet 13 is fixed at a central position on the opposite surface of the light reflecting surface RF in the mirror body 10S.

永久磁石15a及び15bは、当該光反射面RFの反対の面上において、互いに永久磁石13を挟んで離間した位置に夫々固着されている。 The permanent magnets 15a and 15b are fixed to each other on the opposite surface of the light reflecting surface RF at positions separated from each other with the permanent magnets 13 interposed therebetween.

尚、図1に示す実施例では、永久磁石13、15a及び15bの各々は、ミラー体10Sと固着されている面がS極、その対向面がN極となっている。 In the embodiment shown in FIG. 1, each of the permanent magnets 13, 15a and 15b has an S pole on the surface fixed to the mirror body 10S and an N pole on the opposite surface.

磁気回路20は、軟質磁性体材料、例えば電磁鋼板からなるヨーク21、31a及び31bと、ミラー駆動回路25と、揺動周波数調整回路26と、を含む。ヨーク21、31a及び31bは、図1に示すように、ミラー部10における光反射面RFの反対の面側の領域において、永久磁石13、15a及び15bの磁界内に配置されている。図1に示すように、ヨーク21、31a及び31bの各々には、コイル23、33a及び33bが夫々個別に巻き付けられている。 The magnetic circuit 20 includes yokes 21, 31a and 31b made of a soft magnetic material such as an electromagnetic steel plate, a mirror drive circuit 25, and a swing frequency adjusting circuit 26. As shown in FIG. 1, the yokes 21, 31a and 31b are arranged in the magnetic field of the permanent magnets 13, 15a and 15b in the region of the mirror portion 10 on the opposite surface side of the light reflecting surface RF. As shown in FIG. 1, coils 23, 33a and 33b are individually wound around the yokes 21, 31a and 31b, respectively.

ヨーク21は、例えばC字型又はU字型の形状を有し、その一対の端部が図1に示すように永久磁石13を非接触な状態で挟むような形態となるように設置されている。ヨーク21は、自身に巻き付けられているコイル23に交流電流が流れることで、自身の一対の端部から交流磁界を発生する電磁石として機能する。 The yoke 21 has, for example, a C-shape or a U-shape, and is installed so that a pair of ends thereof sandwich the permanent magnet 13 in a non-contact state as shown in FIG. There is. The yoke 21 functions as an electromagnet that generates an alternating magnetic field from a pair of ends of the yoke 21 when an alternating current flows through a coil 23 wound around the yoke 21.

ヨーク31aは、例えば棒形状を有し、その一方の端部34aが図1に示すように永久磁石15aと非接触な状態で且つ対向する位置に配置されるように設置されている。ヨーク31aは、自身に巻き付けられているコイル33aに直流電流が流れることで、自身の端部34aからN極又はS極の磁界を発生する電磁石として機能する。例えば、コイル33aに負極性の直流電流が流れるとヨーク31aの端部34aからS極の磁界が発生し、このコイル33aに正極性の直流電流が流れるとヨーク31aの端部34aからN極の磁界が発生する。 The yoke 31a has, for example, a rod shape, and one end portion 34a thereof is installed so as to be arranged in a non-contact state with the permanent magnet 15a and at a position facing the permanent magnet 15a as shown in FIG. The yoke 31a functions as an electromagnet that generates an N-pole or S-pole magnetic field from its end 34a when a direct current flows through a coil 33a wound around it. For example, when a negative DC current flows through the coil 33a, an S-pole magnetic field is generated from the end 34a of the yoke 31a, and when a positive DC current flows through the coil 33a, the N-pole from the end 34a of the yoke 31a. A magnetic field is generated.

ヨーク31bは、例えば棒形状を有し、その一方の端部34bが図1に示すように永久磁石15bと非接触な状態で且つ対向する位置に配置されるように設置されている。ヨーク31bは、自身に巻き付けられているコイル33bに直流電流が流れることで、自身の端部34bからN極又はS極の磁界を発生する電磁石として機能する。例えば、コイル33bに負極性の直流電流が流れるとヨーク31bの端部34bからS極の磁界が発生し、このコイル33bに正極性の直流電流が流れるとヨーク31bの端部34bからN極の磁界が発生する。 The yoke 31b has, for example, a rod shape, and one end portion 34b thereof is installed so as to be arranged in a non-contact state with the permanent magnet 15b and at a position facing the permanent magnet 15b as shown in FIG. The yoke 31b functions as an electromagnet that generates an N-pole or S-pole magnetic field from its end 34b when a direct current flows through a coil 33b wound around it. For example, when a negative DC current flows through the coil 33b, an S-pole magnetic field is generated from the end 34b of the yoke 31b, and when a positive DC current flows through the coil 33b, the N-pole from the end 34b of the yoke 31b. A magnetic field is generated.

ミラー駆動回路25は、ヨーク21の一対の端部にN極の磁界及びS極の磁界を夫々発生させつつ、一対の端部の各々に発生させた磁界の極性を反転させることで交流磁界を発生させる。この際、当該交流磁界が永久磁石13に印加されることで、ミラー体10Sが揺動軸AY周りに共振し、当該ミラー体10Sが揺動する。 The mirror drive circuit 25 generates an alternating magnetic field by reversing the polarities of the magnetic fields generated at each of the pair of ends while generating an N-pole magnetic field and an S-pole magnetic field at each of the pair of ends of the yoke 21. generate. At this time, when the alternating magnetic field is applied to the permanent magnet 13, the mirror body 10S resonates around the swing axis AY, and the mirror body 10S swings.

揺動周波数調整回路26は、一対のヨーク31a及び31bの夫々の端部34a及び34bにN極の磁界又はS極の磁界を発生させる。揺動周波数調整回路26は、この発生した磁界によりヨーク31a(31b)と永久磁石15a(15b)との間で引力又は斥力を生じさせることで、ミラー体10Sの揺動時の揺動周波数を調整する。 The swing frequency adjusting circuit 26 generates an N-pole magnetic field or an S-pole magnetic field at the ends 34a and 34b of the pair of yokes 31a and 31b, respectively. The swing frequency adjusting circuit 26 generates an attractive force or a repulsive force between the yoke 31a (31b) and the permanent magnet 15a (15b) by the generated magnetic field, so that the swing frequency of the mirror body 10S at the time of swing can be set. adjust.

図3は、ミラー駆動回路25及び揺動周波数調整回路26の内部構成の一例を示すブロック図である。 FIG. 3 is a block diagram showing an example of the internal configuration of the mirror drive circuit 25 and the swing frequency adjustment circuit 26.

図3に示すように、ミラー駆動回路25は交流電流源250を含む。交流電流源250は、揺動軸AYの周りにてミラー体10Sを揺動させるための交流電流を生成し、これをヨーク21のコイル23に供給する。 As shown in FIG. 3, the mirror drive circuit 25 includes an alternating current source 250. The AC current source 250 generates an AC current for swinging the mirror body 10S around the swing shaft AY, and supplies this to the coil 23 of the yoke 21.

揺動周波数調整回路26は、振動センサ252、制御部253、可変直流電流源254及び255を含む。 The swing frequency adjusting circuit 26 includes a vibration sensor 252, a control unit 253, and variable DC current sources 254 and 255.

振動センサ252は、ミラー体10Sの揺動状態を検出し、その揺動に対応した信号波形を有する揺動検出信号FDを制御部253に供給する。 The vibration sensor 252 detects the swing state of the mirror body 10S, and supplies the swing detection signal FD having a signal waveform corresponding to the swing to the control unit 253.

図4は、揺動検出信号FDの一例を示す波形図である。 FIG. 4 is a waveform diagram showing an example of the swing detection signal FD.

図4に示すように、揺動検出信号FDは、ミラー体10Sの揺動に追従して、その信号レベルが中心レベルQを中心にして最大値から最小値の間で周期的に変化する。 As shown in FIG. 4, the swing detection signal FD follows the swing of the mirror body 10S, and its signal level periodically changes from the maximum value to the minimum value around the center level Q.

制御部253は、例えば揺動検出信号FDの信号レベルが図4に示す中心レベルQよりも高い期間中は可変直流電流源254をオフ状態に設定し、低い期間中はオン状態に設定する電源オンオフ信号GON1を、可変直流電流源254に供給する。また、制御部253は、揺動検出信号FDの信号レベルが中心レベルQよりも高い期間中は可変直流電流源255をオン状態に設定し、低い期間中はオフ状態に設定する電源オンオフ信号GON2を、可変直流電流源255に供給する。 The control unit 253 sets the variable DC current source 254 to the off state during the period when the signal level of the swing detection signal FD is higher than the center level Q shown in FIG. 4, and sets the variable DC current source 254 to the on state during the low period. The on / off signal GON1 is supplied to the variable direct current current source 254. Further, the control unit 253 sets the variable DC current source 255 to the on state during the period when the signal level of the swing detection signal FD is higher than the center level Q, and sets the variable DC current source 255 to the off state during the period when the signal level is lower than the center level Q. Is supplied to the variable DC current source 255.

更に、制御部253は、揺動検出信号FDに基づき、ミラー体10Sの揺動時における周波数を揺動周波数として測定する。そして、制御部253は、測定した揺動周波数が所定の基準周波数より高い場合には、例えば負極性の直流電流を生成させるように促す電流制御信号CRを可変直流電流源254及び255に供給する。一方、測定した揺動周波数が基準周波数以下である場合には、制御部253は、正極性の直流電流を生成させるように促す電流制御信号CRを可変直流電流源254及び255に供給する。 Further, the control unit 253 measures the frequency at the time of swinging of the mirror body 10S as the swinging frequency based on the swinging detection signal FD. Then, when the measured swing frequency is higher than the predetermined reference frequency, the control unit 253 supplies the variable DC current sources 254 and 255 with a current control signal CR that prompts the generation of, for example, a negative direct current. .. On the other hand, when the measured swing frequency is equal to or lower than the reference frequency, the control unit 253 supplies the variable DC current sources 254 and 255 with a current control signal CR prompting the generation of a positive direct current.

可変直流電流源254は、電源オンオフ信号GON1がオン状態を示している間はオン状態となり、電流制御信号CRにて促された極性の直流電流IG1を生成し、これをヨーク31aのコイル33aに供給する。一方、電源オンオフ信号GON1がオフ状態を示している間は、可変直流電流源254は、かかる直流電流IG1の生成動作を停止する。 The variable DC current source 254 is turned on while the power on / off signal GON1 is shown to be on, and generates a DC current IG1 having a polarity urged by the current control signal CR, which is connected to the coil 33a of the yoke 31a. Supply. On the other hand, while the power on / off signal GON1 indicates an off state, the variable direct current current source 254 stops the operation of generating the direct current IG1.

可変直流電流源255は、電源オンオフ信号GON2がオン状態を示している間はオン状態となり、電流制御信号CRによって促された極性の直流電流IG2を生成し、これをヨーク31bのコイル33bに供給する。一方、電源オンオフ信号GON2がオフ状態を示している間は、可変直流電流源255は、かかる直流電流IG2の生成動作を停止する。 The variable DC current source 255 is turned on while the power on / off signal GON2 is in the ON state, generates a DC current IG2 having a polarity promoted by the current control signal CR, and supplies this to the coil 33b of the yoke 31b. do. On the other hand, while the power on / off signal GON2 indicates an off state, the variable direct current current source 255 stops the operation of generating the direct current IG2.

以下に、図1に示すミラースキャナ100の動作について説明する。 The operation of the mirror scanner 100 shown in FIG. 1 will be described below.

まず、ヨーク21は、ミラー駆動回路25から供給された交流電流に応じて、自身の一対の端部における一方がN極、他方がS極となり、引き続き一対の端部における一方がS極、他方がN極となる状態が交互に繰り返される交流磁界を発生する。当該交流磁界がミラー体10Sの永久磁石13に印加されると、ヨーク21の一対の端部と永久磁石13との間で引力及び斥力が交互に生じる。これにより、ミラー体10Sが揺動軸AYの周りに揺動する。この際、ミラー体10Sは、自身を支持するトーションバー10Tが捻れることで、当該トーションバー10Tのバネ定数に基づく周波数で共振する。つまり、ミラー体10Sは、トーションバー10Tのバネ定数に対応した共振周波数で、揺動軸AYの周りに揺動する。 First, the yoke 21 has an N pole at one of its pair of ends and an S pole at the other, and subsequently one at the pair of ends has an S pole and the other, according to the alternating current supplied from the mirror drive circuit 25. Generates an alternating magnetic field in which the state where is N pole is repeated alternately. When the alternating magnetic field is applied to the permanent magnets 13 of the mirror body 10S, attractive and repulsive forces are alternately generated between the pair of ends of the yoke 21 and the permanent magnets 13. As a result, the mirror body 10S swings around the swing shaft AY. At this time, the mirror body 10S resonates at a frequency based on the spring constant of the torsion bar 10T by twisting the torsion bar 10T that supports the mirror body 10S. That is, the mirror body 10S swings around the swing shaft AY at a resonance frequency corresponding to the spring constant of the torsion bar 10T.

図5A及び図5Bは、揺動時におけるミラー体10Sと、ヨーク21、ヨーク31a及び31bとの位置関係を表す図である。 5A and 5B are diagrams showing the positional relationship between the mirror body 10S and the yoke 21, the yokes 31a and 31b during rocking.

尚、図5Aは、例えば図4に示す揺動検出信号FDの信号レベルが最大値となる時点でのミラー体10Sと、ヨーク21、ヨーク31a及び31bとの位置関係を表している。一方、図5Bは、例えば揺動検出信号FDの信号レベルが最小値となる時点でのミラー体10Sと、ヨーク21、ヨーク31a及び31bとの位置関係を表している。 Note that FIG. 5A shows, for example, the positional relationship between the mirror body 10S and the yokes 21, yokes 31a and 31b at the time when the signal level of the swing detection signal FD shown in FIG. 4 reaches the maximum value. On the other hand, FIG. 5B shows the positional relationship between the mirror body 10S and the yokes 21, yokes 31a and 31b at the time when the signal level of the swing detection signal FD becomes the minimum value, for example.

ここで、永久磁石13が交流磁界を受けていない状態でのミラー体10Sの角度を基点角J0とすると、永久磁石13が交流磁界を受けることでミラー体10Sは、図5A及び図5Bに示すように、基点角J0に対して振れ角θで揺動する。 Here, assuming that the angle of the mirror body 10S when the permanent magnet 13 is not receiving the alternating magnetic field is the base point angle J0, the mirror body 10S is shown in FIGS. 5A and 5B when the permanent magnet 13 receives the alternating magnetic field. As described above, it swings at a swing angle θ with respect to the base point angle J0.

図5Aに示す状態時には、可変直流電流源254及び255のうちの可変直流電流源255がオン状態となる。これにより、ヨーク31a及び31bのうちのヨーク31bだけが電磁石として機能し、ヨーク31bの端部34bから磁界が発生する。この際、ヨーク31aの端部34aから磁界は発生しない。 In the state shown in FIG. 5A, the variable DC current source 255 of the variable DC current sources 254 and 255 is turned on. As a result, only the yoke 31b of the yokes 31a and 31b functions as an electromagnet, and a magnetic field is generated from the end 34b of the yoke 31b. At this time, no magnetic field is generated from the end 34a of the yoke 31a.

一方、図5Bに示す状態時には、可変直流電流源254及び255のうちの可変直流電流源254がオン状態となる。これにより、ヨーク31a及び31bのうちのヨーク31aだけが電磁石として機能し、ヨーク31aの端部34aから磁界が発生する。この際、ヨーク31bの端部34bから磁界は発生しない。 On the other hand, in the state shown in FIG. 5B, the variable DC current source 254 of the variable DC current sources 254 and 255 is turned on. As a result, only the yoke 31a of the yokes 31a and 31b functions as an electromagnet, and a magnetic field is generated from the end portion 34a of the yoke 31a. At this time, no magnetic field is generated from the end 34b of the yoke 31b.

つまり、ヨーク31a及び31bの各々は、ミラー体10Sの揺動に伴い、自身に対向する永久磁石(15a、15b)が近づいてきている場合に電磁石として機能する。 That is, each of the yokes 31a and 31b functions as an electromagnet when the permanent magnets (15a, 15b) facing themselves are approaching as the mirror body 10S swings.

ここで、揺動検出信号FDに基づくミラー体10Sの揺動周波数が所定の基準周波数より高い場合には、可変直流電流源254(255)が、負極性の直流電流IG1(IG2)をヨーク31a(31b)のコイル33a(33b)に供給する。これにより、ヨーク31a(31b)の端部34a(34b)はS極の磁界を発生し、ヨーク31a(31b)と永久磁石15a(15b)との間で引力を生じさせる。 Here, when the swing frequency of the mirror body 10S based on the swing detection signal FD is higher than the predetermined reference frequency, the variable DC current source 254 (255) sets the negative electrode DC current IG1 (IG2) to the yoke 31a. It is supplied to the coils 33a (33b) of (31b). As a result, the end portion 34a (34b) of the yoke 31a (31b) generates a magnetic field of the S pole, and an attractive force is generated between the yoke 31a (31b) and the permanent magnet 15a (15b).

図6A及び図6Bは、ミラー体10Sの揺動周波数が所定の基準周波数より高い場合でのヨーク31a及び31bの状態と、ミラー体10Sに及ぼす作用を説明するための図である。尚、図6Aは、図5Aと同様なミラー体10S、ヨーク21、ヨーク31a及び31bの位置関係を表しており、図6Bは、図5Bと同様なミラー体10S、ヨーク21、ヨーク31a及び31bの位置関係を表している。 6A and 6B are diagrams for explaining the states of the yokes 31a and 31b when the swing frequency of the mirror body 10S is higher than a predetermined reference frequency and the action on the mirror body 10S. Note that FIG. 6A shows the positional relationship of the mirror bodies 10S, yoke 21, yokes 31a and 31b similar to those in FIG. 5A, and FIG. 6B shows the mirror bodies 10S, yoke 21, yokes 31a and 31b similar to those in FIG. 5B. Represents the positional relationship of.

ミラー体10Sの揺動に伴い永久磁石15bがヨーク31bの端部34bに近づいてくる際には、図6Aに示すように、ヨーク31bの端部34bからS極の磁界が発生する。これにより、ヨーク31bは、N極の磁界を発生する永久磁石15bに対して引力を生じさせる。 When the permanent magnet 15b approaches the end 34b of the yoke 31b as the mirror body 10S swings, a magnetic field of the S pole is generated from the end 34b of the yoke 31b as shown in FIG. 6A. As a result, the yoke 31b generates an attractive force with respect to the permanent magnet 15b that generates the N-pole magnetic field.

一方、ミラー体10Sの揺動に伴い永久磁石15aがヨーク31aの端部34aに近づいてくる際には、図6Bに示すように、ヨーク31aの端部34aからS極の磁界が発生する。これにより、ヨーク31aは、N極の磁界を発生する永久磁石15aに対して引力を生じさせる。 On the other hand, when the permanent magnet 15a approaches the end 34a of the yoke 31a as the mirror body 10S swings, a magnetic field of the S pole is generated from the end 34a of the yoke 31a as shown in FIG. 6B. As a result, the yoke 31a generates an attractive force with respect to the permanent magnet 15a that generates the N-pole magnetic field.

すなわち、ミラー部10の周囲の環境温度が低くなると、トーションバー10Tのバネ定数が大きくなり、ミラー体10Sの共振周波数が高くなる方向に変動してしまう。 That is, when the ambient temperature around the mirror portion 10 becomes low, the spring constant of the torsion bar 10T becomes large, and the resonance frequency of the mirror body 10S fluctuates in the direction of increasing.

そこで、このような場合には、永久磁石15a(15b)に対して引力を生じさせる磁界を、ヨーク31a(31b)に発生させる。この際、ミラー体10Sの振れ角が大きくなるほどヨーク31a(31b)と、永久磁石15a(15b)との間隔が狭くなり、その引力が強くなる。これにより、ミラー体10Sを支持するトーションバー10Tの見かけ上のバネ定数が小さくなり、ミラー体10Sの共振周波数が低下する。 Therefore, in such a case, a magnetic field that generates an attractive force with respect to the permanent magnets 15a (15b) is generated in the yoke 31a (31b). At this time, as the swing angle of the mirror body 10S becomes larger, the distance between the yoke 31a (31b) and the permanent magnets 15a (15b) becomes narrower, and the attractive force becomes stronger. As a result, the apparent spring constant of the torsion bar 10T supporting the mirror body 10S becomes small, and the resonance frequency of the mirror body 10S decreases.

よって、かかる動作によれば、環境温度の低温化に伴うミラー体10Sの共振周波数の高周波化を抑制することが可能となる。 Therefore, according to such an operation, it is possible to suppress an increase in the resonance frequency of the mirror body 10S due to a decrease in the environmental temperature.

一方、揺動検出信号FDに基づくミラー体10Sの共振周波数が所定の基準周波数以下となる場合には、可変直流電流源254(255)が、負極性の直流電流IG1(IG2)をヨーク31a(31b)のコイル33a(33b)に供給する。これにより、ヨーク31a(31b)の端部34a(34b)はN極の磁界を発生し、ヨーク31a(31b)と永久磁石15a(15b)との間で斥力を生じさせる。 On the other hand, when the resonance frequency of the mirror body 10S based on the swing detection signal FD is equal to or lower than a predetermined reference frequency, the variable DC current source 254 (255) sets the negative DC current IG1 (IG2) to the yoke 31a ( It is supplied to the coils 33a (33b) of 31b). As a result, the end portion 34a (34b) of the yoke 31a (31b) generates an N-pole magnetic field, and a repulsive force is generated between the yoke 31a (31b) and the permanent magnet 15a (15b).

図7A及び図7Bは、ミラー体10Sの共振周波数が所定の基準周波数以下となる場合でのヨーク31a及び31bの状態と、ミラー体10Sに及ぼす作用を説明するための図である。尚、図7Aは、図5Aと同様なミラー体10S、ヨーク21、ヨーク31a及び31bの位置関係を表しており、図7Bは、図5Bと同様なミラー体10S、ヨーク21、ヨーク31a及び31bの位置関係を表している。 7A and 7B are diagrams for explaining the states of the yokes 31a and 31b when the resonance frequency of the mirror body 10S is equal to or lower than a predetermined reference frequency, and the action on the mirror body 10S. 7A shows the positional relationship of the mirror bodies 10S, yoke 21, yokes 31a and 31b similar to those in FIG. 5A, and FIG. 7B shows the mirror bodies 10S, yoke 21, yokes 31a and 31b similar to those in FIG. 5B. Represents the positional relationship of.

図7Aに示すように、ミラー体10Sの揺動に伴い永久磁石15bがヨーク31bの端部34bに近づいてくる際には、ヨーク31bの端部34bからN極の磁界を発生させる。これにより、ヨーク31bは、N極の磁界を発生する永久磁石15bに対して斥力を生じさせる。 As shown in FIG. 7A, when the permanent magnet 15b approaches the end 34b of the yoke 31b as the mirror body 10S swings, an N-pole magnetic field is generated from the end 34b of the yoke 31b. As a result, the yoke 31b generates a repulsive force with respect to the permanent magnet 15b that generates the N-pole magnetic field.

一方、図7Bに示すように、ミラー体10Sの揺動に伴い永久磁石15aがヨーク31aの端部34aに近づいてくる際には、ヨーク31aの端部34aからN極の磁界を発生させる。これにより、ヨーク31aは、N極の磁界を発生する永久磁石15aに対して斥力を生じさせる。 On the other hand, as shown in FIG. 7B, when the permanent magnet 15a approaches the end 34a of the yoke 31a as the mirror body 10S swings, an N-pole magnetic field is generated from the end 34a of the yoke 31a. As a result, the yoke 31a generates a repulsive force with respect to the permanent magnet 15a that generates the N-pole magnetic field.

すなわち、ミラー部10の周囲の環境温度が高くなると、トーションバー10Tのバネ定数が小さくなり、ミラー体10Sの共振周波数が低くなる方向に変動してしまう。 That is, when the ambient temperature around the mirror portion 10 becomes high, the spring constant of the torsion bar 10T becomes small, and the resonance frequency of the mirror body 10S fluctuates in the direction of becoming low.

そこで、このような場合には、永久磁石15a(15b)に対して斥力を生じさせる磁界を、ヨーク31a(31b)に発生させる。この際、ミラー体10Sの振れ角が大きくなるほどヨーク31a(31b)と、永久磁石15a(15b)との間隔が狭くなり、その斥力が強くなる。これにより、ミラー体10Sを支持するトーションバー10Tの見かけ上のバネ定数が大きくなり、ミラー体10Sの共振周波数が増加する。 Therefore, in such a case, a magnetic field that generates a repulsive force with respect to the permanent magnets 15a (15b) is generated in the yoke 31a (31b). At this time, as the swing angle of the mirror body 10S becomes larger, the distance between the yoke 31a (31b) and the permanent magnets 15a (15b) becomes narrower, and the repulsive force becomes stronger. As a result, the apparent spring constant of the torsion bar 10T supporting the mirror body 10S increases, and the resonance frequency of the mirror body 10S increases.

よって、かかる動作によれば、環境温度の高温化に伴うミラー体10Sの共振周波数の低周波化を抑制することが可能となる。 Therefore, according to such an operation, it is possible to suppress a decrease in the resonance frequency of the mirror body 10S due to an increase in the environmental temperature.

以上、詳述したように、ミラースキャナ100では、揺動周波数調整回路26、ヨーク31a及び31bを含む調整部と、ミラー体10Sに固着した永久磁石15a及び15bとにより、ミラー体10Sの共振周波数を調整可能にしている。 As described in detail above, in the mirror scanner 100, the resonance frequency of the mirror body 10S is formed by the adjusting unit including the swing frequency adjusting circuit 26, the yokes 31a and 31b, and the permanent magnets 15a and 15b fixed to the mirror body 10S. Is adjustable.

したがって、ミラースキャナ100によれば、環境温度の変化に拘わらず、ミラー体10Sの共振周波数を所望の基準周波数に維持させることが可能となる。 Therefore, according to the mirror scanner 100, it is possible to maintain the resonance frequency of the mirror body 10S at a desired reference frequency regardless of changes in the environmental temperature.

尚、上記実施例では、永久磁石15a及び15bにおける、ヨーク31a及び31bの端部34a及び34bに対向する面を共にN極としているがS極としても良く、或いは一方をS極、他方をN極としても良い。この際、永久磁石15a及び15bにおける、ヨーク31a及び31bの端部34a及び34bに対向する面の極性に対応させて、ヨーク31a及び31b各々の端部34a及び34bに発生させる磁界の極性を制御すればよい。 In the above embodiment, the surfaces of the permanent magnets 15a and 15b facing the ends 34a and 34b of the yokes 31a and 31b are both N poles, but they may be S poles, or one is S pole and the other is N pole. It may be a pole. At this time, the polarity of the magnetic field generated in the ends 34a and 34b of the yokes 31a and 31b is controlled in accordance with the polarities of the surfaces of the permanent magnets 15a and 15b facing the ends 34a and 34b of the yokes 31a and 31b. do it.

また、上記実施例では、ミラー体10Sの揺動周波数に基づき、ヨーク31a及び31b各々の端部34a及び34bに発生させる磁界の極性を切り替えている。しかしながら、温度変動が少ない環境でミラースキャナ100を使用する場合には、その環境度温度に基づき、ヨーク31a及び31b各々の端部34a及び34bに発生させる磁界の極性をN極及びS極の一方に固定しても良い。 Further, in the above embodiment, the polarities of the magnetic fields generated at the ends 34a and 34b of the yokes 31a and 31b are switched based on the swing frequency of the mirror body 10S. However, when the mirror scanner 100 is used in an environment with little temperature fluctuation, the polarity of the magnetic field generated at the ends 34a and 34b of the yokes 31a and 31b, respectively, is set to one of the north pole and the south pole based on the ambient temperature. It may be fixed to.

また、上記実施例では、ミラー体10Sの揺動に追従させて、例えば図6A及び図6Bに示すように、可変直流電流源254及び255のうちの一方を動作状態、他方を停止状態に設定しているが、常時、可変直流電流源254及び255を動作状態にしても良い。 Further, in the above embodiment, one of the variable DC current sources 254 and 255 is set to the operating state and the other is set to the stopped state, as shown in FIGS. 6A and 6B, for example, by following the swing of the mirror body 10S. However, the variable DC current sources 254 and 255 may be kept in operation at all times.

要するに、ミラースキャナ100としては、以下のミラー体、駆動部、及び調整部を含むものであれば良い。つまり、ミラー体(10S)は、1の軸(AY)周りに揺動可能であり、一方の面に反射面(RF)が形成され、他方の面の中央に第1の永久磁石(13)が設けられ、かつ他方の面において上記した1の軸を挟んで配された一対の第2の永久磁石(15a、15b)が設けられている。駆動部(21、23、25)は、ミラー体の他方の面側の領域に配されかつ第1の永久磁石(13)を挟んで対向している一対の端部を有する第1のヨーク(21)を有する。調整部(26、31a、31b、33a、33b)は、ミラー体の他方の面側の領域に配され且つ各々が一対の第2の永久磁石(15a、15b)の各々と対向している端部(34a、34b)を有する一対の第2のヨーク(31a、31b)を含む。 In short, the mirror scanner 100 may include the following mirror body, drive unit, and adjustment unit. That is, the mirror body (10S) can swing around one axis (AY), a reflecting surface (RF) is formed on one surface, and a first permanent magnet (13) is formed in the center of the other surface. Is provided, and a pair of second permanent magnets (15a, 15b) arranged with the above-mentioned one axis interposed therebetween are provided on the other surface. The drive unit (21, 23, 25) is a first yoke (21, 23, 25) having a pair of ends arranged in a region on the other surface side of the mirror body and facing each other with the first permanent magnet (13) in between. 21). The adjusting portions (26, 31a, 31b, 33a, 33b) are arranged in the other surface side region of the mirror body, and the ends each facing each of the pair of second permanent magnets (15a, 15b). Includes a pair of second yokes (31a, 31b) having portions (34a, 34b).

図8は、本実施例に係るミラー装置としての第2の実施例であるミラースキャナ100Aの全体構成の一例を示す図である。 FIG. 8 is a diagram showing an example of the overall configuration of the mirror scanner 100A, which is the second embodiment as the mirror device according to the present embodiment.

尚、ミラースキャナ100Aは、ミラー部10として図1に示す永久磁石15a及び15bを省いたものを採用し、磁気回路20として、図1に示す揺動周波数調整回路26、ヨーク31a及び31bを省き、ミラー駆動回路25に代えてミラー駆動回路25Aを採用したものである。 The mirror scanner 100A employs a mirror portion 10 in which the permanent magnets 15a and 15b shown in FIG. 1 are omitted, and the magnetic circuit 20 omits the swing frequency adjusting circuit 26, yokes 31a and 31b shown in FIG. , The mirror drive circuit 25A is adopted instead of the mirror drive circuit 25.

図9は、ミラー駆動回路25Aの内部構成の一例を示すブロック図である。 FIG. 9 is a block diagram showing an example of the internal configuration of the mirror drive circuit 25A.

図9において、振動センサ252は、ミラー体10Sの揺動状態を検出し、その揺動に対応した図4に示すような信号波形を有する揺動検出信号FDを制御部253Aに供給する。 In FIG. 9, the vibration sensor 252 detects the swing state of the mirror body 10S, and supplies the swing detection signal FD having the signal waveform as shown in FIG. 4 corresponding to the swing to the control unit 253A.

制御部253Aは、揺動検出信号FDに基づきミラー体10Sの揺動時における共振周波数を揺動周波数として測定する。そして、制御部253Aは、かかる揺動周波数に基づき、コイル23に供給する交流電流に重畳する直流のオフセット電流量を求め、当該オフセット電流量を示すオフセット信号DCOを交流電流源250Aに供給する。例えば、制御部253Aは、測定した共振周波数が高いほど、大きな直流のオフセット電流を示すオフセット信号DCOを交流電流源250Aに供給する。 The control unit 253A measures the resonance frequency of the mirror body 10S at the time of swing as the swing frequency based on the swing detection signal FD. Then, the control unit 253A obtains the amount of DC offset current superimposed on the AC current supplied to the coil 23 based on the swing frequency, and supplies the offset signal DCO indicating the offset current amount to the AC current source 250A. For example, the control unit 253A supplies an offset signal DCO indicating a larger DC offset current to the AC current source 250A as the measured resonance frequency becomes higher.

交流電流源250Aは、図2に示す揺動軸AYの周りにミラー体10Sを揺動させるための交流電流を生成する。交流電流源250Aは、オフセット信号DCOにて示されるオフセット電流量を有する直流のオフセット電流を、上記のように生成した交流電流に重畳したオフセット重畳交流電流をヨーク21のコイル23に供給する。 The alternating current source 250A generates an alternating current for swinging the mirror body 10S around the swing shaft AY shown in FIG. The AC current source 250A supplies the coil 23 of the yoke 21 with an offset superimposed AC current in which a DC offset current having an offset current amount indicated by the offset signal DCO is superimposed on the AC current generated as described above.

ヨーク21は、コイル23に上記したオフセット重畳交流電流が流れることで、自身の一対の端部から交流磁界を発生する。これにより、ヨーク21の一対の端部と永久磁石13との間で交互に引力及び斥力が生じて、ミラー体10Sが揺動軸AYの周りに揺動する。この際、ミラー体10Sは、自身を支持するトーションバー10Tが捻れることで、当該トーションバー10Tのバネ定数に基づく周波数で共振する。つまり、ミラー体10Sは、トーションバー10Tのバネ定数に対応した共振周波数で、揺動軸AYの周方向において揺動する。 The yoke 21 generates an alternating magnetic field from its pair of ends when the offset superimposed alternating current flows through the coil 23. As a result, attractive and repulsive forces are alternately generated between the pair of ends of the yoke 21 and the permanent magnets 13, and the mirror body 10S swings around the swing shaft AY. At this time, the mirror body 10S resonates at a frequency based on the spring constant of the torsion bar 10T by twisting the torsion bar 10T that supports the mirror body 10S. That is, the mirror body 10S swings in the circumferential direction of the swing shaft AY at a resonance frequency corresponding to the spring constant of the torsion bar 10T.

ここで、環境温度が変化すると、トーションバー10Tのバネ定数が変化してミラー体10Sの共振周波数が変動する。 Here, when the environmental temperature changes, the spring constant of the torsion bar 10T changes and the resonance frequency of the mirror body 10S fluctuates.

しかしながら、ミラースキャナ100Aでは、環境温度の変化に伴いミラー体10Sの共振周波数が変動する状況になっても、ミラー体10Sを揺動させる交流電流に、その共振周波数に対応したオフセット電流を重畳することで、当該共振周波数の変動が抑制される。 However, in the mirror scanner 100A, even if the resonance frequency of the mirror body 10S fluctuates due to a change in the environmental temperature, the offset current corresponding to the resonance frequency is superimposed on the alternating current that swings the mirror body 10S. As a result, fluctuations in the resonance frequency are suppressed.

したがって、ミラースキャナ100Aによれば、環境温度の変化に拘わらず、ミラー体10Sの共振周波数を所定の基準周波数に維持させることが可能となる。 Therefore, according to the mirror scanner 100A, it is possible to maintain the resonance frequency of the mirror body 10S at a predetermined reference frequency regardless of changes in the environmental temperature.

尚、上記した実施例では、測定したミラー体10Sの揺動周波数に対応した直流電流をオフセット電流として交流電流に重畳しているが、揺動検出信号FDの位相に追従して、重畳するオフセット電流の電流量を変化させても良い。例えば、図4に示すような揺動検出信号FDの最大値及び最小値の時点では、重畳するオフセット電流の電流量を最大とし、中心レベルQに向けてその電流量を徐々に小さくする。 In the above embodiment, the DC current corresponding to the measured swing frequency of the mirror body 10S is superimposed on the AC current as an offset current, but the offset that follows the phase of the swing detection signal FD and is superimposed. The amount of current may be changed. For example, at the time points of the maximum value and the minimum value of the swing detection signal FD as shown in FIG. 4, the amount of the superimposed offset current is maximized, and the amount of the current is gradually reduced toward the center level Q.

要するに、ミラースキャナ100Aとしては、以下のミラー体、及び駆動部を含むものであれば良い。つまり、ミラー体(10S)は、一方の面に反射面(RF)が形成され他方の面の中央に永久磁石(13)が設けられ、かつ1の軸(AY)周りに揺動可能な状態で設置されている。駆動部(25A)は、ミラー体の他方の面側の領域に配されており、上記永久磁石を挟んで対向している一対の端部を有し且つコイル(23)が巻かれているヨーク(21)を含み、ミラー体の揺動による共振周波数に対応した直流成分を交流電流に重畳した電流を、このヨークに巻かれているコイルに印加する。 In short, the mirror scanner 100A may include the following mirror body and drive unit. That is, the mirror body (10S) is in a state in which a reflective surface (RF) is formed on one surface, a permanent magnet (13) is provided in the center of the other surface, and the mirror body (10S) can swing around one axis (AY). It is installed in. The drive unit (25A) is arranged in a region on the other surface side of the mirror body, has a pair of end portions facing each other with the permanent magnet in between, and is wound with a coil (23). A current including (21) in which a direct current component corresponding to the resonance frequency due to the swing of the mirror body is superimposed on the alternating current is applied to the coil wound around the yoke.

10 ミラー部
10S ミラー体
13、15a、15b 永久磁石
21、31a、31b ヨーク
23、33a、33b コイル
25 ミラー駆動回路
26 揺動周波数調整回路
100 ミラースキャナ
250 交流電流源
252 振動センサ
253 制御部
254、255 可変直流電源
10 Mirror unit 10S Mirror body 13, 15a, 15b Permanent magnet 21, 31a, 31b York 23, 33a, 33b Coil 25 Mirror drive circuit 26 Vibration frequency adjustment circuit 100 Mirror scanner 250 AC current source 252 Vibration sensor 253 Control unit 254, 255 variable DC power supply

Claims (7)

1の軸周りに揺動可能であり、一方の面に反射面が形成され、他方の面の中央に第1の永久磁石が設けられ、かつ前記他方の面において前記1の軸を挟んで配された一対の第2の永久磁石が設けられたミラー体と、
前記ミラー体の他方の面側の領域に配されかつ前記第1の永久磁石を挟んで対向している一対の端部を有する第1のヨークを含む駆動部と、
前記ミラー体の他方の面側の領域に配されかつ各々が前記一対の第2の永久磁石の各々と対向している端部を有する一対の第2のヨークを含む調整部と、を有することを特徴とするミラー装置。
It is swingable around one axis, a reflective surface is formed on one surface, a first permanent magnet is provided in the center of the other surface, and the other surface is arranged with the axis 1 in between. A mirror body provided with a pair of second permanent magnets
A drive unit including a first yoke arranged in a region on the other surface side of the mirror body and having a pair of ends facing each other across the first permanent magnet.
Having an adjusting portion that includes a pair of second yokes that are located in the other face-side region of the mirror body and each has an end facing each of the pair of second permanent magnets. A mirror device characterized by.
前記駆動部は、前記第1のヨークの前記一対の端部にN極の磁界及びS極の磁界を夫々発生させつつ前記一対の端部の各々に発生させた前記磁界の極性を反転させることで前記ミラー体を前記1の軸周りに共振させて前記ミラー体を揺動せしめ、
前記調整部は、前記一対の第2のヨーク各々の前記端部にN極の磁界又はS極の磁界を発生させ、発生した磁界により前記一対の第2のヨークと前記一対の第2の永久磁石との間で引力又は斥力を生じさせることで前記ミラー体の揺動時の揺動周波数を調整することを特徴とする請求項1に記載のミラー装置。
The driving unit reverses the polarity of the magnetic field generated at each of the pair of ends while generating an N-pole magnetic field and an S-pole magnetic field at the pair of ends of the first yoke, respectively. The mirror body is resonated around the axis of 1 to swing the mirror body.
The adjusting unit generates an N-pole magnetic field or an S-pole magnetic field at the ends of each of the pair of second yokes, and the generated magnetic field causes the pair of second yokes and the pair of second permanent magnets. The mirror device according to claim 1, wherein the swing frequency of the mirror body at the time of swing is adjusted by generating an attractive force or a repulsive force with the magnet.
前記調整部は、前記ミラー体の揺動状態を検出して前記揺動に対応した信号波形を有する揺動検出信号を生成するセンサを含み、
前記揺動検出信号に基づく前記ミラー体の揺動周波数が所定の基準周波数より高い場合には前記一対の第2のヨークと前記一対の第2の永久磁石との間で引力を生じさせ、前記揺動周波数が前記基準周波数以下である場合には前記一対の第2のヨークと前記一対の第2の永久磁石との間で斥力を生じさせるように、前記一対の第2のヨーク各々の前記端部にN極の磁界又はS極の磁界を発生させることを特徴とする請求項2に記載のミラー装置。
The adjusting unit includes a sensor that detects a swing state of the mirror body and generates a swing detection signal having a signal waveform corresponding to the swing.
When the swing frequency of the mirror body based on the swing detection signal is higher than a predetermined reference frequency, an attractive force is generated between the pair of second yokes and the pair of second permanent magnets, and the above-mentioned When the swing frequency is equal to or lower than the reference frequency, the pair of second yokes are said to generate a repulsive force between the pair of second yokes and the pair of second permanent magnets. The mirror device according to claim 2, wherein an N-pole magnetic field or an S-pole magnetic field is generated at an end portion.
前記調整部は、前記ミラー体の揺動に伴い前記一対の第2の永久磁石のうちの一方が前記一対の第2のヨークのうちの一方に近接する際には、前記一対の第2のヨークのうちの他方の第2のヨークでの磁界発生を停止し、前記一対の第2の永久磁石のうちの他方が前記他方の第2のヨークに近接する際には、前記一方の第2のヨークの磁界発生を停止することを特徴とする請求項2又は3に記載のミラー装置。 When one of the pair of second permanent magnets approaches one of the pair of second yokes as the mirror body swings, the adjusting unit receives the pair of second permanent magnets. When the magnetic field generation in the second yoke of the other of the yokes is stopped and the other of the pair of second permanent magnets approaches the second yoke of the other, the second of the one is said. The mirror device according to claim 2 or 3, wherein the generation of a magnetic field in the yoke of the above is stopped. 前記第1のヨーク、及び前記一対の第2のヨークの各々には個別にコイルが巻き付けられており、
前記駆動部は、交流電流を前記第1のヨークに巻き付けられている前記コイルに印加する交流電流源を含み、
前記調整部は、前記一対の第2のヨーク各々に巻き付けられている前記コイルに夫々直流電流を印加する第1及び第2の直流電流源を含むことを特徴とする請求項2〜4のいずれか1に記載のミラー装置。
A coil is individually wound around each of the first yoke and the pair of second yokes.
The drive includes an alternating current source that applies an alternating current to the coil wound around the first yoke.
2. The mirror device according to 1.
前記調整部は、前記揺動周波数が前記基準周波数より高い場合には前記直流電流として第1の直流電流を前記一対の第2のヨーク各々に巻き付けられている前記コイルに供給させる一方、前記揺動周波数が前記基準周波数以下となる場合には前記直流電流として前記第1の直流電流とは極性が異なる第2の直流電流を前記一対の第2のヨーク各々に巻き付けられている前記コイルに供給させるように前記第1及び第2の直流電流源を制御することを特徴とする請求項5に記載のミラー装置。 When the swing frequency is higher than the reference frequency, the adjusting unit supplies a first direct current as the direct current to the coils wound around each of the pair of second yokes, while the swinging unit. When the dynamic frequency is equal to or lower than the reference frequency, a second direct current having a polarity different from that of the first direct current is supplied to the coil wound around each of the pair of second yokes as the direct current. The mirror device according to claim 5, wherein the first and second direct current sources are controlled so as to cause the first and second direct current sources to be controlled. 一方の面に反射面が形成され他方の面の中央に永久磁石が設けられ、かつ1の軸周りに揺動可能なミラー体と、
前記ミラー体の他方の面側の領域に配され前記第1の永久磁石を挟んで対向している一対の端部を有し且つコイルが巻かれたヨークを含む駆動部と、を有するミラー装置であって、
前記駆動部は、前記ミラー体の揺動時の揺動周波数に対応した直流成分を交流電流に重畳した電流を、前記ヨークに巻かれている前記コイルに印加することを特徴とするミラー装置。
A mirror body in which a reflective surface is formed on one surface, a permanent magnet is provided in the center of the other surface, and the mirror body can swing around one axis.
A mirror device having a pair of end portions arranged in a region on the other surface side of the mirror body and facing each other across the first permanent magnet, and a drive portion including a yoke in which a coil is wound. And
The drive unit is a mirror device, characterized in that a current obtained by superimposing a DC component corresponding to a swing frequency at the time of swing of the mirror body on an alternating current is applied to the coil wound around the yoke.
JP2020063861A 2020-03-31 2020-03-31 Mirror Device Active JP7477344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020063861A JP7477344B2 (en) 2020-03-31 2020-03-31 Mirror Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020063861A JP7477344B2 (en) 2020-03-31 2020-03-31 Mirror Device

Publications (2)

Publication Number Publication Date
JP2021162706A true JP2021162706A (en) 2021-10-11
JP7477344B2 JP7477344B2 (en) 2024-05-01

Family

ID=78003289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020063861A Active JP7477344B2 (en) 2020-03-31 2020-03-31 Mirror Device

Country Status (1)

Country Link
JP (1) JP7477344B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6233098B1 (en) * 1994-04-19 2001-05-15 George A. Plesko Beam shaping system with surface treated lens and methods for making same
JP2002090684A (en) * 2000-09-20 2002-03-27 Olympus Optical Co Ltd Optical scanner and its manufacturing method
CN101618849A (en) * 2008-07-03 2010-01-06 探微科技股份有限公司 Adjust the method for resonant frequency of torsional micro electro-mechanical component
JP2012168444A (en) * 2011-02-16 2012-09-06 Ricoh Co Ltd Correction system for deflection reflecting device, and graphic display device
JP2013242455A (en) * 2012-05-22 2013-12-05 Seiko Epson Corp Mirror device, optical scanner, and image forming apparatus
US20170278605A1 (en) * 2014-12-16 2017-09-28 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method for manufacturing a device having a three-dimensional magnetic structure
JP2020013048A (en) * 2018-07-20 2020-01-23 パイオニア株式会社 Optical scanner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6233098B1 (en) * 1994-04-19 2001-05-15 George A. Plesko Beam shaping system with surface treated lens and methods for making same
JP2002090684A (en) * 2000-09-20 2002-03-27 Olympus Optical Co Ltd Optical scanner and its manufacturing method
CN101618849A (en) * 2008-07-03 2010-01-06 探微科技股份有限公司 Adjust the method for resonant frequency of torsional micro electro-mechanical component
JP2012168444A (en) * 2011-02-16 2012-09-06 Ricoh Co Ltd Correction system for deflection reflecting device, and graphic display device
JP2013242455A (en) * 2012-05-22 2013-12-05 Seiko Epson Corp Mirror device, optical scanner, and image forming apparatus
US20170278605A1 (en) * 2014-12-16 2017-09-28 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method for manufacturing a device having a three-dimensional magnetic structure
JP2020013048A (en) * 2018-07-20 2020-01-23 パイオニア株式会社 Optical scanner

Also Published As

Publication number Publication date
JP7477344B2 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
CN112243563B (en) Rotary reciprocating drive actuator
US8203290B2 (en) Vibrating element
CN112987285B (en) Rotary reciprocating drive actuator
US7474065B2 (en) Controlling an electric motor having multiple oscillatory elements
JP2021162706A (en) Mirror device
JP2006323001A (en) Oscillating body apparatus and optical deflector using same
KR102042633B1 (en) Horizontal vibration device
JP2007094109A (en) Optical scanner
JP2006119420A (en) Optical scanner
JP2008058434A (en) Rocking apparatus, light deflector using rocking apparatus, and image forming apparatus using light deflector
JP2011180528A (en) Mems mirror control device
JP2015099270A (en) Vibration device, optical scanner, and image forming apparatus and video projection device using the same
JP2009042322A (en) Oscillating body apparatus, optical deflector and optical equipment using the same
US4828347A (en) Oscillating linear deflection device
JP3945254B2 (en) electric toothbrush
JP2013247810A (en) Vibration actuator
CN115728936B (en) Two-degree-of-freedom deflection adjusting mechanism based on electromagnetic normal stress driving and control method
EP4047798A1 (en) Rotary reciprocating drive actuator
JP7386671B2 (en) Drive device and drive method
JP3792644B2 (en) Scan motor and scan motor control method
JP2012063656A (en) Two-dimensional optical scanner, and image projection device using the same
JP2024120962A (en) Mirror Scanner
JP5402588B2 (en) Optical scanning device
JP3252739B2 (en) Barcode reader
JPH1146473A (en) Movable magnet type oscillation-controlled actuator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210301

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240418

R150 Certificate of patent or registration of utility model

Ref document number: 7477344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150