JP2021161464A - Preparation method of copper smelting raw material - Google Patents

Preparation method of copper smelting raw material Download PDF

Info

Publication number
JP2021161464A
JP2021161464A JP2020061974A JP2020061974A JP2021161464A JP 2021161464 A JP2021161464 A JP 2021161464A JP 2020061974 A JP2020061974 A JP 2020061974A JP 2020061974 A JP2020061974 A JP 2020061974A JP 2021161464 A JP2021161464 A JP 2021161464A
Authority
JP
Japan
Prior art keywords
raw material
copper
wet
belt conveyor
copper concentrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020061974A
Other languages
Japanese (ja)
Other versions
JP7480556B2 (en
Inventor
勝弘 森
Katsuhiro Mori
優貴 本村
Yuki Motomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2020061974A priority Critical patent/JP7480556B2/en
Publication of JP2021161464A publication Critical patent/JP2021161464A/en
Application granted granted Critical
Publication of JP7480556B2 publication Critical patent/JP7480556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a mixing method of a raw material to be treated in copper smelting capable of homogeneously mixing a wet raw material containing miscellaneous raw materials and copper concentrate.SOLUTION: A method for preparing a copper smelting raw material consisting of a wet raw material containing miscellaneous raw materials and a copper concentrate comprises a premixing process S1 to obtain a wet raw material R3 by premixing the miscellaneous raw material R1 in a wet state and a part of the copper concentrate R2, a meeting-parting process S2 for converging to one position below by alternately falling from one terminal of the belt conveyor 2, after the wet raw material R3 and the residue R2' of the copper concentrate are alternately cut at one terminal of the belt conveyor 2 and these are separately spread on separate belt surfaces, and a dispersing process S3 of alternately superposing one layer at a time at the one position while dispersing the wet raw material R3 and the copper concentrate R2 alternately falling from the terminal of the belt conveyor 2 by utilizing a positional energy at the time of falling.SELECTED DRAWING: Figure 2

Description

本発明は、銅精鉱と湿潤状態の雑原料とからなる銅製錬原料の調製方法に関する。 The present invention relates to a method for preparing a copper smelting raw material composed of a copper concentrate and a wet miscellaneous raw material.

乾式銅製錬では、浮遊選鉱などの前処理により銅品位が30%程度に高められた主に黄銅鉱からなる銅精鉱を原料に用い、これを自溶炉などの製錬炉に装入して燃焼等の処理を施すことで高品位の銅を製造している。上記の製錬炉では、二酸化硫黄を多く含む排ガスが発生するので、該排ガスを硫酸の原料として硫酸工場に送っている。この硫酸工場では、製造過程で不純物として銅や重金属を含む廃酸が発生するので、この廃酸に硫化剤を添加してこれら銅や重金属を析出させた後、濾過などの固液分離手段により泥状の澱物の形態で回収している。 In dry copper smelting, copper concentrate, which is mainly composed of chalcopyrite whose copper grade has been improved to about 30% by pretreatment such as flotation, is used as a raw material and charged into a smelting furnace such as a flash smelting furnace. High-quality copper is manufactured by subjecting it to processing such as burning. In the above smelting furnace, exhaust gas containing a large amount of sulfur dioxide is generated, and the exhaust gas is sent to a sulfuric acid factory as a raw material for sulfuric acid. In this sulfuric acid factory, waste acid containing copper and heavy metals is generated as impurities in the manufacturing process. Therefore, a sulfide is added to the waste acid to precipitate these copper and heavy metals, and then solid-liquid separation means such as filtration is used. It is collected in the form of muddy starch.

上記の泥状の澱物は銅を含んでいるので、雑原料として上記銅精鉱と混合して銅製炉に装入している。その際、上記の雑原料は組成や粒径等の性状が銅精鉱とは異なるので、原料の性状がほぼ均一になるように銅精鉱と混合することによって、製錬炉の操業が不安定になるのを抑えるのが望ましい。原料の性状がほぼ均一になるように銅精鉱と雑原料とを混合する方法としては、例えば目視にて混合状態を確認しながらショベルローダーを用いて混合する方法が知られている。 Since the above-mentioned muddy starch contains copper, it is mixed with the above-mentioned copper concentrate as a miscellaneous raw material and charged into a copper furnace. At that time, since the above-mentioned miscellaneous raw materials are different from copper concentrate in properties such as composition and particle size, the operation of the smelting furnace is not possible by mixing with copper concentrate so that the properties of the raw materials are almost uniform. It is desirable to prevent it from becoming stable. As a method of mixing copper concentrate and miscellaneous raw materials so that the properties of the raw materials are substantially uniform, for example, a method of mixing using a shovel loader while visually checking the mixed state is known.

また、特許文献1に開示されているように、ベルトコンベアで搬送中の銅精鉱の上に雑原料を定量的に切り出して添加する技術が提案されている。更に、泥状の澱物を対象とするものではないが、特許文献2には、複数のベルトコンベア上に種類の異なる固体粒子をそれぞれ展開させ、これらのベルトコンベアの各々の排出部から同じ位置に向かって該固体粒子を落とす技術が提案されている。 Further, as disclosed in Patent Document 1, a technique has been proposed in which miscellaneous raw materials are quantitatively cut out and added onto a copper concentrate being conveyed by a belt conveyor. Further, although it is not intended for muddy starch, Patent Document 2 states that different types of solid particles are spread on a plurality of belt conveyors and at the same position from each discharge portion of these belt conveyors. A technique for dropping the solid particles has been proposed.

特開平09−087760号公報Japanese Unexamined Patent Publication No. 09-087760 特開2011−011105号公報Japanese Unexamined Patent Publication No. 2011-0111105

上記の雑原料は、銅を含有しているうえ、安価に入手できるという利点を有しているが、一般的に雑原料は取り扱いが難しいうえ、不純物品位が高いものが多く、性状にばらつきがある。そのため、通常は銅精鉱に対して単一種類の雑原料を多量に混合することは行われておらず、多品種の雑原料を同時に銅精鉱に混合している。このように、銅精鉱に対して多品種の雑原料を同時に添加する場合は、特許文献1の技術を適用するには、これら多品種の雑原料にそれぞれ対応する複数の切出装置を要するので設備コストがかさむ。 The above miscellaneous raw materials have the advantages of containing copper and being available at low cost, but in general, miscellaneous raw materials are difficult to handle, and many of them have high impurity grades, resulting in variations in properties. be. Therefore, usually, a large amount of a single type of miscellaneous raw materials is not mixed with copper concentrate, and many kinds of miscellaneous raw materials are mixed with copper concentrate at the same time. In this way, when adding various kinds of miscellaneous raw materials to copper concentrate at the same time, in order to apply the technique of Patent Document 1, a plurality of cutting devices corresponding to each of these various kinds of miscellaneous raw materials are required. Therefore, the equipment cost is high.

また、特許文献2の技術は、種類の異なる固体粒子のうちの少なくとも1種類が上記の泥状の澱物のように湿潤状態の場合は、ベルトコンベアに付着して切り出しが間欠的になったり不安定になったりする。そのため、原料の性状が均一になるように混合するのは困難である。この場合、湿潤状態の固体粒子をベルトコンベアに付着しない程度に予め乾燥しておくことが考えられるが、上記の硫酸工場の廃酸から回収される泥状の澱物は、硫酸塩などの吸湿性の成分を含んでいるため乾燥しにくく、乾燥を促進するために加熱量を増やせば激しく蒸発するので、その際に発生する水蒸気に伴って固体粒子が飛散するおそれがある。 Further, in the technique of Patent Document 2, when at least one kind of solid particles of different kinds is in a wet state like the above-mentioned muddy starch, it adheres to a belt conveyor and cutting out becomes intermittent. It becomes unstable. Therefore, it is difficult to mix the raw materials so that the properties are uniform. In this case, it is conceivable to dry the wet solid particles in advance to the extent that they do not adhere to the belt conveyor, but the muddy starch recovered from the waste acid of the above sulfuric acid factory absorbs moisture such as sulfate. Since it contains a sexual component, it is difficult to dry, and if the amount of heating is increased to promote drying, it evaporates violently, so that solid particles may scatter with the water vapor generated at that time.

上記のように、多品種の原料にそれぞれ対応する複数の切出装置を設けるのが望ましくない場合や、多品種の原料のうち少なくとも1種類が湿潤状態にある場合は、これら多品種の原料をできるだけ均一に混合するには、上記のようにショベルローダーを用いるのが好ましい。しかしながら、ショベルローダーで均一に混合するためには、混合が不十分な部分を見つけ出して十分に混合するまで何度もかき混ぜるといった手間のかかる作業を長時間かけて行うことを要していた。また、ショベルローダーの運転手の混合作業の習熟度によって、例えば湿潤状態の固体粒子と乾燥状態の固体粒子との混合の度合いにばらつきが生じ、混合が不十分な場合は製錬炉内において組成が頻繁に変動し、製錬炉の操業が不安定になることがあった。 As described above, when it is not desirable to provide a plurality of cutting devices corresponding to each of the various kinds of raw materials, or when at least one of the various kinds of raw materials is in a wet state, these various kinds of raw materials are used. In order to mix as uniformly as possible, it is preferable to use an excavator loader as described above. However, in order to mix uniformly with the excavator loader, it is necessary to take a long time to perform a time-consuming work such as finding a portion where the mixing is insufficient and stirring the mixture many times until the mixture is sufficiently mixed. Further, depending on the skill level of the excavator loader driver's mixing operation, for example, the degree of mixing of the wet solid particles and the dry solid particles varies, and if the mixing is insufficient, the composition is formed in the smelting furnace. Frequently fluctuated, and the operation of the smelting furnace was sometimes unstable.

本発明は、上記した従来の混合方法が抱える問題に鑑みてなされたものであり、ショベルローダーを用いた手間のかかる混合作業を長時間かけて行う必要がなく、かつ、作業者の混合作業の習熟度に左右されることなく、雑原料を含有する湿潤原料と銅精鉱とを均一に混合することが可能な銅製錬原料の調製方法を提供することを目的とする。 The present invention has been made in view of the problems of the above-mentioned conventional mixing method, and it is not necessary to perform the time-consuming mixing work using the excavator loader for a long time, and the mixing work of the operator is performed. It is an object of the present invention to provide a method for preparing a copper smelting raw material capable of uniformly mixing a wet raw material containing miscellaneous raw materials and a copper concentrate without being influenced by proficiency.

上記目的を達成するため、本発明に係る銅製錬原料の調製方法は、雑原料を含有する湿潤原料と銅精鉱とからなる銅製錬原料の調製方法であって、前記湿潤原料と前記銅精鉱とをベルトコンベアの一端部に交互に切り出してそれらを別々にベルト面上に広げた後、該ベルトコンベアの末端部から交互に落下させてその下方の1箇所に合流させる離合工程を有することを特徴とする。 In order to achieve the above object, the method for preparing a copper smelting raw material according to the present invention is a method for preparing a copper smelting raw material composed of a wet raw material containing miscellaneous raw materials and copper concentrate, and the wet raw material and the copper refinement. Having a separation step in which ore is alternately cut out at one end of a belt conveyor, spread separately on the belt surface, and then alternately dropped from the end of the belt conveyor and merged with one place below it. It is characterized by.

本発明によれば、ショベルローダーを用いた手間のかかる混合作業を長時間かけて行う必要がなく、また、作業者の混合作業の習熟度に左右されることなく、雑原料を含有する湿潤原料と銅精鉱とを均一に混合することができる。 According to the present invention, it is not necessary to perform a time-consuming mixing operation using a shovel loader for a long time, and a wet raw material containing miscellaneous raw materials is not affected by the proficiency level of the mixing operation of the operator. And copper concentrate can be mixed uniformly.

本発明の実施形態に係る銅製錬原料の調製方法を示すブロックフロー図である。It is a block flow figure which shows the preparation method of the copper smelting raw material which concerns on embodiment of this invention. 本発明の実施形態に係る銅製錬原料調製方法の模式的なプロセスフロー図である。It is a schematic process flow diagram of the copper smelting raw material preparation method which concerns on embodiment of this invention. 本発明の実施例及び比較例で調製した銅精錬原料を用いて生成したマットの銅品位のトレンドを示すグラフである。It is a graph which shows the trend of the copper grade of the mat produced by using the copper refining raw material prepared in the Example and the comparative example of this invention.

以下、本発明に係る銅製錬原料の調製方法の実施形態について図面を参照しながら詳細に説明する。この本発明の実施形態の調製方法は、銅製錬において処理される2種類の粒状原料を対象としており、それらのうちの一方は、水分を含んだ湿潤状態の雑原料であって、これは主に硫酸工場から排出される廃酸に硫化剤を添加することで生成される析出物からなる。また、上記2種類の粒状原料のもう一方は、通常は乾燥状態にある銅精鉱からなる。なお、上記雑原料は、硫酸工場で生成される析出物に限定されるものではなく、電解採取工程の脱銅スライムや銅滓等の銅製錬工場の他の工程から生じる銅含有物が含まれていてもよい。 Hereinafter, embodiments of the method for preparing a copper smelting raw material according to the present invention will be described in detail with reference to the drawings. The preparation method of the embodiment of the present invention targets two types of granular raw materials to be processed in copper smelting, one of which is a moist and wet miscellaneous raw material, which is mainly It consists of precipitates produced by adding a sulfide agent to the waste acid discharged from the sulfuric acid factory. The other of the above two types of granular raw materials is usually composed of a dry copper concentrate. The miscellaneous raw materials are not limited to the precipitates produced in the sulfuric acid plant, but include copper-containing substances produced in other processes of the copper smelting plant such as decopper slime and copper slag in the electrowinning process. You may be.

本発明の実施形態に係る銅製錬原料の調製方法は、図1に示すように、上記の雑原料を銅精鉱の一部と予混合する予混合工程S1と、該予混合により得た湿潤原料と、該銅精鉱の残部とをベルトコンベアの一端部に交互に切り出してそれらを別々にベルト面上に広げた後、該ベルトコンベアの末端部から交互に落下させてその下方の1箇所に合流させる離合工程S2と、該ベルトコンベアの末端部から交互に落下するこれら湿潤原料及び銅精鉱を、その落下時の位置エネルギーを利用して分散させながら上記1箇所で1層ずつ交互に積み重ねる分散工程S3と、必要に応じて1又は複数回行われる追加離合分散工程S4と、該1箇所に合流している該湿潤原料及び精鉱が両方とも含まれるように切出用ベルトコンベアに少しずつ切り出して均一化させる最終均一化工程S5とを有している。以下、これら工程の各々について図2を参照しながら詳細に説明する。 As shown in FIG. 1, the method for preparing a copper smelting raw material according to an embodiment of the present invention includes a premixing step S1 in which the above miscellaneous raw materials are premixed with a part of copper concentrate, and a wetness obtained by the premixing. The raw material and the rest of the copper concentrate are alternately cut out at one end of the belt conveyor, spread separately on the belt surface, and then alternately dropped from the end of the belt conveyor to one place below it. The wetting raw material and copper concentrate that alternately fall from the end of the belt conveyor and the disengagement step S2 that merges with the conveyor belt are alternately dispersed one layer at a time while utilizing the position energy at the time of the fall. The cutting belt conveyor includes both the stacking dispersion step S3, the additional separation / dispersion step S4 performed one or more times as necessary, and the wet raw material and concentrate merging at the one location. It has a final homogenization step S5 which is cut out little by little and homogenized. Hereinafter, each of these steps will be described in detail with reference to FIG.

1.予混合工程S1
先ず予混合工程S1では、湿潤状態の雑原料Rと銅精鉱Rのうちの一部とを予混合して予混合原料Rを得る。この予混合工程S1では、これら2種類の原料がほぼ完全に均一になるまで混合する必要はなく、湿潤度が高くて付着しやすい雑原料が未混合のまま後工程の離合工程S2のベルトコンベアに単独で導入されることのない程度に混合する。この予混合には公知の混合方法を用いることができ、例えばショベルローダーを用いて雑原料及び銅精鉱に力を加えて、雑原料及び銅精鉱を地面や床面上に広げる作業と、これら広げた雑原料及び銅精鉱をかき集める作業とを1又は複数回繰り返すことで効率よく予混合することができる。
1. 1. Premixing step S1
In first premixing step S1, and a part of the coarse material R 1 and copper concentrate R 2 in the wet state were premixed to obtain a premixed raw material R 3 are. In this premixing step S1, it is not necessary to mix these two kinds of raw materials until they are almost completely uniform, and the belt conveyor in the post-step union step S2 with the miscellaneous raw materials having a high degree of humidity and easily adhering to be unmixed. Mix to the extent that it is not introduced alone. A known mixing method can be used for this premixing, for example, the work of applying force to the miscellaneous raw materials and the copper concentrate using a shovel loader to spread the miscellaneous raw materials and the copper concentrate on the ground or the floor surface. Efficient premixing can be achieved by repeating the work of collecting the spread miscellaneous raw materials and the copper concentrate once or a plurality of times.

このように、ショベルローダーを用いることで、雑原料や銅精鉱に粘土等の塊が含まれている場合でも、この塊を細かく分断することができる。また、細かく分断された雑原料の表面に銅精鉱を付着させることができるので、湿潤状態にある雑原料の粒子同士が再度付着して塊に戻るのを防ぐことができる。この予混合工程S1で雑原料に配合させる銅精鉱の量は、雑原料の含水率、粒子サイズ、組成、親水性などの性状により適宜調整するのが好ましいが、一般的には雑原料1質量部に対して銅精鉱を1〜10質量部の割合で配合するのが好ましい。 In this way, by using the excavator loader, even if the miscellaneous raw materials and copper concentrate contain lumps such as clay, the lumps can be finely divided. Further, since the copper concentrate can be attached to the surface of the finely divided miscellaneous raw materials, it is possible to prevent the particles of the miscellaneous raw materials in the wet state from adhering again and returning to the agglomerates. The amount of copper concentrate to be blended with the miscellaneous raw materials in the premixing step S1 is preferably adjusted appropriately depending on the properties such as the water content, particle size, composition, and hydrophilicity of the miscellaneous raw materials, but generally, the miscellaneous raw materials 1 It is preferable to mix copper concentrate in a ratio of 1 to 10 parts by mass with respect to parts by mass.

2.離合工程S2
離合工程S2では、上記予混合工程S1で得た予混合原料Rである雑原料を含む湿潤原料と、銅精鉱Rのうち上記予混合工程S1で一部が用いられた後の残余の銅精鉱R’とを好ましくはホッパー及び定量フィーダーからなる切出装置1を介してベルトコンベア2上の一端部に交互に切り出す。その際、該ベルトコンベア2を作動させておくことで、これら湿潤原料及び銅精鉱を別々にベルト面上に広げた後、該ベルトコンベア2の搬送先となる末端部から落下させてその下方の1箇所に合流させることができる。このように、ベルトコンベア2の一端部に2種類の原料を交互に切り出すことで、切り出し位置を変えたり複数の切出装置を設けたりすることなく、ベルト面上の互いに異なる領域にこれら2種類の原料をそれぞれ広げることができる。
2. Separation process S2
In Rigo step S2, wetting materials and the remainder after the part is used in the above premixing process S1 of copper concentrate R 2 containing coarse material is premixed feedstock R 3 obtained in the above premixing process S1 preferably the copper concentrates R 2 'of cutting alternately on one end of the cutting device 1 via the belt conveyor 2 consisting of a hopper and metering feeder. At that time, by operating the belt conveyor 2, these wet raw materials and copper concentrate are separately spread on the belt surface, and then dropped from the end portion to be the transport destination of the belt conveyor 2 and below the belt conveyor 2. Can be merged into one place. In this way, by alternately cutting out two types of raw materials at one end of the belt conveyor 2, these two types are placed in different regions on the belt surface without changing the cutting position or providing a plurality of cutting devices. The raw materials of each can be expanded.

上記の互いに異なる領域にそれぞれ広げられた2種類の原料は、ベルトコンベア2の搬送先で合流することで、上記切り出し前に比べて粒子がより混ざった混合状態になる。これにより、例えば予混合原料Rの中で各々の原料が偏在していた場合は、これらはより混ざる方向に進み、より均一な混合状態になる。この離合工程S2で用いるベルトコンベア2は1基でもよいが、連続する複数基のベルトコンベアを用いてもよい。また、ベルトコンベア2に、図2の2基目に示すようにトリッパーコンベアを用いてもよい。上記のベルトコンベア2の搬送先としては、地面や床面上であってもよいし、例えば、ホッパーやタンクなどの容器、ベルトコンベア、スクリューコンベアなどの搬送装置でもよい。 By merging the two types of raw materials spread out in different regions from each other at the transport destination of the belt conveyor 2, the particles are in a mixed state in which the particles are more mixed than before the cutting. Thus, if each of the raw material, for example, in the premixed feedstock R 3 has unevenly distributed, it proceeds to a more mixed directions, a more uniform mixed state. The number of belt conveyors 2 used in the disengagement step S2 may be one, but a plurality of continuous belt conveyors may be used. Further, as the belt conveyor 2, a tripper conveyor may be used as shown in the second unit of FIG. The transfer destination of the belt conveyor 2 may be on the ground or the floor surface, or may be, for example, a container such as a hopper or a tank, or a transfer device such as a belt conveyor or a screw conveyor.

3.分散工程S3
分散工程S3では、上記の離合工程S2においてベルトコンベア2から交互に落下する上記湿潤原料及び銅精鉱の各々を、その落下時の位置エネルギーを利用して分散させながら上記の1箇所において1層ずつ交互に積み重ねる。すなわち、上記の湿潤原料及び銅精鉱は、上記1箇所に向けて交互に落下することで、図2に示すように、湿潤原料及び銅精鉱が1層ずつ交互に積み重ねられた混合原料Rからなる円錐形状の堆積物を形成する。この堆積物は、落下した時刻が異なる湿潤原料と銅精鉱が同じ水平面上で年輪のように配置されることになる。
3. 3. Dispersion step S3
In the dispersion step S3, each of the wet raw material and the copper concentrate, which are alternately dropped from the belt conveyor 2 in the separation step S2, is dispersed by utilizing the potential energy at the time of the drop, and one layer is provided at the above-mentioned one location. Stack them alternately one by one. That is, the wet raw material and the copper concentrate are alternately dropped toward the one location, and as shown in FIG. 2, the wet raw material and the copper concentrate are alternately stacked one layer at a time. A conical deposit consisting of 4 is formed. In this deposit, wet raw materials and copper concentrates that fall at different times will be arranged like annual rings on the same horizontal plane.

上記のように、ベルトコンベア2から交互に落下する湿潤原料及び銅精鉱は、混合原料Rからなる略円錐形状の堆積物の頂部から側面に沿ってランダムな方向に広がることで分散する。これにより、該湿潤原料の中に雑原料が偏在していても、ランダムに広がることで分散され、より均一化が進む。続いて落下する銅精鉱も同様に混合原料Rからなる略円錐形状の堆積物の頂部から側面に沿ってランダムな方向に広がることで分散する。また、湿潤原料によって該円錐形状の堆積物の側部に凹凸が形成されている場合は、その凹部を埋めたり凸部を壊したりすることで該側部を平坦にしながら広がっていく。上記の分散工程S3では、落下する落差が大きいほど各原料は遠くまで広がるので、より均一に混合する点からは落差を与えることが好ましい。 As described above, the wet material and copper concentrate falling from the belt conveyor 2 alternately, distributed by spreading in random directions along the top of the deposit of a substantially conical shape composed of mixed material R 4 on the side surface. As a result, even if miscellaneous raw materials are unevenly distributed in the wet raw material, they are randomly spread and dispersed, and more uniformization is promoted. Subsequently copper concentrate to fall even along the side surface from the top of the deposit of a substantially conical shape of similar mixed raw material R 4 distributed by spreading in a random direction. Further, when unevenness is formed on the side portion of the conical deposit by the wet raw material, the concave portion is filled or the convex portion is broken to spread the side portion while flattening it. In the above dispersion step S3, the larger the falling head, the farther each raw material spreads. Therefore, it is preferable to give a head from the viewpoint of more uniform mixing.

4.追加離合分散工程S4
追加離合分散工程S4では、上記の分散工程S3によって1箇所に合流している湿潤原料及び銅精鉱に対して、好ましくはショベルローダーで掬い取ってホッパー及び定量フィーダーからなる追加離合分散用切出装置3に投入し、ここから追加離合分散用ベルトコンベア4の一端部に切り出してベルト面上に広げた後、該追加離合分散用ベルトコンベア4の該一端部とは反対側の末端部から下方に向けて落下させてその位置エネルギーを利用して分散させながら該下方の1箇所に合流させる。これにより、より一層均一化を進めることができる。
4. Additional separation and dispersion step S4
In the additional separation / dispersion step S4, the wet raw material and the copper concentrate merged at one location in the above dispersion step S3 are preferably scooped up with a shovel loader and cut out for additional separation / dispersion consisting of a hopper and a quantitative feeder. It is put into the device 3, cut out from here to one end of the additional disengagement and dispersion belt conveyor 4, spread on the belt surface, and then downward from the end on the opposite side of the additional disengagement and dispersion belt conveyor 4. It is dropped toward the surface and is dispersed by utilizing its position energy, and is merged with the one below. As a result, the homogenization can be further promoted.

この追加離合分散工程S4は、後工程の乾燥工程以降の乾式銅製錬において特に操業上の問題が生じない場合は行わなくてもよいし、2回以上行ってもよい。追加離合分散工程S4を2回以上行う場合は、該追加離合分散用ベルトコンベア4の末端部の下方の1箇所に合流させることで形成した堆積物の任意の部分をサンプリングして、湿潤原料と銅精鉱の混合比率がほぼ同じ比率であるか否かを指標にしてその回数を定めることができる。 This additional separation / dispersion step S4 may not be performed if there is no particular operational problem in the dry copper smelting after the drying step of the subsequent step, or may be performed twice or more. When the additional disengagement / dispersion step S4 is performed twice or more, an arbitrary part of the deposit formed by merging at one place below the end of the additional disengagement / dispersion belt conveyor 4 is sampled and used as a wet raw material. The number of times can be determined by using as an index whether or not the mixing ratio of copper concentrate is almost the same.

なお、湿潤原料や銅精鉱を構成する個々の固体粒子の落下時の挙動は統計的な振る舞いをするので、落下点から分散するときの移動方向や移動距離を予想することはできない。従って、例えば追加離合分散工程S4を2回以上行う場合は、追加離合分散用ベルトコンベア4の末端部から落下させる落差が毎回同じであれば、1回目と2回目で該落下点から広がるときの移動距離が同じで且つ逆方向に移動する固体粒子が生じ、効率のよい混合が行われなくなる。そこで、追加離合分散工程を2回以上行う場合は、例えば1回目と2回目で固体粒子が広がるときの移動距離に差が生じるように、追加離合分散用ベルトコンベア4から落下させる際の落差を毎回変えることが望ましい。 Since the behavior of the individual solid particles constituting the wet raw material and the copper concentrate at the time of falling is statistical, it is not possible to predict the moving direction and the moving distance when the individual solid particles are dispersed from the falling point. Therefore, for example, when the additional disengagement / dispersion step S4 is performed twice or more, if the head dropped from the end portion of the additional disengagement / dispersion belt conveyor 4 is the same each time, the first and second times it spreads from the drop point. Solid particles having the same movement distance and moving in the opposite direction are generated, and efficient mixing cannot be performed. Therefore, when the additional separation / dispersion step is performed twice or more, for example, the head when dropped from the additional separation / dispersion belt conveyor 4 is set so that the moving distance when the solid particles spread is different between the first time and the second time. It is desirable to change it every time.

5.最終均一化工程S5
最終均一化工程S5では、上記分散工程S3によって形成される湿潤原料と銅精鉱とが層状に交互に積み重ねられた略円錐形状の堆積物か、あるいは上記追加離合分散工程S4によって形成される湿潤原料と銅精鉱とが均一に混合された略円錐形状の堆積物から、これら湿潤原料及び銅精鉱を好ましくはホッパーと定量フィーダーとからなる最終切出装置5を介して最終ベルトコンベア6に少しずつ切り出す。上記の堆積物を上記の最終切出装置5に供給する手段としては、例えばショベルローダーのような大型の重機が好ましく、このように大型の重機を用いることで、湿潤原料と銅精鉱とが両方とも含まれるように掬い取ることができるので、より効率よく均一化させることができる。
5. Final homogenization step S5
In the final homogenization step S5, a substantially conical deposit in which the wet raw material and the copper concentrate formed in the dispersion step S3 are alternately stacked in layers, or the wetting formed in the additional separation / dispersion step S4. From a substantially conical deposit in which the raw material and copper concentrate are uniformly mixed, these wet raw materials and copper concentrate are transferred to the final belt conveyor 6 via a final cutting device 5 including a hopper and a quantitative feeder. Cut out little by little. As a means for supplying the deposit to the final cutting device 5, a large heavy machine such as an excavator loader is preferable, and by using such a large heavy machine, the wet raw material and the copper concentrate can be separated. Since both can be scooped out so as to be included, uniformization can be performed more efficiently.

上記のようにショベルローダーで掬い取られた湿潤原料及び銅精鉱は、最終切出装置5のホッパー内に投入されることで該ホッパー内で広がる。これにより、例えば上記堆積物の湿潤原料の層中に雑原料が偏在していても分散されて全体に広がり、より均一な混合物に近づく。その後、この混合状態の湿潤原料及び銅精鉱は定量フィーダーでさらに混合されるので、この最終均一化工程S5の前の堆積物の状態に比べてより一層均一化された状態になる。 The wet raw material and copper concentrate scooped up by the excavator loader as described above are put into the hopper of the final cutting device 5 and spread in the hopper. As a result, for example, even if the miscellaneous raw materials are unevenly distributed in the layer of the wet raw material of the deposit, they are dispersed and spread throughout, and the mixture approaches a more uniform mixture. After that, the wet raw material and the copper concentrate in this mixed state are further mixed by the quantitative feeder, so that the state becomes more uniform than the state of the deposit before the final homogenization step S5.

以上、説明したように、本発明の実施形態の調製方法により、従来の混合方法に比べてより均一に混合された銅製錬原料を安定的に調製することができる。なお、上記の調製方法が対象とする湿潤状態の雑原料は特に限定がなく、様々な組成及び水分率を有する固体粒子を使用することができ、少なくともその表面が湿潤しているものであればより顕著な効果が得られる。一方、銅精鉱は上記雑原料に比べて水分率が低く且つ粘着性及び凝集性が低いものであればより顕著な効果が得られる。通常は銅精鉱は水分をほとんど含まない固体粒子から構成されるし、銅精鉱は水をはじきやすい疎水性の性質を有しているので、一部又は全体が湿潤していてもその水分率は低い範囲に留まり、適切な混合によって均一な性状の銅製錬原料を調製することができる。 As described above, according to the preparation method of the embodiment of the present invention, a copper smelting raw material mixed more uniformly than the conventional mixing method can be stably prepared. The wet miscellaneous raw materials targeted by the above preparation method are not particularly limited, and solid particles having various compositions and moisture contents can be used, and at least the surface thereof is wet. A more remarkable effect can be obtained. On the other hand, if the copper concentrate has a lower water content and lower adhesiveness and cohesiveness than the above-mentioned miscellaneous raw materials, a more remarkable effect can be obtained. Normally, copper concentrate is composed of solid particles that contain almost no water, and copper concentrate has a hydrophobic property that easily repels water, so even if part or all of it is wet, its water content. The rate remains in the low range, and proper mixing can prepare copper smelting raw materials with uniform properties.

なお、銅製錬で扱う雑原料を構成する固体粒子の粘着性及び凝集性は、一般的に固体粒子の水分率に比例することが知られている。固体粒子中の水分率が50%を超えると粘着性及び凝集性は急激に高くなり、固体粒子同士は互いに接した状態となりやすい。一方、水分率が0%〜50%程度の固体粒子は、上記の水分率50%を超える固体粒子と比べて粘着性が低く、混合の際に広い範囲に拡散させることができる。ここで、水分率は物質に含まれる水の質量割合であり含水率とも称する。 It is known that the adhesiveness and cohesiveness of solid particles constituting miscellaneous raw materials handled in copper smelting are generally proportional to the water content of the solid particles. When the water content in the solid particles exceeds 50%, the adhesiveness and cohesiveness rapidly increase, and the solid particles tend to be in contact with each other. On the other hand, solid particles having a water content of about 0% to 50% have lower adhesiveness than the above-mentioned solid particles having a water content of more than 50%, and can be diffused over a wide range during mixing. Here, the water content is the mass ratio of water contained in the substance and is also referred to as the water content.

(実施例1)
砂状の銅精鉱(水分率8〜10%)と、硫酸工場で排出された廃酸に硫化剤を添加することで生成した析出物である粘土状小塊の雑原料(水分率35〜65%)とを用意し、図1のブロックフローに沿って銅製錬用原料を調製した。なお、追加離合分散工程S4は行わなかった。なお、上記水分率は一部採取したサンプルの乾燥前後の質量を測定することで算出した。
(Example 1)
Sandy copper concentrate (moisture content 8-10%) and clay-like small mass miscellaneous raw materials (moisture content 35-) that are precipitates produced by adding a sulfide agent to the waste acid discharged from the sulfuric acid factory. 65%) was prepared, and a raw material for copper smelting was prepared along the block flow of FIG. The additional separation / dispersion step S4 was not performed. The water content was calculated by measuring the mass of a partially collected sample before and after drying.

具体的には、先ず、予混合工程S1として、ショベルローダーを用いて雑原料1質量部に対して銅精鉱5質量部の割合で予混合して予混合原料を得た。次に離合工程S2として、上記予混合原料1質量部に対して銅精鉱5質量部の割合で図2に示すように切出装置1のホッパーに交互に投入した。この交互に投入する際は、直前に投入した原料がほぼ全て切り出されてホッパー内が空になってから次の原料を投入するようにした。 Specifically, first, as the premixing step S1, a premixed raw material was obtained by premixing using a shovel loader at a ratio of 5 parts by mass of copper concentrate to 1 part by mass of miscellaneous raw materials. Next, as the separation step S2, the premixed raw material was alternately charged into the hopper of the cutting device 1 at a ratio of 5 parts by mass of copper concentrate to 1 part by mass of the premixed raw material as shown in FIG. When the raw materials were charged alternately, almost all the raw materials charged immediately before were cut out and the inside of the hopper was emptied before the next raw material was charged.

このようにホッパーに交互に投入することで、予混合原料と銅精鉱とをベルトコンベア2に交互に切り出した。ベルトコンベア2に交互に切り出されたこれら予混合原料及び銅精鉱は、該ベルトコンベア2(一般的なベルトコンベア及びその後段のトリッパーコンベア)のベルト面上に別々に広げられた後、該トリッパーコンベアの先端部から貯鉱場の空いている置き場に落下させることで1箇所に合流させた。 By alternately charging the hopper in this way, the premixed raw material and the copper concentrate were alternately cut out on the belt conveyor 2. These premixed raw materials and copper concentrates alternately cut out on the belt conveyor 2 are separately spread on the belt surface of the belt conveyor 2 (general belt conveyor and subsequent tripper conveyor), and then the tripper. It was merged into one place by dropping it from the tip of the conveyor to an empty storage area of the mine.

上記の1箇所に合流させる際、分散工程S3として、これら予混合原料と銅精鉱を各々均質化するために混合原料Rからなる略円錐形状の堆積物の傾面上で分散させながら1層ずつ交互に積み重ねた。最後に最終均一化工程S5として、上記置き場で形成した予混合原料と銅精鉱とからなる混合原料Rの堆積物から予混合原料と銅精鉱とが両方とも含まれるようにショベルローダーで少しずつ掬い取って均一化原料としてロータリードライヤー7で加熱乾燥した後、自熔炉に装入して銅製錬を行った。この操業を2日間にわたり継続しながら、自熔炉から産出されるマット(硫化物)を4時間ごとに採取してその銅品位を分析した。その結果、図3の実線で示すように、銅品位の分析値はほぼ一定値で推移した。 When to merge into one place above, as a dispersion step S3, while dispersing on傾面substantially deposit conical shape composed of mixed material R 4 to each homogenizing these premixed feed with copper concentrate 1 Layers were stacked alternately. Finally the final homogenization step S5, shovel loader to the premixed raw material and Dosei ore from deposits mixed material R 4 consisting of a premix material and the copper concentrate formed in the storage are also included both After scooping up little by little and heating and drying with a rotary dryer 7 as a homogenizing raw material, the copper was smelted by charging it into a self-melting furnace. While continuing this operation for 2 days, mats (sulfides) produced from the flash smelting furnace were collected every 4 hours and their copper grades were analyzed. As a result, as shown by the solid line in FIG. 3, the analytical value of the copper grade remained almost constant.

(比較例1)
実施例1と同じ銅精鉱及び雑原料を、互いに混合することなく別々に貯鉱場まで搬送し、貯鉱場において実施例1とほぼ同じ配合割合となるようにショベルローダーにより混合を行った以外は実施例1と同様にして銅製錬を行った。その結果、図3の点線で示すように、銅品位の分析値は実施例1に比べてばらつきが大きくなった。自熔炉の産出物の銅品位のばらつきは、装入物の銅品位のばらつきに起因するものと考えられるので、実施例1の調製方法を採用することで、比較例1に比べてより均一に混合された銅製錬原料を自熔炉に装入できることが分かる。
(Comparative Example 1)
The same copper concentrate and miscellaneous raw materials as in Example 1 were separately transported to the mine without mixing with each other, and mixed by a shovel loader at the mine so as to have almost the same mixing ratio as in Example 1. Copper smelting was carried out in the same manner as in Example 1 except for the above. As a result, as shown by the dotted line in FIG. 3, the analytical values of the copper grade became more varied than in Example 1. It is considered that the variation in the copper grade of the product of the flash smelting furnace is caused by the variation in the copper grade of the charged material. Therefore, by adopting the preparation method of Example 1, the variation is more uniform than that of Comparative Example 1. It can be seen that the mixed copper smelting raw material can be charged into the flash smelting furnace.

1 切出装置
2 ベルトコンベア
3 追加離合落下用切出装置
4 追加離合落下用ベルトコンベア
5 最終切出装置
6 最終ベルトコンベア
7 ロータリードライヤー
雑原料
銅精鉱
予混合原料
混合原料
S1 予混合工程
S2 離合工程
S3 分散工程
S4 追加離合分散工程
S5 最終均一化工程
1 Cutting device 2 Belt conveyor 3 Cutting device for additional separation and dropping 4 Belt conveyor for additional separation and dropping 5 Final cutting device 6 Final belt conveyor 7 Rotary dryer R 1 Miscellaneous raw material R 2 Copper concentrate R 3 Premixed raw material R 4 Mixed Raw Material S1 Pre-Mixing Step S2 Separation Step S3 Dispersion Step S4 Additional Separation Dispersion Step S5 Final Uniformization Step

Claims (8)

雑原料を含有する湿潤原料と銅精鉱とからなる銅製錬原料の調製方法であって、前記湿潤原料と前記銅精鉱とをベルトコンベアの一端部に交互に切り出してそれらを別々にベルト面上に広げた後、該ベルトコンベアの末端部から交互に落下させてその下方の1箇所に合流させる離合工程を有することを特徴とする銅製錬原料の調製方法。 A method for preparing a copper smelting raw material composed of a wet raw material containing miscellaneous raw materials and a copper concentrate, in which the wet raw material and the copper concentrate are alternately cut out at one end of a belt conveyor and separately cut into belt surfaces. A method for preparing a copper smelting raw material, which comprises a separation step of spreading it upward and then alternately dropping it from the end of the belt conveyor and merging it at one place below the belt conveyor. 前記離合工程の前に、湿潤状態の雑原料と銅精鉱の一部とを予混合して前記湿潤原料を得る予混合工程を有することを特徴とする、請求項1に記載の銅製錬原料の調製方法。 The copper smelting raw material according to claim 1, further comprising a premixing step of premixing a wet miscellaneous raw material and a part of copper concentrate to obtain the wet raw material before the union step. Preparation method. 前記予混合をショベルローダーで行うことを特徴とする、請求項2に記載の銅製錬原料の調製方法。 The method for preparing a copper smelting raw material according to claim 2, wherein the premixing is performed with a shovel loader. 前記ベルトコンベアの末端部から交互に落下する前記湿潤原料及び銅精鉱を、その落下時の位置エネルギーを利用して分散させながら前記1箇所で1層ずつ交互に積み重ねる分散工程を更に有することを特徴とする、請求項1〜3のいずれか1項に記載の銅製錬原料の調製方法。 Further having a dispersion step of alternately stacking the wet raw materials and copper concentrates that alternately fall from the end of the belt conveyor one layer at a time while dispersing them by utilizing the potential energy at the time of the fall. The method for preparing a copper smelting raw material according to any one of claims 1 to 3, which is characteristic. 前記1箇所に合流している前記湿潤原料及び銅精鉱を追加離合分散用ベルトコンベアの一端部に切り出してそのベルト面上に広げた後、該追加離合分散用ベルトコンベアの末端部からその下方に向けて落下させてその位置エネルギーを利用して分散させながら該下方の1箇所に合流させる追加離合分散工程を1回以上行うことを特徴とする、請求項4に記載の銅製錬原料の調製方法。 The wet raw material and copper concentrate that are merged at the one location are cut out at one end of the additional separation / dispersion belt conveyor, spread on the belt surface, and then below the end of the additional separation / dispersion belt conveyor. The preparation of the copper smelting raw material according to claim 4, wherein the additional separation / dispersion step of dropping the copper smelting material toward the conveyor belt and merging the copper smelting material into the lower one place while dispersing the copper smelting material is performed one or more times. Method. 前記1箇所に合流している前記湿潤原料及び銅精鉱が両方とも含まれるように最終ベルトコンベアに少しずつ切り出す最終均一化工程を更に有することを特徴とする、請求項1〜5のいずれか1項に記載の銅製錬原料の調製方法。 Any of claims 1 to 5, further comprising a final homogenization step of gradually cutting out to the final belt conveyor so that both the wet raw material and the copper concentrate that are merged at the one location are included. The method for preparing a copper smelting raw material according to item 1. 前記1箇所に合流している前記湿潤原料及び銅精鉱をショベルローダーで掬い取って前記最終ベルトコンベアに導入することを特徴とする、請求項6に記載の銅製錬原料の調製方法。 The method for preparing a copper smelting raw material according to claim 6, wherein the wet raw material and the copper concentrate that have merged at the one location are scooped up by a shovel loader and introduced into the final belt conveyor. 前記湿潤原料1質量部に対して前記銅精鉱を1〜10質量部配合とすることを特徴とする、請求項1〜7のいずれか1項に記載の銅製錬原料の調製方法。 The method for preparing a copper smelting raw material according to any one of claims 1 to 7, wherein the copper concentrate is blended in an amount of 1 to 10 parts by mass with respect to 1 part by mass of the wet raw material.
JP2020061974A 2020-03-31 2020-03-31 Method for preparing copper smelting raw materials Active JP7480556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020061974A JP7480556B2 (en) 2020-03-31 2020-03-31 Method for preparing copper smelting raw materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020061974A JP7480556B2 (en) 2020-03-31 2020-03-31 Method for preparing copper smelting raw materials

Publications (2)

Publication Number Publication Date
JP2021161464A true JP2021161464A (en) 2021-10-11
JP7480556B2 JP7480556B2 (en) 2024-05-10

Family

ID=78002701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020061974A Active JP7480556B2 (en) 2020-03-31 2020-03-31 Method for preparing copper smelting raw materials

Country Status (1)

Country Link
JP (1) JP7480556B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053929A1 (en) 2021-09-30 2023-04-06 Agc株式会社 Solid electrolyte powder, solid electrolyte layer, and lithium-ion all-solid-state battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283898A (en) 1999-03-31 2000-10-13 Sumitomo Metal Ind Ltd Sampling device of mixed sample
JP2002356689A (en) 2001-03-30 2002-12-13 Idemitsu Kosan Co Ltd Fuel blend and fuel supplying method
JP4897845B2 (en) 2009-02-17 2012-03-14 パンパシフィック・カッパー株式会社 Dust diffusion control method outside the building
JP5375710B2 (en) 2010-03-30 2013-12-25 新日鐵住金株式会社 Method of loading ore ore
JP5884173B2 (en) 2012-03-30 2016-03-15 Jfeスチール株式会社 How to dry converter dust
JP2014173284A (en) 2013-03-07 2014-09-22 Penta Ocean Construction Co Ltd Mixing apparatus and method for mixing steel-making slag to soft soil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053929A1 (en) 2021-09-30 2023-04-06 Agc株式会社 Solid electrolyte powder, solid electrolyte layer, and lithium-ion all-solid-state battery

Also Published As

Publication number Publication date
JP7480556B2 (en) 2024-05-10

Similar Documents

Publication Publication Date Title
CN104368595A (en) Contaminated soil ex-situ medicating, mixing and restoring system
CN102105607A (en) Tailing processing method
DE60120156T2 (en) METHOD AND DEVICE FOR PRODUCING DISCHARGERS FOR HOT METALS
JP2021161464A (en) Preparation method of copper smelting raw material
EP3186403A1 (en) Reuse of by-products from metallurgical processes, processing of waste materials and products thereof
AU2005219521A2 (en) Method for the production of a raw sintering mixture
CN112930313B (en) Raw material supply device, electronic/electrical equipment component scrap processing device, and electronic/electrical equipment component scrap processing method
EP2848299B1 (en) Method and device for producing granulates
DE10111300B4 (en) Processing device especially for excavation
CN219616374U (en) Soil remediation equipment and soil remediation system
WO2002012574A1 (en) Dust control
DE3908185A1 (en) Process and apparatus for treating contaminated soil materials
US9085020B2 (en) Method and apparatus for homogenizing and stabilizing an iron-bearing residue
CN113667832A (en) Smelting method of copper concentrate with complex components
JP2022169284A (en) Preparation method of copper refining raw material
DE19940684A1 (en) Removal of elementary mercury from residues produced during natural gas recovery comprises separating out elementary mercury and foreign materials, re-suspending, classifying fine and coarse solids and further treating
US1176878A (en) Process and apparatus for charging furnaces.
DE19907619C2 (en) Intelligent gravimetric dosing device
CN210688253U (en) Feeding system of incineration device
BE1027675B1 (en) Cooler and method for cooling bulk goods
CN103261121A (en) An improved micronutrient fertiliser and method for producing same
JP2007022869A (en) Settable composition
CN204487871U (en) Environmental protective type chemical mixed aid production equipment
Coleman et al. Reduction of the calcite content of ground shale by liquid—liquid particle transfer
DE102005043662B4 (en) Process for the preparation of used confectionery for the manufacture of animal feed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240408

R150 Certificate of patent or registration of utility model

Ref document number: 7480556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150