JP2021157951A - Electrode plate for nonaqueous secondary battery, nonaqueous secondary battery, and method for manufacturing electrode plate - Google Patents

Electrode plate for nonaqueous secondary battery, nonaqueous secondary battery, and method for manufacturing electrode plate Download PDF

Info

Publication number
JP2021157951A
JP2021157951A JP2020057167A JP2020057167A JP2021157951A JP 2021157951 A JP2021157951 A JP 2021157951A JP 2020057167 A JP2020057167 A JP 2020057167A JP 2020057167 A JP2020057167 A JP 2020057167A JP 2021157951 A JP2021157951 A JP 2021157951A
Authority
JP
Japan
Prior art keywords
secondary battery
electrode plate
active material
density
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020057167A
Other languages
Japanese (ja)
Other versions
JP7254743B2 (en
Inventor
優祐 河口
Yusuke Kawaguchi
優祐 河口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primearth EV Energy Co Ltd
Original Assignee
Primearth EV Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primearth EV Energy Co Ltd filed Critical Primearth EV Energy Co Ltd
Priority to JP2020057167A priority Critical patent/JP7254743B2/en
Publication of JP2021157951A publication Critical patent/JP2021157951A/en
Application granted granted Critical
Publication of JP7254743B2 publication Critical patent/JP7254743B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide an electrode plate for a nonaqueous secondary battery and the like, capable of suppressing current concentration near a recess that is provided on the surface of a mixture layer including an active material.SOLUTION: An electrode plate 1 for a nonaqueous secondary battery includes: a current collector 11; and a mixture layer 12 provided on the surface of the current collector 11 and including at least an active material. The electrode plate for a nonaqueous secondary battery has a recess 13 and a protrusion 14 on a surface layer of the mixture layer 12. The protrusion 14 is located around an opening of the recess 13. The density of the active material in at least a part of the recess 13 is less than the density of the active material at the inside of the mixture layer in a part that is not provided with the recess 13 and the protrusion 14.SELECTED DRAWING: Figure 1

Description

本発明は、非水二次電池用極板、非水二次電池、及び極板製造方法に関する。 The present invention relates to a electrode plate for a non-aqueous secondary battery, a non-aqueous secondary battery, and a method for manufacturing the electrode plate.

近年、リチウムイオン二次電池は、電気自動車やハイブリッド自動車などの電源として広く利用されてきている。リチウムイオン二次電池は、リチウムイオンを吸蔵・放出する正極及び負極の間を、電解液中のリチウムイオンが移動することで充放電可能な非水二次電池である。 In recent years, lithium ion secondary batteries have been widely used as a power source for electric vehicles and hybrid vehicles. A lithium ion secondary battery is a non-aqueous secondary battery that can be charged and discharged by moving lithium ions in an electrolytic solution between a positive electrode and a negative electrode that occlude and release lithium ions.

一般的に、リチウムイオン二次電池は正極と負極とをセパレータを介して積層することで構成され、各々の電極(正極及び負極)は活物質を少なくとも含む合材層を集電体の表面に塗工することで構成されている。 Generally, a lithium ion secondary battery is composed of a positive electrode and a negative electrode laminated via a separator, and each electrode (positive electrode and negative electrode) has a mixture layer containing at least an active material on the surface of a current collector. It is composed of coating.

特許文献1には、導電体で形成されている集電層と、活物質層と、集電層と活物質層とを接着する接着層と、を備える電極が記載されている。ここで、活物質層は、電荷を蓄える活物質粒子、活物質粒子に蓄えられた電荷を集電層へ伝達する導電助剤、及び活物質粒子と導電助剤とを結着する結着剤を有し、集電層と反対側に凹凸を形成している。この凹凸は、活物質層の一方の端面に圧延工程によるプレスを施すことで形成している。それにより、特許文献1に記載の電極では、活物質層に含まれる活物質粒子の総量を変えずに(活物質層のエネルギー密度を変えずに)、凹部のように集電層までの距離が小さい部分において電気的な内部抵抗を減少させている。 Patent Document 1 describes an electrode including a current collector layer formed of a conductor, an active material layer, and an adhesive layer for adhering the current collector layer and the active material layer. Here, the active material layer is an active material particle that stores an electric charge, a conductive auxiliary agent that transmits the electric charge stored in the active material particle to the current collecting layer, and a binder that binds the active material particle and the conductive auxiliary agent. And has irregularities on the opposite side of the current collecting layer. These irregularities are formed by pressing one end face of the active material layer by a rolling process. As a result, in the electrode described in Patent Document 1, the distance to the current collecting layer like a recess without changing the total amount of the active material particles contained in the active material layer (without changing the energy density of the active material layer). Reduces electrical internal resistance in small areas.

特開2013−187468号公報Japanese Unexamined Patent Publication No. 2013-187468

しかしながら、特許文献1に記載の技術は、活物質層のエネルギー密度を維持しながら(つまり活物質を除去せずに)、電気的な内部抵抗を減少させるものであるため、凹部近傍の活物質層が高密度化する懸念がある。そして、このような凹部近傍での活物質層の高密度化により、凹部付近に電流が集中するような電極が形成されてしまうことになる。 However, the technique described in Patent Document 1 reduces the electrical internal resistance while maintaining the energy density of the active material layer (that is, without removing the active material), and therefore the active material in the vicinity of the recess. There is a concern that the layers will become denser. Then, due to the high density of the active material layer in the vicinity of the recess, an electrode in which the current is concentrated is formed in the vicinity of the recess.

また、リチウムイオン二次電池における負極の場合で説明すると、このような凹部近傍での活物質層の高密度化により、凹部近傍において電解液の拡散経路が減少して、結果的に凹部の表層での電流密度が上がり、リチウム析出耐性が悪化する。なお、このような問題は、リチウムイオン電池以外の非水二次電池についても生じ得る。 Further, in the case of the negative electrode in the lithium ion secondary battery, the density of the active material layer in the vicinity of the recess is increased, so that the diffusion path of the electrolytic solution is reduced in the vicinity of the recess, and as a result, the surface layer of the recess is formed. The current density increases and the lithium precipitation resistance deteriorates. It should be noted that such a problem may occur in a non-aqueous secondary battery other than the lithium ion battery.

本発明は、このような課題を解決するためになされたもので、活物質を含む合材層の表面に設けた凹部近傍での電流集中を抑えることが可能な非水二次電池用極板、その極板を備えた非水二次電池、及びその極板を製造する極板製造方法を提供することを、その目的とする。 The present invention has been made to solve such a problem, and is a electrode plate for a non-aqueous secondary battery capable of suppressing current concentration in the vicinity of a recess provided on the surface of a mixture layer containing an active material. An object of the present invention is to provide a non-aqueous secondary battery provided with the electrode plate, and a plate manufacturing method for producing the electrode plate.

本発明の一態様に係る非水二次電池用極板は、集電体と、前記集電体の表面に設けられた、活物質を少なくとも含む合材層と、を備え、前記合材層の表層に凹部及び凸部を有し、前記凸部は前記凹部の開口部の周囲に位置し、前記凹部の少なくとも一部分における前記活物質の密度は、前記凹部及び前記凸部が設けられていない部分の前記合材層の内部における前記活物質の密度より小さいものである。 The electrode plate for a non-aqueous secondary battery according to one aspect of the present invention includes a current collector and a mixture layer provided on the surface of the current collector and containing at least an active material. The surface layer of the concave portion and the convex portion are located around the opening of the concave portion, and the density of the active material in at least a part of the concave portion is such that the concave portion and the convex portion are not provided. It is less than the density of the active material inside the mixture layer of the portion.

この態様に係る非水二次電池用極板は、上述のような密度差をもつように活物質を含む合材層が形成されているため、合材層の表面に設けた凹部近傍での電流集中を抑えることが可能になる。 Since the electrode plate for a non-aqueous secondary battery according to this embodiment has a mixture layer containing an active material formed so as to have a density difference as described above, it is located in the vicinity of a recess provided on the surface of the mixture layer. It becomes possible to suppress the current concentration.

また、前記凹部及び前記凸部のうちの前記開口部の近傍での表層における前記活物質の密度は、前記凹部及び前記凸部が設けられていない部分の前記合材層の内部における前記活物質の密度より小さいことが好ましい。これにより、開口部付近での電流集中を抑えることができる。 Further, the density of the active material in the surface layer in the vicinity of the opening of the concave portion and the convex portion is the density of the active material in the mixture layer of the portion where the concave portion and the convex portion are not provided. It is preferably smaller than the density of. As a result, the current concentration near the opening can be suppressed.

また、前記凹部の表層における前記活物質の密度は、前記凹部及び前記凸部が設けられていない部分の前記合材層の内部における前記活物質の密度より小さいことが好ましい。これにより、凹部の全体について凹部での電流集中を抑えることができる。 Further, the density of the active material in the surface layer of the concave portion is preferably smaller than the density of the active material in the inside of the mixed material layer in the portion where the concave portion and the convex portion are not provided. As a result, the current concentration in the recess can be suppressed for the entire recess.

また、前記非水二次電池用極板は負極用の極板とすることができる。これにより、負極における成分析出耐性を向上させることができる。 Further, the electrode plate for the non-aqueous secondary battery can be an electrode plate for the negative electrode. Thereby, the component precipitation resistance at the negative electrode can be improved.

本発明の他の態様に係る非水二次電池は、前記非水二次電池用極板を負極として用いたものである。これにより、非水二次電池において、負極における成分析出耐性を向上させることができる。 The non-aqueous secondary battery according to another aspect of the present invention uses the non-aqueous secondary battery electrode plate as a negative electrode. Thereby, in the non-aqueous secondary battery, the component precipitation resistance at the negative electrode can be improved.

本発明の他の態様に係る非水二次電池は、前記非水二次電池用極板を、負極及び正極の少なくとも一方の極板として用いたものである。これにより、非水二次電池において、合材層の凹部近傍での電気抵抗の集中を抑えることができ、電気化学反応の均一化を図ることができる。 The non-aqueous secondary battery according to another aspect of the present invention uses the non-aqueous secondary battery electrode plate as at least one electrode plate of a negative electrode and a positive electrode. As a result, in the non-aqueous secondary battery, the concentration of electric resistance in the vicinity of the recess of the mixture layer can be suppressed, and the electrochemical reaction can be made uniform.

本発明の他の態様に係る極板製造方法は、非水二次電池用極板を製造する極板製造方法であって、活物質を少なくとも含む合材層を集電体の表面に形成する形成工程と、凸部及び凹部を有する金型を用いて、前記合材層の表面を押圧することで、前記合材層の表層に凹部及び凸部を形成する押圧工程と、前記金型を前記合材層から取り外す取外し工程と、を備える。ここで、前記金型の凹部は、前記金型の凸部の周囲に位置し、前記金型の凸部は、前記押圧工程時における前記合材層に対する方向の摩擦係数が前記取外し工程時における前記合材層に対する方向の摩擦係数より小さくなる形状を有するものである。 The electrode plate manufacturing method according to another aspect of the present invention is a electrode plate manufacturing method for manufacturing a electrode plate for a non-aqueous secondary battery, in which a mixture layer containing at least an active material is formed on the surface of a current collector. The forming step, the pressing step of forming the concave portion and the convex portion on the surface layer of the mixed material layer by pressing the surface of the mixed material layer using the mold having the convex portion and the concave portion, and the pressing process of the mold. It includes a removal step of removing from the mixture layer. Here, the concave portion of the mold is located around the convex portion of the mold, and the convex portion of the mold has a friction coefficient in the direction with respect to the mixture layer during the pressing step during the removing step. It has a shape smaller than the coefficient of friction in the direction with respect to the mixture layer.

この態様に係る極板製造方法は、上述のような密度差をもつように活物質を含む合材層を形成することができるため、合材層の表面に設けた凹部近傍での電流集中を抑えることが可能な非水二次電池用極板を製造することができる。 In the electrode plate manufacturing method according to this aspect, since the mixture layer containing the active material can be formed so as to have the above-mentioned density difference, the current concentration in the vicinity of the recess provided on the surface of the mixture layer is concentrated. It is possible to manufacture a electrode plate for a non-aqueous secondary battery that can be suppressed.

本発明により、活物質を含む合材層の表面に設けた凹部近傍での電流集中を抑えることが可能な非水二次電池用極板、その極板を備えた非水二次電池、及びその極板を製造する極板製造方法を提供することを提供することができる。 According to the present invention, a electrode plate for a non-aqueous secondary battery capable of suppressing current concentration in the vicinity of a recess provided on the surface of a mixture layer containing an active material, a non-aqueous secondary battery provided with the electrode plate, and a non-aqueous secondary battery. It can be provided to provide a plate manufacturing method for manufacturing the electrode plate.

実施形態1に係る非水二次電池用極板の一例を部分的に示す概略断面図である。It is schematic cross-sectional view which partially shows an example of the electrode plate for a non-aqueous secondary battery which concerns on Embodiment 1. FIG. 図1の非水二次電池用極板の概略上面図である。It is a schematic top view of the electrode plate for a non-aqueous secondary battery of FIG. 比較例に係る非水二次電池用極板の一例を部分的に示す概略断面図である。It is schematic cross-sectional view which shows an example of the electrode plate for a non-aqueous secondary battery which concerns on a comparative example partially. 図1の非水二次電池用極板を製造する極板製造方法の一例を説明するためのフロー図である。It is a flow chart for demonstrating an example of the electrode plate manufacturing method for manufacturing the electrode plate for a non-aqueous secondary battery of FIG. 図4の押圧工程で用いる金型の一例及びその金型により押圧された合材層を部分的に示す概略断面図である。FIG. 5 is a schematic cross-sectional view partially showing an example of a die used in the pressing step of FIG. 4 and a mixture layer pressed by the die. 図5の金型の一部分を拡大した図である。It is an enlarged view of a part of the mold of FIG. 図4の製造方法により製造された非水二次電池用極板における合材層の内部と凹部周辺での活物質の密度差の試験例を示す図である。It is a figure which shows the test example of the density difference of the active material inside the mixture layer and around the recess in the electrode plate for a non-aqueous secondary battery manufactured by the manufacturing method of FIG. 図4の製造方法により製造された非水二次電池用極板における合材層の内部と凹部周辺との拡散抵抗比の試験例を示す図である。It is a figure which shows the test example of the diffusion resistivity ratio between the inside of a mixture layer and the periphery of a recess in the electrode plate for a non-aqueous secondary battery manufactured by the manufacturing method of FIG.

以下、本発明を適用した具体的な実施形態について、図面を参照しながら詳細に説明する。但し、本発明が以下の実施形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。また、実施形態において、同一又は同等の要素には、同一の符号を付すことがあり、重複する説明は適宜省略される。 Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments. Further, in order to clarify the explanation, the following description and drawings have been simplified as appropriate. Further, in the embodiment, the same or equivalent elements may be designated by the same reference numerals, and duplicate description may be omitted as appropriate.

(実施形態1)
実施形態1について、図1及び図2を参照しながら説明する。図1は実施形態1に係る非水二次電池用極板の一例を部分的に示す概略断面図で、図2は図1の非水二次電池用極板の概略上面図である。
(Embodiment 1)
The first embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a schematic cross-sectional view partially showing an example of a non-aqueous secondary battery electrode plate according to the first embodiment, and FIG. 2 is a schematic top view of the non-aqueous secondary battery electrode plate of FIG.

図1に示すように、本実施形態に係る非水二次電池用極板1は、集電体11と、集電体11の表面に設けられた、活物質を少なくとも含む合材層(合剤層)12と、を備える。そして、合材層12の表層に凹部13及び凸部14を有する。図1に示すように、凹部13は、合材層12の表面から厚さ方向に伸びるように形成されることができる。 As shown in FIG. 1, the electrode plate 1 for a non-aqueous secondary battery according to the present embodiment has a current collector 11 and a mixture layer (combination) provided on the surface of the current collector 11 and containing at least an active material. Agent layer) 12 and. The surface layer of the mixture layer 12 has a concave portion 13 and a convex portion 14. As shown in FIG. 1, the recess 13 can be formed so as to extend in the thickness direction from the surface of the mixture layer 12.

なお、図1及び図2では、凹部13の形状が円錐形状である例を挙げているが、例示したものに限ったものではない。また、凸部14の形状が上面から見てドーナツ形状で断面が山なりの形状(円環体をその円周方向に沿って2つに分割した一方の部分)である例を挙げているが、例示したものに限ったものではない。 In addition, although FIG. 1 and FIG. 2 give an example in which the shape of the concave portion 13 is a conical shape, the shape is not limited to the illustrated one. Further, an example is given in which the shape of the convex portion 14 is a donut shape when viewed from the upper surface and the cross section is a mountain shape (one portion of the torus divided into two along the circumferential direction). , Not limited to the examples.

凸部14は凹部13の開口部の周囲に位置する。そして、凹部13の少なくとも一部分における活物質の密度は、凹部13及び凸部14が設けられていない部分の合材層12の内部における活物質の密度より小さい。換言すれば、凹部13の少なくとも一部分における活物質の密度は、凹凸を付ける前の合材層12における活物質の密度より小さい。図1では、凹部13の上記少なくとも一部分を含むような部分において低密度となった低密度層15を図示している。 The convex portion 14 is located around the opening of the concave portion 13. The density of the active material in at least a part of the concave portion 13 is smaller than the density of the active material in the mixture layer 12 in the portion where the concave portion 13 and the convex portion 14 are not provided. In other words, the density of the active material in at least a part of the recess 13 is smaller than the density of the active material in the mixture layer 12 before the unevenness is formed. FIG. 1 illustrates a low-density layer 15 having a low density in a portion of the recess 13 including at least a part thereof.

上述の極板1は、上述のような密度差をもつように合材層12が形成されているため、活物質を含む合材層12の表面に設けた凹部13の近傍での電流集中を抑えることが可能になる。 In the above-mentioned electrode plate 1, since the mixture layer 12 is formed so as to have the above-mentioned density difference, the current concentration in the vicinity of the recess 13 provided on the surface of the mixture layer 12 containing the active material is concentrated. It becomes possible to suppress it.

非水二次電池用極板1(以下、極板1)は、非水二次電池の正極及び負極の少なくとも一方の極板(電極)として用いることができる。なお、非水二次電池において極板1をどのように配置するかは問わず、二次電池として機能させることができればよい。例えば、非水二次電池の電極体を、正極と負極とをセパレータを介して積層することで構成することができ、その場合、正極集電体及び負極集電体の端部には各々、正極用の引き出し電極及び負極用の引き出し電極が設けられる。或いは、非水二次電池の電極体を捲回電極体とすることができる。捲回電極体は、正極と負極とをセパレータを介して積層した後、当該積層体を捲回して扁平にすることで構成することができる。正極集電体及び負極集電体の各々には合材層が塗工されていない未塗工部が形成されており、未塗工部には正極用の引き出し電極及び負極用の引き出し電極がそれぞれ設けられる。 The electrode plate 1 for a non-aqueous secondary battery (hereinafter referred to as an electrode plate 1) can be used as at least one electrode plate (electrode) of a positive electrode and a negative electrode of a non-aqueous secondary battery. It should be noted that it is sufficient that the non-aqueous secondary battery can function as a secondary battery regardless of how the electrode plate 1 is arranged. For example, the electrode body of a non-aqueous secondary battery can be configured by laminating a positive electrode and a negative electrode via a separator, and in that case, the positive electrode current collector and the negative electrode current collector are respectively attached to the ends of the positive electrode body and the negative electrode body. A lead-out electrode for the positive electrode and a pull-out electrode for the negative electrode are provided. Alternatively, the electrode body of the non-aqueous secondary battery can be used as the wound electrode body. The wound electrode body can be configured by laminating a positive electrode and a negative electrode via a separator, and then winding the laminated body to make it flat. Each of the positive electrode current collector and the negative electrode current collector has an uncoated portion in which the mixture layer is not coated, and the uncoated portion has a lead-out electrode for the positive electrode and a lead-out electrode for the negative electrode. Each is provided.

以下では、非水二次電池としてリチウムイオン二次電池を例に挙げて説明する。
極板1をリチウムイオン二次電池の正極に適用する場合には、次のように構成することができる。正極を構成する場合は、集電体11として、アルミニウム又はアルミニウムを主成分とする合金を用いることができる。合材層(正極合材層)12は、正極活物質、導電材、及びバインダーを用いて構成することができる。
In the following, a lithium ion secondary battery will be described as an example as a non-aqueous secondary battery.
When the electrode plate 1 is applied to the positive electrode of a lithium ion secondary battery, it can be configured as follows. When forming a positive electrode, aluminum or an alloy containing aluminum as a main component can be used as the current collector 11. The mixture layer (positive electrode mixture layer) 12 can be formed by using a positive electrode active material, a conductive material, and a binder.

正極活物質は、リチウムイオンを吸蔵・放出可能な材料であり、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、アルミ酸リチウム(LiAlO)を任意の割合で混合したNCA系の材料を用いることができる。一例を挙げると、LiNi0.8Co0.15Al0.05を用いることができる。なお、正極活物質はこれらの材料に限定されることはなく、リチウムイオンを吸蔵・放出可能な材料であればどのような材料を用いてもよい。導電材には、例えばアセチレンブラック(AB)や黒鉛系の材料を用いることができる。また、導電材にカーボンナノチューブを用いてもよい。バインダーには、例えば、ポリフッ化ビニリデン(PVdF)、スチレンブタジエンラバー(SBR)、ポリテトラフルオロエチレン(PTFE)、カルボキシメチルセルロース(CMC)等を用いることができる。 The positive electrode active material is a material capable of occluding and releasing lithium ions. For example, NCA in which lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), and lithium aluminum oxide (LiAlO 2 ) are mixed at an arbitrary ratio. System materials can be used. As an example, LiNi 0.8 Co 0.15 Al 0.05 O 2 can be used. The positive electrode active material is not limited to these materials, and any material may be used as long as it can occlude and release lithium ions. As the conductive material, for example, acetylene black (AB) or a graphite-based material can be used. Further, carbon nanotubes may be used as the conductive material. As the binder, for example, polyvinylidene fluoride (PVdF), styrene butadiene rubber (SBR), polytetrafluoroethylene (PTFE), carboxymethyl cellulose (CMC) and the like can be used.

正極を形成する際は、正極活物質に、導電材及びバインダーを混合し、これらの混合物をNMP(N−メチル−2−ピロリドン)等の溶媒に入れて混練する。そして、混練後の正極合剤を集電体(正極集電体)11上に塗布して乾燥し、更に圧延することで正極を形成することができる。 When forming a positive electrode, a conductive material and a binder are mixed with the positive electrode active material, and the mixture is put in a solvent such as NMP (N-methyl-2-pyrrolidone) and kneaded. Then, the positive electrode mixture after kneading is applied onto the current collector (positive electrode current collector) 11, dried, and further rolled to form a positive electrode.

極板1をリチウムイオン二次電池の負極に適用する場合には、次のように構成することができる。負極を構成する場合は、集電体11として、銅やニッケルあるいはそれらの合金を用いることができる。合材層(負極合材層)12は、負極活物質、及びバインダーを用いて構成することができる。 When the electrode plate 1 is applied to the negative electrode of a lithium ion secondary battery, it can be configured as follows. When forming the negative electrode, copper, nickel, or an alloy thereof can be used as the current collector 11. The mixture layer (negative electrode mixture layer) 12 can be formed by using a negative electrode active material and a binder.

負極活物質は、リチウムイオンを吸蔵・放出可能な材料であり、例えば、天然の黒鉛(グラファイト)等からなる粉末状の炭素材料を用いることができる。バインダーには、上述したバインダーを用いることができる。負極を形成する際は、負極活物質とバインダーと溶媒とを混練し、混練後の負極合剤を負極集電体上に塗布して乾燥し、更に圧延することで形成することができる。 The negative electrode active material is a material capable of occluding and releasing lithium ions, and for example, a powdered carbon material made of natural graphite or the like can be used. As the binder, the above-mentioned binder can be used. When forming the negative electrode, the negative electrode active material, the binder, and the solvent are kneaded, and the kneaded negative electrode mixture is applied onto the negative electrode current collector, dried, and further rolled.

以下では、極板1として負極に用いられる極板を例に挙げ、図3の比較例との比較により、本実施形態による効果について説明する。図3は、比較例に係る非水二次電池用極板(負極)の一例を部分的に示す概略断面図である。 In the following, an electrode plate used for the negative electrode as the electrode plate 1 will be taken as an example, and the effect of the present embodiment will be described by comparison with the comparative example of FIG. FIG. 3 is a schematic cross-sectional view partially showing an example of an electrode plate (negative electrode) for a non-aqueous secondary battery according to a comparative example.

比較例に係る極板100は、集電体111と、集電体111の表面に設けられた、活物質を少なくとも含む合材層112と、を備える。そして、合材層112の表層に凹部113を有し、この凹部113は凸部を有する金型で押圧することにより形成される。図3に示すように、凹部113は、合材層112の表面から厚さ方向に伸びるように形成される。但し、極板100では、極板1と異なり、凹部113の表層における活物質の密度が、凹部113が設けられていない部分の合材層112の内部における活物質の密度より大きくなっている。図3では、凹部113の表層において周囲より高密度となった高密度層115を図示している。 The electrode plate 100 according to the comparative example includes a current collector 111 and a mixture layer 112 provided on the surface of the current collector 111 and containing at least an active material. Then, the concave portion 113 is provided on the surface layer of the mixture layer 112, and the concave portion 113 is formed by pressing with a mold having a convex portion. As shown in FIG. 3, the recess 113 is formed so as to extend in the thickness direction from the surface of the mixture layer 112. However, in the electrode plate 100, unlike the electrode plate 1, the density of the active material in the surface layer of the recess 113 is higher than the density of the active material in the mixture layer 112 in the portion where the recess 113 is not provided. In FIG. 3, a high-density layer 115 having a higher density than the surroundings on the surface layer of the recess 113 is shown.

比較例に係る極板100では、高密度層115で示した凹部113近傍での活物質層の高密度化により、凹部113付近に電流が集中するような電極となってしまい、凹部113の近傍において電解液の拡散経路が減少し、凹部113の表層の電流密度が上がり、リチウム析出耐性が悪化する。 In the electrode plate 100 according to the comparative example, due to the high density of the active material layer in the vicinity of the recess 113 shown by the high density layer 115, the electrode becomes an electrode in which the current concentrates in the vicinity of the recess 113, and the vicinity of the recess 113. The diffusion path of the electrolytic solution is reduced, the current density of the surface layer of the recess 113 is increased, and the lithium precipitation resistance is deteriorated.

これに対し、本実施形態に係る極板1では、低密度層15が凹部13の近傍に形成されているため、比較例に比べて、凹部13の近傍での電解液の拡散経路が増えることから凹部13の近傍での電流の集中が生じ難く、リチウム析出耐性を向上させることができる。 On the other hand, in the electrode plate 1 according to the present embodiment, since the low density layer 15 is formed in the vicinity of the recess 13, the diffusion path of the electrolytic solution in the vicinity of the recess 13 increases as compared with the comparative example. It is difficult for current to concentrate in the vicinity of the recess 13, and the lithium precipitation resistance can be improved.

このように、本実施形態に係る極板1を非水二次電池の正極及び負極の一方に用いることにより、より好ましくは双方に用いることにより、合材層12の凹部13の近傍での電気抵抗の集中を抑えることができ、電気化学反応の均一化を図ることができる。また、極板1を負極用の極板とすることで、負極における電解液成分の析出耐性を向上させることができる。つまり、そのような負極を採用した非水二次電池では、負極における成分析出耐性を向上させることができる。 As described above, by using the electrode plate 1 according to the present embodiment for one of the positive electrode and the negative electrode of the non-aqueous secondary battery, more preferably for both, electricity in the vicinity of the recess 13 of the mixture layer 12 The concentration of resistance can be suppressed, and the electrochemical reaction can be made uniform. Further, by using the electrode plate 1 as the electrode plate for the negative electrode, the precipitation resistance of the electrolytic solution component in the negative electrode can be improved. That is, in a non-aqueous secondary battery using such a negative electrode, the component precipitation resistance at the negative electrode can be improved.

次に、上述のような極板1の製造方法の一例について、図4〜図6を参照しながら説明する。図4は、図1の極板1を製造する極板製造方法の一例を説明するためのフロー図である。図5は、図4の押圧工程で用いる金型の一例及びその金型により押圧された合材層を部分的に示す概略断面図で、図6は、図5の金型の一部分を拡大した図である。 Next, an example of the method for manufacturing the electrode plate 1 as described above will be described with reference to FIGS. 4 to 6. FIG. 4 is a flow chart for explaining an example of a plate manufacturing method for manufacturing the electrode plate 1 of FIG. FIG. 5 is a schematic cross-sectional view showing an example of a die used in the pressing step of FIG. 4 and a mixture layer pressed by the die, and FIG. 6 is an enlarged part of the die of FIG. It is a figure.

この製造方法は、形成工程(ステップS1)、押圧工程(ステップS2)、及び取外し工程(ステップS3)を備える。まず、ステップS1では、活物質を少なくとも含む合材層12を集電体11の表面に形成する。例えば、活物質及びバインダー等を含む混合物を混練し、集電体11に塗布(塗工)することで、このような形成を実施することができる。 This manufacturing method includes a forming step (step S1), a pressing step (step S2), and a removing step (step S3). First, in step S1, a mixture layer 12 containing at least the active material is formed on the surface of the current collector 11. For example, such a formation can be carried out by kneading a mixture containing an active material, a binder and the like, and applying (coating) it to the current collector 11.

次いで、ステップS2では、図5で例示するような凸部23及び凹部24を有する金型2を用いて、合材層12の表面を押圧することで、合材層12の表層に凹部13及び凸部14を形成する。つまり、ステップS2では金型2を用いて合材層12が加工される。加工時には凸部23が合材層12に挿入されることになる。ここで、金型2は、凹部24が凸部23の周囲に位置するように形成されている。なお、金型2は、凸部23及び凹部24以外の部分において平面状となる平面部21を有することとなる。 Next, in step S2, the concave portion 13 and the concave portion 13 and the surface layer of the mixed material layer 12 are pressed by pressing the surface of the mixed material layer 12 with the mold 2 having the convex portion 23 and the concave portion 24 as illustrated in FIG. The convex portion 14 is formed. That is, in step S2, the mixture layer 12 is processed using the mold 2. At the time of processing, the convex portion 23 is inserted into the mixture layer 12. Here, the mold 2 is formed so that the concave portion 24 is located around the convex portion 23. The mold 2 has a flat surface portion 21 that is flat in a portion other than the convex portion 23 and the concave portion 24.

ステップS2の処理後、ステップS3では、金型2を合材層12から取り外す(引き戻す)。ステップS3では、凸部23が合材層12から抜去されることになる。 After the process of step S2, in step S3, the mold 2 is removed (pulled back) from the mixture layer 12. In step S3, the convex portion 23 is removed from the composite material layer 12.

特に、この製造方法の主たる特徴の一つとして、金型2の凸部23は、押圧工程時における合材層12に対する方向の摩擦係数(動摩擦係数)が取外し工程時における合材層12に対する方向の摩擦係数(動摩擦係数)より小さくなる形状を有する。つまり、金型2の凸部23は、押圧工程時における合材層12に対する摩擦力が取外し工程時における合材層12に対する摩擦力より小さくなる形状を有する。このような条件を満たすことで、ステップS3の取外し工程において、引き戻した金型2に活物質を含む合材層12が付着して、凹部13の部分から活物質を含む合材層12を掻き出すことができる。 In particular, as one of the main features of this manufacturing method, the convex portion 23 of the mold 2 has a friction coefficient (dynamic friction coefficient) in the direction with respect to the mixture layer 12 during the pressing process, which is the direction with respect to the mixture layer 12 during the removal process. It has a shape smaller than the coefficient of friction (dynamic friction coefficient) of. That is, the convex portion 23 of the mold 2 has a shape in which the frictional force against the mixture layer 12 during the pressing process is smaller than the frictional force against the mixture layer 12 during the removal process. By satisfying such conditions, in the removal step of step S3, the mixture layer 12 containing the active material adheres to the pulled-back mold 2, and the mixture layer 12 containing the active material is scraped out from the recess 13. be able to.

このような形状の一例として、凸部23は、図6に示すように、取外し工程時において合材層12から離間させる方向に向けた突起部23bを有することができる。このような突起部23bが凸部23の表面に形成されていることは、凸部23の表面に凹部23cも形成されていることを意味する。凹部23cは、挿入時に合材層12と密着しない部分となる。この例では、突起部23b及び凹部23cでなる1セットの形状が凸部23の表面に複数配列されている。 As an example of such a shape, as shown in FIG. 6, the convex portion 23 can have a protruding portion 23b directed in a direction away from the mixture layer 12 during the removal step. The fact that such a protrusion 23b is formed on the surface of the convex portion 23 means that the concave portion 23c is also formed on the surface of the convex portion 23. The recess 23c is a portion that does not come into close contact with the mixture layer 12 at the time of insertion. In this example, a set of shapes including the protrusions 23b and the recesses 23c are arranged on the surface of the protrusions 23.

凸部23の形状(表面形状も含む)は凹部13を掘り起こし易い形状であることが好ましい。但し、上述のような摩擦係数の関係を満たせば、このような形状に限ったものではない。なお、ステップS3の取外し工程において、集電体11から合材層12が剥がれない程度に金型2の凸部23等の大きさや配置間隔を調整しておくものとする。 The shape of the convex portion 23 (including the surface shape) is preferably a shape that makes it easy to dig up the concave portion 13. However, it is not limited to such a shape as long as the above-mentioned relationship of friction coefficient is satisfied. In the removal step of step S3, the size and arrangement interval of the convex portion 23 and the like of the mold 2 are adjusted so that the mixture layer 12 does not peel off from the current collector 11.

上述したように、図1では、凹部13の上記少なくとも一部分を含むような部分において低密度となった低密度層15を図示している。図6においては、低密度層15の例として、凹部13の開口部の近傍の低密度層15aを示している。 As described above, FIG. 1 illustrates a low density layer 15 having a low density in a portion of the recess 13 that includes at least a portion thereof. In FIG. 6, as an example of the low-density layer 15, the low-density layer 15a in the vicinity of the opening of the recess 13 is shown.

低密度層15aで例示するように、凹部13及び凸部14のうちの上記開口部の近傍での表層における活物質の密度は、凹部13及び凸部14が設けられていない部分の合材層12の内部における活物質の密度より小さくすることが好ましい。特に、開口部付近に形成されている凸部14はその形状により電流が最も集中し易くなる部分であるが、このような低密度層15aを配置することで、そのような開口部付近での電流集中を抑えることができる。また、このような低密度層15bを配置した極板1をリチウムイオン二次電池の負極として用いることで、リチウムイオンの拡散を易化し、電流密度の上昇を抑制することができ、リチウム析出耐性を向上させることができる。 As illustrated in the low-density layer 15a, the density of the active material in the surface layer of the concave portion 13 and the convex portion 14 in the vicinity of the opening is the mixture layer of the portion where the concave portion 13 and the convex portion 14 are not provided. It is preferable that the density is lower than the density of the active material inside the twelve. In particular, the convex portion 14 formed in the vicinity of the opening is a portion where the current is most likely to be concentrated due to its shape, but by arranging such a low-density layer 15a, in the vicinity of such an opening. Current concentration can be suppressed. Further, by using the electrode plate 1 on which such a low density layer 15b is arranged as a negative electrode of a lithium ion secondary battery, it is possible to facilitate the diffusion of lithium ions and suppress an increase in current density, and to withstand lithium precipitation. Can be improved.

また、図6においては、低密度層15の例として、凹部13の表層(凹部13の表面側)の低密度層15bを示している。低密度層15bで例示するように、凹部13の表層における活物質の密度は、凹部13及び凸部14が設けられていない部分の合材層12の内部における活物質の密度より小さくすることが好ましい。これにより、凹部13の表層全体について電流集中を抑えることができる。また、このような低密度層15bを配置した極板1をリチウムイオン二次電池の負極として用いることで、リチウムイオンの拡散を易化し、電流密度の上昇を抑制することができ、リチウム析出耐性を向上させることができる。 Further, in FIG. 6, as an example of the low-density layer 15, the low-density layer 15b of the surface layer of the recess 13 (the surface side of the recess 13) is shown. As illustrated in the low density layer 15b, the density of the active material in the surface layer of the concave portion 13 may be smaller than the density of the active material in the mixture layer 12 in the portion where the concave portion 13 and the convex portion 14 are not provided. preferable. As a result, the current concentration can be suppressed for the entire surface layer of the recess 13. Further, by using the electrode plate 1 on which such a low density layer 15b is arranged as a negative electrode of a lithium ion secondary battery, it is possible to facilitate the diffusion of lithium ions and suppress an increase in current density, and to withstand lithium precipitation. Can be improved.

なお、低密度層15a,15bの境界は特に規定しないが、低密度層15aと低密度層15bとで領域が重複すると言える部分(特に凹部13の開口部付近の表層)を有することができる。 Although the boundary between the low-density layers 15a and 15b is not particularly specified, it is possible to have a portion (particularly the surface layer near the opening of the recess 13) where the regions can be said to overlap between the low-density layer 15a and the low-density layer 15b.

また、ステップS2における加工速度(挿入速度)は、活物質を掻き出し易くするように活物質層をある程度破壊するため、大きいことが好ましい。これにより、低密度層15a,15bの更なる低密度化を図ることができるようになる。 Further, the processing speed (insertion speed) in step S2 is preferably high because the active material layer is destroyed to some extent so as to facilitate scraping of the active material. This makes it possible to further reduce the density of the low-density layers 15a and 15b.

また、ステップS2,S3の処理を2回以上繰り返すこともできる。なお、その際、徐々に押圧力を上げていくこともできる。これにより、凹部13を形成する際にしてその開口部周辺に掻き出された合材を、凸部14の材料として用いることができるようになる。 Further, the processes of steps S2 and S3 can be repeated twice or more. At that time, the pressing force can be gradually increased. As a result, the mixture scraped out around the opening when the concave portion 13 is formed can be used as the material of the convex portion 14.

このように製造された極板1における活物質の密度及び拡散抵抗について試験した結果について、図7及び図8を参照しながら説明する。図7は、図4の製造方法により製造された極板1における合材層12の内部と凹部13の周辺での活物質の密度差の試験例を示す図である。図8は、図4の製造方法により製造された極板1における合材層12の内部と凹部13の周辺との拡散抵抗比の試験例を示す図である。 The results of testing the density and diffusion resistance of the active material in the electrode plate 1 manufactured in this manner will be described with reference to FIGS. 7 and 8. FIG. 7 is a diagram showing a test example of the density difference of the active material between the inside of the mixture layer 12 and the periphery of the recess 13 in the electrode plate 1 manufactured by the manufacturing method of FIG. FIG. 8 is a diagram showing a test example of the diffusion resistivity ratio between the inside of the mixture layer 12 and the periphery of the recess 13 in the electrode plate 1 manufactured by the manufacturing method of FIG.

図7及び図8に示す試験結果は、極板1をリチウムイオン二次電池用の負極として製造した結果であり、活物質として黒鉛を用い、合材層12における合材の結着力を5N/m、加工前の活物質の密度を2.000g/ccで行った結果である。また、この結果は、ステップS2,S3を繰り返さず、1回のみ実施した結果である。 The test results shown in FIGS. 7 and 8 are the results of manufacturing the electrode plate 1 as a negative electrode for a lithium ion secondary battery, using graphite as an active material, and setting the binding force of the mixture in the mixture layer 12 to 5 N /. m, the result of performing the density of the active material before processing at 2.000 g / cc. Further, this result is a result of performing only once without repeating steps S2 and S3.

合材層12における凹部13及び凸部14を形成しない領域(及び形成する領域であってもその表層に該当しない領域)では、活物質(黒鉛)の密度は加工前と同じであり、2.000g/ccである。図7ではこれを内部の結果として示している。これに対し、加工により形成された低密度層15a,15bにおける活物質(黒鉛)の密度は、図7において凹部周辺の結果として示すように、1.875g/ccとなった。そして、このような低密度化により電解液の流路が多くなり、図8に示すように拡散抵抗の比(内部の拡散抵抗/凹部周辺の拡散抵抗)も74%程度となり、拡散抵抗が大きく下がった。拡散抵抗が下がったことは、電解液の拡散経路が増加したことを意味するため、本実施形態により凹部周辺での電流密度の集中が低減できたことを示している。 In the region of the mixture layer 12 where the concave portion 13 and the convex portion 14 are not formed (and the region where the concave portion 13 and the convex portion 14 are formed but do not correspond to the surface layer), the density of the active material (graphite) is the same as that before processing. It is 000 g / cc. FIG. 7 shows this as an internal result. On the other hand, the density of the active material (graphite) in the low-density layers 15a and 15b formed by processing was 1.875 g / cc as shown as a result around the recess in FIG. 7. As a result of such a decrease in density, the number of flow paths of the electrolytic solution increases, and as shown in FIG. 8, the ratio of diffusion resistance (internal diffusion resistance / diffusion resistance around the recess) becomes about 74%, and the diffusion resistance is large. lowered. Since the decrease in the diffusion resistance means that the diffusion path of the electrolytic solution has increased, it is indicated that the concentration of the current density around the recess can be reduced by this embodiment.

また、図7及び図8に示す試験結果は、合材層12における合材の結着力を5N/mより小さい値とし、加工前の密度を1g/cc以上且つ2g/ccより小さい範囲でも行ったが、同様の結果が得られた。また、この試験例では、黒鉛以外の活物質でも行ったが、黒鉛のように密度が小さい活物質でも同様の結果が得られた。 Further, in the test results shown in FIGS. 7 and 8, the binding force of the mixture in the mixture layer 12 was set to a value smaller than 5 N / m, and the density before processing was set to a range of 1 g / cc or more and less than 2 g / cc. However, similar results were obtained. Further, in this test example, an active material other than graphite was used, but similar results were obtained with an active material having a low density such as graphite.

このように、本実施形態に係る極板製造方法は、上述のような密度差をもつように活物質を含む合材層12を形成することができるため、合材層12の表面に設けた凹部13近傍での電流集中を抑えることが可能な極板1を製造することができる。また、このような極板1を正極及び負極の一方に用いて非水二次電池を製造することにより、合材層12の凹部13近傍での電気抵抗の集中を抑えることができ、電気化学反応の均一化を図る非水二次電池を製造することができる。 As described above, in the electrode plate manufacturing method according to the present embodiment, since the mixture layer 12 containing the active material can be formed so as to have the above-mentioned density difference, the mixture layer 12 is provided on the surface of the mixture layer 12. It is possible to manufacture the electrode plate 1 capable of suppressing the current concentration in the vicinity of the recess 13. Further, by manufacturing a non-aqueous secondary battery by using such an electrode plate 1 for one of the positive electrode and the negative electrode, it is possible to suppress the concentration of electric resistance in the vicinity of the recess 13 of the mixture layer 12, and electrochemical. It is possible to manufacture a non-aqueous secondary battery for homogenizing the reaction.

(他の実施形態等)
なお、本発明は上述した実施形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、実施形態で説明した各部材の形状、サイズ、材質(材料)など、或いは製造方法は、例示したものに限らず、非水二次電池用極板又は非水二次電池としての機能が果たせるもの、或いは非水二次電池用極板又は非水二次電池が製造できる方法であればよい。また、本発明は、実施形態における各例を適宜組み合わせて実施されてもよい。
(Other embodiments, etc.)
The present invention is not limited to the above-described embodiment, and can be appropriately modified without departing from the spirit. For example, the shape, size, material (material), etc. of each member described in the embodiment, or the manufacturing method is not limited to the examples, and the function as a electrode plate for a non-aqueous secondary battery or a non-aqueous secondary battery can be obtained. Any method can be used as long as it can be used, or a plate for a non-aqueous secondary battery or a non-aqueous secondary battery can be manufactured. In addition, the present invention may be carried out by appropriately combining the examples in the embodiments.

1 非水二次電池用極板(極板)
2 金型
11 集電体
12 合材層
13 凹部
14 凸部
15 低密度層
15a 開口部近傍の低密度層
15b 凹部表層の低密度層
21 金型の平面部
23 金型の凸部
23b 金型の凸部表面の突起部
23c 金型の凸部表面の凹部
24 金型の凹部
1 Plate for non-water secondary batteries (plate)
2 Mold 11 Current collector 12 Mixture layer 13 Recess 14 Convex part 15 Low density layer 15a Low density layer near the opening 15b Low density layer on the surface of the recess 21 Flat part of the mold 23 Convex part of the mold 23b Mold Convex part on the surface of the convex part 23c Convex part on the surface of the mold 24 Concave part on the surface of the mold

Claims (7)

集電体と、
前記集電体の表面に設けられた、活物質を少なくとも含む合材層と、
を備え、
前記合材層の表層に凹部及び凸部を有し、
前記凸部は前記凹部の開口部の周囲に位置し、
前記凹部の少なくとも一部分における前記活物質の密度は、前記凹部及び前記凸部が設けられていない部分の前記合材層の内部における前記活物質の密度より小さい、
非水二次電池用極板。
With the current collector
A mixture layer containing at least an active material provided on the surface of the current collector, and
With
The surface layer of the mixture layer has a concave portion and a convex portion, and has a concave portion and a convex portion.
The convex portion is located around the opening of the concave portion, and the convex portion is located around the opening of the concave portion.
The density of the active material in at least a part of the recess is smaller than the density of the active material inside the mixture layer in the recess and the portion where the protrusion is not provided.
Plate for non-water secondary batteries.
前記凹部及び前記凸部のうちの前記開口部の近傍での表層における前記活物質の密度は、前記凹部及び前記凸部が設けられていない部分の前記合材層の内部における前記活物質の密度より小さい、
請求項1に記載の非水二次電池用極板。
The density of the active material in the surface layer of the concave portion and the convex portion in the vicinity of the opening is the density of the active material in the mixture layer in the portion where the concave portion and the convex portion are not provided. Smaller
The electrode plate for a non-aqueous secondary battery according to claim 1.
前記凹部の表層における前記活物質の密度は、前記凹部及び前記凸部が設けられていない部分の前記合材層の内部における前記活物質の密度より小さい、
請求項1又は2に記載の非水二次電池用極板。
The density of the active material in the surface layer of the concave portion is smaller than the density of the active material in the inside of the mixed material layer in the portion where the concave portion and the convex portion are not provided.
The electrode plate for a non-aqueous secondary battery according to claim 1 or 2.
前記非水二次電池用極板は負極用の極板である、
請求項1〜3のいずれか1項に記載の非水二次電池用極板。
The electrode plate for a non-aqueous secondary battery is an electrode plate for a negative electrode.
The electrode plate for a non-aqueous secondary battery according to any one of claims 1 to 3.
請求項4に記載の非水二次電池用極板を、負極として用いた非水二次電池。 A non-aqueous secondary battery using the electrode plate for a non-aqueous secondary battery according to claim 4 as a negative electrode. 請求項1〜3のいずれか1項に記載の非水二次電池用極板を、負極及び正極の少なくとも一方の極板として用いた非水二次電池。 A non-aqueous secondary battery in which the electrode plate for a non-aqueous secondary battery according to any one of claims 1 to 3 is used as at least one electrode plate of a negative electrode and a positive electrode. 非水二次電池用極板を製造する極板製造方法であって、
活物質を少なくとも含む合材層を集電体の表面に形成する形成工程と、
凸部及び凹部を有する金型を用いて、前記合材層の表面を押圧することで、前記合材層の表層に凹部及び凸部を形成する押圧工程と、
前記金型を前記合材層から取り外す取外し工程と、
を備え、
前記金型の凹部は、前記金型の凸部の周囲に位置し、
前記金型の凸部は、前記押圧工程時における前記合材層に対する方向の摩擦係数が前記取外し工程時における前記合材層に対する方向の摩擦係数より小さくなる形状を有する、
極板製造方法。
It is a plate manufacturing method for manufacturing a electrode plate for a non-aqueous secondary battery.
A forming step of forming a mixture layer containing at least an active material on the surface of a current collector,
A pressing step of forming concave portions and convex portions on the surface layer of the mixed material layer by pressing the surface of the mixed material layer using a mold having convex portions and concave portions.
The removal step of removing the mold from the mixture layer and
With
The concave portion of the mold is located around the convex portion of the mold.
The convex portion of the mold has a shape in which the friction coefficient in the direction with respect to the mixture layer during the pressing step is smaller than the friction coefficient in the direction with respect to the mixture layer during the removal step.
Plate manufacturing method.
JP2020057167A 2020-03-27 2020-03-27 Electrode plate for non-aqueous secondary battery, non-aqueous secondary battery, and electrode plate manufacturing method Active JP7254743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020057167A JP7254743B2 (en) 2020-03-27 2020-03-27 Electrode plate for non-aqueous secondary battery, non-aqueous secondary battery, and electrode plate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020057167A JP7254743B2 (en) 2020-03-27 2020-03-27 Electrode plate for non-aqueous secondary battery, non-aqueous secondary battery, and electrode plate manufacturing method

Publications (2)

Publication Number Publication Date
JP2021157951A true JP2021157951A (en) 2021-10-07
JP7254743B2 JP7254743B2 (en) 2023-04-10

Family

ID=77918450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020057167A Active JP7254743B2 (en) 2020-03-27 2020-03-27 Electrode plate for non-aqueous secondary battery, non-aqueous secondary battery, and electrode plate manufacturing method

Country Status (1)

Country Link
JP (1) JP7254743B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009333A (en) * 2010-06-25 2012-01-12 Panasonic Corp Non-aqueous electrolyte secondary battery and manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009333A (en) * 2010-06-25 2012-01-12 Panasonic Corp Non-aqueous electrolyte secondary battery and manufacturing method thereof

Also Published As

Publication number Publication date
JP7254743B2 (en) 2023-04-10

Similar Documents

Publication Publication Date Title
JP4362544B2 (en) Secondary battery and manufacturing method thereof
JP2010080392A (en) Electrode for battery and method of manufacturing the same
WO2012039041A1 (en) Nonaqueous electrolyte secondary battery
US8771860B2 (en) Lithium secondary battery and method for manufacturing same
CN112713258A (en) Lithium ion battery
CN110896145B (en) Multilayer electrode and lithium secondary battery comprising same
KR102039909B1 (en) Preparation Method of Electrode Using Current Collector Having Penetration-typed Pores or Perforation
WO2011089722A1 (en) Cathode and method for manufacturing the same
US10468663B2 (en) Electrode with porous binder coating layer, method for manufacturing the same, and lithium secondary battery comprising the same
JP2018156839A (en) Manufacturing method of electrode plate and manufacturing method of secondary battery
JP2013012391A (en) Lithium-ion secondary battery
JP2001357855A (en) Nonaqueous electrolyte secondary battery
JP5945401B2 (en) Method for producing positive electrode current collector foil of lithium ion secondary battery
WO2022199210A1 (en) Pole piece, electrochemical device, and electronic device
JP7174334B2 (en) secondary battery
JP2018163806A (en) Nonaqueous electrolyte secondary battery
WO2013099138A1 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery having negative electrode for lithium ion secondary battery
JP5296971B2 (en) Method for producing negative electrode for secondary battery
JP2021157951A (en) Electrode plate for nonaqueous secondary battery, nonaqueous secondary battery, and method for manufacturing electrode plate
JP5796743B2 (en) Lithium secondary battery
JP2000133316A (en) Lithium secondary battery and fabricating method for electrode plate
WO2013031213A1 (en) Electrode plate for non-aqueous secondary battery and non-aqueous secondary battery using same
JP7193239B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2018113125A (en) Separator layer-attached negative electrode for lithium ion secondary battery
JP7319008B2 (en) Electrodes and secondary batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230329

R150 Certificate of patent or registration of utility model

Ref document number: 7254743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150