JP2021156793A - センサ装置 - Google Patents

センサ装置 Download PDF

Info

Publication number
JP2021156793A
JP2021156793A JP2020058930A JP2020058930A JP2021156793A JP 2021156793 A JP2021156793 A JP 2021156793A JP 2020058930 A JP2020058930 A JP 2020058930A JP 2020058930 A JP2020058930 A JP 2020058930A JP 2021156793 A JP2021156793 A JP 2021156793A
Authority
JP
Japan
Prior art keywords
lens
sensor device
optical system
electromagnetic wave
scattered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020058930A
Other languages
English (en)
Inventor
修 加園
Osamu Kasono
修 加園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Pioneer Smart Sensing Innovations Corp
Original Assignee
Pioneer Electronic Corp
Pioneer Smart Sensing Innovations Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp, Pioneer Smart Sensing Innovations Corp filed Critical Pioneer Electronic Corp
Priority to JP2020058930A priority Critical patent/JP2021156793A/ja
Publication of JP2021156793A publication Critical patent/JP2021156793A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

【課題】低コストかつ低温度依存性で可動反射部の振れ角を測定する。【解決手段】受信系200は、レンズ220を含む第1光学系と、レンズ220、第1反射部232及び第2反射部224を含む第2光学系と、を有している。第1光学系は、センサ装置10の外部に存在する対象物によって反射又は散乱された電磁波を受信部210に結像させる。第2光学系は、構造体300によって反射又は散乱された電磁波を受信部210に結像させる。【選択図】図2

Description

本発明は、センサ装置に関する。
近年、様々なレーザ測距装置が開発されている。特に、レーザ測距装置の一種として、LiDAR(Light Dtection And Ranging)が開発されている。LiDARは、LD(レーザダイオード)等の出射部から出射された電磁波を2軸MEMS(Micro Electro Mechanical Systems)ミラー等の可動反射部によって反射して、LiDARの外部に向けてこの電磁波を出射する。LiDARから出射されたこの電磁波は、LiDARの外部に存在する物体等の対象物によって反射又は散乱される。当該対象物によって反射又は散乱された電磁波は、LiDARに戻り、APD(アバランシェフォトダイオード)等の受信部によって受信される。LiDARは、出射部から電磁波が出射されてから、対象物によって反射又は散乱された電磁波が受信部によって受信されるまでの時間に基づいて、対象物までの距離を測定する。
特許文献1には、FA(ファクトリーオートメーション)等に用いられるレーザ測距装置について記載されている。このレーザ測距装置では、測距光学系に用いられる反射体と、基準光学系に用いられる反射体と、が共有されている。
特開平6−174844号公報
LiDAR等のセンサ装置における2軸MEMSミラー等の可動反射部の振れ角を測定するため、可動反射部に振れ角センサを設ける場合がある。しかしながら、可動反射部に振れ角センサを設けることは、コストの増加につながる可能性がある。また、可動反射部に設けられた振れ角センサには概して温度依存性があり、センサ装置の使用温度によっては温度センサでは可動反射部の振れ角を正確に検出することが難しい場合がある。また、可動反射部に設けられた振れ角センサに代えて、センサ装置による対象物の測定のための出射部及び受信部に加えて可動反射部の振れ角の測定のための他の出射部及び他の受信部を設けることがある。しかしながら、このような他の出射部及び他の受信部を設けることは、コストの増加につながる可能性がある。
本発明が解決しようとする課題としては、低コストかつ低温度依存性で可動反射部の振れ角を測定することが一例として挙げられる。
請求項1に記載の発明は、
電磁波を出射する出射部と、
所定の走査範囲内に向けて前記電磁波を反射する可動反射部と、
前記走査範囲内に存在する対象物と、前記走査範囲内において前記対象物よりも前記可動反射部の近くに位置する構造体と、の少なくとも一方によって反射又は散乱された前記電磁波を受信する少なくとも1つの受信素子を含む受信部と、
前記対象物によって反射又は散乱された前記電磁波を前記受信部に結像させる第1光学系と、
前記構造体によって反射又は散乱された前記電磁波を前記受信部に結像させる第2光学系と、
を備えるセンサ装置である。
実施形態に係るセンサ装置を示す図である。 図1に示した受信系の詳細を示す図である。 構造体の第1例を示す図である。 構造体によって反射又は散乱された電磁波の受信部による受信結果に基づいて、測定部が可動反射部の振れ角を測定する方法の一例を説明するための図である。 図3の変形例を示す図である。 構造体と、構造体に照射される電磁波のスポットと、の関係の一例を説明するための図である。 構造体の第2例を示す図である。 構造体の第3例を示す図である。 構造体の第4例を示す図である。 構造体の第5例を示す図である。 構造体の第6例を示す図である。 構造体の第7例を示す図である。 構造体の第8例を示す図である。 構造体の第9例を示す図である。 構造体の第10例を示す図である。 対象物によって反射又は散乱された電磁波によって受信部に発生した受信信号と、構造体によって反射又は散乱された電磁波によって受信部に発生した受信信号と、の関係の一例を示すグラフである。 図2の第1の変形例を示す図である。 図1の第2の変形例を示す図である。 実施形態2に係る受信系を説明するための図である。 実施形態3に係る受信系を説明するための図である。
以下、本発明の実施の形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
図1は、実施形態に係るセンサ装置10を示す図である。
図1において、第1方向X及び第2方向Yは、互いに交差、具体的には直交している。第1方向Xは水平方向を示しており、第2方向Yは垂直方向を示している。また、第1方向Xを示す矢印の方向である第1方向Xの正方向は、後述する可動反射部120側から後述する構造体300側に向かって見て左方向である。第1方向Xを示す矢印の反対方向である第1方向Xの負方向は、可動反射部120側から構造体300側に向かって見て右方向である。第2方向Yを示す矢印の方向である第2方向Yの正方向は、上方向である。第2方向Yを示す矢印の反対方向である第2方向Yの負方向は、下方向である。後述する図3〜15においても同様である。なお、以下の説明から明らかなように、第1方向Xは水平方向と異なる方向であってもよいし、第2方向Yは垂直方向と異なる方向であってもよい。
センサ装置10は、出射部110、可動反射部120、測定部122、コリメータレンズ132、ビームスプリッタ134及び受信系200を備えている。
以下に示す説明において、測定部122は、ハードウエア単位の構成ではなく、機能単位のブロックを示している。測定部122は、任意のコンピュータのCPU、メモリ、メモリにロードされたプログラム、そのプログラムを格納するハードディスクなどの記憶メディア、ネットワーク接続用インタフェースを中心にハードウエアとソフトウエアの任意の組合せによって実現される。そして、その実現方法、装置には様々な変形例がある。
出射部110は、赤外線等の電磁波を出射する。出射部110は、例えばレーザダイオード(LD)等、電流等の電気的エネルギーを光等の電磁波に変換可能な素子である。出射部110から出射された電磁波は、コリメータレンズ132を透過して、ビームスプリッタ134によって反射されて、可動反射部120に入射する。
可動反射部120は、例えば、2軸MEMSミラーである。可動反射部120は、出射部110から出射された電磁波を所定の走査範囲Sに向けて反射する。例えば、可動反射部120は、第1方向Xに沿って、例えば正弦波状に駆動されており、第2方向Yに沿って、例えば鋸歯状波状に第1方向Xに沿った正弦波より低い周波数で駆動されている。すなわち、第1方向Xは、可動反射部120の共振駆動の方向であり、第2方向Yは、可動反射部120の線型駆動の方向となっている。これによって、可動反射部120によって反射される電磁波は、第1方向Xに沿って折り返しながら第2方向Yに延びる走査軌跡を辿る。
可動反射部120によって反射された電磁波は、走査範囲S内に存在する物体等の対象物と、走査範囲S内において当該対象物よりも可動反射部120の近くに位置する構造体300と、の少なくとも一方によって反射又は散乱される。当該反射又は散乱された電磁波は、可動反射部120に戻って可動反射部120によって反射され、ビームスプリッタと134の透過を経て受信系200の後述する受信部210によって受信される。
測定部122は、構造体300によって反射又は散乱された電磁波の後述する受信部210による受信結果に基づいて、可動反射部120の振れ角を測定する。
センサ装置10は、構造体300を備えていてもよい。或いは、構造体300は、センサ装置10の外部に設けられていてもよい。センサ装置10が構造体300を備えている場合、構造体300は、例えば、出射部110、可動反射部120、コリメータレンズ132、ビームスプリッタ134、受信系200等センサ装置10を構成する部材を収容する筐体の窓部、すなわち、筐体の内部と外部との間で電磁波が透過する部分に設けることができる。しかしながら、構造体300が設けられる場所は、窓部に限定されない。
図2は、図1に示した受信系200の詳細を示す図である。以下の図2の説明では、受信系200によって受信される電磁波が光であるとして説明を行う。なお、受信系200について以下で説明する事項は、光以外の電磁波であっても成り立つ。図2では、レンズ220と構造体300との間の可動反射部120及びビームスプリッタ134が2本の斜めスラッシュによって模式的に省略された領域内に位置している。
図2を用いて、受信系200の概要を説明する。
受信系200は、受信部210、レンズ220、第1反射部232及び第2反射部234を有している。
受信部210は、例えばアバランシェフォトダイオード(APD)等、光等の電磁波を電流等に変換可能な受信素子である。
第1反射部232は、第2反射部234よりも、受信部210が位置する側に位置している。具体的には、第1反射部232は、受信部210の周囲に位置している。第1反射部232は、例えばミラーである。
第2反射部234は、第1反射部232よりも、レンズ220が位置する側に位置している。具体的には、第2反射部234は、レンズ220のうち受信部210側の面に設けられている。第2反射部234は、例えば、レンズ220の表面にコーティングされた部分反射膜である。なお、第2反射部234は、部分反射膜を有していなくてもよい。第2反射部234が部分反射膜を有しない場合であっても、レンズ220の屈折率と空気の屈折率との差から生じる部分反射光を利用することができる。
図2において、構造体300側からレンズ220に互いに平行に延伸し、レンズ220から受信部210にかけて収束している実線は、センサ装置10の外部に存在する対象物によって反射又は散乱されてレンズ220によって受信部210に結像された光線を示している。また、構造体300からレンズ220に向かうにつれて広がり、第1反射部232と第2反射部234との間を往復して受信部210に達する破線は、構造体300によって反射又は散乱されてレンズ220、第1反射部232及び第2反射部234によって受信部210に結像された光線を示している。さらに、受信部210に対してレンズ220の反対側でレンズ220から距離f2離れた位置に収束している破線は、第1反射部232が設けられていない場合に、構造体300によって反射又は散乱され、レンズ220を透過した光線を示している。さらに、構造体300側から受信部210側にかけて伸びる一点鎖線は、レンズ220の光軸を示している。さらに、上記2本の斜めスラッシュ側から構造体300側に向けて伸びるハッチング領域は、構造体300によって反射され、構造体300、又はセンサ装置10の外部に向けて照射された電磁波を示している。さらに、部位Pは、構造体300と、レンズ220の光軸と、の交点を示している。
受信系200は、レンズ220を含む第1光学系と、レンズ220、第1反射部232及び第2反射部224を含む第2光学系と、を有している。第1光学系は、センサ装置10の外部に存在する対象物によって反射又は散乱された電磁波を受信部210に結像させる。第2光学系は、構造体300によって反射又は散乱された電磁波を受信部210に結像させる。図1に示した測定部122は、第2光学系によって受信部210に結像された電磁波を用いて、可動反射部120の振れ角を測定する。
本実施形態では、第1光学系に用いられる出射部と、第2光学系に用いられる出射部とが、図1に示した出射部110として共有されている。したがって、第1光学系に用いられる出射部と、第2光学系に用いられる他の出射部と、を用いる場合と比較して、低コストで可動反射部120の振れ角を測定することができる。
また、本実施形態では、可動反射部120に振れ角センサを設けることなく、第2光学系を用いて、可動反射部120の振れ角を測定することができる。第2光学系の温度依存性は、振れ角センサの温度依存性より概して低い。したがって、本実施形態では、可動反射部120に振れ角センサを設ける場合と比較して、低温度依存性で可動反射部120の振れ角を測定することができる。なお、センサ装置10は、第2光学系に加えて、振れ角センサを備えていてもよい。
さらに、本実施形態では、レンズ220が、第1光学系と、第2光学系と、によって共有されている。したがって、第1光学系に用いられるレンズと、第2光学系に用いられる他のレンズと、を用いる場合と比較して、低コストで可動反射部120の振れ角を測定することができる。
さらに、本実施形態では、第1光学系によって電磁波が受信される受信素子と、第2光学系によって電磁波が受信される受信素子と、が受信部210として共有されている。したがって、第1光学系によって電磁波が受信される受信素子と、第2光学系によって電磁波が受信される他の受信素子と、を用いる場合と比較して、低コストで可動反射部120の振れ角を測定することができる。
図2を用いて、受信系200の詳細を説明する。
センサ装置10の外部に存在する対象物は受信系200の無限遠に存在している。したがって、上記対象物によって反射又は散乱された光線は、レンズ220に入射するまで実質的に平行光となっている。この光は、レンズ220を透過した後、第1反射部232及び第2反射部234による反射を経ることなく、レンズ220からレンズ220の焦点距離fだけ離れた位置にある受信部210に結像されている。
図1に示した出射部110から出射されて可動反射部120によって反射された光は、レンズ220の光軸上において構造体300によって反射又は散乱されている。構造体300によって反射又は散乱され、かつレンズ220を透過した電磁波は、第1反射部232による反射と、第2反射部234による反射と、を経て、受信部210に結像されている。
仮に、第1反射部232が設けられていない場合、構造体300によって反射又は散乱された電磁波は、レンズ220から距離f2離れた位置に結像される。レンズ220の焦点距離fと、レンズ220と構造体300との間の距離f1と、距離f2と、は以下の式(1)の関係を満たす。
1/f1+1/f2=1/f (1)
式(1)よりf2>fとなる。この場合であっても、本実施形態では、第1反射部232による反射と、第2反射部234による反射と、によって、構造体300によって反射又は散乱された電磁波であっても、レンズ220からレンズ220の焦点距離fだけ離れた位置にある受信部210に結像させることができる。
なお、構造体300によって反射又は散乱され、かつレンズ220を透過した電磁波は、少なくとも2つの反射部による反射を経て、受信部210に結像されてもよい。すなわち、図2に示すように、この電磁波は、2つの反射部による反射、すなわち、第1反射部232による反射と、第2反射部234による反射と、を経て受信部210に結像されてもよいし、又は3つ以上の反射部による反射を経て受信部210に結像されてもよい。
また、第2光学系におけるレンズ220から受信部210までの光学的距離f2が第1光学系におけるレンズ220から受信部210までの光学的距離、すなわち、レンズ220の焦点距離fの1.5倍以上である場合、レンズ220から構造体300までの距離f1は焦点距離fの3倍以下となる。例えば、構造体300がセンサ装置10を構成する部材を収容する筐体の窓に取り付けられている場合、センサ装置10を小型化する観点からすると、例えば、距離f2は焦点距離f1の1.5倍以上にすることができる。
図3は、構造体300の第1例を示す図である。図3に示す例では、構造体300が配置されている領域における走査範囲Sが、二点鎖線で囲まれた領域として示されている。後述する図7〜図15についても同様である。
図3に示す例では、可動反射部120によって反射された電磁波と、対象物によって反射又は散乱された電磁波と、が透過可能な複数の透過領域310が第1方向Xに沿ってストライプ状に並ぶように構造体300が設けられている。また、複数の透過領域310がストライプ状に配置されている領域では、構造体300の一部分と、複数の透過領域310とが交互に並んでいて、構造体300のストライプ部が形成されている。構造体300の複数のストライプ部は、例えば、第1方向Xに沿って可動反射部120の振れ角の正接に従う間隔に並んでいる。
構造体300は、構造体300に照射される電磁波について異なる反射率を有する部位を有していてもよい。例えば、図3に示す例では、構造体300の各ストライプ部における反射率が第2方向Yにおいて異なっていてもよい。詳細には、構造体300の各ストライプ部の反射率は、構造体300の上方から下方に向かうにつれて、高くなってもよいし、又は低くなってもよい。その反射率の違いにより、測定部122は、可動反射部120の第2方向Yに沿った振れ角を測定することができる。なお、図3に示す例では、構造体300の各ストライプ部の第1方向Xにおける幅は、構造体300内の第2方向Yにおける位置によらず、一定となっている。
図4は、構造体300によって反射又は散乱された電磁波の受信部210による受信結果に基づいて、測定部122が可動反射部120の振れ角を測定する方法の一例を説明するための図である。
図4において、「iFOI(ta)」が付された丸、「iFOI(tb)」が付された丸及び「iFOI(tc)」が付された丸は、それぞれ、構造体300の位置においての、時刻ta、時刻tb及び時刻tcにおけるセンサ装置10のiFOI(instantaneous field of illumination)を示している。「iFOV(ta)」が付された丸、「iFOV(tb)」が付された丸及び「iFOV(tc)」が付された丸は、それぞれ、時刻ta、時刻tb及び時刻tcにおけるセンサ装置10の第2光学系のiFOV(instantaneous field of view)を示している。ここで、時刻ta、tb及びtcは、ta<tb<tcとなっている。
図4に示す例では、図3に示す例と同様にして、構造体300は、第1方向Xに並ぶ複数のストライプ部を有している。時刻taにおける第2光学系のiFOVの一部分、時刻tbにおける第2光学系のiFOVの一部分及び時刻tcにおける第2光学系のiFOVの一部分の各々は、構造体300の複数のストライプ部のうちの一のストライプ部300aと重なっている。時刻taにおける第2光学系のiFOVのうちストライプ部300aと重なる部分の面積、時刻tbにおける第2光学系のiFOVのうちストライプ部300aと重なる部分の面積、及び時刻tcにおける第2光学系のiFOVのうちストライプ部300aと重なる部分の面積は、この順で大きくなっている。このため、時刻taにおける第2光学系のiFOV、時刻tbにおける第2光学系のiFOV及び時刻tcにおける第2光学系のiFOVの各々によって受信部210に発生する信号の強度は、時刻taにおける第2光学系のiFOV、時刻tbにおける第2光学系のiFOV及び時刻tcにおける第2光学系のiFOVの順に大きくなる。したがって、測定部122は、第2光学系のiFOVによって受信部210に発生する信号の強度に基づいて、可動反射部120の振れ角を測定することができる。
図5は、図3の変形例を示す図である。
図5に示す例では、図3に示す例と同様にして、構造体300は、第1方向Xに並ぶ複数のストライプ部を有している。さらに、図5に示す例では、構造体300の少なくとも一部分の幅が、構造体300内の位置に応じて異なっている。具体的には、構造体300の各ストライプ部の第1方向Xにおける幅は、構造体300内の第2方向Yにおける位置に応じて異なっている。具体的には、構造体300の各ストライプ部の第1方向Xにおける幅は、構造体300上方から下方に向かうにつれて広くなっている。したがって、構造体300の各ストライプ部の反射率は、構造体300の上方から下方に向かうにつれて、高くなっている。なお、構造体300の各ストライプ部の第1方向Xにおける幅は、構造体300上方から下方に向かうにつれて狭くなっていてもよい。
図6は、構造体300と、構造体300に照射される電磁波のスポットと、の関係の一例を説明するための図である。
図6において、「iFOI」が付された実線丸は、出射部110およびコリメータレンズ132によって生成されるiFOI、すなわち、可動反射部120によって反射されて構造体300に照射された電磁波のスポットを示している。「iFOV(2)」が付された実線丸は、第2光学系のiFOV、すなわち、第2光学系の視野を示している。「iFOV(1)」が付され、上記iFOVの外側の破線丸は、第1光学系のiFOVを示している。第2光学系のiFOVは、第2光学系のiFOIより小さくなっている。
図6に示す例では、図3に示す例と同様にして、構造体300は、第1方向Xに並ぶ複数のストライプ部を有している。構造体300の各ストライプ部の第1方向Xにおける幅は、第2光学系のiFOVの第1方向Xにおける幅とほぼ等しい。この場合、第2光学系によって、第2光学系のiFOVのサイズに応じて構造体300の小さな形状を検出することができる。また、構造体300の各ストライプ部の第1方向Xにおける幅は、第1光学系のiFOVの第1方向Xにおける幅より、はるかに小さい。例えば、構造体300の各ストライプ部の第1方向Xにおける幅は、第1光学系のiFOVの第1方向Xにおける間隔の10%以下となっている。従って第1光学系しか持たない従来例では構造体300のストライプ部の構造を検出することは難しい。
図7は、構造体300の第2例を示す図である。この例では、可動反射部120によって反射された電磁波と、対象物によって反射された電磁波と、が透過可能な複数の透過領域310が第2方向Yに沿ってストライプ状に並ぶように構造体300が設けられている。
図8は、構造体300の第3例を示す図である。この例では、可動反射部120によって反射された電磁波と、対象物によって反射された電磁波と、が透過可能な複数の透過領域310が第1方向X及び第2方向Yの双方に対して斜め方向に沿ってストライプ状に並ぶように構造体300が設けられている。
図9は、構造体300の第4例を示す図である。この例では、略四角形、具体的には略長方形の走査範囲Sの隣り合う2辺に沿って複数の構造体300が配置されている。走査範囲S内のその他の領域は、透過領域310となっている。
図10は、構造体300の第5例を示す図である。この例では、略四角形、具体的には略長方形の走査範囲Sの隣り合う全4辺に沿って複数の構造体300が配置されている。走査範囲S内のその他の領域は、透過領域310となっている。
図3〜図10において透過領域310とした領域は、構造体300の低反射率領域と置き換えてもよい。一例として、低反射領域は、光を透過してわずかに反射するガラスでもよい。
図11は、構造体300の第6例を示す図である。図11に示す例では、構造体300が、ガラス等の基材に形成された傷等の光散乱部によって構成されている。また、図11に示す例では、第1方向Xに沿って線状に延伸する複数の光散乱部が第2方向Yに並んでいる。或いは、構造体300は、ガラス等の基材の表面又は内部に設けられた別の物質等の光散乱部であってもよい。例えば、この物質は、ガラス等の基材に貼り付け、印刷、塗布又は埋め込むことができる。
図12は、構造体300の第7例を示す図である。この例では、図11を用いて説明した複数の構造体300が第1方向Xに沿ってストライプ状に並んでいる。
図13は、構造体300の第8例を示す図である。この例では、図11を用いて説明した複数の構造体300が第1方向X及び第2方向Yの双方に対して斜め方向に沿ってストライプ状に並んでいる。
図14は、構造体300の第9例を示す図である。この例では、図11を用いた説明した構造体300が、格子状、具体的には四角格子状、より具体的には正方格子状に配置されている。なお、構造体300は、四角格子状と異なる格子状、例えば、三角格子状、六角格子状に配置されていてもよい。
図15は、構造体300の第10例を示す図である。図15に示す例では、構造体300は、ミアンダ状に延伸している。具体的には、構造体300は、第1方向Xに折り返しながら第2方向Yに延びている。なお、構造体300は、第2方向Yに折り返しながら第1方向Xに延びていてもよい。黒丸によって示される構造体300の両端間に電圧を加えることで構造体300に電流を流し、構造体300を発熱させてもよい。すなわち、構造体300は電熱線であってもよい。なお、構造体300は、図11を用いて説明した光散乱部であってもよい。
図16は、対象物によって反射又は散乱された電磁波によって受信部210に発生した受信信号と、構造体300によって反射又は散乱された電磁波によって受信部210に発生した受信信号と、の関係の一例を示すグラフである。図16のグラフにおいて、横軸は時刻を示しており、縦軸は受信部210による受信信号の強度を示している。
図16に示すように、時刻t2では、対象物によって反射又は散乱された電磁波の受信部210による受信信号S1が発生している。また、時刻t2より早い時刻t1では、構造体300のうち比較的高い反射率を有する部分によって反射又は散乱された電磁波の受信振動による信号S21と、構造体300のうち比較的低い反射率を有する部分によって反射又は散乱された電磁波の受信振動による信号S22と、が発生している。時刻t1と時刻t2との差は、可動反射部120から対象物までの距離と、可動反射部120から構造体300までの距離と、の差に起因している。すなわち、対象物によって反射又は散乱された電磁波の受信部210による受信信号S1と、構造体300によって反射又は散乱された電磁波の受信部210による受信信号S21及びS22と、は、時間的に分離可能になっている。
図17は、図2の第1の変形例を示す図である。図17に示す例は、以下の点を除いて、図2に示した例と同様である。
図17において、構造体300側から後述する第2受信素子214側にかけて伸びる点線は、当該点線と構造体300との交点において構造体300によって反射又は散乱された光がレンズ220の中心を通過した場合に辿る光路、すなわち第2光学系の光軸を示している。また、部位Pは、構造体300と、第1光学系の光軸と、の交点を示している。第1光学系の光軸は、第1受信素子212の中心とレンズ220の中心とを結ぶ線である。部位Qは、構造体300と、第2光学系の光軸と、の交点を示している。
受信部210は、第1受信素子212及び第2受信素子214を含んでいる。第1受信素子212及び第2受信素子214の各々は、例えば、APDである。第1光学系は、対象物によって反射又は散乱された電磁波を第1受信素子212に結像させる。第2光学系は、構造体300によって反射又は散乱された電磁波を第2受信素子214に結像させる。本変形例においても、第1光学系と、第2光学系と、によってレンズ220が共有されている。
図17に示す例において、第1受信素子212の中心とレンズ220の中心とを結ぶ線、すなわち第1光学系の光軸と、第2光学系の光軸とは角度をもって配置されている。そのため第2光学系の光軸と構造体300との交点、すなわち第2受信素子214で検出される信号に対応する構造体の部位Qは、第1光学系の光軸と構造体300との交点、すなわち部位Pからずれた位置となる。しかしながら出射部110から出射されて可動反射部120によって反射された光は、構造体300上の部位Qをも照明しているため、第2受信素子214はその反射又は散乱された光を検出することができる。
なお、構造体300によって反射又は散乱されて第2受信素子214に結像される光は、レンズ220の透過後、ミラー等の反射部による反射を少なくとも1回経て、第2受信素子214に達してもよい。当該反射部によってこの光の光路をレンズ220の光軸に交わる方向に向けることができる。この場合、第2受信素子214を第1受信素子212の後方に代えて、例えば、レンズ220と受信部210との間におけるレンズ220の光軸の側方に配置することができる。この例においては、図17に示す例と比較して、レンズ220の光軸方向における受信系200のサイズを小さくすることができる。
図18は、図2の第2の変形例を示す図である。図18に示す例は、以下の点を除いて、図2に示した例と同様である。
図18において、構造体300側から後述する受信部210側にかけて伸びる点線は、当該点線と構造体300との交点において構造体300によって反射又は散乱された光がレンズ220の中心を通過した場合に辿る光路、すなわち第2光学系の光軸を示している。
第1反射部232は、受信部210に対して、レンズ220が位置する側にずれて位置している。第2反射部234は、レンズ220に対して、受信部210が位置する側にずれて位置している。本変形例においても、第1反射部232は、第2反射部234よりも、受信部210側に位置している。また、第2反射部234は、第1反射部232よりも、レンズ220側に位置している。本変形例においても、第1光学系によって電磁波が受信される受信素子と、第2光学系によって電磁波が受信される受信素子と、が受信部210として共有されている。
(実施形態2)
図19は、実施形態2に係る受信系200Aを説明するための図である。実施形態2に係る受信系200Aは、以下の点を除いて、実施形態1に係る受信系200と同様である。
図19では、図1に示した可動反射部120及びビームスプリッタ134を図示していない。図19において、構造体300側から後述する第1レンズ222Aに互いに平行に延伸し、第1レンズ222Aから受信部210にかけて収束している実線は、センサ装置10の外部に存在する対象物によって反射又は散乱されて第1レンズ222Aによって受信部210に結像された光線を示している。また、構造体300から第2レンズ224Aに向かうにつれて広がり、後述する第2レンズ224Aから受信部210に向かうにつれて収束している破線は、構造体300によって反射又は散乱されて第2レンズ224Aによって受信部210に結像された光線を示している。
第1光学系は、第1レンズ222Aを有している。第1レンズ222Aは、対象物によって反射又は散乱された電磁波を受信部210に結像させる。第2光学系は、第2レンズ224Aを有している。第2レンズ224Aは、第1レンズ222Aの周囲に位置している。第2レンズ224Aは、構造体300によって反射又は散乱された電磁波を受信部210に結像させる。
図19に示す例では、対象物によって反射又は散乱された電磁波のうち、第1レンズ222Aへ到達するものは、受信部210に結像されている。対象物によって反射又は散乱された電磁波のうち、第2レンズ224Aへ到達するものは、受信部210へ結像せず、いわゆるぼけた状態となるため受信部210の受信信号へ影響を与えない。これに対して、構造体300によって反射又は散乱された電磁波のうち、第2レンズ224Aへ到達するものは、受信部210に結像されるため、構造体300の反射率違いの構造に応じて、受信部210の受信信号の強度変化を生じさせる。構造体300によって反射又は散乱された電磁波のうち、第1レンズ222Aへ到達するものは受信部210に結像せず、いわゆるぼけた状態となるため、構造体300の部位による反射率違いの構造に応じて、受信部210の受信信号の強度変化を生じさせない。
(実施形態3)
図20は、実施形態3に係る受信系200Bを説明するための図である。実施形態3に係る受信系200Bは、以下の点を除いて、実施形態1に係る受信系200と同様である。なお、図20において、後述する第1レンズ222Bの中心を通過する一点鎖線は、第1レンズ222Bの光軸を示している。
図20では、図1に示した可動反射部120及びビームスプリッタ134を図示していない。図20において、構造体300側から後述する第1レンズ222Bに互いに平行に延伸し、レンズ220から受信部210にかけて収束している実線は、センサ装置10の外部に存在する対象物によって反射又は散乱されて第1レンズ222Bによって受信部210に結像された光線を示している。また、構造体300から第1レンズ222B及び後述する第2レンズ224Bを経由して受信部210に達する破線は、構造体300によって反射又は散乱されて第1レンズ222B及び第2レンズ224Bによって受信部210に結像された光線を示している。
第1光学系は、第1レンズ222Bを有している。第1レンズ222Bは、対象物によって反射又は散乱された電磁波を受信部210に結像させる。第2光学系は、第2レンズ224Bを有している。第2レンズ224Bは、第1レンズ222Bの光軸方向において、第1レンズ222Bからずれて配置されている。具体的には、第2レンズ224Bは、第1レンズ222Bに対して、受信部210が位置する側に位置している。また、第2レンズ224Bは、第1レンズ222Bの光軸方向において第1レンズ222Bの一部分と重なる領域を欠いている。第2レンズ224Bは、構造体300によって反射又は散乱されて第1レンズ222Bを透過した電磁波を受信部210に結像させる。
図20に示す例では、対象物によって反射又は散乱された電磁波のうち、第1レンズ222Bへ到達して第2レンズ224Bを透過しないものは、受信部210に結像されている。対象物によって反射又は散乱された電磁波のうち、第1レンズ222Bへ到達して第2レンズ224Bを透過するものは、受信部210へ結像せず、いわゆるぼけた状態となるため受信部210の受信信号へ影響を与えない。これに対して、構造体300によって反射又は散乱された電磁波のうち、第1レンズ222Bへ到達して第2レンズ224Bを透過するものは、受信部210に結像されるため、構造体300の反射率違いの構造に応じて、受信部210の受信信号の強度変化を生じさせる。構造体300によって反射又は散乱された電磁波のうち、第1レンズ222Bへ到達して第2レンズ224Bを透過しないものは、受信部210に結像せず、いわゆるぼけた状態となるため、構造体300の部位による反射率違いの構造に応じて、受信部210の受信信号の強度変化を生じさせない。
以上、図面を参照して実施形態及び変形例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
例えば、実施形態1では、センサ装置10は、コアキシャル型LiDARとなっている。しかしながら、センサ装置10は、バイアキシャル型LiDARであってもよい。
10 センサ装置
110 出射部
120 可動反射部
122 測定部
132 コリメータレンズ
134 ビームスプリッタ
200 受信系
200A 受信系
200B 受信系
210 受信部
212 第1受信素子
214 第2受信素子
220 レンズ
222A 第1レンズ
222B 第1レンズ
224 第2反射部
224A 第2レンズ
224B 第2レンズ
232 第1反射部
234 第2反射部
300 構造体
300a ストライプ部
310 透過領域

Claims (12)

  1. 電磁波を出射する出射部と、
    所定の走査範囲内に向けて前記電磁波を反射する可動反射部と、
    前記走査範囲内に存在する対象物と、前記走査範囲内において前記対象物よりも前記可動反射部の近くに位置する構造体と、の少なくとも一方によって反射又は散乱された前記電磁波を受信する少なくとも1つの受信素子を含む受信部と、
    前記対象物によって反射又は散乱された前記電磁波を前記受信部に結像させる第1光学系と、
    前記構造体によって反射又は散乱された前記電磁波を前記受信部に結像させる第2光学系と、
    を備えるセンサ装置。
  2. 請求項1に記載のセンサ装置において、
    前記第1光学系と、前記第2光学系と、によってレンズが共有されている、センサ装置。
  3. 請求項2に記載のセンサ装置において、
    前記第2光学系は、少なくとも2つの反射部を有し、
    前記構造体によって反射又は散乱され、かつ前記レンズを透過した前記電磁波は、前記少なくとも2つの反射部による反射を経て、前記受信部に結像される、センサ装置。
  4. 請求項3に記載のセンサ装置において、
    前記少なくとも2つの反射部は、第1反射部と、第2反射部と、を含み、
    前記第1反射部は、前記第2反射部よりも、前記受信部が位置する側に位置しており、
    前記第2反射部は、前記第1反射部よりも、前記レンズが位置する側に位置している、センサ装置。
  5. 請求項2〜4のいずれか一項に記載のセンサ装置において、
    前記第2光学系における前記レンズから前記受信部までの光学的距離は、前記第1光学系における前記レンズから前記受信部までの光学的距離の1.5倍以上である、センサ装置。
  6. 請求項1に記載のセンサ装置において、
    前記第1光学系は、前記対象物によって反射又は散乱された前記電磁波を前記受信部に結像させる第1レンズを有し、
    前記第2光学系は、前記第1レンズの周囲に位置していて前記構造体によって反射又は散乱された前記電磁波を前記受信部に結像させる第2レンズを有する、センサ装置。
  7. 請求項1に記載のセンサ装置において、
    前記第1光学系は、前記対象物によって反射又は散乱された前記電磁波を前記受信部に結像させる第1レンズを有し、
    前記第2光学系は、前記第1レンズの光軸方向に沿って前記第1レンズからずれて配置され、前記第1レンズの前記光軸方向において前記第1レンズの一部分と重なる領域を欠き、前記構造体によって反射又は散乱されて前記第1レンズを透過した前記電磁波を前記受信部に結像させる第2レンズを有する、センサ装置。
  8. 請求項1〜7のいずれか一項に記載のセンサ装置において、
    前記受信部は、前記第1光学系によって前記電磁波が結像される受信素子と、前記第2光学系によって前記電磁波が結像される受信素子と、を共有している、センサ装置。
  9. 請求項1〜8のいずれか一項に記載のセンサ装置において、
    前記構造体は、前記構造体に照射される前記電磁波について異なる反射率を有する部位を有する、センサ装置。
  10. 請求項1〜8のいずれか一項に記載のセンサ装置において、
    前記構造体の少なくとも一部分の幅が、前記構造体内の位置に応じて異なっている、センサ装置。
  11. 請求項1〜10のいずれか一項に記載のセンサ装置において、
    前記構造体の少なくとも一部分の幅が、前記構造体に照射される前記電磁波のスポットより小さい、センサ装置。
  12. 請求項1〜11のいずれか一項に記載のセンサ装置において、
    前記構造体によって反射又は散乱された前記電磁波の前記受信部による受信結果に基づいて前記可動反射部の振れ角を測定する測定部をさらに備えるセンサ装置。
JP2020058930A 2020-03-27 2020-03-27 センサ装置 Pending JP2021156793A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020058930A JP2021156793A (ja) 2020-03-27 2020-03-27 センサ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020058930A JP2021156793A (ja) 2020-03-27 2020-03-27 センサ装置

Publications (1)

Publication Number Publication Date
JP2021156793A true JP2021156793A (ja) 2021-10-07

Family

ID=77918134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020058930A Pending JP2021156793A (ja) 2020-03-27 2020-03-27 センサ装置

Country Status (1)

Country Link
JP (1) JP2021156793A (ja)

Similar Documents

Publication Publication Date Title
JP7019894B2 (ja) 物体を感知する方法及びセンサシステム
US11275157B2 (en) Object detecting apparatus, object detecting method, and design method of object detecting apparatus
US6862097B2 (en) Three-dimensional shape measuring method, and three-dimensional shape measuring apparatus
JP2018179984A (ja) Lidarシステム及び方法
JP7355171B2 (ja) 光学装置、これを用いた距離計測装置、及び移動体
RU2319158C2 (ru) Оптический измерительный преобразователь смещения
CN112689786B (zh) 光扫描装置和激光雷达
CN211236225U (zh) 一种大视场激光雷达光机系统
JP6907947B2 (ja) 光走査型の対象物検出装置
JP6440095B2 (ja) 光走査型の対象物検出装置
WO2016056543A1 (ja) 走査光学系及びレーダー
WO2017135224A1 (ja) 光走査型の対象物検出装置
JP2017138298A (ja) 光走査型の対象物検知装置
JP2007514942A (ja) 遠方・近接物体との距離測定装置
JP2023159092A (ja) 光走査装置、物体検出装置及びセンシング装置
JP2021156793A (ja) センサ装置
EP3364229B1 (en) Optical-scanning-type object detection device
JPWO2016056541A1 (ja) 走査光学系及びレーダー
JP7314661B2 (ja) 光走査装置、物体検出装置及びセンシング装置
CN208520990U (zh) 激光雷达
JP2022139268A (ja) 光検出装置
JP2021117142A (ja) センサ装置、筐体及びカバー部
WO2017065049A1 (ja) 光走査型の対象物検出装置
US20230131002A1 (en) Sensor device
CN111308442B (zh) 激光雷达

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231212

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240402