JP2021155903A - Multifilament yarn and manufacturing method of thermoformed article using the same - Google Patents

Multifilament yarn and manufacturing method of thermoformed article using the same Download PDF

Info

Publication number
JP2021155903A
JP2021155903A JP2021001728A JP2021001728A JP2021155903A JP 2021155903 A JP2021155903 A JP 2021155903A JP 2021001728 A JP2021001728 A JP 2021001728A JP 2021001728 A JP2021001728 A JP 2021001728A JP 2021155903 A JP2021155903 A JP 2021155903A
Authority
JP
Japan
Prior art keywords
melting point
multifilament yarn
core
sheath
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021001728A
Other languages
Japanese (ja)
Inventor
浩紀 室谷
Hironori Murotani
浩紀 室谷
こゆ 田代
Koyu Tashiro
こゆ 田代
弘平 池田
Kohei Ikeda
弘平 池田
真理子 本多
Mariko Honda
真理子 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Publication of JP2021155903A publication Critical patent/JP2021155903A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)

Abstract

To provide a multifilament yarn which has good processability, and is excellent in mechanical and thermal dimensional stability.SOLUTION: A multifilament yarn is composed of a sheath-core composite filament whose core component is a high melting point polyamide and whose sheath component is a low melting point polyamide. The total fineness of the multifilament yarn is 150 to 2000 dtex; and the sum of the intermediate elongation (X) of the multifilament yarn and the dry heat shrinkage (Y) at the following condition: (melting point of sheath component-5)°C×15 min, is 20% or less.SELECTED DRAWING: None

Description

本発明は、ポリアミドからなるマルチフィラメント糸に関し、さらには、マルチフィラメント糸を用いて種々の繊維製品を製造する際や熱処理を施す際の寸法安定性に優れたマルチフィラメント糸に関するものである。 The present invention relates to a multifilament yarn made of polyamide, and further relates to a multifilament yarn having excellent dimensional stability when various textile products are manufactured using the multifilament yarn or when heat treatment is performed.

熱融着性を有するポリアミドからなるマルチフィラメント糸としては、ナイロン共重合体により構成されるものが知られている(特許文献1)。特許文献1には、融点80〜120℃のナイロン共重合体から構成される熱接着性繊維が開示され、この技術によれば、熱接着時の熱処理を低温で行うことができ、製造において巻き姿よく巻き取ることが可能であり、操業性よく生産できるというものである。 As a multifilament yarn made of a heat-fusing polyamide, one made of a nylon copolymer is known (Patent Document 1). Patent Document 1 discloses a heat-adhesive fiber composed of a nylon copolymer having a melting point of 80 to 120 ° C. According to this technique, heat treatment at the time of heat-bonding can be performed at a low temperature, and the fiber can be wound in production. It can be wound up in a good shape and can be produced with good operability.

しかしながら、ポリアミドは、一般に伸度が高く、ポリエステルなどと比較すると、伸びが大きく、寸法安定性に優れているとは言い難いものである。特許文献1の糸は、実施例によれば、切断伸度が100%を超えている。 However, polyamide generally has a high elongation, and it cannot be said that the polyamide has a large elongation and is excellent in dimensional stability as compared with polyester and the like. According to Examples, the yarn of Patent Document 1 has a cutting elongation of more than 100%.

特開2004−149971号公報Japanese Unexamined Patent Publication No. 2004-149971

本発明は、熱融着性を有するポリアミド系のマルチフィラメント糸において、加工性が良好で、機械的にも熱的にも寸法安定性に優れるマルチフィラメント糸を提供することを課題とする。 An object of the present invention is to provide a polyamide-based multifilament yarn having heat-sealing properties, which has good workability and excellent dimensional stability both mechanically and thermally.

本発明は、芯成分が高融点ポリアミドで、鞘成分が低融点ポリアミドにより構成される芯鞘型複合長繊維よりなるマルチフィラメント糸であり、
マルチフィラメント糸の総繊度が150〜3000デシテックス、マルチフィラメント糸の中間伸度(X)と、(鞘成分の融点−5)℃×15分の条件での乾熱収縮率(Y)との和が20%以下であることを特徴とするマルチフィラメント糸に関するものである。
The present invention is a multifilament yarn made of a core-sheath type composite long fiber in which the core component is a high melting point polyamide and the sheath component is a low melting point polyamide.
The total fineness of the multifilament yarn is 150 to 3000 decitex, and the sum of the intermediate elongation (X) of the multifilament yarn and the dry heat shrinkage rate (Y) under the condition of (melting point of sheath component -5) ° C. × 15 minutes. It relates to a multifilament yarn characterized by having a value of 20% or less.

本発明で用いられる芯鞘型複合長繊維は、芯成分が高融点ポリアミド、鞘成分が低融点ポリアミドである。芯成分と鞘成分の質量比は、芯成分:鞘成分=1〜3:1であるのが好ましい。鞘成分の質量比がこの範囲より低いと、熱融着一体化するための鞘成分の量が少なくなるため、芯鞘型複合長繊維相互間が融着によって一体化しにくく融着力が低下する傾向となる。また、鞘成分の質量比がこの範囲より高いと、強力を担う芯成分の量が少なくなり、また、熱処理して得られる熱成形体中において当初の繊維形態を維持している芯成分の径が小さくなり、マルチフィラメント糸や熱成形体の引張強度が低下する傾向となる。芯鞘型複合長繊維の単繊維繊度は任意であるが、4〜20デシテックス程度がよい。 The core-sheath type composite long fiber used in the present invention has a core component of a high melting point polyamide and a sheath component of a low melting point polyamide. The mass ratio of the core component to the sheath component is preferably core component: sheath component = 1-3: 1. If the mass ratio of the sheath components is lower than this range, the amount of the sheath components for heat fusion integration is small, so that the core-sheath type composite long fibers are difficult to integrate by fusion and the fusion force tends to decrease. It becomes. Further, when the mass ratio of the sheath component is higher than this range, the amount of the core component responsible for the strength decreases, and the diameter of the core component that maintains the initial fiber morphology in the thermoformed body obtained by heat treatment. Becomes smaller, and the tensile strength of the multifilament yarn or the thermoformed body tends to decrease. The single fiber fineness of the core-sheath type composite long fiber is arbitrary, but it is preferably about 4 to 20 decitex.

本発明の芯鞘型複合長繊維は、ポリアミドによって構成される。ポリアミドとしては、ナイロン6、ナイロン66、ナイロン610、ナイロン11、ナイロン12等が挙げられる。また、これらのポリアミドが共重合してなるものが挙げられる。本発明の芯鞘型複合長繊維を構成するポリアミドとしては、上記したポリアミドのうち、芯成分(高融点ポリアミド)と鞘成分(低融点ポリアミド)とを適宜選択すればよく、芯成分がナイロン6、鞘成分がナイロン6に他のポリアミドが共重合してなる共重合ナイロンを用いることが好ましい。ナイロン6は、融点が225℃程度であり、耐熱性を有するため好ましい。また、鞘成分は、芯成分の融点よりも30℃以上低い融点のものを採用するとよい。より好ましくは50℃以上低い融点のものである。芯成分と鞘成分において、融点差を設けるのは、本発明のマルチフィラメント糸に熱処理を施した際に、芯成分は熱の影響をうけずに繊維形態を良好に維持し、鞘成分のみが溶融または軟化して熱融着に寄与することができるためである。融点差を30℃以上、好ましくは50℃以上設けることにより、熱融着加工性が良好となる。 The core-sheath type composite long fiber of the present invention is composed of polyamide. Examples of the polyamide include nylon 6, nylon 66, nylon 610, nylon 11, nylon 12, and the like. In addition, those obtained by copolymerizing these polyamides can be mentioned. As the polyamide constituting the core-sheath type composite long fiber of the present invention, the core component (high melting point polyamide) and the sheath component (low melting point polyamide) may be appropriately selected from the above-mentioned polyamides, and the core component is nylon 6 It is preferable to use a copolymerized nylon in which the sheath component is nylon 6 and another polyamide is copolymerized. Nylon 6 is preferable because it has a melting point of about 225 ° C. and has heat resistance. Further, as the sheath component, one having a melting point lower than the melting point of the core component by 30 ° C. or more is preferable. More preferably, it has a melting point lower than 50 ° C. The difference in melting point between the core component and the sheath component is that when the multifilament yarn of the present invention is heat-treated, the core component maintains a good fiber morphology without being affected by heat, and only the sheath component has a difference in melting point. This is because it can be melted or softened to contribute to heat fusion. By providing a melting point difference of 30 ° C. or higher, preferably 50 ° C. or higher, the heat fusion processability is improved.

芯成分または鞘成分を構成するポリアミドは、本発明の効果を達成する範囲であれば、他の共重合成分が少量含まれていてもよく、また顔料、難燃剤、紫外線吸収剤、帯電防止剤等の添加剤を含有してもよい。 The polyamide constituting the core component or the sheath component may contain a small amount of other copolymerization components as long as the effects of the present invention are achieved, and a pigment, a flame retardant, an ultraviolet absorber, and an antistatic agent. Etc. may be contained.

マルチフィラメント糸の総繊度は、衣料等のテキスタイル用途ではなく、土木・建築・農業・水産・林業等の産業分野において適用することを想定すると、150〜3000デシテックスである。また、マルチフィラメント糸を構成する長繊維数は、50〜300本程度である。 The total fineness of the multifilament yarn is 150 to 3000 decitex, assuming that it is applied not to textile applications such as clothing but to industrial fields such as civil engineering, construction, agriculture, fisheries, and forestry. The number of long fibers constituting the multifilament yarn is about 50 to 300.

本発明のマルチフィラメント糸は、中間伸度(X)と、(鞘成分の融点−5℃)×15分の条件での乾熱収縮率(Y)との和が20%以下である。本発明において、中間伸度(X)とは、マルチフィラメント糸の引張試験の応力−伸び曲線における引張強力値(最大荷重時)の4分の1の荷重時の伸度をいう。中間伸度の値が小さいと、荷重を負荷した際の寸法変化が小さく、機械的な寸法変化に優れているといえる。より具体的には、中間伸度(X)は、2〜8%が好ましい。中間伸度(X)が2%未満となると、寸法変化は小さくなって、より機械的な寸法変化に優れるといえるが、マルチフィラメント糸を用いて繊維製品とする際の製造工程や加工工程において、例えば、編み機における針の高速挙動に対して追従しにくくなることもあり、下限は2%以上がよい。上限は、8%以下とすることにより、機械的な寸法変化に優れたものといえる。 In the multifilament yarn of the present invention, the sum of the intermediate elongation (X) and the dry heat shrinkage rate (Y) under the condition of (melting point of sheath component −5 ° C.) × 15 minutes is 20% or less. In the present invention, the intermediate elongation (X) refers to the elongation under load, which is one-fourth of the tensile strength value (at maximum load) in the stress-strain curve of the tensile test of the multifilament yarn. When the value of the intermediate elongation is small, the dimensional change when a load is applied is small, and it can be said that the mechanical dimensional change is excellent. More specifically, the intermediate elongation (X) is preferably 2 to 8%. When the intermediate elongation (X) is less than 2%, the dimensional change becomes small and it can be said that the mechanical dimensional change is more excellent. For example, it may be difficult to follow the high-speed behavior of the needle in the knitting machine, and the lower limit is preferably 2% or more. By setting the upper limit to 8% or less, it can be said that the mechanical dimensional change is excellent.

中間伸度(X)は、JIS L 1013(2010)8.5.1引張強さ及び伸び率 標準時試験 に準じて、定速伸長形引張試験機を用い、つかみ間隔25cm、引張速度30cm/分の条件で測定した際に描かれる応力−伸び曲線において、最大荷重が引張強さであり、その最大荷重(引張強さ)の値の4分の1の荷重時の伸度(%)を求め、10個の平均値を中間伸度(X)とする。 Intermediate elongation (X) is determined by using a constant-speed extension type tensile tester according to JIS L 1013 (2010) 8.5.1 Tensile Strength and Elongation Standard Time Test, with a grip interval of 25 cm and a tensile speed of 30 cm / min. In the stress-elongation curve drawn when measured under the conditions of, the maximum load is the tensile strength, and the elongation (%) under load, which is one-fourth of the value of the maximum load (tensile strength), is obtained. Let the average value of 10 pieces be the intermediate elongation (X).

本発明のマルチフィラメント糸は、中間伸度(X)と、(鞘成分の融点−5)℃×15分の条件での乾熱収縮率(Y)との和が20%以下であり、外力を与えた際の機械的寸法変化と加熱した際の熱的寸法変化の両者に優れる。(鞘成分の融点−5)℃×15分の条件での乾熱収縮率(Y)とは、熱処理前後での糸長の変化率であり、JIS L 1013(2010)8.18.2乾熱寸法変化率b)フィラメント寸法変化率(B法)に基づき、(鞘成分の融点−5)℃に設定した乾燥機中に吊り下げた状態で15分間放置し、乾燥寸法変化率(%)を算出し、5個の平均値を、(鞘成分の融点−5)×15分の条件での乾熱収縮率(Y)とした。芯鞘型複合繊維であって、鞘成分がバインダー成分として機能する、いわゆる熱バインダー繊維は、熱に対する収縮は生じるものであるが、本発明においては、(鞘成分の融点−5)×15分の条件での乾熱収縮率が好ましくは15%以下、より好ましくは13%以下であることにより、熱を与えた際の寸法変化に優れるものとなり、繊維製品を製造する工程や、得られた繊維製品に熱処理を施す熱処理工程における取り扱い性に優れる。なお、乾熱収縮率の下限は小さいほどよいが、8%程度であればよい。したがって、中間伸度(X)と、(鞘成分の融点−5)℃×15分の条件での乾熱収縮率(Y)との和の下限は、10%程度がよい。 In the multifilament yarn of the present invention, the sum of the intermediate elongation (X) and the dry heat shrinkage rate (Y) under the condition of (melting point of sheath component −5) ° C. × 15 minutes is 20% or less, and an external force is obtained. It is excellent in both mechanical dimensional change when it is given and thermal dimensional change when it is heated. The dry heat shrinkage rate (Y) under the condition of (melting point -5 of the sheath component) ° C. × 15 minutes is the rate of change in the thread length before and after the heat treatment, and is JIS L 1013 (2010) 8.18.2 dry. Thermal dimensional change rate b) Based on the filament dimensional change rate (B method), leave it in a dryer set at (melting point of sheath component -5) ° C for 15 minutes, and dry dimensional change rate (%). Was calculated, and the average value of the five pieces was taken as the dry heat shrinkage rate (Y) under the condition of (melting point of sheath component −5) × 15 minutes. The so-called thermal binder fiber, which is a core-sheath type composite fiber in which the sheath component functions as a binder component, shrinks with respect to heat, but in the present invention, (melting point of the sheath component-5) × 15 minutes. When the dry heat shrinkage rate under the above conditions is preferably 15% or less, more preferably 13% or less, the dimensional change when heat is applied becomes excellent, and the process for manufacturing textile products and the obtained Excellent handleability in the heat treatment process of heat-treating textile products. The lower limit of the dry heat shrinkage rate is better, but it may be about 8%. Therefore, the lower limit of the sum of the intermediate elongation (X) and the dry heat shrinkage rate (Y) under the condition of (melting point of the sheath component −5) ° C. × 15 minutes is preferably about 10%.

本発明のマルチフィラメント糸は、複合溶融紡糸法により製造され、これを集束してマルチフィラメント糸とする。なお、製造工程において、溶融紡糸後に引き取った糸条は、加熱延伸ローラーにて2段階の熱延伸を行うことにより、良好な寸法安定性を有するマルチフィラメント糸を得ることができる。 The multifilament yarn of the present invention is produced by a composite melt spinning method and is bundled into a multifilament yarn. In the manufacturing process, the yarn taken after melt spinning can be subjected to two-step heat drawing with a heat drawing roller to obtain a multifilament yarn having good dimensional stability.

得られたマルチフィラメント糸は、そのまま繊維製品として、鞘成分の融点以上で芯成分の融点未満の温度に加熱し、芯鞘型複合長繊維相互間を融着させて、モノフィラメント糸状の熱成形体としてもよい。本発明に用いる繊維製品としては、マルチフィラメント糸を編組して紐とする、製網して網とする、又は製編織して織物あるいは編物にするのが好ましい。編物としては、目の大きいメッシュ状のものも含まれ、特に養殖網等の漁網として使用すると、目の大きいメッシュでありながら、形態保持性が良好であることから好ましい。この繊維製品を、鞘成分の融点以上で芯成分の融点未満の温度に加熱し、芯鞘型複合長繊維相互間を融着させて、外観上はプラスチック様の紐、撚糸、コード、ロープ、網、織物又は編物よりなる熱成形体を得る。本発明における熱成形体は、剛性と機械的強度が優れる。 The obtained multifilament yarn is used as a textile product as it is, heated to a temperature equal to or higher than the melting point of the sheath component and lower than the melting point of the core component, and fused between the core-sheath type composite long fibers to form a monofilament yarn-like thermoformed body. May be. As the textile product used in the present invention, it is preferable that the multifilament yarn is braided into a string, netted into a net, or knitted / knitted into a woven fabric or knitted fabric. The knitted fabric includes a mesh-like one having a large mesh, and particularly when used as a fishing net such as aquaculture net, it is preferable because the mesh has a large mesh and has good morphological retention. This textile product is heated to a temperature above the melting point of the sheath component and below the melting point of the core component to fuse the core-sheath type composite long fibers with each other, resulting in a plastic-like string, plying, cord, rope, etc. A thermoformed body made of a net, a woven fabric or a knitted fabric is obtained. The thermoformed body of the present invention is excellent in rigidity and mechanical strength.

本発明における熱成形体は、比較的広い現場で用いられる資材として好適である。たとえば、メッシュシート等の建築工事用シート、剥落防止シート等の土木工事用又は建築工事用シート、養殖網等の漁網として好適に用いることができる。 The thermoformed body in the present invention is suitable as a material used in a relatively wide field. For example, it can be suitably used as a sheet for construction work such as a mesh sheet, a sheet for civil engineering work such as a peeling prevention sheet, a sheet for construction work, and a fishing net such as an aquaculture net.

本発明に係るマルチフィラメント糸は、芯成分が高融点ポリアミドで、鞘成分が低融点ポリアミドよりなる芯鞘型複合長繊維で構成され、機械的および熱的に寸法安定性に優れることから、加工性が良好で、取り扱い性に優れ、産業資材として種々の幅広い用途において好適に用いることができる。 The multifilament yarn according to the present invention is processed because it is composed of a core-sheath type composite long fiber whose core component is a high melting point polyamide and whose sheath component is a low melting point polyamide, and which is mechanically and thermally excellent in dimensional stability. It has good properties, is excellent in handleability, and can be suitably used as an industrial material in a wide variety of applications.

実施例1
芯成分として、融点225℃、溶融粘度[ηmelt]2000dPa・s(せん断速度1000(1/秒)時)のポリアミド6を準備した。一方、鞘成分として、融点155℃、溶融粘度[ηmelt]1800dPa・s(せん断速度1000(1/秒)時)の共重合ポリアミド(アルケマ社製 Platamid M1425F)を準備した。
Example 1
As a core component, polyamide 6 having a melting point of 225 ° C. and a melt viscosity [ηmelt] of 2000 dPa · s (at a shear rate of 1000 (1/sec)) was prepared. On the other hand, as a sheath component, a copolymerized polyamide (Platamide M1425F manufactured by Arkema Co., Ltd.) having a melting point of 155 ° C. and a melt viscosity [ηmelt] of 1800 dPa · s (at a shear rate of 1000 (1 / sec)) was prepared.

溶融粘度[ηmelt]は、1.3kPa以下、100℃の加熱減圧条件下で12時間乾燥を行った後、島津製作所製フローテスターCFT−500型を使用し、予熱時間180秒、ノズル0.5φ×2.0mm、測定温度270℃で測定した。 The melt viscosity [ηmelt] is 1.3 kPa or less, and after drying under heating and reduced pressure conditions of 100 ° C. for 12 hours, a flow tester CFT-500 manufactured by Shimadzu Corporation is used, the preheating time is 180 seconds, and the nozzle is 0.5φ. It was measured at × 2.0 mm and a measurement temperature of 270 ° C.

孔径0.5mmで孔数192個の芯鞘型複合紡糸口金を備えた複合溶融紡糸装置を用い、上記したポリアミド6と共重合ポリアミドを供給し、口金温度を270℃とし、芯成分:鞘成分=3:1(質量比)として、複合溶融紡糸した。紡糸口金直下に設けた温度250℃、長さ15cmの加熱筒内を通過させた後、長さ20cmの環状吹付装置で、冷却温度15℃、速度0.7m/秒で冷却し、芯鞘型複合長繊維を得た。 Using a composite melt spinning device equipped with a core-sheath type composite spinning mouthpiece with a hole diameter of 0.5 mm and 192 holes, the above-mentioned polyamide 6 and copolymerized polyamide were supplied, the base temperature was set to 270 ° C., and the core component: sheath component. Composite melt spinning was performed at a ratio of 3: 1 (mass ratio). After passing through a heating cylinder with a temperature of 250 ° C and a length of 15 cm provided directly under the spinneret, it is cooled by an annular spraying device with a length of 20 cm at a cooling temperature of 15 ° C and a speed of 0.7 m / sec. Composite filaments were obtained.

得られた芯鞘型複合熱接着性繊維192本が収束した糸条に、油剤を付与して、温度45℃のローラーにて速度632m/分で引き取り、引き続き、引き取り速度が1.02倍、温度70℃に設定された引き取りローラーで引き取り、その後、温度70℃の延伸ローラーで2.8倍の第1延伸を行い、次いで、温度135℃の延伸ローラーで1.3倍の第2延伸を行い、その後、温度125℃のローラーで5%の弛緩処理を行って、1.5%のリラックスをかけながら速度2200m/分のワインダーに巻き取り、1400デシテックス/192本のマルチフィラメント糸を得た。 An oil agent was applied to the yarn obtained by converging 192 core-sheath type composite heat-adhesive fibers, and the yarn was picked up by a roller at a temperature of 45 ° C. at a speed of 632 m / min. It is picked up by a take-up roller set to a temperature of 70 ° C., then 2.8 times the first stretching is performed by a stretching roller having a temperature of 70 ° C., and then a 1.3 times second stretching is performed by a stretching roller having a temperature of 135 ° C. After that, a 5% relaxation treatment was performed with a roller having a temperature of 125 ° C., and the yarn was wound on a winder at a speed of 2200 m / min while relaxing at 1.5% to obtain 1400 decitex / 192 multifilament yarns. ..

得られたマルチフィラメント糸の中間伸度は6.4%、(鞘成分の融点−5)℃×15分の条件での乾熱収縮率は12.1%、中間伸度(X)と(鞘成分の融点−5)℃×15分の条件での乾熱収縮率(Y)との和は18.5%であった。また、このマルチフィラメント糸の切断伸度は、40.6%であった。 The obtained multifilament yarn had an intermediate elongation of 6.4%, a dry heat shrinkage rate of 12.1% under the condition of (melting point of sheath component -5) ° C. × 15 minutes, and an intermediate elongation (X) and ( The sum of the pod component with the dry heat shrinkage rate (Y) under the condition of -5) ° C. × 15 minutes was 18.5%. The cutting elongation of this multifilament yarn was 40.6%.

得られたマルチフィラメント糸をボビンに巻取り、このボビンを8打角打製紐機に設置して、8本組紐を得た。この8本組紐を温度170℃で2分間の条件で加熱して、熱成形を行い、棒状の熱成形体を得た。 The obtained multifilament yarn was wound around a bobbin, and the bobbin was installed in an 8-strand square-strike string making machine to obtain an 8-braid. The eight braids were heated at a temperature of 170 ° C. for 2 minutes and thermoformed to obtain a rod-shaped thermoformed body.

得られた実施例1の8本組紐と熱成形体を試料とし、以下の方法により酸性に対する耐久試験を行った。また、比較として、ナイロン6のみからなるマルチフィラメント糸(940デシテックス/96本)を2本引き揃えた引き揃え糸を用い、8打角打製紐機にて8本組紐を作成し、比較の8本組紐とした。 Using the obtained eight braids of Example 1 and the thermoformed body as samples, a durability test against acidity was carried out by the following method. In addition, as a comparison, using a pull-aligned yarn in which two multifilament yarns (940 decitex / 96 yarns) made of only nylon 6 are aligned, an 8-strand braid is made with an 8-strand angle-strike string making machine, and a comparison is made. Eight braids were used.

(1)酸性に対する耐久試験
硫酸(98% 特級 関東化学株式会社製)を使用し、5Nの硫酸水溶液を作製した。次いで、試料(8本組紐、熱成形体、比較の8本組紐)を、試料の質量に対し10倍以上の質量の酸性水溶液中に浸漬し、960時間放置した。960時間経過後、試料を酸性水溶液から引き上げて、純水で10秒間×2回すすいだ後、流水で1分間洗った。その後2日間風乾させて、試料に含まれる水分を除去した乾燥試料の引張強さ(N1)を測定した。引張強さは、上記した中間伸度(X)の測定と同様の方法、条件により引張強さを求めた。そして、酸性水溶液に浸漬する前の試料(8本組紐、熱成形体、比較の8本組紐)の引張強さ(N0)も、同一条件で測定し、強力保持率(%)=(N1/N0)×100を算出した。
(1) Durability test against acidity A 5N aqueous sulfuric acid solution was prepared using sulfuric acid (98% special grade manufactured by Kanto Chemical Co., Inc.). Next, the sample (8 braids, thermoformed body, comparative 8 braids) was immersed in an acidic aqueous solution having a mass 10 times or more the mass of the sample and left to stand for 960 hours. After 960 hours, the sample was withdrawn from the acidic aqueous solution, rinsed with pure water for 10 seconds x 2 times, and then washed with running water for 1 minute. Then, the sample was air-dried for 2 days, and the tensile strength (N1) of the dried sample from which the water contained in the sample was removed was measured. As for the tensile strength, the tensile strength was determined by the same method and conditions as in the above-mentioned measurement of the intermediate elongation (X). Then, the tensile strength (N0) of the sample (8 braids, thermoformed body, comparative 8 braids) before being immersed in the acidic aqueous solution was also measured under the same conditions, and the strong retention rate (%) = (N1 /). N0) × 100 was calculated.

Figure 2021155903
Figure 2021155903

ポリアミドは、酸に対する耐久性が劣る傾向にあるが、本発明のマルチフィラメント糸を組紐にした後、熱処理した熱成形体は、個々のフィラメントにおける鞘成分の低融点ポリアミドが溶融一体化して固化し、芯部の高融点ポリアミドを覆うことにより、8本組紐や比較の8本組紐(ポリアミド6のみからなる単相タイプの長繊維によって構成されたマルチフィラメント糸からなる組紐)と比較して強力保持率が向上していることがわかる。 Polyamide tends to be inferior in durability to acid, but in a thermoformed body that has been heat-treated after forming the multifilament yarn of the present invention into a braid, the low melting point polyamide of the sheath component in each filament is melted and integrated to solidify. By covering the high melting point polyamide in the core, it holds stronger than the 8-line braid or the comparative 8-line braid (a braid made of multifilament yarn composed of single-phase type long fibers consisting only of polyamide 6). It can be seen that the rate is improving.

(2)アルカリ性に対する耐久試験
5Nの硫酸水溶液に代えて、水酸化ナトリウム(99% マルゼン株式会社製)を用いて3Nの水酸化ナトリウム水溶液としたこと以外は、上記した(1)酸性に対する耐久試験と同一の方法で、アルカリ性に対する耐久試験を行い、強力保持率(%)を算出した。
(2) Durability test against alkalinity The durability test against acidity described above (1) except that a 3N sodium hydroxide aqueous solution was prepared by using sodium hydroxide (99% manufactured by Maruzen Co., Ltd.) instead of the 5N sulfuric acid aqueous solution. The durability test against alkalinity was carried out by the same method as in the above, and the strong retention rate (%) was calculated.

結果を表2に示す。 The results are shown in Table 2.

Figure 2021155903
Figure 2021155903

(3)耐屈曲疲労性
実施例1で得られた熱成形体を試料とし、以下の方法により屈曲疲労に対する耐久試験を行った。すなわち、マイズ試験機社製のMIT耐折度試験機を用いて試料を角度±120°、試験速度175r/minで特定の回数の屈曲処理をおこない、屈曲処理後の試料の引張強さを測定し、強力保持率を算出した。引張強さは、上記した中間伸度(X)の測定と同様の方法、条件により求め、強力保持率は、強力保持率(%)=(屈曲処理後の引張強さ(N)/屈曲処理前の引張強さ(N))×100 により求めた。なお、試料の数は5個とし、5個の平均値を引張強さとし、その結果を表3に示す。
(3) Bending fatigue resistance Using the thermoformed body obtained in Example 1 as a sample, a durability test against bending fatigue was performed by the following method. That is, the sample is bent at an angle of ± 120 ° and a test speed of 175 r / min a specific number of times using a MIT folding resistance tester manufactured by Mize Testing Machine Co., Ltd., and the tensile strength of the sample after the bending treatment is measured. Then, the strong retention rate was calculated. The tensile strength is determined by the same method and conditions as the above-mentioned measurement of the intermediate elongation (X), and the strong retention rate is the strong retention rate (%) = (tensile strength (N) after bending treatment / bending treatment). It was calculated by the previous tensile strength (N)) × 100. The number of samples was 5, and the average value of 5 samples was taken as the tensile strength, and the results are shown in Table 3.

表3の結果からも分かるように、耐屈曲疲労試験では、熱成形体は、5000回の屈曲
後であっても、初期の強力の8割を超える値を保持し、熱成形体であるにもかかわらず、
柔軟性も有し、屈曲に対して優れた耐久性を有するものであった。
As can be seen from the results in Table 3, in the bending fatigue resistance test, the thermoformed body retains a value exceeding 80% of the initial strength even after 5000 times of bending, and is a thermoformed body. Nevertheless,
It also had flexibility and had excellent durability against bending.


Figure 2021155903
Figure 2021155903






Claims (5)

芯成分が高融点ポリアミドで、鞘成分が低融点ポリアミドにより構成される芯鞘型複合
長繊維よりなるマルチフィラメント糸であり、
マルチフィラメント糸の総繊度が150〜3000デシテックス、マルチフィラメント糸
の中間伸度(X)と、(鞘成分の融点−5)℃×15分の条件での乾熱収縮率(Y)との
和が20%以下であることを特徴とするマルチフィラメント糸。
It is a multifilament yarn made of core-sheath type composite long fibers whose core component is high melting point polyamide and whose sheath component is low melting point polyamide.
The total fineness of the multifilament yarn is 150 to 3000 decitex, and the sum of the intermediate elongation (X) of the multifilament yarn and the dry heat shrinkage rate (Y) under the condition of (melting point of sheath component -5) ° C. × 15 minutes. A multifilament yarn characterized in that the content is 20% or less.
高融点ポリアミドと低融点ポリアミドとの融点差が、30℃以上であることを特徴とす
る請求項1記載のマルチフィラメント糸
The multifilament yarn according to claim 1, wherein the melting point difference between the high melting point polyamide and the low melting point polyamide is 30 ° C. or more.
芯成分がナイロン6、鞘成分が共重合ナイロンであることを特徴とする請求項1記載の
マルチフィラメント糸。
The multifilament yarn according to claim 1, wherein the core component is nylon 6 and the sheath component is copolymerized nylon.
請求項1から3のいずれか1項記載のマルチフィラメント糸によって構成される繊維製
品であって、繊維製品が紐、撚糸、コード、ロープ、網、織物または編物であることを特
徴とする繊維製品。
A textile product composed of the multifilament yarn according to any one of claims 1 to 3, wherein the textile product is a string, a twisted yarn, a cord, a rope, a net, a woven fabric or a knitted fabric. ..
請求項4記載の繊維製品を、芯鞘型複合長繊維の鞘成分が溶融する温度でかつ芯成分の
融点未満の温度で加熱し、芯鞘型複合長繊維同士を鞘成分が融着固化することによって一
体化させることを特徴とする熱成形体の製造方法。
The textile product according to claim 4 is heated at a temperature at which the sheath component of the core-sheath type composite long fiber melts and at a temperature lower than the melting point of the core component, and the sheath component fuses and solidifies the core-sheath type composite long fibers. A method for producing a thermoformed body, which is characterized by being integrated by the means.
JP2021001728A 2020-03-26 2021-01-07 Multifilament yarn and manufacturing method of thermoformed article using the same Pending JP2021155903A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020056661 2020-03-26
JP2020056661 2020-03-26

Publications (1)

Publication Number Publication Date
JP2021155903A true JP2021155903A (en) 2021-10-07

Family

ID=77917766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021001728A Pending JP2021155903A (en) 2020-03-26 2021-01-07 Multifilament yarn and manufacturing method of thermoformed article using the same

Country Status (1)

Country Link
JP (1) JP2021155903A (en)

Similar Documents

Publication Publication Date Title
JP4419090B2 (en) Stretchable fabric with watermark pattern and manufacturing method
KR20100059802A (en) Knit fabrics and base layer garments made therefrom with improved thermal protective properties
EP1877607B1 (en) Textile sheet material and protective clothing containing said sheet material
JP7281174B2 (en) Sheath-core composite thermoadhesive fiber
JP6271856B2 (en) Fabric manufacturing method and textile manufacturing method
JP2020066836A (en) gloves
JP6345938B2 (en) Thermal adhesive long fiber
JP5707192B2 (en) Manufacturing method of core-sheath type composite fiber
WO2015182088A1 (en) Polyamide fibers, fiber structure using same, and clothing
KR102551962B1 (en) Thermoforming method of textile products
JP2021155903A (en) Multifilament yarn and manufacturing method of thermoformed article using the same
KR101155454B1 (en) Process Of Producing Nylon 6 Draw?Textured?Yarn With High Elasticity
JP4100063B2 (en) Composite fibers and fiber structures
JP2009299209A (en) Sheath-core conjugate filament
JP5398972B2 (en) Cellulose ester-based composite yarn, method for producing the same, and woven / knitted fabric
JP2021152233A (en) Multifilament yarn and manufacturing method of heat-molded body using the same
JP2002266118A (en) Protective clothes or sportswear
JP6744627B2 (en) String for gut
WO1997020974A1 (en) Ethylene/chlorotrifluoroethylene fiber and method for preparing the same
JP2021031807A (en) Multifilament yarn and method for producing thermally-formed body using the same
JP5306754B2 (en) Bulky polyamide multifilament and method for producing bulky polyamide multifilament
JP6359869B2 (en) Work gloves
JP3043374B2 (en) False twist processing of friction-resistant molten yarn
JP7505185B2 (en) Spun yarn and textile structures
JP6691857B2 (en) Polyamide latent crimped yarn and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231208