JP2021155264A - Manufacturing method of nickel-containing hydroxide - Google Patents

Manufacturing method of nickel-containing hydroxide Download PDF

Info

Publication number
JP2021155264A
JP2021155264A JP2020057291A JP2020057291A JP2021155264A JP 2021155264 A JP2021155264 A JP 2021155264A JP 2020057291 A JP2020057291 A JP 2020057291A JP 2020057291 A JP2020057291 A JP 2020057291A JP 2021155264 A JP2021155264 A JP 2021155264A
Authority
JP
Japan
Prior art keywords
nickel
particle
containing hydroxide
slurry
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020057291A
Other languages
Japanese (ja)
Other versions
JP7535867B2 (en
Inventor
亮太 小林
Ryota Kobayashi
亮太 小林
裕介 前田
Yusuke Maeda
裕介 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Chemical Corp
Original Assignee
Tanaka Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Chemical Corp filed Critical Tanaka Chemical Corp
Priority to JP2020057291A priority Critical patent/JP7535867B2/en
Priority to CN202180017763.5A priority patent/CN115210187B/en
Priority to PCT/JP2021/008326 priority patent/WO2021192877A1/en
Priority to KR1020227028113A priority patent/KR20220158684A/en
Publication of JP2021155264A publication Critical patent/JP2021155264A/en
Application granted granted Critical
Publication of JP7535867B2 publication Critical patent/JP7535867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a method of manufacturing nickel-containing hydroxide which cannot only improve a packing density but also can produce particles prevented from cracking.SOLUTION: A manufacturing method of nickel-containing hydroxide comprises: a reaction step of obtaining nickel-containing hydroxide by continuously supplying a metal-containing aqueous solution containing nickel, an aqueous solution containing a complexing agent, and an alkaline aqueous solution into a reaction vessel to cause a crystallization reaction; a slurry extracting step for continuously extracting a slurry containing the nickel-containing hydroxide from the reaction vessel; a classification step of continuously supplying the slurry containing the nickel-containing hydroxide to a classifier to classify into a first particle part and a second particle part having smaller average particle size than the first particle part; and a second particle reflux step of continuously returning the second particle part to the reaction vessel, in which the slurry concentration containing the nickel-containing hydroxide in the reaction vessel is adjusted to a range of 50 g/L or larger to 280 g/L or smaller.SELECTED DRAWING: Figure 1

Description

本発明は、ニッケル含有水酸化物の製造方法であり、特に、ニッケル含有水酸化物を二次電池の正極活物質の前駆体として使用した場合に、正極活物質の粒子割れを防止でき、正極活物質を高密度に搭載することが可能なニッケル含有水酸化物の製造方法に関するものである。 The present invention is a method for producing a nickel-containing hydroxide, and in particular, when a nickel-containing hydroxide is used as a precursor of a positive electrode active material of a secondary battery, particle cracking of the positive electrode active material can be prevented and a positive electrode can be prevented. The present invention relates to a method for producing a nickel-containing hydroxide capable of mounting an active material at a high density.

近年、環境負荷の低減の点から、携帯機器や動力源として電気を使用または併用する車両等、広汎な分野で二次電池が使用されている。二次電池としては、例えば、リチウムイオン二次電池等の非水電解質を用いた二次電池がある。リチウムイオン二次電池等の非水電解質を用いた二次電池は、小型化、軽量化に適し、高いサイクル特性及び高い放電レート特性といった優れた特性を有している。 In recent years, from the viewpoint of reducing the environmental load, secondary batteries have been used in a wide range of fields such as portable devices and vehicles that use or use electricity as a power source. Examples of the secondary battery include a secondary battery using a non-aqueous electrolyte such as a lithium ion secondary battery. A secondary battery using a non-aqueous electrolyte such as a lithium ion secondary battery is suitable for miniaturization and weight reduction, and has excellent characteristics such as high cycle characteristics and high discharge rate characteristics.

また、サイクル特性及び放電レート特性をさらに向上させるために、正極に搭載する正極活物質の充填密度の向上が要求されている。そこで、リチウム原料、マンガン原料、マグネシウム原料、アルミニウム原料及びホウ素化合物を含有する原料を混合する原料混合工程と、混合した原料を湿式粉砕した後、スプレードライヤーで造粒し、760℃〜870℃、0.5時間〜30時間で焼成する工程と、焼成後に粉砕して平均粒径1μm〜75μmの範囲に分級する工程と、得られた粉体を磁石と接触させて磁着物を取り除く磁力選別工程と、を含むリチウム電池用正極活物質材料の製造方法が提案されている(特許文献1)。 Further, in order to further improve the cycle characteristics and the discharge rate characteristics, it is required to improve the packing density of the positive electrode active material mounted on the positive electrode. Therefore, a raw material mixing step of mixing a lithium raw material, a manganese raw material, a magnesium raw material, an aluminum raw material, and a raw material containing a boron compound, and a wet pulverization of the mixed raw materials and then granulation with a spray dryer are performed at 760 ° C to 870 ° C. A step of firing in 0.5 to 30 hours, a step of crushing after firing and classifying into a range of an average particle size of 1 μm to 75 μm, and a magnetic force sorting step of bringing the obtained powder into contact with a magnet to remove magnetic deposits. A method for producing a positive electrode active material for a lithium battery including the above has been proposed (Patent Document 1).

特許文献1では、原料である微粒子の焼結が促進されて、緻密な正極活物質材料となることで、正極活物質を正極に搭載する際の充填密度を向上させるものである。しかし、特許文献1では、原料の粉砕、造粒、焼成後の粉砕、分級と、製造工程が煩雑であるという問題があった。 In Patent Document 1, the sintering of fine particles as a raw material is promoted to become a dense positive electrode active material, thereby improving the packing density when the positive electrode active material is mounted on the positive electrode. However, Patent Document 1 has a problem that the manufacturing process is complicated, such as pulverization of raw materials, granulation, pulverization after firing, and classification.

一方で、高いサイクル特性と高い放電レート特性を得るには、正極活物質の充填密度を向上させるだけではなく、正極活物質の粒子割れを防止することも必要である。粉砕した原料を造粒することで正極活物質を製造する特許文献1では、正極活物質の粒子割れ防止に改善の余地があった。 On the other hand, in order to obtain high cycle characteristics and high discharge rate characteristics, it is necessary not only to improve the packing density of the positive electrode active material but also to prevent particle cracking of the positive electrode active material. In Patent Document 1 in which a positive electrode active material is produced by granulating a crushed raw material, there is room for improvement in preventing particle cracking of the positive electrode active material.

特開2011−082188号公報Japanese Unexamined Patent Publication No. 2011-082188

上記事情に鑑み、本発明は、充填密度を向上させることができるだけではなく、粒子割れが防止されたニッケル含有水酸化物を簡易に製造する方法を提供することを目的とする。充填密度が向上し、粒子割れも防止されたニッケル含有水酸化物を正極活物質の前駆体として使用することにより、充填密度が向上し、粒子割れも防止された正極活物質を得ることができる。 In view of the above circumstances, it is an object of the present invention to provide a method for easily producing a nickel-containing hydroxide in which particle cracking is prevented, as well as being able to improve the packing density. By using a nickel-containing hydroxide having improved packing density and prevented particle cracking as a precursor of the positive electrode active material, a positive electrode active material having improved packing density and prevented particle cracking can be obtained. ..

本発明では、晶析反応を行う反応槽から取り出したニッケル含有水酸化物を、製品として使用する第1粒子部と第1粒子部よりも平均粒子径の小さい第2粒子部に分級する。分級した第2粒子部については反応槽に戻して反応槽のニッケル含有水酸化物を含むスラリー濃度を所定の範囲に調整する。反応槽のニッケル含有水酸化物を含むスラリー濃度を所定の範囲に調整することで、充填密度が向上し、粒子割れも防止されたニッケル含有水酸化物を製造する。 In the present invention, the nickel-containing hydroxide taken out from the reaction vessel where the crystallization reaction is carried out is classified into a first particle portion used as a product and a second particle portion having an average particle diameter smaller than that of the first particle portion. The classified second particle portion is returned to the reaction tank and the concentration of the slurry containing nickel-containing hydroxide in the reaction tank is adjusted within a predetermined range. By adjusting the concentration of the slurry containing nickel-containing hydroxide in the reaction vessel within a predetermined range, nickel-containing hydroxide having improved packing density and prevention of particle cracking can be produced.

本発明の構成の要旨は、以下の通りである。
[1]ニッケルを含む金属含有水溶液と、錯化剤を含む水溶液と、アルカリ性水溶液とを、反応槽に連続的に供給して晶析反応させて、ニッケル含有水酸化物を得る反応工程と、
前記反応槽から前記ニッケル含有水酸化物を含むスラリーを連続的に抜き出すスラリー抜き出し工程と、
前記ニッケル含有水酸化物を含むスラリーを分級装置に連続的に供給して、第1粒子部と該第1粒子部よりも平均粒子径の小さい第2粒子部に分級する分級工程と、
前記第2粒子部を前記反応槽に連続的に戻す第2粒子部還流工程と、を含み、
前記反応槽の前記ニッケル含有水酸化物を含むスラリー濃度を、50g/L以上280g/L以下の範囲に調整する、ニッケル含有水酸化物の製造方法。
[2]前記分級工程における前記第1粒子部を構成するニッケル含有水酸化物の質量(固形分)と前記第2粒子部を構成するニッケル含有水酸化物の質量(固形分)の合計に対する前記第1粒子部を構成するニッケル含有水酸化物の質量(固形分)の割合Aが、0.10以上0.33以下である[1]に記載の製造方法。
[3]前記割合Aと、前記分級装置に供給される前記ニッケル含有水酸化物を含むスラリーの流量B(L/min)と、前記反応槽の容積C(m)が、下記式
0.70≦(A×B)/C≦3.50
の関係を満たす[2]に記載の製造方法。
[4]前記分級装置が、遠心力を利用した湿式分級装置である[1]乃至[3]のいずれか1つに記載の製造方法。
[5]前記ニッケル含有水酸化物が、Ni1−x−yCo(OH)2−α(0≦x≦0.45、0≦y≦0.45、0≦z≦3.00、−0.50≦α<2.00、Mは、Zr、Al、Ti、Mn、Ga、In及びWからなる群から選択された1種以上の添加金属元素を示す。)で表される化合物である[1]乃至[4]のいずれか1つに記載の製造方法。
[6]前記ニッケル含有水酸化物が、二次電池の正極活物質の前駆体である[1]乃至[5]のいずれか1つに記載の製造方法。
The gist of the structure of the present invention is as follows.
[1] A reaction step of continuously supplying a metal-containing aqueous solution containing nickel, an aqueous solution containing a complexing agent, and an alkaline aqueous solution to a reaction vessel for a crystallization reaction to obtain a nickel-containing hydroxide.
A slurry extraction step of continuously extracting a slurry containing the nickel-containing hydroxide from the reaction vessel, and a slurry extraction step.
A classification step of continuously supplying the slurry containing the nickel-containing hydroxide to the classification device and classifying the slurry into a first particle portion and a second particle portion having an average particle diameter smaller than that of the first particle portion.
Including a second particle part reflux step of continuously returning the second particle part to the reaction vessel.
A method for producing a nickel-containing hydroxide, wherein the concentration of the slurry containing the nickel-containing hydroxide in the reaction vessel is adjusted to a range of 50 g / L or more and 280 g / L or less.
[2] The above with respect to the total of the mass (solid content) of the nickel-containing hydroxide constituting the first particle portion and the mass (solid content) of the nickel-containing hydroxide constituting the second particle portion in the classification step. The production method according to [1], wherein the ratio A of the mass (solid content) of the nickel-containing hydroxide constituting the first particle portion is 0.10 or more and 0.33 or less.
[3] and the ratio A, the flow rate B of the slurry containing the nickel-containing hydroxide supplied to the classifier and (L / min), the volume C (m 3) of the reaction vessel, the following expressions 0. 70 ≦ (A × B) / C ≦ 3.50
The manufacturing method according to [2], which satisfies the relationship of.
[4] The manufacturing method according to any one of [1] to [3], wherein the classifying device is a wet classifying device using centrifugal force.
[5] The nickel-containing hydroxide, Ni 1-x-y Co x M y O z (OH) 2-α (0 ≦ x ≦ 0.45,0 ≦ y ≦ 0.45,0 ≦ z ≦ 3.00, −0.50 ≦ α <2.00, M indicates one or more additive metal elements selected from the group consisting of Zr, Al, Ti, Mn, Ga, In and W). The production method according to any one of [1] to [4], which is a represented compound.
[6] The production method according to any one of [1] to [5], wherein the nickel-containing hydroxide is a precursor of a positive electrode active material of a secondary battery.

上記[1]の態様では、ニッケル含有水酸化物を連続して製造する方法である。また、反応槽から取り出したニッケル含有水酸化物のうち、大粒径部である第1粒子部は製品として使用され、小粒径部である第2粒子部は製品としては利用されずに反応槽に戻されて、晶析反応に利用される。 The above aspect [1] is a method for continuously producing a nickel-containing hydroxide. Further, among the nickel-containing hydroxides taken out from the reaction tank, the first particle part having a large particle size is used as a product, and the second particle part having a small particle size is not used as a product and reacts. It is returned to the tank and used for the crystallization reaction.

上記[3]の態様におけるA×Bは第1粒子部の製造量の程度を示すので、(A×B)/Cは、反応槽の単位容積あたりに製造される第1粒子部の量を示す指標である。 Since A × B in the above aspect [3] indicates the degree of production of the first particle portion, (A × B) / C is the amount of the first particle portion produced per unit volume of the reaction vessel. It is an index to show.

本発明の態様によれば、ニッケル含有水酸化物を含むスラリーを第1粒子部と該第1粒子部よりも平均粒子径の小さい第2粒子部に分級し、第2粒子部を反応槽に戻しつつ反応槽のニッケル含有水酸化物を含むスラリー濃度を、50g/L以上280g/L以下に調整することにより、充填密度を向上させることができるだけではなく、粒子割れが防止されたニッケル含有水酸化物を製造することができる。また、本発明の態様によれば、第2粒子部を反応槽に戻しつつ反応槽のニッケル含有水酸化物を含むスラリー濃度を50g/L以上280g/L以下に調整すればよいので、製造工程が簡易である。 According to the aspect of the present invention, the slurry containing the nickel-containing hydroxide is classified into a first particle portion and a second particle portion having an average particle diameter smaller than that of the first particle portion, and the second particle portion is used as a reaction vessel. By adjusting the concentration of the slurry containing nickel-containing hydroxide in the reaction tank while returning it to 50 g / L or more and 280 g / L or less, not only the packing density can be improved, but also the nickel-containing water in which particle cracking is prevented is prevented. Oxides can be produced. Further, according to the aspect of the present invention, the slurry concentration containing nickel-containing hydroxide in the reaction tank may be adjusted to 50 g / L or more and 280 g / L or less while returning the second particle portion to the reaction tank. Is simple.

本発明の態様によれば、第1粒子部のニッケル含有水酸化物の質量と第2粒子部のニッケル含有水酸化物の質量の合計に対する第1粒子部のニッケル含有水酸化物の質量の割合Aが、0.10以上0.33以下であることにより、反応槽のニッケル含有水酸化物を含むスラリー濃度を50g/L以上280g/L以下に容易に調整できるので、充填密度が向上し、粒子割れも防止されたニッケル含有水酸化物を確実に製造することができる。 According to the aspect of the present invention, the ratio of the mass of the nickel-containing hydroxide in the first particle portion to the total mass of the nickel-containing hydroxide in the first particle portion and the mass of the nickel-containing hydroxide in the second particle portion. When A is 0.10 or more and 0.33 or less, the concentration of the slurry containing nickel-containing hydroxide in the reaction tank can be easily adjusted to 50 g / L or more and 280 g / L or less, so that the packing density is improved. It is possible to reliably produce a nickel-containing hydroxide in which particle cracking is also prevented.

本発明の態様によれば、前記割合Aと、分級装置に供給されるニッケル含有水酸化物を含むスラリーの流量B(L/min)と、反応槽の容積C(m)が、0.70≦(A×B)/C≦3.50の関係を満たすことにより、反応槽のニッケル含有水酸化物を含むスラリー濃度を50g/L以上280g/L以下に容易に調整できるので、充填密度が向上し、粒子割れも防止されたニッケル含有水酸化物を確実に製造することができる。 According to the aspect of the present invention, the ratio A, the flow rate B (L / min) of the slurry containing the nickel-containing hydroxide supplied to the classifier, and the volume C (m 3 ) of the reaction tank are 0. By satisfying the relationship of 70 ≦ (A × B) / C ≦ 3.50, the concentration of the slurry containing nickel-containing hydroxide in the reaction vessel can be easily adjusted to 50 g / L or more and 280 g / L or less, so that the packing density can be adjusted. It is possible to reliably produce a nickel-containing hydroxide in which the amount of oxides is improved and particle cracking is prevented.

本発明の態様によれば、分級装置が遠心力を利用した湿式分級装置であることにより、反応槽から取り出したニッケル含有水酸化物を含むスラリーを、ニッケル含有水酸化物の粒子形状が変形することを防止しつつ円滑に第1粒子部と第2粒子部に分級することができる。 According to the aspect of the present invention, since the classification device is a wet classifying device using centrifugal force, the particle shape of the nickel-containing hydroxide is deformed in the slurry containing the nickel-containing hydroxide taken out from the reaction tank. It is possible to smoothly classify into the first particle part and the second particle part while preventing this.

本発明の製造方法の概要を説明するフロー図である。It is a flow figure explaining the outline of the manufacturing method of this invention. 本発明の製造方法で使用する分級装置を例示した説明図である。It is explanatory drawing which illustrated the classification apparatus used in the manufacturing method of this invention. 実施例と比較例で得られたニッケル含有水酸化物の走査型顕微鏡(SEM)写真である。It is a scanning microscope (SEM) photograph of the nickel-containing hydroxide obtained in Example and Comparative Example.

以下に、本発明のニッケル含有水酸化物の製造方法を説明する。なお、図1は、本発明の製造方法の概要を説明するフロー図である。図1に示すように、本発明のニッケル含有水酸化物の製造方法は、ニッケルを含む金属含有水溶液と、錯化剤を含む水溶液と、アルカリ性水溶液とを、反応槽に連続的に供給して中和晶析反応させて、ニッケル含有水酸化物を得る反応工程と、反応槽からニッケル含有水酸化物を含むスラリーを連続的に抜き出すスラリー抜き出し工程と、前記ニッケル含有水酸化物を含むスラリーを分級装置に連続的に供給して、第1粒子部と該第1粒子部よりも平均粒子径の小さい第2粒子部に分級する分級工程と、分級工程で得られた第2粒子部を反応槽に連続的に戻す第2粒子部還流工程と、を含む。第1粒子部を構成するニッケル含有水酸化物は、本発明の製造方法の目的物であるニッケル含有水酸化物である。 The method for producing the nickel-containing hydroxide of the present invention will be described below. Note that FIG. 1 is a flow chart illustrating an outline of the manufacturing method of the present invention. As shown in FIG. 1, in the method for producing a nickel-containing hydroxide of the present invention, a metal-containing aqueous solution containing nickel, an aqueous solution containing a complexing agent, and an alkaline aqueous solution are continuously supplied to a reaction vessel. A reaction step of performing a neutralization crystallization reaction to obtain a nickel-containing hydroxide, a slurry extraction step of continuously extracting a slurry containing a nickel-containing hydroxide from a reaction vessel, and a slurry containing the nickel-containing hydroxide. A reaction between a classification step of continuously supplying to a classification device and classifying into a first particle portion and a second particle portion having an average particle diameter smaller than that of the first particle portion and a second particle portion obtained in the classification step. It includes a second particle part reflux step of continuously returning to the tank. The nickel-containing hydroxide constituting the first particle portion is a nickel-containing hydroxide which is the object of the production method of the present invention.

(反応工程)
ニッケル含有水酸化物を得る反応工程について説明する。ニッケル含有水酸化物を得る反応工程は、図1に示すように、まず、共沈法により、ニッケルを含む金属含有水溶液、例えば、ニッケル塩(例えば、硫酸塩)、必要に応じてコバルト塩(例えば、硫酸塩)及び添加金属(M)の塩(例えば、硫酸塩)を含む水溶液と、錯化剤を含む水溶液と、pH調整剤であるアルカリ性水溶液とを、適宜、反応槽に添加して、反応槽内にて中和晶析反応をさせることで、ニッケル含有水酸化物の粒子を成長させて、ニッケル含有水酸化物を調製する。ニッケル含有水酸化物の粒子形状は、例えば、略球状を挙げることができる。反応槽内では、ニッケル含有水酸化物は水を分散媒としたスラリー状となっている。
(Reaction process)
The reaction process for obtaining a nickel-containing hydroxide will be described. As shown in FIG. 1, in the reaction step for obtaining a nickel-containing hydroxide, first, a metal-containing aqueous solution containing nickel, for example, a nickel salt (for example, a sulfate) and, if necessary, a cobalt salt (cobalt salt) are first subjected to a co-precipitation method. For example, an aqueous solution containing a salt (sulfate) and a salt of the added metal (M) (for example, a sulfate), an aqueous solution containing a complexing agent, and an alkaline aqueous solution as a pH adjuster are appropriately added to the reaction vessel. By conducting a neutralization crystallization reaction in the reaction vessel, particles of the nickel-containing hydroxide are grown to prepare a nickel-containing hydroxide. The particle shape of the nickel-containing hydroxide may be, for example, substantially spherical. In the reaction vessel, the nickel-containing hydroxide is in the form of a slurry using water as a dispersion medium.

錯化剤としては、水溶液中で、ニッケルを含む金属元素のイオン、例えば、ニッケルイオン、必要に応じてコバルトイオン及び添加金属(M)のイオンと錯体を形成可能なものであれば、特に限定されず、例えば、アンモニウムイオン供給体が挙げられる。アンモニウムイオン供給体としては、例えば、アンモニア水、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、弗化アンモニウム等が挙げられる。また、中和晶析反応に際しては、反応槽内の水溶液のpH値を調整するため、アルカリ金属水酸化物(例えば、水酸化ナトリウム、水酸化カリウム)等のアルカリ性水溶液をpH調整剤として、適宜、反応槽内へ添加する。 The complexing agent is particularly limited as long as it can form a complex with an ion of a metal element containing nickel, for example, a nickel ion, a cobalt ion if necessary, and an ion of an additive metal (M) in an aqueous solution. However, for example, an ammonium ion feeder can be mentioned. Examples of the ammonium ion feeder include aqueous ammonia, ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride and the like. Further, in the neutralization crystallization reaction, in order to adjust the pH value of the aqueous solution in the reaction vessel, an alkaline aqueous solution such as an alkali metal hydroxide (for example, sodium hydroxide or potassium hydroxide) is appropriately used as a pH adjuster. , Add to the reaction vessel.

ニッケルを含む金属含有水溶液と錯化剤を含む水溶液とアルカリ性水溶液とを反応槽に、適宜、連続して供給し、反応槽内の物質を、適宜撹拌すると、ニッケルを含む金属含有水溶液の金属が中和晶析反応により共沈して、ニッケル含有水酸化物が生成する。中和晶析反応に際しては、反応槽の温度を、例えば、10℃以上90℃以下、好ましくは20℃以上80℃以下の範囲内で制御する。錯化剤を含む水溶液とアルカリ性水溶液を反応槽に供給して中和晶析反応をさせる際に、反応槽内の混合液の錯化剤濃度を、例えば、1.0g/L以上8.0g/L以下、好ましくは、2.0g/L以上7.0g/L以下、特に好ましくは3.0g/L以上6.0g/L以下に制御し、混合液中の液温40℃基準のpHを、例えば、9.0以上13.0以下、好ましくは10.0以上12.0以下に制御する。 When a metal-containing aqueous solution containing nickel, an aqueous solution containing a complexing agent, and an alkaline aqueous solution are appropriately and continuously supplied to the reaction vessel, and the substances in the reaction vessel are appropriately stirred, the metal in the metal-containing aqueous solution containing nickel is formed. A nickel-containing hydroxide is produced by co-precipitation by the neutralization crystallization reaction. In the neutralization crystallization reaction, the temperature of the reaction vessel is controlled, for example, in the range of 10 ° C. or higher and 90 ° C. or lower, preferably 20 ° C. or higher and 80 ° C. or lower. When an aqueous solution containing a complexing agent and an alkaline aqueous solution are supplied to a reaction vessel to cause a neutralization crystallization reaction, the concentration of the complexing agent in the mixed solution in the reaction vessel is, for example, 1.0 g / L or more and 8.0 g. / L or less, preferably 2.0 g / L or more and 7.0 g / L or less, particularly preferably 3.0 g / L or more and 6.0 g / L or less, and the pH of the mixed solution based on the liquid temperature of 40 ° C. Is controlled, for example, 9.0 or more and 13.0 or less, preferably 10.0 or more and 12.0 or less.

また、反応槽に設置された撹拌装置の撹拌条件と反応槽における平均滞留時間は、所定範囲に適宜調整すればよい。撹拌装置の撹拌条件と反応槽における滞留時間を調整することにより、ニッケル含有水酸化物の比表面積や粒子形状などの物性を制御することができる。例えば、平均滞留時間は3時間以上12時間以下が好ましく、攪拌速度は、反応槽の容積にもよるが300rpm以上2000rpm以下とすることが好ましい。 Further, the stirring conditions of the stirring device installed in the reaction tank and the average residence time in the reaction tank may be appropriately adjusted within a predetermined range. By adjusting the stirring conditions of the stirring device and the residence time in the reaction vessel, it is possible to control physical properties such as the specific surface area and particle shape of the nickel-containing hydroxide. For example, the average residence time is preferably 3 hours or more and 12 hours or less, and the stirring speed is preferably 300 rpm or more and 2000 rpm or less, although it depends on the volume of the reaction vessel.

反応槽としては、例えば、オーバーフローさせる連続式が挙げられる。また、反応槽の容積としては、特に限定されないが、例えば、0.1m以上30m以下が挙げられる。 Examples of the reaction tank include a continuous equation for overflowing. The volume of the reaction vessel is not particularly limited, and examples thereof include 0.1 m 3 and more and 30 m 3 or less.

ニッケル含有水酸化物の組成としては、例えば、Ni1−x−yCo(OH)2−α(0≦x≦0.45、0≦y≦0.45、0≦z≦3.00、−0.50≦α<2.00、Mは添加金属を示す。)で表される化合物が挙げられる。任意成分である添加金属(M)としては、ジルコニウム(Zr)、アルミニウム(Al)、チタン(Ti)、マンガン(Mn)、ガリウム(Ga)、インジウム(In)及びタングステン(W)からなる群から選択された1種以上の金属元素が挙げられる。なお、ニッケル(Ni)は必須成分であるが、コバルト(Co)も任意成分である。 The composition of nickel-containing hydroxide, for example, Ni 1-x-y Co x M y O z (OH) 2-α (0 ≦ x ≦ 0.45,0 ≦ y ≦ 0.45,0 ≦ z ≤3.00, -0.50≤α <2.00, M indicates an additive metal). The additive metal (M) as an optional component consists of a group consisting of zirconium (Zr), aluminum (Al), titanium (Ti), manganese (Mn), gallium (Ga), indium (In) and tungsten (W). Included is one or more selected metal elements. Nickel (Ni) is an essential component, but cobalt (Co) is also an optional component.

(スラリー抜き出し工程)
ニッケル含有水酸化物を含むスラリーを反応槽から抜き出す。反応槽から抜き出されたニッケル含有水酸化物を含むスラリーは、貯留槽に貯められ、分級装置に供給される。ニッケル含有水酸化物を含むスラリーは、流量Bにて分級装置に供給される。
(Slurry extraction process)
The slurry containing the nickel-containing hydroxide is withdrawn from the reaction vessel. The slurry containing the nickel-containing hydroxide extracted from the reaction tank is stored in the storage tank and supplied to the classifier. The slurry containing the nickel-containing hydroxide is supplied to the classifier at a flow rate B.

(分級工程)
図1に示すように、ニッケル含有水酸化物を含むスラリーは、連続的に反応槽から抜き出されてスラリー貯留槽に貯められ、分級装置によって大粒径部である第1粒子部と第1粒子部よりも平均粒子径の小さい小粒径部である第2粒子部に分級される。第1粒子部を構成するニッケル含有水酸化物は、所定の粒径に達したニッケル含有水酸化物であり、本発明の製造方法の目的物であるニッケル含有水酸化物である。第1粒子部は、最終的には、製品として、分級装置から本発明の製造方法の系外へ搬出される。
(Classification process)
As shown in FIG. 1, the slurry containing the nickel-containing hydroxide is continuously extracted from the reaction tank and stored in the slurry storage tank, and the first particle portion and the first particle portion, which are large particle size portions, are stored by the classification device. It is classified into a second particle part, which is a small particle size part having an average particle size smaller than that of the particle part. The nickel-containing hydroxide constituting the first particle portion is a nickel-containing hydroxide that has reached a predetermined particle size, and is a nickel-containing hydroxide that is the object of the production method of the present invention. Finally, the first particle portion is carried out as a product from the classification device to the outside of the system of the manufacturing method of the present invention.

一方で、第2粒子部を構成するニッケル含有水酸化物は、所定の粒径に達していない、本発明の製造方法の目的物とはならないニッケル含有水酸化物である。第2粒子部は、後述するように、分級装置から製品として本発明の製造方法の系外へは搬出されずに、再度、反応槽に連続的に戻される。 On the other hand, the nickel-containing hydroxide constituting the second particle portion is a nickel-containing hydroxide that has not reached a predetermined particle size and is not the object of the production method of the present invention. As will be described later, the second particle portion is not carried out of the system of the manufacturing method of the present invention as a product from the classification device, but is continuously returned to the reaction vessel again.

分級装置としては、例えば、遠心力を利用した湿式分級装置が挙げられる。 Examples of the classifying device include a wet classifying device using centrifugal force.

湿式分級装置としては、図2に示すように、液体サイクロン式分級装置を挙げることができる。液体サイクロン式分級装置へニッケル含有水酸化物を含むスラリーを供給(圧入)すると、分級装置に生じている遠心力の作用により、ニッケル含有水酸化物の粒子のうち、比重、粒子径の大きい粒子ほど、液体サイクロン式分級装置の周壁部方向へ移動し、比重、粒子径の小さい粒子ほど、液体サイクロン式分級装置の中央部方向へ移動する。液体サイクロン式分級装置の周壁部には、重力方向下方へ向かうに従って幅狭となるテーパが形成されている。液体サイクロン式分級装置の周壁部では、このペーパに沿って重力方向下方への流れが発生している。一方で、液体サイクロン式分級装置の中央部には、重力方向上方への流れが発生している。上記から、比重、粒子径の大きいニッケル含有水酸化物の粒子(すなわち、第1粒子部)は、サイクロン式分級装置の周壁部に沿って重力方向下方に流れていき、重力方向下方に形成された下側排出口から排出される。一方で、比重、粒子径の小さいニッケル含有水酸化物の粒子(すなわち、第2粒子部)は、サイクロン式分級装置の中央部を重力方向上方に流れていき、重力方向上方に形成された上側排出口から排出される。 As a wet classifying device, as shown in FIG. 2, a liquid cyclone type classifying device can be mentioned. When a slurry containing nickel-containing hydroxide is supplied (press-fitted) to a liquid cyclone type classifier, particles having a large specific gravity and particle diameter among the nickel-containing hydroxide particles due to the action of centrifugal force generated in the classifier. The particles move toward the peripheral wall of the liquid cyclone type classifier, and the smaller the specific gravity and the particle size, the more the particles move toward the center of the liquid cyclone type classifier. The peripheral wall portion of the liquid cyclone type classifier is formed with a taper that becomes narrower toward the lower side in the direction of gravity. In the peripheral wall portion of the liquid cyclone type classifier, a flow downward in the direction of gravity is generated along this paper. On the other hand, a flow upward in the direction of gravity is generated in the central portion of the liquid cyclone type classifier. From the above, nickel-containing hydroxide particles having a large specific gravity and particle size (that is, the first particle portion) flow downward in the direction of gravity along the peripheral wall portion of the cyclone type classifier and are formed downward in the direction of gravity. It is discharged from the lower discharge port. On the other hand, the nickel-containing hydroxide particles having a small specific gravity and particle diameter (that is, the second particle portion) flow upward in the gravity direction through the central portion of the cyclone type classifier, and are formed on the upper side in the gravity direction. It is discharged from the discharge port.

液体サイクロン式分級装置は、反応槽から抜き出されたニッケル含有水酸化物を含むスラリーを、遠心力の作用により、連続的に、第1粒子部を含むスラリーと第2粒子部を含むスラリーに分級する。 The liquid cyclone type classifier continuously converts the nickel-containing hydroxide-containing slurry extracted from the reaction vessel into a slurry containing the first particle part and a slurry containing the second particle part by the action of centrifugal force. Classify.

(第2粒子部還流工程)
図1に示すように、分級装置で分級された第2粒子部を含むスラリーは、還流装置によって、連続的に反応槽に戻される。反応槽に戻された第2粒子部は、再び、反応槽で中和晶析反応により粒子成長した後、反応槽から分級装置へ供給される。分級装置へ供給されたニッケル含有水酸化物の粒子が所定の粒径に達すれば、本発明の製造方法の目的物であるニッケル含有水酸化物(すなわち、第1粒子部)として、分級装置から本発明の製造方法の系外へ搬出される。上記操作を繰り返すことにより、反応槽で生成し、成長した第1粒子部を選択的に反応槽外に搬出しつつ、第2粒子部は目的とする粒径に達して第1粒子部となるまで反応槽にて粒子成長を繰り返す。
(Second particle part reflux step)
As shown in FIG. 1, the slurry containing the second particle portion classified by the classification device is continuously returned to the reaction tank by the reflux device. The second particle portion returned to the reaction tank is supplied from the reaction tank to the classifier after the particles have grown again by the neutralization crystallization reaction in the reaction tank. When the nickel-containing hydroxide particles supplied to the classifier reach a predetermined particle size, the nickel-containing hydroxide (that is, the first particle portion), which is the object of the production method of the present invention, is obtained from the classifier. It is carried out of the system of the manufacturing method of the present invention. By repeating the above operation, the first particle part generated and grown in the reaction tank is selectively carried out of the reaction tank, and the second particle part reaches the target particle size and becomes the first particle part. Repeat particle growth in the reaction vessel until.

本発明の製造方法では、第2粒子部還流工程にて第2粒子部が戻された反応槽では、ニッケル含有水酸化物を含むスラリー濃度が、50g/L以上280g/L以下の範囲に調整されている。なお、「反応槽におけるニッケル含有水酸化物を含むスラリー濃度」とは、第2粒子部還流工程にて反応槽に戻された第2粒子部のニッケル含有水酸化物と反応槽内にて新たに生成したニッケル含有水酸化物の粒子とを合計した濃度を意味する。反応槽におけるニッケル含有水酸化物を含むスラリー濃度が50g/L以上280g/L以下の範囲に調整されていることにより、充填密度を向上させることができるだけではなく、粒子割れが防止されたニッケル含有水酸化物を製造することができる。すなわち、本発明の製造方法で得られる第1粒子部を構成するニッケル含有水酸化物は、粒子割れが防止されており、高い充填密度を得ることができる。また、本発明の製造方法では、第2粒子部を反応槽に戻しつつ反応槽のニッケル含有水酸化物を含むスラリー濃度を50g/L以上280g/L以下に調整すればよいので、追加の設備を設ける必要がなく、製造工程が簡易である。 In the production method of the present invention, the slurry concentration containing nickel-containing hydroxide is adjusted to a range of 50 g / L or more and 280 g / L or less in the reaction vessel in which the second particle part is returned in the second particle part reflux step. Has been done. The "slurry concentration containing nickel-containing hydroxide in the reaction vessel" is newly defined in the reaction vessel with the nickel-containing hydroxide in the second particle portion returned to the reaction vessel in the second particle portion refluxing step. It means the total concentration of the nickel-containing hydroxide particles produced in. By adjusting the concentration of the slurry containing nickel-containing hydroxide in the reaction vessel to the range of 50 g / L or more and 280 g / L or less, not only the packing density can be improved, but also the nickel content in which particle cracking is prevented is prevented. Hydroxides can be produced. That is, the nickel-containing hydroxide constituting the first particle portion obtained by the production method of the present invention is prevented from cracking particles, and a high packing density can be obtained. Further, in the production method of the present invention, the concentration of the slurry containing nickel-containing hydroxide in the reaction vessel may be adjusted to 50 g / L or more and 280 g / L or less while returning the second particle portion to the reaction vessel. The manufacturing process is simple because there is no need to provide.

反応槽におけるニッケル含有水酸化物を含むスラリー濃度は50g/L以上280g/L以下であれば、特に限定されないが、その下限値は、充填密度をより確実に向上させる点から、70g/Lが好ましく、90g/Lが特に好ましい。一方で、反応槽におけるニッケル含有水酸化物を含むスラリー濃度の上限値は、粒子割れをより確実に防止する点から、250g/Lが好ましく、220g/Lが特に好ましい。なお、上記した上限値、下限値は、任意で組み合わせることができる。 The concentration of the slurry containing nickel-containing hydroxide in the reaction vessel is not particularly limited as long as it is 50 g / L or more and 280 g / L or less, but the lower limit is 70 g / L from the viewpoint of more reliably improving the packing density. It is preferable, and 90 g / L is particularly preferable. On the other hand, the upper limit of the concentration of the slurry containing nickel-containing hydroxide in the reaction vessel is preferably 250 g / L and particularly preferably 220 g / L from the viewpoint of more reliably preventing particle cracking. The above upper limit value and lower limit value can be arbitrarily combined.

上記から、本発明の製造方法では、必要に応じて、第2粒子部のスラリー濃度を調整する濃度調整工程をさらに含んでもよい。すなわち、必要に応じて、図1に示すように、第2粒子部還流工程が、第2粒子部を反応槽に連続的に戻す前に第2粒子部のスラリーを濃縮する濃縮工程をさらに含んでもよい。第2粒子部のスラリーを濃縮する濃縮工程をさらに含むことにより、第2粒子部を構成するニッケル含有水酸化物の含有量が低下しても、すなわち、第2粒子部のスラリー濃度が低くなっても、濃縮工程によって第2粒子部のスラリー濃度を所望の値まで上昇させることができるので、反応槽におけるニッケル含有水酸化物を含むスラリー濃度を50g/L以上280g/L以下に確実に調整することができる。また、必要に応じて、図示しないが、第2粒子部のスラリーを濃縮する濃縮工程に代えて、第2粒子部還流工程が、第2粒子部を反応槽に連続的に戻す前に第2粒子部のスラリーを希釈する希釈工程をさらに含んでもよい。第2粒子部のスラリーを希釈する希釈工程をさらに含むことにより、第2粒子部を構成するニッケル含有水酸化物の含有量が過剰になっても、すなわち、第2粒子部のスラリー濃度が高くなっても、希釈工程によって第2粒子部のスラリー濃度を所望の値まで低下させることができるので、反応槽におけるニッケル含有水酸化物を含むスラリー濃度を50g/L以上280g/L以下に確実に調整することができる。 From the above, the production method of the present invention may further include a concentration adjusting step of adjusting the slurry concentration of the second particle portion, if necessary. That is, if necessary, as shown in FIG. 1, the second particle part reflux step further includes a concentration step of concentrating the slurry of the second particle part before continuously returning the second particle part to the reaction vessel. It may be. By further including the concentration step of concentrating the slurry of the second particle part, even if the content of the nickel-containing hydroxide constituting the second particle part is reduced, that is, the slurry concentration of the second particle part is lowered. However, since the slurry concentration of the second particle portion can be increased to a desired value by the concentration step, the slurry concentration containing nickel-containing hydroxide in the reaction vessel is surely adjusted to 50 g / L or more and 280 g / L or less. can do. Further, if necessary, although not shown, instead of the concentration step of concentrating the slurry of the second particle part, the second particle part recirculation step is performed before the second particle part is continuously returned to the reaction vessel. A dilution step of diluting the slurry of particles may be further included. By further including a dilution step of diluting the slurry of the second particle part, even if the content of the nickel-containing hydroxide constituting the second particle part becomes excessive, that is, the slurry concentration of the second particle part is high. Even so, the slurry concentration of the second particle portion can be reduced to a desired value by the dilution step, so that the slurry concentration containing the nickel-containing hydroxide in the reaction vessel is surely reduced to 50 g / L or more and 280 g / L or less. Can be adjusted.

なお、上記濃縮工程は、第2粒子部還流工程にて、第2粒子部を反応槽へ連続的に戻す前、すなわち、第2粒子部還流工程に含めるだけではなく、必要に応じて、反応槽又は貯留槽で上記濃縮工程をさらに含んでもよい。また、上記濃縮工程は、第2粒子部還流工程に含めることに代えて、反応槽又は貯留槽に含めてもよい。 The concentration step is not only included in the second particle part refluxing step before the second particle part is continuously returned to the reaction vessel, that is, in the second particle part refluxing step, but also if necessary. The concentration step may be further included in the tank or storage tank. Further, the concentration step may be included in the reaction tank or the storage tank instead of being included in the second particle part reflux step.

また、本発明の製造方法では、分級工程にて、第1粒子部を含むスラリーと第2粒子部を含むスラリーに分級するにあたり、第1粒子部を構成するニッケル含有水酸化物の質量(固形分)と第2粒子部を構成するニッケル含有水酸化物の質量(固形分)の合計に対する第1粒子部を構成するニッケル含有水酸化物の質量(固形分)の割合A(以下、単に、「割合A」ということがある。)は、特に限定されないが、所定の範囲に調整することが好ましい。上記割合Aは、本発明の製造方法における乾燥粒子で換算した第1粒子部の収率を意味する。上記割合Aの下限値は、高い充填密度を損なうことなく、粒子割れを確実に防止する点から、0.10が好ましく、粒子割れをさらに確実に防止する点から、0.11がより好ましく、0.12が特に好ましい。一方で、上記割合Aの上限値は、粒子割れをさらに確実に防止しつつ、充填密度を確実に向上させる点から、0.33が好ましく、充填密度をさらに確実に向上させる点から、0.30がより好ましく、0.28が特に好ましい。なお、上記した上限値、下限値は、任意で組み合わせることができる。 Further, in the production method of the present invention, in the classification step, the mass (solid) of the nickel-containing hydroxide constituting the first particle part is classified into the slurry containing the first particle part and the slurry containing the second particle part. Minutes) and the ratio of the mass (solid content) of the nickel-containing hydroxide constituting the first particle portion to the total mass (solid content) of the nickel-containing hydroxide constituting the second particle portion A (hereinafter, simply, The “ratio A”) is not particularly limited, but is preferably adjusted to a predetermined range. The ratio A means the yield of the first particle portion converted into dry particles in the production method of the present invention. The lower limit of the ratio A is preferably 0.10 from the viewpoint of reliably preventing particle cracking without impairing the high packing density, and more preferably 0.11 from the viewpoint of further reliably preventing particle cracking. 0.12 is particularly preferable. On the other hand, the upper limit of the ratio A is preferably 0.33 from the viewpoint of reliably preventing particle cracking and reliably improving the packing density, and from the viewpoint of further reliably improving the filling density, 0. 30 is more preferable, and 0.28 is particularly preferable. The above upper limit value and lower limit value can be arbitrarily combined.

上記割合Aを0.10以上0.33以下の範囲に制御することにより、第1粒子部を構成するニッケル含有水酸化物の質量(固形分)と第2粒子部を構成するニッケル含有水酸化物の質量(固形分)の合計に対する第2粒子部を構成するニッケル含有水酸化物の質量(固形分)の割合が0.67以上0.90以下の範囲に制御されることとなる。反応槽に戻される第2粒子部の量が上記割合の範囲に制御されることで、反応槽におけるニッケル含有水酸化物を含むスラリー濃度の50g/L以上280g/L以下への調整が容易化できる。 By controlling the ratio A to a range of 0.10 or more and 0.33 or less, the mass (solid content) of the nickel-containing hydroxide constituting the first particle portion and the nickel-containing hydroxide constituting the second particle portion The ratio of the mass (solid content) of the nickel-containing hydroxide constituting the second particle portion to the total mass (solid content) of the substance is controlled in the range of 0.67 or more and 0.90 or less. By controlling the amount of the second particle portion returned to the reaction tank within the above ratio range, it becomes easy to adjust the concentration of the slurry containing nickel-containing hydroxide in the reaction tank to 50 g / L or more and 280 g / L or less. can.

また、本発明の製造方法では、上記割合Aと、分級装置に供給されるニッケル含有水酸化物を含むスラリーの流量B(単位:L/min)(以下、単に、「流量B」ということがある。)と、反応槽の容積C(単位:m)(以下、単に、「容積C」ということがある。)の関係は、特に限定されないが、(割合A×流量B)/容積Cの値を所定の範囲に調整することが好ましい。上記割合A×上記流量Bは第1粒子部の製造量の程度を示すので、(割合A×流量B)/容積Cは、反応槽の単位容積あたりの第1粒子部の生産量を示す指標である。すなわち、(割合A×流量B)/容積Cは、反応槽の単位容積あたりの、製品である第1粒子部が反応槽外に搬出される程度を示す指標である。 Further, in the production method of the present invention, the above ratio A and the flow rate B (unit: L / min) of the slurry containing the nickel-containing hydroxide supplied to the classifier (hereinafter, simply referred to as “flow rate B”). The relationship between the reaction vessel volume C (unit: m 3 ) (hereinafter, may be simply referred to as “volume C”) is not particularly limited, but (ratio A × flow rate B) / volume C. It is preferable to adjust the value of to a predetermined range. Since the ratio A × the flow rate B indicates the degree of production of the first particle part, (ratio A × flow rate B) / volume C is an index indicating the production amount of the first particle part per unit volume of the reaction vessel. Is. That is, (ratio A × flow rate B) / volume C is an index indicating the degree to which the first particle portion of the product is carried out of the reaction tank per unit volume of the reaction tank.

(割合A×流量B)/容積Cの値の下限値は、高い充填密度を損なうことなく、粒子割れを確実に防止する点から、0.70が好ましく、粒子割れをさらに確実に防止する点から、0.85がより好ましく、1.00が特に好ましい。一方で、(割合A×流量B)/容積Cの値の上限値は、粒子割れをさらに確実に防止しつつ、充填密度を確実に向上させる点から、3.50が好ましく、充填密度をさらに確実に向上させる点から、3.00がより好ましく、2.50が特に好ましい。すなわち、本発明の製造方法では、0.70≦(割合A×流量B)/容積C≦3.50の関係を満たすことが好ましい。なお、上記した上限値、下限値は、任意で組み合わせることができる。 The lower limit of the value of (ratio A × flow rate B) / volume C is preferably 0.70 from the viewpoint of reliably preventing particle cracking without impairing the high packing density, and is a point of further reliably preventing particle cracking. Therefore, 0.85 is more preferable, and 1.00 is particularly preferable. On the other hand, the upper limit of the value of (ratio A × flow rate B) / volume C is preferably 3.50 from the viewpoint of reliably improving the packing density while further reliably preventing particle cracking, and further increasing the filling density. 3.00 is more preferable, and 2.50 is particularly preferable from the viewpoint of surely improving. That is, in the production method of the present invention, it is preferable to satisfy the relationship of 0.70 ≦ (ratio A × flow rate B) / volume C ≦ 3.50. The above upper limit value and lower limit value can be arbitrarily combined.

反応槽の単位容積あたりに製造される第1粒子部の量を調整する、すなわち、0.70≦(割合A×流量B)/容積C≦3.50の関係を満たすように調整することで、反応槽のニッケル含有水酸化物を含むスラリー濃度の50g/L以上280g/L以下への調整が容易化できる。 By adjusting the amount of the first particle part produced per unit volume of the reaction vessel, that is, by adjusting so as to satisfy the relationship of 0.70 ≦ (ratio A × flow rate B) / volume C ≦ 3.50. , The concentration of the slurry containing nickel-containing hydroxide in the reaction vessel can be easily adjusted to 50 g / L or more and 280 g / L or less.

本発明の製造方法で生産されるニッケル含有水酸化物は、粒子割れが防止されており、さらに高いバルク密度を得ることができる。本発明の製造方法で得られるニッケル含有水酸化物は、例えば、1.40g/ml以上のバルク密度を得ることができる。また、本発明の製造方法で得られるニッケル含有水酸化物は、走査型電子顕微鏡(SEM)を用いて2000倍で任意の10視野を観察した場合、10視野中のニッケル含有水酸化物から確認できる粒子割れの最大の幅が200nm以下に低減されている。 The nickel-containing hydroxide produced by the production method of the present invention is prevented from cracking particles, and a higher bulk density can be obtained. The nickel-containing hydroxide obtained by the production method of the present invention can obtain, for example, a bulk density of 1.40 g / ml or more. Further, the nickel-containing hydroxide obtained by the production method of the present invention can be confirmed from the nickel-containing hydroxide in 10 fields of view when any 10 fields of view are observed at 2000 times using a scanning electron microscope (SEM). The maximum width of the cracks that can be formed is reduced to 200 nm or less.

第1粒子部を構成するニッケル含有水酸化物の累積体積百分率が50体積%の粒子径(以下、単に「D50」ということがある。)は、製品として使用されるニッケル含有水酸化物の使用条件、ニッケル含有水酸化物の組成等により、適宜、選択可能であり、例えば、3μm以上20μm以下が好ましい。前記第1粒子部のD50の下限値は、5μmがより好ましく、7μmが特に好ましい。前記第1粒子部のD50の上限値は、19μmがより好ましく、18μmが特に好ましい。また、第2粒子部を構成するニッケル含有水酸化物のD50は、ニッケル含有水酸化物の製造条件等により、適宜、選択可能であり、例えば、1μm以上15μm以下が挙げられる。 A particle size having a cumulative volume percentage of 50% by volume of the nickel-containing hydroxide constituting the first particle portion (hereinafter, may be simply referred to as “D50”) is the use of the nickel-containing hydroxide used as a product. It can be appropriately selected depending on the conditions, the composition of the nickel-containing hydroxide, and the like, and is preferably 3 μm or more and 20 μm or less, for example. The lower limit of D50 of the first particle portion is more preferably 5 μm, and particularly preferably 7 μm. The upper limit of D50 of the first particle portion is more preferably 19 μm, and particularly preferably 18 μm. Further, the D50 of the nickel-containing hydroxide constituting the second particle portion can be appropriately selected depending on the production conditions of the nickel-containing hydroxide and the like, and examples thereof include 1 μm and 15 μm or less.

本発明の製造方法で生産されるニッケル含有水酸化物は、リチウムイオン二次電池等の非水電解質二次電池の正極活物質の前駆体として使用することができる。例えば、第1粒子部を構成するニッケル含有水酸化物のスラリーをろ過後、アルカリ水溶液で洗浄、続いて水洗することにより、第1粒子部に含まれる不純物を除去し、その後、第1粒子部を構成するニッケル含有水酸化物を加熱処理して乾燥させることで、正極活物質の前駆体として使用することができるニッケル含有水酸化物を得ることができる。 The nickel-containing hydroxide produced by the production method of the present invention can be used as a precursor of a positive electrode active material of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. For example, the nickel-containing hydroxide slurry constituting the first particle portion is filtered, washed with an alkaline aqueous solution, and then washed with water to remove impurities contained in the first particle portion, and then the first particle portion. By heat-treating and drying the nickel-containing hydroxide constituting the above, a nickel-containing hydroxide that can be used as a precursor of the positive electrode active material can be obtained.

次に、本発明の製造方法で得られたニッケル含有水酸化物を前駆体としたリチウムイオン二次電池の正極活物質の製造方法について説明する。例えば、まず、ニッケル含有水酸化物にリチウム化合物を添加してニッケル含有水酸化物とリチウム化合物の混合物を調製する。リチウム化合物としては、リチウムを有する化合物あれば、特に限定されず、例えば、炭酸リチウム、水酸化リチウム等を挙げることができる。 Next, a method for producing a positive electrode active material for a lithium ion secondary battery using the nickel-containing hydroxide obtained by the production method of the present invention as a precursor will be described. For example, first, a lithium compound is added to a nickel-containing hydroxide to prepare a mixture of the nickel-containing hydroxide and the lithium compound. The lithium compound is not particularly limited as long as it is a compound having lithium, and examples thereof include lithium carbonate and lithium hydroxide.

次に、上記のようにして得られた混合物を焼成することで、正極活物質を製造することができる。焼成条件としては、例えば、焼成温度700℃以上1000℃以下、昇温速度50℃/h以上300℃/h以下、焼成時間5時間以上20時間以下が挙げられる。焼成の雰囲気については、特に限定されないが、例えば、大気、酸素などが挙げられる。また、焼成に用いる焼成炉としては、特に限定されないが、例えば、静置式のボックス炉やローラーハース式連続炉などが挙げられる。 Next, the positive electrode active material can be produced by calcining the mixture obtained as described above. Examples of the firing conditions include a firing temperature of 700 ° C. or higher and 1000 ° C. or lower, a heating rate of 50 ° C./h or higher and 300 ° C./h or lower, and a firing time of 5 hours or more and 20 hours or less. The atmosphere of firing is not particularly limited, and examples thereof include the atmosphere and oxygen. The firing furnace used for firing is not particularly limited, and examples thereof include a stationary box furnace and a roller Haworth continuous furnace.

次に、本発明のニッケル含有水酸化物の製造方法の実施例を説明するが、本発明はその趣旨を超えない限り、これらの例に限定されるものではない。 Next, examples of the method for producing a nickel-containing hydroxide of the present invention will be described, but the present invention is not limited to these examples as long as the gist of the present invention is not exceeded.

実施例1のニッケル含有水酸化物の製造方法
硫酸ニッケルと硫酸コバルトとを所定割合(ニッケルのモル数:コバルトのモル数=93:7)にて溶解した水溶液と、硫酸アンモニウム水溶液(アンモニウムイオン供給体)と、水酸化ナトリウム水溶液を反応槽(容積Cは0.5m)に滴下して、反応槽内の混合液のpHを液温40℃基準で11.23、アンモニア濃度を5g/Lに維持しながら、攪拌機により連続的に攪拌した。また、反応槽内の混合液の液温は50.0℃に維持した。中和晶析反応により生成したニッケル含有水酸化物の粒子は、反応槽のオーバーフロー管からオーバーフローさせて、ニッケル含有水酸化物のスラリーとして連続的に抜き出した。
Method 1 for Producing Nickel-Containing Hydroxide of Example 1 An aqueous solution prepared by dissolving nickel sulfate and cobalt sulfate at a predetermined ratio (number of moles of nickel: number of moles of cobalt = 93: 7) and an aqueous solution of ammonium sulfate (ammonium ion feeder). ) And an aqueous sodium hydroxide solution are added dropwise to the reaction vessel (volume C is 0.5 m 3 ), and the pH of the mixed solution in the reaction vessel is 11.23 based on the liquid temperature of 40 ° C., and the ammonia concentration is 5 g / L. While maintaining, the mixture was continuously stirred with a stirrer. The temperature of the mixed solution in the reaction vessel was maintained at 50.0 ° C. The nickel-containing hydroxide particles produced by the neutralization crystallization reaction were overflowed from the overflow pipe of the reaction tank and continuously extracted as a nickel-containing hydroxide slurry.

抜き出したニッケル含有水酸化物のスラリーを、液体サイクロン式分級装置(村田工業株式会社製、型式「T10-1」)へスラリーの流量4.0L/min(流量B)にて圧入し、第1粒子部のニッケル含有水酸化物の質量と第2粒子部のニッケル含有水酸化物の質量の合計に対する第1粒子部のニッケル含有水酸化物の質量の割合0.26(割合A)にて、D50が12.7μmである第1粒子部とD50が10.2μmである第2粒子部に連続的に分級した。第2粒子部のスラリーは第2粒子部還流経路にて反応槽へ連続的に戻した。このとき、反応槽のニッケル含有水酸化物のスラリー濃度(g/L)が所定の範囲になるように、反応槽で新たに生成するニッケル含有水酸化物の量と反応槽へ連続的に戻される第2粒子部の量を制御した。 The extracted nickel-containing hydroxide slurry is press-fitted into a liquid cyclone type classifier (manufactured by Murata Kogyo Co., Ltd., model "T10-1") at a slurry flow rate of 4.0 L / min (flow rate B). At 0.26 (ratio A), the ratio of the mass of the nickel-containing hydroxide in the first particle part to the total mass of the nickel-containing hydroxide in the particle part and the mass of the nickel-containing hydroxide in the second particle part. The particles were continuously classified into a first particle portion having a D50 of 12.7 μm and a second particle portion having a D50 of 10.2 μm. The slurry of the second particle part was continuously returned to the reaction vessel by the reflux path of the second particle part. At this time, the amount of nickel-containing hydroxide newly generated in the reaction tank and the amount of nickel-containing hydroxide newly generated in the reaction tank are continuously returned to the reaction tank so that the slurry concentration (g / L) of the nickel-containing hydroxide in the reaction tank is within a predetermined range. The amount of the second particle part was controlled.

一方で、第1粒子部のスラリーは、ろ過後、アルカリ水溶液で洗浄して、固液分離した。その後、分離した固相に対して水洗し、さらに、脱水、乾燥の各処理を施して、サンプルであるニッケル含有水酸化物を得た。 On the other hand, the slurry of the first particle portion was filtered, washed with an alkaline aqueous solution, and solid-liquid separated. Then, the separated solid phase was washed with water, and further subjected to each treatment of dehydration and drying to obtain a sample nickel-containing hydroxide.

実施例2のニッケル含有水酸化物の製造方法
反応工程で、反応槽内の混合液のpHを液温40℃基準で11.20、分級工程で、流量Bが2.8L/min、割合Aが0.24、D50が17.2μmである第1粒子部とD50が13.0μmである第2粒子部に連続的に分級した以外は実施例1と同様にして、サンプルであるニッケル含有水酸化物を得た。
Method for Producing Nickel-Containing Hydroxide of Example 2 In the reaction step, the pH of the mixed solution in the reaction vessel was 11.20 based on the liquid temperature of 40 ° C., and in the classification step, the flow rate B was 2.8 L / min and the ratio A. Nickel-containing water as a sample in the same manner as in Example 1 except that it was continuously classified into a first particle part having a D50 of 0.24 and a D50 of 17.2 μm and a second particle part having a D50 of 13.0 μm. An oxide was obtained.

実施例3のニッケル含有水酸化物の製造方法
反応工程で、反応槽内の混合液のpHを液温40℃基準で10.88、分級工程で、流量Bが4.7L/min、割合Aが0.12、D50が16.0μmである第1粒子部とD50が12.5μmである第2粒子部に連続的に分級した以外は実施例1と同様にして、サンプルであるニッケル含有水酸化物を得た。
Method for Producing Nickel-Containing Hydroxide of Example 3 In the reaction step, the pH of the mixed solution in the reaction vessel was 10.88 based on the liquid temperature of 40 ° C., and in the classification step, the flow rate B was 4.7 L / min, and the ratio A. Nickel-containing water as a sample in the same manner as in Example 1 except that it was continuously classified into a first particle portion having a D50 of 0.12 and a D50 of 16.0 μm and a second particle portion having a D50 of 12.5 μm. An oxide was obtained.

比較例1のニッケル含有水酸化物の製造方法
反応工程で、反応槽内の混合液のpHを液温40℃基準で11.70、分級工程で、流量Bが5.4L/min、割合Aが0.34、D50が9.8μmである第1粒子部とD50が7.4μmである第2粒子部に連続的に分級した以外は実施例1と同様にして、サンプルであるニッケル含有水酸化物を得た。
Method for Producing Nickel-Containing Hydroxide of Comparative Example 1 In the reaction step, the pH of the mixed solution in the reaction vessel was 11.70 based on the liquid temperature of 40 ° C., and in the classification step, the flow rate B was 5.4 L / min and the ratio A. Nickel-containing water as a sample in the same manner as in Example 1 except that the first particle portion having 0.34 and D50 of 9.8 μm and the second particle portion having D50 of 7.4 μm were continuously classified. An oxide was obtained.

比較例2のニッケル含有水酸化物の製造方法
反応工程で、反応槽内の混合液のpHを液温40℃基準で11.55、分級工程で、流量Bが3.7L/min、割合Aが0.09、D50が17.8μmである第1粒子部とD50が15.5μmである第2粒子部に連続的に分級した以外は実施例1と同様にして、サンプルであるニッケル含有水酸化物を得た。
Method for Producing Nickel-Containing Hydroxide of Comparative Example 2 In the reaction step, the pH of the mixed solution in the reaction vessel was 11.55 based on the liquid temperature of 40 ° C., and in the classification step, the flow rate B was 3.7 L / min, and the ratio A. Nickel-containing water as a sample in the same manner as in Example 1 except that the first particle portion having 0.09 and D50 of 17.8 μm and the second particle portion having D50 of 15.5 μm were continuously classified. An oxide was obtained.

ニッケル含有水酸化物の組成、反応槽のニッケル含有水酸化物のスラリー濃度(g/L)、割合A、液体サイクロン式分級装置に供給されるニッケル含有水酸化物のスラリーの流量B(L/min)、反応槽の容積C(m)、(割合A×流量B)/容積Cの値を、下記表1に示す。 Composition of nickel-containing hydroxide, slurry concentration (g / L) of nickel-containing hydroxide in the reaction vessel, ratio A, flow rate B (L / L /) of the slurry of nickel-containing hydroxide supplied to the liquid cyclone type classifier. The values of min), the volume C (m 3 ) of the reaction vessel, and (ratio A × flow rate B) / volume C are shown in Table 1 below.

なお、ニッケル含有水酸化物の組成は、ICP発光分析装置(パーキンエルマー社製 Optima(登録商標)8300)を用いて分析した。また、反応槽のニッケル含有水酸化物を含むスラリー濃度は、反応槽から1L採取したスラリーを乾燥して、乾燥後の重量を測定することで求めた。 The composition of the nickel-containing hydroxide was analyzed using an ICP emission spectrometer (Optima (registered trademark) 8300 manufactured by PerkinElmer). The concentration of the slurry containing nickel-containing hydroxide in the reaction tank was determined by drying 1 L of the slurry collected from the reaction tank and measuring the weight after drying.

Figure 2021155264
Figure 2021155264

サンプルとして得られたニッケル含有水酸化物について、以下の評価を行った。
(1)バルク密度(BD:単位g/mL)
サンプルとして得られたニッケル含有水酸化物を自然落下させて容器に充填し、容器の容積と試料の質量からバルク密度を測定した。具体的には、20cmの測定用容器に、サンプルをふるいに通しながら落下充填させ、前記容器がサンプルで満たされた状態とし、そのときのサンプル重量を測定して算出した。
The nickel-containing hydroxide obtained as a sample was evaluated as follows.
(1) Bulk density (BD: unit g / mL)
The nickel-containing hydroxide obtained as a sample was naturally dropped and filled in a container, and the bulk density was measured from the volume of the container and the mass of the sample. Specifically, the sample was dropped and filled in a 20 cm 3 measuring container while passing the sample through a sieve to make the container filled with the sample, and the sample weight at that time was measured and calculated.

(2)粒子割れ
走査型電子顕微鏡(SEM)を用いて2000倍で任意の10視野を観察し、10視野中のニッケル含有水酸化物から確認できる粒子割れの最大の幅を算出し、以下のように評価した。
○:ニッケル含有水酸化物の粒子の粒子割れの最大幅が200nm以下、
×:ニッケル含有水酸化物の粒子の粒子割れの最大幅が200nm超
(2) Particle cracking Observe any 10 fields of view at 2000 times using a scanning electron microscope (SEM), calculate the maximum width of particle cracking that can be confirmed from the nickel-containing hydroxide in the 10 fields of view, and calculate the following. Evaluated as.
◯: The maximum width of particle cracking of nickel-containing hydroxide particles is 200 nm or less,
X: Maximum width of particle cracking of nickel-containing hydroxide particles exceeds 200 nm

上記評価結果を下記表2に、また、実施例と比較例で得られたニッケル含有水酸化物の走査型電子顕微鏡(SEM)写真を図3に示す。 The above evaluation results are shown in Table 2 below, and scanning electron microscope (SEM) photographs of nickel-containing hydroxides obtained in Examples and Comparative Examples are shown in FIG.

Figure 2021155264
Figure 2021155264

上記表1、2から、反応槽のニッケル含有水酸化物を含むスラリー濃度が50g/L以上280g/L以下の範囲に調整された実施例1〜3では、バルク密度が1.51g/ml以上に向上した。また、上記表1、2と図3から、実施例1〜3では、粒子割れの発生も防止できた。また、実施例1〜3では、割合Aが0.10以上0.33以下の範囲に調整され、(割合A×流量B)/容積Cの値が0.70以上3.50以下の範囲に調整されていた。 From Tables 1 and 2 above, in Examples 1 to 3 in which the slurry concentration containing nickel-containing hydroxide in the reaction vessel was adjusted to the range of 50 g / L or more and 280 g / L or less, the bulk density was 1.51 g / ml or more. Improved to. Further, from Tables 1 and 2 and FIGS. 3 above, in Examples 1 to 3, the occurrence of particle cracking could be prevented. Further, in Examples 1 to 3, the ratio A is adjusted to the range of 0.10 or more and 0.33 or less, and the value of (ratio A × flow rate B) / volume C is adjusted to the range of 0.70 or more and 3.50 or less. It was being adjusted.

一方で、反応槽のニッケル含有水酸化物を含むスラリー濃度が40.0g/Lである比較例1では、上記表2と図3から、粒子割れの発生は防止できたが、上記表2から、バルク密度が1.20g/mLと充填密度が低下してしまった。また、反応槽のニッケル含有水酸化物を含むスラリー濃度が293.8g/Lである比較例2では、上記表2から、バルク密度が1.76g/mLと充填密度が向上したが、上記表2と図3から、粒子割れが発生した。また、上記表1から、比較例1では、割合Aが0.34、(割合A×流量B)/容積Cの値が3.64であり、比較例2では、割合Aが0.09、(割合A×流量B)/容積Cの値が0.69であった。 On the other hand, in Comparative Example 1 in which the slurry concentration containing nickel-containing hydroxide in the reaction vessel was 40.0 g / L, the occurrence of particle cracking could be prevented from Tables 2 and 3 above, but from Table 2 above. , The bulk density was 1.20 g / mL and the packing density was lowered. Further, in Comparative Example 2 in which the concentration of the slurry containing nickel-containing hydroxide in the reaction vessel was 293.8 g / L, the bulk density was 1.76 g / mL and the packing density was improved from Table 2 above. From 2 and FIG. 3, particle cracking occurred. Further, from Table 1 above, in Comparative Example 1, the ratio A is 0.34, the value of (ratio A × flow rate B) / volume C is 3.64, and in Comparative Example 2, the ratio A is 0.09. The value of (ratio A × flow rate B) / volume C was 0.69.

本発明のニッケル含有水酸化物の製造方法では、充填密度を向上させることができ、粒子割れが防止されたニッケル含有水酸化物を簡易に製造することができるので、高いサイクル特性と高い放電レート特性を要求される二次電池の正極活物質の分野で利用価値が高い。
In the method for producing a nickel-containing hydroxide of the present invention, the packing density can be improved and a nickel-containing hydroxide in which particle cracking is prevented can be easily produced, so that a high cycle characteristic and a high discharge rate can be obtained. It has high utility value in the field of positive electrode active materials for secondary batteries where characteristics are required.

Claims (6)

ニッケルを含む金属含有水溶液と、錯化剤を含む水溶液と、アルカリ性水溶液とを、反応槽に連続的に供給して晶析反応させて、ニッケル含有水酸化物を得る反応工程と、
前記反応槽から前記ニッケル含有水酸化物を含むスラリーを連続的に抜き出すスラリー抜き出し工程と、
前記ニッケル含有水酸化物を含むスラリーを分級装置に連続的に供給して、第1粒子部と該第1粒子部よりも平均粒子径の小さい第2粒子部に分級する分級工程と、
前記第2粒子部を前記反応槽に連続的に戻す第2粒子部還流工程と、を含み、
前記反応槽の前記ニッケル含有水酸化物を含むスラリー濃度を、50g/L以上280g/L以下の範囲に調整する、ニッケル含有水酸化物の製造方法。
A reaction step of continuously supplying a metal-containing aqueous solution containing nickel, an aqueous solution containing a complexing agent, and an alkaline aqueous solution to a reaction vessel for a crystallization reaction to obtain a nickel-containing hydroxide.
A slurry extraction step of continuously extracting a slurry containing the nickel-containing hydroxide from the reaction vessel, and a slurry extraction step.
A classification step of continuously supplying the slurry containing the nickel-containing hydroxide to the classification device and classifying the slurry into a first particle portion and a second particle portion having an average particle diameter smaller than that of the first particle portion.
Including a second particle part reflux step of continuously returning the second particle part to the reaction vessel.
A method for producing a nickel-containing hydroxide, wherein the concentration of the slurry containing the nickel-containing hydroxide in the reaction vessel is adjusted to a range of 50 g / L or more and 280 g / L or less.
前記分級工程における前記第1粒子部を構成するニッケル含有水酸化物の質量(固形分)と前記第2粒子部を構成するニッケル含有水酸化物の質量(固形分)の合計に対する前記第1粒子部を構成するニッケル含有水酸化物の質量(固形分)の割合Aが、0.10以上0.33以下である請求項1に記載の製造方法。 The first particle with respect to the total mass (solid content) of the nickel-containing hydroxide constituting the first particle portion and the mass (solid content) of the nickel-containing hydroxide constituting the second particle portion in the classification step. The production method according to claim 1, wherein the ratio A of the mass (solid content) of the nickel-containing hydroxide constituting the part is 0.10 or more and 0.33 or less. 前記割合Aと、前記分級装置に供給される前記ニッケル含有水酸化物を含むスラリーの流量B(L/min)と、前記反応槽の容積C(m)が、下記式
0.70≦(A×B)/C≦3.50
の関係を満たす請求項2に記載の製造方法。
The ratio A, the flow rate B (L / min) of the slurry containing the nickel-containing hydroxide supplied to the classifier, and the volume C (m 3 ) of the reaction tank are expressed by the following formula 0.70 ≦ ( A × B) / C ≦ 3.50
The manufacturing method according to claim 2, wherein the relationship is satisfied.
前記分級装置が、遠心力を利用した湿式分級装置である請求項1乃至3のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, wherein the classifying device is a wet classifying device using centrifugal force. 前記ニッケル含有水酸化物が、Ni1−x−yCo(OH)2−α(0≦x≦0.45、0≦y≦0.45、0≦z≦3.00、−0.50≦α<2.00、Mは、Zr、Al、Ti、Mn、Ga、In及びWからなる群から選択された1種以上の添加金属元素を示す。)で表される化合物である請求項1乃至4のいずれか1項に記載の製造方法。 Said nickel-containing hydroxide, Ni 1-x-y Co x M y O z (OH) 2-α (0 ≦ x ≦ 0.45,0 ≦ y ≦ 0.45,0 ≦ z ≦ 3.00 , −0.50 ≦ α <2.00, M represents one or more additive metal elements selected from the group consisting of Zr, Al, Ti, Mn, Ga, In and W). The production method according to any one of claims 1 to 4, which is a compound. 前記ニッケル含有水酸化物が、二次電池の正極活物質の前駆体である請求項1乃至5のいずれか1項に記載の製造方法。
The production method according to any one of claims 1 to 5, wherein the nickel-containing hydroxide is a precursor of a positive electrode active material of a secondary battery.
JP2020057291A 2020-03-27 2020-03-27 Method for producing nickel-containing hydroxide Active JP7535867B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020057291A JP7535867B2 (en) 2020-03-27 2020-03-27 Method for producing nickel-containing hydroxide
CN202180017763.5A CN115210187B (en) 2020-03-27 2021-03-04 Method for producing nickel hydroxide
PCT/JP2021/008326 WO2021192877A1 (en) 2020-03-27 2021-03-04 Production method for nickel-containing hydroxide
KR1020227028113A KR20220158684A (en) 2020-03-27 2021-03-04 Method for producing nickel-containing hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020057291A JP7535867B2 (en) 2020-03-27 2020-03-27 Method for producing nickel-containing hydroxide

Publications (2)

Publication Number Publication Date
JP2021155264A true JP2021155264A (en) 2021-10-07
JP7535867B2 JP7535867B2 (en) 2024-08-19

Family

ID=77891353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020057291A Active JP7535867B2 (en) 2020-03-27 2020-03-27 Method for producing nickel-containing hydroxide

Country Status (4)

Country Link
JP (1) JP7535867B2 (en)
KR (1) KR20220158684A (en)
CN (1) CN115210187B (en)
WO (1) WO2021192877A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025117A (en) * 1996-07-09 1998-01-27 Japan Metals & Chem Co Ltd Production of nickel hydroxide
DE102007039471A1 (en) * 2007-08-21 2009-02-26 H.C. Starck Gmbh Powdered compounds, process for their preparation and their use in lithium secondary batteries
JP5464348B2 (en) * 2010-02-26 2014-04-09 住友金属鉱山株式会社 Nickel-cobalt composite hydroxide for non-aqueous electrolyte secondary battery positive electrode active material and method for producing the same, and method for producing non-aqueous electrolyte secondary battery positive electrode active material using the nickel-cobalt composite hydroxide
KR101446491B1 (en) * 2012-03-16 2014-10-06 주식회사 엘지화학 Precursor for Preparation of Lithium Composite Transition Metal Oxide and Method for Preparation of the Same
CN104661963B (en) * 2012-09-28 2017-07-04 住友金属矿山株式会社 Nickel cobalt complex hydroxide and its manufacture method and manufacture device, non-aqueous electrolyte secondary battery positive active material and its manufacture method and non-aqueous electrolyte secondary battery
KR101913906B1 (en) * 2015-06-17 2018-10-31 주식회사 엘지화학 Positive electrode active material for secondary battery, method for preparing the same, and secondary battery comprising the same
JP6493082B2 (en) 2015-08-20 2019-04-03 住友金属鉱山株式会社 Process for producing transition metal hydroxide
JP7220849B2 (en) * 2017-12-13 2023-02-13 住友金属鉱山株式会社 Nickel-containing hydroxide and its production method

Also Published As

Publication number Publication date
WO2021192877A1 (en) 2021-09-30
CN115210187A (en) 2022-10-18
CN115210187B (en) 2024-02-13
KR20220158684A (en) 2022-12-01
JP7535867B2 (en) 2024-08-19

Similar Documents

Publication Publication Date Title
JP7400033B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
JP7202393B2 (en) Method for preparing cathode material for rechargeable lithium-ion batteries
JP6371912B2 (en) Carbonate precursor for lithium / nickel / manganese / cobalt oxide cathode material and method for producing the same
JP5877817B2 (en) Non-aqueous secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material
KR101391367B1 (en) Lithium metal compound oxide having layered structure
WO2012165654A1 (en) Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material
JP6341313B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP5590283B2 (en) Lithium composite nickel oxide and method for producing the same
JP2006089364A (en) Nickel hydroxide particle containing aluminum and its manufacturing method
JP6614202B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP5634828B2 (en) Manufacturing method and use of spinel type lithium manganese composite oxide particles
JP2011132095A (en) Method for producing olivine-type compound particle powder, and nonaqueous electrolyte secondary battery
CN112010358A (en) Carbon-doped ternary precursor, preparation method thereof, ternary cathode material and lithium ion battery
KR20080037536A (en) Positive electrode active material for lithium ion secondary battery and process for preparing the same
KR102005601B1 (en) Manganese(iii, iv) oxide and method for producing same
JP5206948B2 (en) Cobalt oxyhydroxide particle powder and method for producing the same
WO2021153546A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing same
CA3182054A1 (en) Positive electrode active material for non-aqueous electrolyte secondarybattery and method for producing the same
WO2021192877A1 (en) Production method for nickel-containing hydroxide
KR20180105762A (en) Ni-rich positive composition for lithium secondary battery using spherical transition metal complex hydroxide with nano-titanate and manufacturing method thereof
JP5874939B2 (en) Nickel-containing hydroxide, nickel-containing oxide, and production method thereof
JP6936909B1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using it
JP2005206422A (en) High density lithium cobaltate and its producing method
WO2024004937A1 (en) Positive-electrode active material for secondary batteries, method for manufacturing same, positive electrode for secondary batteries using same, and secondary battery
JP5828622B2 (en) Spinel-type lithium-manganese composite oxide, its production method and use

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20210816

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240806

R150 Certificate of patent or registration of utility model

Ref document number: 7535867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150