JP2021153093A - Ferrite preliminarily-baked material powder, ferrite sintered magnet and production method thereof - Google Patents

Ferrite preliminarily-baked material powder, ferrite sintered magnet and production method thereof Download PDF

Info

Publication number
JP2021153093A
JP2021153093A JP2020052528A JP2020052528A JP2021153093A JP 2021153093 A JP2021153093 A JP 2021153093A JP 2020052528 A JP2020052528 A JP 2020052528A JP 2020052528 A JP2020052528 A JP 2020052528A JP 2021153093 A JP2021153093 A JP 2021153093A
Authority
JP
Japan
Prior art keywords
mass
ferrite
powder
less
sintered magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020052528A
Other languages
Japanese (ja)
Other versions
JP2021153093A5 (en
JP7468045B2 (en
Inventor
泰明 谷奥
Yasuaki TANIOKU
泰明 谷奥
義徳 小林
Yoshinori Kobayashi
義徳 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2020052528A priority Critical patent/JP7468045B2/en
Publication of JP2021153093A publication Critical patent/JP2021153093A/en
Publication of JP2021153093A5 publication Critical patent/JP2021153093A5/ja
Application granted granted Critical
Publication of JP7468045B2 publication Critical patent/JP7468045B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Silicon Compounds (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

To provide powder of a ferrite preliminarily-baked material which makes it possible to inexpensively offer a ferrite sintered magnet in such a way that the magnet characteristics are hardly worsened, a ferrite sintered magnet and a production method thereof.SOLUTION: Powder of ferrite preliminarily-baked material comprises: Ca, R, and metal elements of Fe, Co and Zn (R is at least one element of rare earth elements, indispensably including La) of which the atomic ratios are given by the general formula, Ca1-xRxFe2n-y-zCoyZnz, where x, y and z, and n (where 2n is a mole ratio, which is represented by 2n=(Fe+Co+Zn)/(Ca+R)) satisfy 0.4<x≤0.5, 0.15≤y≤0.25, 0<z<0.11 and 4.5≤n≤5.5; and as a sintering assistant, SiO2 of more than 0 mass% and no more than 1.0 mass% and CaCO3 of no less than 0 mass% and less than 0.3 mass%. The ferrite preliminarily-baked material powder has an average particle diameter of over 0.6 μm and no larger than 0.9 μm.SELECTED DRAWING: None

Description

本開示は、フェライト仮焼体粉末、フェライト焼結磁石及びその製造方法に関する。 The present disclosure relates to a ferrite calcined body powder, a ferrite sintered magnet, and a method for producing the same.

フェライト焼結磁石は最大エネルギー積が希土類系焼結磁石(例えばNdFeB系焼結磁石)の1/10にすぎないが、主原料が安価な酸化鉄であることからコストパフォーマンスに優れており、化学的に極めて安定であるという特長を有している。そのため、各種モータやスピーカなど様々な用途に用いられており、世界的な生産重量は現在でも磁石材料の中で最大である。 Ferrite sintered magnets have a maximum energy product of only 1/10 that of rare earth-based sintered magnets (for example, NdFeB-based sintered magnets), but because the main raw material is inexpensive iron oxide, they are excellent in cost performance and chemical. It has the feature of being extremely stable. Therefore, it is used for various purposes such as various motors and speakers, and the world production weight is still the largest among magnet materials.

代表的なフェライト焼結磁石は、マグネトプランバイト構造を有するSrフェライトであり、基本組成はSrFe1219で表される。1990年代後半にSrFe1219のSr2+の一部をLa3+で置換し、Fe3+の一部をCo2+で置換したSr−La−Co系フェライト焼結磁石が実用化されたことによりフェライト磁石の磁石特性は大きく向上した。また、2007年には、磁石特性をさらに向上させたCa−La−Co系フェライト焼結磁石が実用化された。 A typical ferrite sintered magnet is Sr ferrite having a magnetoplumbite structure, and its basic composition is represented by SrFe 12 O 19. Ferrite was put into practical use in the latter half of the 1990s when an Sr-La-Co-based ferrite sintered magnet in which a part of Sr 2+ of SrFe 12 O 19 was replaced with La 3+ and a part of Fe 3+ was replaced with Co 2+ was put into practical use. The magnet properties of the magnet have been greatly improved. Further, in 2007, a Ca-La-Co-based ferrite sintered magnet having further improved magnet characteristics was put into practical use.

前記のSr−La−Co系フェライト焼結磁石及びCa−La−Co系フェライト焼結磁石ともに、高い磁石特性を得るためにはCoが不可欠である。Sr−La−Co系フェライト焼結磁石は原子比で0.2程度(Co/Fe=0.017、すなわちFe含有量の1.7%程度)、Ca−La−Co系フェライト焼結磁石では原子比で0.3程度(Co/Fe=0.03、すなわちFe含有量の3%程度)のCoを含有している。Co(酸化Co)の価格はフェライト焼結磁石の主原料である酸化鉄の十倍から数十倍に相当する。従って、Ca−La−Co系フェライト焼結磁石では、Sr−La−Co系フェライト焼結磁石に比べ原料コストの増大が避けられない。フェライト焼結磁石の最大の特徴は安価であるという点にあるため、たとえ高い磁石特性を有していても、価格が高いと市場では受け入れられ難い。従って、世界的には、未だSr−La−Co系フェライト焼結磁石の需要が高い。 In both the Sr-La-Co-based ferrite sintered magnet and the Ca-La-Co-based ferrite sintered magnet, Co is indispensable for obtaining high magnet characteristics. Sr-La-Co-based ferrite sintered magnets have an atomic ratio of about 0.2 (Co / Fe = 0.017, that is, about 1.7% of the Fe content), and Ca-La-Co-based ferrite sintered magnets have an atomic ratio of about 0.2. It contains Co in an atomic ratio of about 0.3 (Co / Fe = 0.03, that is, about 3% of the Fe content). The price of Co (Co oxide) is ten to several tens of times that of iron oxide, which is the main raw material for ferrite sintered magnets. Therefore, the Ca-La-Co-based ferrite sintered magnet inevitably increases the raw material cost as compared with the Sr-La-Co-based ferrite sintered magnet. The biggest feature of ferrite sintered magnets is that they are inexpensive, so even if they have high magnet characteristics, they are difficult to accept in the market if they are expensive. Therefore, the demand for Sr-La-Co-based ferrite sintered magnets is still high worldwide.

近年、電気自動車の供給量増加によるLiイオン電池の需要増大に伴い、Coの価格が急騰している。その余波を受け、コストパフォーマンスに優れるSr−La−Co系フェライト焼結磁石においても、製品価格を維持することが困難な状況にある。このような背景から、磁石特性を維持しながら、いかにしてCoの使用量を削減するかが喫緊の課題となっている。 In recent years, the price of Co has skyrocketed due to the increase in demand for Li-ion batteries due to the increase in the supply of electric vehicles. In the aftermath, it is difficult to maintain the product price even for Sr-La-Co-based ferrite sintered magnets, which are excellent in cost performance. Against this background, how to reduce the amount of Co used while maintaining the magnet characteristics has become an urgent issue.

特許文献1などから、Co量低減を目的とするものではないが、例えば、Sr−La−Co系フェライト焼結磁石において、Coの一部をZnで置換することにより、残留磁束密度(以下「B」という)が向上することが知られている。 From Patent Document 1 and the like, the purpose is not to reduce the amount of Co, but for example, in an Sr-La-Co-based ferrite sintered magnet, by substituting a part of Co with Zn, the residual magnetic flux density (hereinafter, "" It is known that "Br") is improved.

また、特許文献2などから、Ca−La−Co系フェライト焼結磁石においてもCoの一部をZnで置換することが提案されている。 Further, from Patent Document 2 and the like, it has been proposed to replace a part of Co with Zn in a Ca-La-Co-based ferrite sintered magnet.

特開平11−154604号公報Japanese Unexamined Patent Publication No. 11-154604 韓国公開特許第10−2017−0044875号公報Korean Publication No. 10-2017-0044875

しかし、安価なフェライト磁石を提供するために、特許文献2のようにCoの一部をZnで置換するだけでなく、磁石特性の低下を少なくしつつ、更に安価に製造する手段が求められている。 However, in order to provide an inexpensive ferrite magnet, a means for not only replacing a part of Co with Zn as in Patent Document 2 but also reducing the deterioration of magnet characteristics and manufacturing at a lower cost is required. There is.

本開示の目的は、磁石特性の低下が少なく、フェライト焼結磁石を安価に提供することが可能なフェライト仮焼体粉末、フェライト焼結磁石及びその製造方法を提供することである。 An object of the present disclosure is to provide a ferrite calcined body powder, a ferrite sintered magnet, and a method for producing the same, which can provide a ferrite sintered magnet at a low cost with little deterioration in magnet characteristics.

すなわち、本開示のフェライト仮焼体粉末は、
Ca、R、Fe、Co及びZnの金属元素(ただし、Rは希土類元素の少なくとも一種であってLaを必須に含む元素)の原子比を示す一般式:Ca1−xFe2n−y−zCoZnにおいて、
前記x、y及びz、並びにn(ただし、2nはモル比であって、2n=(Fe+Co+Zn)/(Ca+R)で表される)が、
0.4<x≦0.5、
0.15≦y≦0.25、
0<z<0.11、及び
4.5≦n≦5.5、
を満足するCa、R、Fe、Co及びZnと、
焼結助剤である、
0mass%より多く、1.0mass%以下のSiOと、
0mass%以上、0.3mass%未満のCaCOと、
を含有し、
平均粒径が、0.6μmより大きく0.9μm以下を満足する。
That is, the ferrite calcined body powder of the present disclosure is
General formula showing the atomic ratio of metal elements of Ca, R, Fe, Co and Zn (where R is at least one of rare earth elements and essentially contains La): Ca 1-x R x Fe 2ny in -z Co y Zn z,
The x, y and z, and n (where 2n is a molar ratio and is represented by 2n = (Fe + Co + Zn) / (Ca + R)) are
0.4 <x ≦ 0.5,
0.15 ≤ y ≤ 0.25,
0 <z <0.11, and 4.5 ≦ n ≦ 5.5,
Ca, R, Fe, Co and Zn that satisfy
Sintering aid,
SiO 2 with more than 0 mass% and less than 1.0 mass%,
CaCO 3 of 0 mass% or more and less than 0.3 mass%,
Contains,
The average particle size is larger than 0.6 μm and satisfies 0.9 μm or less.

本開示のフェライト仮焼体粉末において、SiOが、0.4〜0.7mass%、CaCOが、0mass%以上、0.2mass%未満を満足するのが好ましい。 In the ferrite calcined body powder of the present disclosure, it is preferable that SiO 2 is 0.4 to 0.7 mass% and CaCO 3 is 0 mass% or more and less than 0.2 mass%.

本開示のフェライト仮焼体粉末において、平均粒径が、0.7〜0.8μmを満足するのが好ましい。 In the ferrite calcined body powder of the present disclosure, it is preferable that the average particle size satisfies 0.7 to 0.8 μm.

本開示のフェライト焼結磁石は、
Ca、R、Fe、Co及びZnの金属元素(ただし、Rは希土類元素の少なくとも一種であってLaを必須に含む元素)の原子比を示す一般式:Ca1−xFe2n−y−zCoZnにおいて、
前記x、y及びz、並びにn(ただし、2nはモル比であって、2n=(Fe+Co+Zn)/(Ca+R)で表される)が、
0.35<x≦0.5、
0.15≦y≦0.25、
0<z<0.11、及び
4.0≦n≦5.5、
を満足するCa、R、Fe、Co及びZnと、
0mass%より多く、1.0mass%以下のSiOと、
を含有する。
The ferrite sintered magnet of the present disclosure is
General formula showing the atomic ratio of metal elements of Ca, R, Fe, Co and Zn (where R is at least one of rare earth elements and essentially contains La): Ca 1-x R x Fe 2ny in -z Co y Zn z,
The x, y and z, and n (where 2n is a molar ratio and is represented by 2n = (Fe + Co + Zn) / (Ca + R)) are
0.35 <x ≦ 0.5,
0.15 ≤ y ≤ 0.25,
0 <z <0.11, and 4.0 ≤ n ≤ 5.5,
Ca, R, Fe, Co and Zn that satisfy
SiO 2 with more than 0 mass% and less than 1.0 mass%,
Contains.

本開示のフェライト焼結磁石において、SiOが、0.4〜0.7mass%を満足するのが好ましい。 In the ferrite sintered magnet of the present disclosure, SiO 2 preferably satisfies 0.4 to 0.7 mass%.

本開示のフェライト焼結磁石の製造方法は、
Ca、R、Fe、Co及びZnの金属元素(ただし、Rは希土類元素の少なくとも一種であってLaを必須に含む元素)の原子比を示す一般式:Ca1−xFe2n−y−zCoZnにおいて、
前記x、y及びz、並びにn(ただし、2nはモル比であって、2n=(Fe+Co+Zn)/(Ca+R)で表される)が、
0.4<x≦0.5、
0.15≦y≦0.25、
0<z<0.11、及び
4.5≦n≦5.5、
を満足する原料粉末を混合し、混合原料粉末を得る原料粉末混合工程と、
前記混合原料粉末を仮焼し、仮焼体を得る仮焼工程と、
前記仮焼体を粉砕し、平均粒径が0.6μmより大きく0.9μm以下の仮焼体の粉末を得る粉砕工程と、
前記仮焼体の粉末を成形し、成形体を得る成形工程と、
前記成形体を焼成し、焼結体を得る焼成工程と、
を含み、
前記仮焼工程後、前記成形工程前に、添加する対象となる仮焼体又は仮焼体の粉末100mass%に対して、
0mass%より多く、1.0mass%以下のSiOと、
0mass%以上、0.3mass%未満のCaCOと、
を添加する工程を更に含む。
The method for manufacturing a ferrite sintered magnet of the present disclosure is as follows.
General formula showing the atomic ratio of metal elements of Ca, R, Fe, Co and Zn (where R is at least one of rare earth elements and essentially contains La): Ca 1-x R x Fe 2ny in -z Co y Zn z,
The x, y and z, and n (where 2n is a molar ratio and is represented by 2n = (Fe + Co + Zn) / (Ca + R)) are
0.4 <x ≦ 0.5,
0.15 ≤ y ≤ 0.25,
0 <z <0.11, and 4.5 ≦ n ≦ 5.5,
In the raw material powder mixing step of mixing the raw material powders satisfying the above to obtain the mixed raw material powder,
A calcining step of calcining the mixed raw material powder to obtain a calcined body, and
A crushing step of crushing the calcined product to obtain a powder of the calcined product having an average particle size of more than 0.6 μm and 0.9 μm or less.
The molding process of molding the powder of the calcined body to obtain the molded body, and
A firing step of calcining the molded body to obtain a sintered body, and
Including
After the calcining step and before the molding step, with respect to 100 mass% of the calcined body or the powder of the calcined body to be added.
SiO 2 with more than 0 mass% and less than 1.0 mass%,
CaCO 3 of 0 mass% or more and less than 0.3 mass%,
Is further included.

本開示のフェライト焼結磁石の製造方法において、SiOが、0.4〜0.7mass%、CaCOが、0mass%以上、0.2mass%未満を満足するのが好ましい。 In the method for producing a ferrite sintered magnet of the present disclosure, it is preferable that SiO 2 is 0.4 to 0.7 mass% and CaCO 3 is 0 mass% or more and less than 0.2 mass%.

本開示のフェライト焼結磁石の製造方法において、前記仮焼体の粉末の平均粒径が、0.7〜0.8μmを満足するのが好ましい。 In the method for producing a ferrite sintered magnet of the present disclosure, it is preferable that the average particle size of the powder of the calcined product satisfies 0.7 to 0.8 μm.

本開示によれば、磁石特性の低下が少なく、フェライト焼結磁石を安価に提供することが可能なフェライト仮焼体粉末、フェライト焼結磁石及びその製造方法を提供することができる。 According to the present disclosure, it is possible to provide a ferrite calcined body powder, a ferrite sintered magnet, and a method for producing the same, which can provide a ferrite sintered magnet at a low cost with little deterioration in magnet characteristics.

1.フェライト仮焼体粉末
本開示のフェライト仮焼体粉末は、
Ca、R、Fe、Co及びZnの金属元素(ただし、Rは希土類元素の少なくとも一種であってLaを必須に含む元素)の原子比を示す一般式:Ca1−xFe2n−y−zCoZnにおいて、
前記x、y及びz、並びにn(ただし、2nはモル比であって、2n=(Fe+Co+Zn)/(Ca+R)で表される)が、
0.4<x≦0.5、
0.15≦y≦0.25、
0<z<0.11、及び
4.5≦n≦5.5、
を満足するCa、R、Fe、Co及びZnと、
焼結助剤である、
0mass%より多く、1.0mass%以下のSiOと、
0mass%以上、0.3mass%未満のCaCOと、
を含有し、
平均粒径が、0.6μmより大きく0.9μm以下を満足する。
1. 1. Ferrite Calcination Powder The ferrite calcination powder disclosed in this disclosure is:
General formula showing the atomic ratio of metal elements of Ca, R, Fe, Co and Zn (where R is at least one of rare earth elements and essentially contains La): Ca 1-x R x Fe 2ny in -z Co y Zn z,
The x, y and z, and n (where 2n is a molar ratio and is represented by 2n = (Fe + Co + Zn) / (Ca + R)) are
0.4 <x ≦ 0.5,
0.15 ≤ y ≤ 0.25,
0 <z <0.11, and 4.5 ≦ n ≦ 5.5,
Ca, R, Fe, Co and Zn that satisfy
Sintering aid,
SiO 2 with more than 0 mass% and less than 1.0 mass%,
CaCO 3 of 0 mass% or more and less than 0.3 mass%,
Contains,
The average particle size is larger than 0.6 μm and satisfies 0.9 μm or less.

本開示のフェライト仮焼体粉末において、原子比x(Rの含有量)は、0.4<x≦0.5である。xが0.4以下又は0.5を超えると高いBを得ることができない。Rは希土類元素の少なくとも1種であってLaを必須に含む元素である。La以外の希土類元素の含有量はモル比でRの合計量の50%以下であるのが好ましい。 In the ferrite calcined body powder of the present disclosure, the atomic ratio x (content of R) is 0.4 <x ≦ 0.5. If x is 0.4 or less or more than 0.5, a high Br cannot be obtained. R is at least one rare earth element and is an element that essentially contains La. The content of rare earth elements other than La is preferably 50% or less of the total amount of R in terms of molar ratio.

原子比y(Coの含有量)は、0.15≦y≦0.25である。yが0.25を超えるとCo使用量の削減効果を得ることができない。yが0.15未満ではHcJの低下が大きくなるため好ましくない。また、yが0.15≦y≦0.25の範囲では、一般的なCa−La−Co系フェライト焼結磁石とほぼ同等の磁石特性を有し、一般的なCa−La−Co系フェライト焼結磁石(原子比で0.3程度のCoを含有)よりもCoの使用量を削減したフェライト焼結磁石が得られる。 The atomic ratio y (Co content) is 0.15 ≦ y ≦ 0.25. If y exceeds 0.25, the effect of reducing the amount of Co used cannot be obtained. If y is less than 0.15, the decrease in H cJ becomes large, which is not preferable. Further, in the range where y is 0.15 ≦ y ≦ 0.25, the magnet characteristics are almost the same as those of a general Ca-La-Co-based ferrite sintered magnet, and a general Ca-La-Co-based ferrite is used. A ferrite sintered magnet can be obtained in which the amount of Co used is reduced as compared with a sintered magnet (containing Co in an atomic ratio of about 0.3).

原子比z(Znの含有量)は、0<z<0.11である。zが0(含有しない)では高いBを得ることができず、zが0.11以上になるとHcJの低下が大きくなるため好ましくない。 The atomic ratio z (Zn content) is 0 <z <0.11. z is 0 can not be obtained (non-containing) the high B r, z is not preferable because the reduction in comprising the H cJ 0.11 or greater.

前記一般式において、2nはモル比であって、2n=(Fe+Co+Zn)/(Ca+R)で表される。nは4.5≦n≦5.5である。nが4.5未満又は5.5を超えると高いBを得ることができない。 In the above general formula, 2n is a molar ratio and is represented by 2n = (Fe + Co + Zn) / (Ca + R). n is 4.5 ≦ n ≦ 5.5. If n is less than 4.5 or more than 5.5, a high Br cannot be obtained.

前記一般式は、金属元素の原子比で示したが、酸素(O)を含む組成は、一般式:Ca1−xFe2n−y−zCoZnαで表される。酸素のモル数αは基本的にはα=19であるが、Fe及びCoの価数、x、y及びzやnの値などによって異なってくる。また、還元性雰囲気で焼成した場合の酸素の空孔(ベイカンシー)、フェライト相におけるFeの価数の変化、Coの価数の変化等により金属元素に対する酸素の比率が変化する。従って、実際の酸素のモル数αは19からずれる場合がある。そのため、本開示においては、最も組成が特定し易い金属元素の原子比で組成を表記している。 The general formula is shown in atomic ratio of metal elements, the composition containing oxygen (O) the general formula: represented by Ca 1-x R x Fe 2n -y-z Co y Zn z O α. The number of moles α of oxygen is basically α = 19, but it differs depending on the valences of Fe and Co, the values of x, y and z and n, and the like. Further, the ratio of oxygen to the metal element changes due to the pores (vacancy) of oxygen when firing in a reducing atmosphere, the change in the valence of Fe in the ferrite phase, the change in the valence of Co, and the like. Therefore, the actual number of moles of oxygen α may deviate from 19. Therefore, in the present disclosure, the composition is expressed by the atomic ratio of the metal element whose composition is most easily specified.

本開示のフェライト仮焼体を構成する主相は、六方晶のマグネトプランバイト(M型)構造を有する化合物相(フェライト相)である。一般に、磁性材料、特に焼結磁石は、複数の化合物から構成されており、その磁性材料の特性(物性、磁石特性など)を決定づけている化合物が「主相」と定義される。 The main phase constituting the ferrite calcined body of the present disclosure is a compound phase (ferrite phase) having a hexagonal magnetoplumbite (M type) structure. Generally, a magnetic material, particularly a sintered magnet, is composed of a plurality of compounds, and the compound that determines the characteristics (physical properties, magnet characteristics, etc.) of the magnetic material is defined as the "main phase".

「六方晶のマグネトプランバイト(M型)構造を有する」とは、フェライト仮焼体のX線回折を一般的な条件で測定した場合に、六方晶のマグネトプランバイト(M型)構造のX線回折パターンが主として観察されることを言う。 "Has a hexagonal magnetoplumbite (M-type) structure" means that when the X-ray diffraction of a ferrite calcined product is measured under general conditions, the X-ray of the hexagonal magnetoplumbite (M-type) structure is used. It means that the line diffraction pattern is mainly observed.

上述した本開示のフェライト仮焼体粉末の製造方法を含む、本開示のフェライト焼結磁石の製造方法の一例を以下に説明する。 An example of the method for producing the ferrite sintered magnet of the present disclosure, which includes the method for producing the ferrite calcined body powder of the present disclosure described above, will be described below.

2.フェライト焼結磁石の製造方法
原料粉末としては、価数にかかわらず、それぞれの金属の酸化物、炭酸塩、水酸化物、硝酸塩、塩化物等の化合物を使用することができる。原料粉末を溶解した溶液であってもよい。Caの化合物としては、Caの炭酸塩、酸化物、塩化物等が挙げられる。Laの化合物としては、La等の酸化物、La(OH)等の水酸化物、La(CO・8HO等の炭酸塩等が挙げられる。Feの化合物としては、酸化鉄、水酸化鉄、塩化鉄、ミルスケール等が挙げられる。Coの化合物としては、CoO、Co等の酸化物、CoOOH、Co(OH)等の水酸化物、CoCO等の炭酸塩、及びmCoCo3・mCo(OH)・mO等の塩基性炭酸塩(m、m、mは正の数である)が挙げられる。Znの化合物としてはZnOが挙げられる
2. Method for Producing Ferrite Sintered Magnets As the raw material powder, compounds such as oxides, carbonates, hydroxides, nitrates and chlorides of the respective metals can be used regardless of the valence. It may be a solution in which the raw material powder is dissolved. Examples of the compound of Ca include carbonates, oxides and chlorides of Ca. The compounds of La, oxides such as La 2 O 3, La (OH ) 3 , etc. hydroxides, La 2 (CO 3) 3 · 8H 2 carbonates O, etc. and the like. Examples of the Fe compound include iron oxide, iron hydroxide, iron chloride, and mill scale. Examples of Co compounds include oxides such as CoO and Co 3 O 4 , hydroxides such as CoOOH and Co (OH) 2 , carbonates such as CoCO 3 , and m 2 CoCo 3 · m 3 Co (OH) 2. Basic carbonates such as m 4 H 2 O (m 2 , m 3 , and m 4 are positive numbers) can be mentioned. Examples of the Zn compound include ZnO.

仮焼時の反応促進のため、必要に応じてB、HBO等のB(硼素)を含む化合物を1mass%程度まで添加してもよい。特にHBOの添加は、磁石特性の向上に有効である。HBOの添加量は0.3mass%以下であるのが好ましく、0.1mass%程度が最も好ましい。HBOは、焼成時に結晶粒の形状やサイズを制御する効果も有するため、仮焼後(微粉砕前や焼成前)に添加してもよく、仮焼前及び仮焼後の両方で添加してもよい。 In order to promote the reaction during calcination , a compound containing B (boron) such as B 2 O 3 and H 3 BO 3 may be added up to about 1 mass% as needed. In particular, the addition of H 3 BO 3 is effective in improving the magnet characteristics. The amount of H 3 BO 3 added is preferably 0.3 mass% or less, most preferably about 0.1 mass%. Since H 3 BO 3 also has the effect of controlling the shape and size of crystal grains during firing, it may be added after calcining (before pulverization or before firing), and both before calcining and after calcining. It may be added.

上述した本開示のフェライト仮焼体の成分、組成を満足する原料粉末を混合し、混合原料粉末とする。原料粉末の配合、混合は、湿式及び乾式のいずれで行ってもよい。スチールボール等の媒体とともに撹拌すると原料粉末をより均一に混合することができる。湿式の場合は、分散媒に水を用いるのが好ましい。原料粉末の分散性を高める目的でポリカルボン酸アンモニウム、グルコン酸カルシウム等の公知の分散剤を用いてもよい。混合した原料スラリーはそのまま仮焼してもよいし、原料スラリーを脱水した後、仮焼してもよい。 The raw material powder satisfying the components and composition of the above-mentioned ferrite calcined body of the present disclosure is mixed to obtain a mixed raw material powder. The raw material powder may be blended or mixed by either a wet type or a dry type. The raw material powder can be mixed more uniformly by stirring with a medium such as a steel ball. In the wet case, it is preferable to use water as the dispersion medium. A known dispersant such as ammonium polycarboxylic acid and calcium gluconate may be used for the purpose of enhancing the dispersibility of the raw material powder. The mixed raw material slurry may be calcined as it is, or the raw material slurry may be dehydrated and then calcined.

乾式混合又は湿式混合することによって得られた混合原料粉末は、電気炉、ガス炉等を用いて加熱することで、固相反応により、六方晶のマグネトプランバイト(M型)構造のフェライト化合物を形成する。このプロセスを「仮焼」と呼び、得られた化合物を「仮焼体」と呼ぶ。 The mixed raw material powder obtained by dry mixing or wet mixing is heated using an electric furnace, a gas furnace, or the like to obtain a hexagonal magnetoplumbite (M-type) -structured ferrite compound by a solid-phase reaction. Form. This process is called "calcination" and the resulting compound is called "calcination".

仮焼工程では、温度の上昇とともにフェライト相が形成される固相反応が進行する。仮焼温度が1100℃未満では、未反応のヘマタイト(酸化鉄)が残存するため磁石特性が低くなる。一方、仮焼温度が1450℃を超えると結晶粒が成長し過ぎるため、粉砕工程において粉砕に多大な時間を要することがある。従って、仮焼温度は1100℃〜1450℃であるのが好ましい。仮焼時間は0.5時間〜5時間であるのが好ましい。 In the calcining step, a solid-phase reaction in which a ferrite phase is formed proceeds as the temperature rises. If the calcining temperature is less than 1100 ° C., unreacted hematite (iron oxide) remains, so that the magnet characteristics are lowered. On the other hand, if the calcining temperature exceeds 1450 ° C., the crystal grains grow too much, so that it may take a long time to grind in the grind step. Therefore, the calcining temperature is preferably 1100 ° C to 1450 ° C. The calcination time is preferably 0.5 hour to 5 hours.

粉砕工程では、仮焼体をハンマーミル等によって粉砕(粗粉砕)後、振動ミル、ジェットミル、ボールミル、アトライター等によって粉砕(微粉砕)し、仮焼体粉末(微粉砕粉末)とする。仮焼体粉末の平均粒径は0.6μmより大きく0.9μm以下にするのが好ましい。なお、本開示においては、粉体比表面積測定装置(例えば島津製作所製SS−100)などを用いて空気透過法によって測定した値を粉末の平均粒径(平均粒度)という。 In the crushing step, the calcined body is crushed (coarsely crushed) by a hammer mill or the like and then crushed (finely crushed) by a vibration mill, a jet mill, a ball mill, an attritor or the like to obtain a calcined body powder (finely pulverized powder). The average particle size of the calcined body powder is preferably larger than 0.6 μm and 0.9 μm or less. In the present disclosure, a value measured by an air permeation method using a powder specific surface area measuring device (for example, SS-100 manufactured by Shimadzu Corporation) is referred to as an average particle size (average particle size) of the powder.

平均粒径が0.6μm以下になると、粉砕時間が長くなるだけでなく、後述する成形工程でのプレス成型時における脱水時間や、プレスのサイクルが長くなり、工程費が高くなる。また、プレスのサイクルが長くなるため、プレス成型時の金型寿命が短くなり、製造コストが高くなる。さらに、各結晶粒の比表面積が相対的に大きくなるため、液相焼結を促進させるために焼結助剤の添加量を増加させる必要があり、材料コストが高くなる。平均粒径が0.9μmより大きくなると、磁石特性が低下する可能性がある。平均粒径は0.7〜0.8μmがより望ましい。 When the average particle size is 0.6 μm or less, not only the crushing time becomes long, but also the dehydration time at the time of press molding in the molding process described later and the press cycle become long, and the process cost becomes high. In addition, since the press cycle is long, the die life during press molding is shortened, and the manufacturing cost is high. Furthermore, since the specific surface area of each crystal grain is relatively large, it is necessary to increase the amount of the sintering aid added in order to promote liquid phase sintering, which increases the material cost. If the average particle size is larger than 0.9 μm, the magnet characteristics may deteriorate. The average particle size is more preferably 0.7 to 0.8 μm.

粉砕工程は乾式粉砕及び湿式粉砕のいずれでもよく、双方を組み合わせてもよい。湿式粉砕の場合は、分散媒として水及び/又は非水系溶剤(アセトン、エタノール、キシレン等の有機溶剤)を用いて行う。典型的には、水(分散媒)と仮焼体とを含むスラリーを生成する。スラリーには公知の分散剤及び/又は界面活性剤を固形分比率で0.2〜2mass%を添加してもよい。湿式粉砕後は、スラリーを濃縮してもよい。 The pulverization step may be either dry pulverization or wet pulverization, or both may be combined. In the case of wet pulverization, water and / or a non-aqueous solvent (organic solvent such as acetone, ethanol, xylene) is used as a dispersion medium. Typically, a slurry containing water (dispersion medium) and a calcined product is produced. A known dispersant and / or surfactant may be added to the slurry in a solid content ratio of 0.2 to 2 mass%. After the wet grinding, the slurry may be concentrated.

以上のような工程を経ることによって、本開示のフェライト仮焼体粉末を得ることができる。引き続き、本開示のフェライト焼結磁石の製造方法を説明する。 By going through the above steps, the ferrite calcined body powder of the present disclosure can be obtained. Subsequently, the method for manufacturing the ferrite sintered magnet of the present disclosure will be described.

成形工程は、粉砕工程後のスラリーを、分散媒を除去しながら磁界中又は無磁界中でプレス成形する。磁界中でプレス成形することにより、粉末粒子の結晶方位を整列(配向)させることができ、磁石特性を飛躍的に向上させることができる。さらに、配向を向上させるために、成形前のスラリーに分散剤及び潤滑剤をそれぞれ0.1〜1mass%添加してもよい。また成形前にスラリーを必要に応じて濃縮してもよい。濃縮は遠心分離、フィルタープレス等により行うのが好ましい。 In the molding step, the slurry after the pulverization step is press-molded in a magnetic field or no magnetic field while removing the dispersion medium. By press molding in a magnetic field, the crystal orientation of the powder particles can be aligned (orientated), and the magnet characteristics can be dramatically improved. Further, in order to improve the orientation, a dispersant and a lubricant may be added to the slurry before molding in an amount of 0.1 to 1 mass%, respectively. Further, the slurry may be concentrated if necessary before molding. Concentration is preferably carried out by centrifugation, filter press or the like.

前記仮焼工程後、成形工程前に、仮焼体又は仮焼体の粉末(粗粉砕粉末又は微粉砕粉末)に焼結助剤を添加する。焼結助剤としてはSiOのみ、あるいはSiOとCaCOの両方を添加することが好ましい。SiOの添加量は、添加する対象となる仮焼体又は仮焼体の粉末100mass%に対して0mass%より多く、1.0mass%以下が好ましい。SiOを添加しない場合、HcJが低下してしまう。また、1.0mass%より多くなると、焼結助剤の使用量が多くなり材料コストが高くなる。SiOの添加量は、0.4〜0.7mass%がより好ましい。 After the calcining step and before the molding step, a sintering aid is added to the calcined body or the powder of the calcined body (coarsely pulverized powder or finely pulverized powder). As the sintering aid, it is preferable to add only SiO 2 or both SiO 2 and CaCO 3. The amount of SiO 2 added is more than 0 mass% and preferably 1.0 mass% or less with respect to 100 mass% of the calcined body or the powder of the calcined body to be added. If SiO 2 is not added, H cJ will decrease. Further, when it exceeds 1.0 mass%, the amount of the sintering aid used increases and the material cost increases. The amount of SiO 2 added is more preferably 0.4 to 0.7 mass%.

CaCOの添加量は、添加する対象となる仮焼体又は仮焼体の粉末100mass%に対してCaO換算で0mass%以上、0.3mass%未満が好ましい。本開示のフェライト焼結磁石は、その組成から明らかなようにCa−La−Co系フェライト焼結磁石に属しており、主相成分としてCaが含まれているため、液相が生成する。そのため、CaCOを添加しなくてもよい。0.3mass%以上添加すると、焼結助剤の使用量が多くなり材料コストが高くなる。CaCOの添加量は、0mass%以上、0.2mass%以下がより好ましく、0mass%以上、0.2mass%未満が更に好ましい。 The amount of CaCO 3 added is preferably 0 mass% or more and less than 0.3 mass% in terms of CaO with respect to 100 mass% of the calcined body or the powder of the calcined body to be added. As is clear from its composition, the ferrite sintered magnet of the present disclosure belongs to the Ca-La-Co-based ferrite sintered magnet, and since Ca is contained as the main phase component, a liquid phase is generated. Therefore, it is not necessary to add CaCO 3. When 0.3 mass% or more is added, the amount of the sintering aid used increases and the material cost increases. The amount of CaCO 3 added is more preferably 0 mass% or more and 0.2 mass% or less, and further preferably 0 mass% or more and less than 0.2 mass%.

焼結助剤の添加は、例えば、仮焼工程によって得られた仮焼体に添加した後、粉砕工程を実施する、粉砕工程の途中で添加する、又は粉砕工程後の仮焼体の粉末(微粉砕粉末)に添加、混合した後成形工程を実施する、などの方法を採用することができる。焼結助剤として、SiO及びCaCOの他に、Cr、Al等を添加してもよい。 The sintering aid is added, for example, to the calcined product obtained by the calcining step, and then the crushing step is carried out, added in the middle of the crushing step, or the powder of the calcined body after the crushing step ( A method such as adding to (finely pulverized powder), mixing, and then performing a molding step can be adopted. In addition to SiO 2 and CaCO 3 , Cr 2 O 3 , Al 2 O 3, and the like may be added as the sintering aid.

なお、本開示においては、CaCOの添加量は全てCaO換算で表記する。CaO換算での添加量からCaCOの添加量は、式:(CaCOの分子量×CaO換算での添加量)/CaOの分子量によって求めることができる。例えば、CaO換算で0.5mass%のCaCOを添加する場合、{(40.08[Caの原子量]+12.01[Cの原子量]+48.00[0の原子量×3]=100.09[CaCOの分子量])×0.5mass%[CaO換算での添加量]}/(40.08[Caの原子量]+16.00[0の原子量]=56.08[CaOの分子量])=0.892mass%[CaCOの添加量]、となる。 In this disclosure, all the amounts of CaCO 3 added are expressed in terms of CaO. From the addition amount in terms of CaO, the addition amount of CaCO 3 can be calculated by the formula: ( molecular weight of CaCO 3 × addition amount in terms of CaO) / molecular weight of CaO. For example, when 0.5 mass% of CaCO 3 is added in terms of CaO, {(40.08 [molecular weight of Ca] + 12.01 [molecular weight of C] + 48.00 [molecular weight of 0 x 3] = 100.09 [ [Molecular weight of CaCO 3 ]) × 0.5 mass% [Amount added in terms of CaO]} / (40.08 [Molecular weight of Ca] + 16.00 [Molecular weight of 0] = 56.08 [Molecular weight of CaO]) = 0 892 mass% [addition amount of CaCO 3].

プレス成形により得られた成形体を、必要に応じて脱脂した後、焼成(焼結)する。焼成は電気炉、ガス炉等を用いて行う。焼成は酸素濃度が10体積%以上の雰囲気中で行うことが好ましい。より好ましくは20体積%以上であり、最も好ましくは100体積%である。焼成温度は1150℃〜1250℃が好ましい。焼成時間は0時間(焼成温度での保持無し)〜2時間が好ましい。 The molded product obtained by press molding is degreased as necessary and then fired (sintered). Firing is performed using an electric furnace, a gas furnace, or the like. The firing is preferably performed in an atmosphere having an oxygen concentration of 10% by volume or more. It is more preferably 20% by volume or more, and most preferably 100% by volume. The firing temperature is preferably 1150 ° C to 1250 ° C. The firing time is preferably 0 hours (without holding at the firing temperature) to 2 hours.

焼成工程の昇温時において、室温から1100℃までの温度範囲における平均昇温速度を600℃/時以上1000℃/時以下で昇温し、1100℃から焼成温度までの温度範囲における平均昇温速度を1℃/分以上10℃/分以下で昇温するとよい。また、焼成工程の焼成時間キープ後(保持無しの場合も含む)の降温時において、焼成温度から800℃までの温度範囲における平均降温速度を1000℃/時以上とすると、磁石特性がより向上するため好ましい。なお、これらの効果は、前記降温速度のみ採用することで得ることができるが、前記昇温速度と降温速度の両方を採用する方がより好ましい。 When raising the temperature in the firing step, the average temperature rise rate in the temperature range from room temperature to 1100 ° C. is raised to 600 ° C./hour or more and 1000 ° C./hour or less, and the average temperature rise in the temperature range from 1100 ° C. to the firing temperature. The temperature may be raised at 1 ° C./min or more and 10 ° C./min or less. Further, when the temperature is lowered after the firing time is kept in the firing step (including the case where it is not held), the magnet characteristics are further improved when the average temperature lowering rate in the temperature range from the firing temperature to 800 ° C. is 1000 ° C./hour or more. Therefore, it is preferable. Although these effects can be obtained by adopting only the temperature lowering rate, it is more preferable to adopt both the temperature raising rate and the temperature lowering rate.

昇温時において、室温から1100℃までの温度範囲での平均昇温速度が600℃/時未満であると、磁石特性の向上効果を十分に得ることができない。平均昇温速度が1000℃/時を超えても磁石特性の向上効果を奏することは可能であるが、焼成炉の構造や大きさによっては、被焼成物(成形体)の温度が炉内温度(又は焼成炉の設定温度)に追随することが困難となる場合がある。従って、平均昇温速度の上限は1000℃/時とした。また、1100℃から焼成温度までの温度範囲での平均速度が1℃/分未満になると磁石特性の向上効果は得られるが時間がかかり、10℃/分を超えると磁石特性の向上効果は得られるが小さくなる。平均昇温速度は1℃/分以上4℃/分以下がより好ましく、1℃/分以上2℃/分以下が更に好ましい。なお、本発明の実施形態において、温度を記載する場合は全て被熱処理物の温度を指す。温度の測定は、焼成炉内の被熱処理物にR熱電対を接触させることにより測定した。 At the time of temperature rise, if the average temperature rise rate in the temperature range from room temperature to 1100 ° C. is less than 600 ° C./hour, the effect of improving the magnet characteristics cannot be sufficiently obtained. It is possible to improve the magnet characteristics even if the average temperature rise rate exceeds 1000 ° C / hour, but depending on the structure and size of the firing furnace, the temperature of the object to be fired (molded body) is the temperature inside the furnace. (Or it may be difficult to keep up with the set temperature of the firing furnace). Therefore, the upper limit of the average heating rate was set to 1000 ° C./hour. Further, when the average speed in the temperature range from 1100 ° C. to the firing temperature is less than 1 ° C./min, the effect of improving the magnet characteristics is obtained, but it takes time, and when it exceeds 10 ° C./min, the effect of improving the magnet characteristics is obtained. It becomes smaller. The average heating rate is more preferably 1 ° C./min or more and 4 ° C./min or less, and even more preferably 1 ° C./min or more and 2 ° C./min or less. In the embodiment of the present invention, when the temperature is described, it refers to the temperature of the object to be heat-treated. The temperature was measured by bringing an R thermocouple into contact with the object to be heat-treated in the firing furnace.

焼成温度で所定時間(保持無しの場合も含む)キープ後の降温時において、焼成温度から800℃までの温度範囲での平均降温速度が1000℃/時未満であると、リードタイムの短縮及び磁石特性の向上効果を十分に得ることができない。800℃以下の降温速度は特に問わないが、リードタイムの短縮を考慮すれば、焼成温度から800℃までの温度範囲と同様、あるいはそれに近い降温速度で室温付近まで冷却することが好ましい。 When the temperature is lowered after keeping the firing temperature for a predetermined time (including the case without holding), if the average temperature lowering rate in the temperature range from the firing temperature to 800 ° C. is less than 1000 ° C./hour, the lead time is shortened and the magnet is used. The effect of improving the characteristics cannot be sufficiently obtained. The temperature lowering rate of 800 ° C. or lower is not particularly limited, but in consideration of shortening the lead time, it is preferable to cool to about room temperature at a temperature lowering rate similar to or close to the temperature range from the firing temperature to 800 ° C.

焼成工程の後は、加工工程、洗浄工程、検査工程等の公知の製造プロセスを経て、最終的にフェライト焼結磁石を製造する。 After the firing step, a ferrite sintered magnet is finally manufactured through known manufacturing processes such as a processing step, a cleaning step, and an inspection step.

3.フェライト焼結磁石
焼結助剤を添加した場合、特にフェライト仮焼体の主成分でもあるCa成分(例えばCaCO)を焼結助剤として添加した場合は、フェライト焼結磁石全体としてはCa成分が増加するため、相対的に他の元素が減少することとなる。例えば、本発明のフェライト仮焼体を用いて、焼結助剤としてCaCOを本開示の上限値で添加したときCaCO換算ですると、最も変動する場合で、0.4<x≦0.5(仮焼体)が0.35<x≦0.5(焼結磁石)に、4.5≦n≦5.5(仮焼体)が4.0≦n≦5.5(焼結磁石)となる。
3. 3. Ferrite Sintered Magnet When a sintering aid is added, especially when a Ca component (for example, CaCO 3 ), which is also the main component of the ferrite calcined body, is added as a sintering aid, the entire ferrite sintered magnet has a Ca component. Will increase, so other elements will decrease relatively. For example, in the case using a ferrite calcined body of the present invention, when the addition was when CaCO 3 converted CaCO 3 at the upper limit of the present disclosure as a sintering aid, the most variation, 0.4 <x ≦ 0. 5 (calcination) is 0.35 <x≤0.5 (sintered magnet), 4.5≤n≤5.5 (calcination) is 4.0≤n≤5.5 (sintered) It becomes a magnet).

従って、本開示のフェライト焼結磁石は、
Ca、R、Fe、Co及びZnの金属元素(ただし、Rは希土類元素の少なくとも一種であってLaを必須に含む元素)の原子比を示す一般式:Ca1−xFe2n−y−zCoZnにおいて、
前記x、y及びz、並びにn(ただし、2nはモル比であって、2n=(Fe+Co+Zn)/(Ca+R)で表される)が、
0.35<x≦0.5、
0.15≦y≦0.25、
0<z<0.11、及び
4.0≦n≦5.5、
を満足するCa、R、Fe、Co及びZnと、
0mass%より多く、1.0mass%以下のSiOと、
を満足するものとなる。
Therefore, the ferrite sintered magnet of the present disclosure is
General formula showing the atomic ratio of metal elements of Ca, R, Fe, Co and Zn (where R is at least one of rare earth elements and essentially contains La): Ca 1-x R x Fe 2ny in -z Co y Zn z,
The x, y and z, and n (where 2n is a molar ratio and is represented by 2n = (Fe + Co + Zn) / (Ca + R)) are
0.35 <x ≦ 0.5,
0.15 ≤ y ≤ 0.25,
0 <z <0.11, and 4.0 ≤ n ≤ 5.5,
Ca, R, Fe, Co and Zn that satisfy
SiO 2 with more than 0 mass% and less than 1.0 mass%,
Will be satisfied.

なお、本発明のフェライト焼結磁石の、酸素(O)を含む組成、フェライト焼結磁石を構成する主相、六方晶のマグネトプランバイト(M型)構造の定義などは、本発明のフェライト仮焼体と同様である。また、前記の通り、フェライト仮焼体からx、nの範囲が変動しているものの、原子比x、y、zの限定理由、nの限定理由も前記フェライト仮焼体と同様であるため説明を省略する。 The composition of the ferrite sintered magnet of the present invention containing oxygen (O), the main phase constituting the ferrite sintered magnet, the definition of the hexagonal magnetoplumbite (M type) structure, etc. are defined in the ferrite provisional of the present invention. It is the same as the grilled body. Further, as described above, although the range of x and n varies from the ferrite calcined body, the reasons for limiting the atomic ratios x, y and z and the reasons for limiting n are the same as those of the ferrite calcined body. Is omitted.

前記の通り、本発明のフェライト焼結磁石の製造方法において、焼結助剤としてSiOを、仮焼体又は仮焼体の粉末100mass%に対して1.0mass%以下添加する場合がある。焼結助剤として添加されたSiOは焼成(焼結)時に液相成分となり、フェライト焼結磁石において粒界相の一成分として存在することとなる。従って、焼結助剤として前記添加量のSiOを添加した場合は、得られるフェライト焼結磁石は1.0mass%以下のSiOを含有する。この時、SiOの含有により、前記一般式:Ca1−xFe2n−y−zCoZnで示される各元素の含有量が相対的に減少することとなるが、前記一般式におけるx、y、z、nなどの範囲は基本的に変化しない。なお、SiOの含有量は、フェライト焼結磁石の成分分析結果(例えば、ICP発光分光分析装置による結果)におけるCa、R、Fe、Co、Zn及びSiの各組成(mass%)から、CaCO、La(OH)、Fe、Co、ZnO及びSiOの質量に換算し、それらの合計100mass%に対する含有比率(mass%)である。 As described above, in the method for producing a ferrite sintered magnet of the present invention, SiO 2 may be added as a sintering aid in an amount of 1.0 mass% or less with respect to 100 mass% of the calcined product or the powder of the calcined product. SiO 2 added as a sintering aid becomes a liquid phase component at the time of firing (sintering), and is present as a component of the grain boundary phase in the ferrite sintered magnet. Therefore, when the above-mentioned amount of SiO 2 is added as the sintering aid, the obtained ferrite sintered magnet contains less than 1.0 mass% of SiO 2. At this time, the content of SiO 2, the general formula: Ca 1-x but R x Fe content of each element represented by 2n-y-z Co y Zn z is to be relatively reduced, the general The range of x, y, z, n, etc. in the equation basically does not change. The content of SiO 2 is determined from the composition (mass%) of Ca, R, Fe, Co, Zn and Si in the component analysis result of the ferrite sintered magnet (for example, the result by the ICP emission spectroscopic analyzer). 3 , La (OH) 3 , Fe 2 O 3 , Co 3 O 4 , ZnO and SiO 2 are converted into masses, and the content ratio (mass%) to a total of 100 mass% thereof.

本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。 The present invention will be described in more detail by way of examples, but the present invention is not limited thereto.

実験例1
一般式Ca1−xFe2n−y−zCoZnにおいて、原子比が表1の試料No.1〜11に示すように1−x、x、y、z及び2n−y−zが全て同じになるようにCaCO粉末、La(OH)粉末、Fe粉末、Co粉末及びZnO粉末を所定の組成で秤量し、秤量後の粉末の合計100mass%に対してHBO粉末を0.1mass%添加後、それぞれ湿式ボールミルで4時間混合した後、乾燥、整粒して11種類の混合原料粉末を得た。
Experimental Example 1
In the general formula Ca 1-x R x Fe 2n -y-z Co y Zn z, atomic ratio in Table 1 Sample No. CaCO 3 powder, La (OH) 3 powder, Fe 2 O 3 powder, Co 3 O 4 so that 1-x, x, y, z and 2n-yz are all the same as shown in 1 to 11. The powder and ZnO powder are weighed with a predetermined composition, 0.1 mass% of H 3 BO 3 powder is added to a total of 100 mass% of the weighed powder, mixed for 4 hours with a wet ball mill, and then dried and sized. Then, 11 kinds of mixed raw material powders were obtained.

得られた全11種類の混合原料粉末をそれぞれ大気中において表1に示す仮焼温度で3時間仮焼し、11種類の仮焼体を得た。そして、得られた各仮焼体を小型ミルで粗粉砕して11種類の仮焼体の粗粉砕粉末を得た。 All 11 kinds of the obtained mixed raw material powders were calcined in the air at the calcining temperature shown in Table 1 for 3 hours to obtain 11 kinds of calcined bodies. Then, each of the obtained calcined bodies was roughly pulverized with a small mill to obtain 11 kinds of coarsely pulverized powders of the calcined bodies.

実験例として、試料No.1〜6は、得られた各仮焼体の粗粉砕粉末100mass%に対して、表1に示すCaCO(添加量はCaO換算)及びSiOを添加し、水を分散媒とした湿式ボールミルで微粉砕し、微粉砕スラリーを得た。試料No.1〜4は平均粒度(粉体比表面積測定装置(島津製作所製SS−100)を用いて空気透過法により測定)が0.80μmになるまで微粉砕し、試料No.5、6は平均粒度が0.70μmになるまで微粉砕した。 As an experimental example, sample No. In Nos. 1 to 6, a wet ball mill in which CaCO 3 (addition amount is converted to CaO) and SiO 2 shown in Table 1 were added to 100 mass% of the obtained coarsely pulverized powder of each calcined product, and water was used as a dispersion medium. To obtain a finely pulverized slurry. Sample No. Sample Nos. 1 to 4 were finely pulverized until the average particle size (measured by the air permeation method using a powder specific surface area measuring device (SS-100 manufactured by Shimadzu Corporation)) became 0.80 μm. 5 and 6 were finely pulverized until the average particle size became 0.70 μm.

また、比較例として、試料No.7〜11は、得られた各仮焼体の粗粉砕粉末100mass%に対して、表1に示すCaCO(添加量はCaO換算)及びSiOを添加し、水を分散媒とした湿式ボールミルで微粉砕し、微粉砕スラリーを得た。試料No.7〜11は平均粒度が0.60μmになるまで微粉砕した。 In addition, as a comparative example, sample No. In Nos. 7 to 11, a wet ball mill in which CaCO 3 (addition amount is converted to CaO) and SiO 2 shown in Table 1 were added to 100 mass% of the obtained coarsely pulverized powder of each calcined product, and water was used as a dispersion medium. To obtain a finely pulverized slurry. Sample No. 7 to 11 were finely pulverized until the average particle size became 0.60 μm.

粉砕工程により得られた各微粉砕スラリーを、分散媒を除去しながら、加圧方向と磁界方向とが平行である平行磁界成形機(縦磁界成形機)を用い、約1Tの磁界を印加しながら約2.4MPaの圧力で成形し、11種類の成形体を得た。 A magnetic field of about 1 T is applied to each finely pulverized slurry obtained in the pulverization step by using a parallel magnetic field forming machine (longitudinal magnetic field forming machine) in which the pressurizing direction and the magnetic field direction are parallel while removing the dispersion medium. However, molding was performed at a pressure of about 2.4 MPa to obtain 11 types of molded products.

得られた各成形体を焼結炉内に挿入し、大気中で、1100℃まで昇温速度1000℃/時で昇温し、1100℃から表1に示す焼成温度まで1℃/分で昇温した後、1時間焼成し、40L/分の空気を送りながら表1に示す焼成温度から900℃まで25℃/分で降温し、その後室温まで6時間かけて冷却することにより11種類のフェライト焼結磁石を得た。得られたフェライト焼結磁石のB、HcJ及びH/HcJの測定結果を表1に示す。表1において試料No.の横に*印を付していない試料No.1〜6が本開示の実施形態に基づく実験例であり、*印を付した試料No.7〜11は本開示の実施形態を満足しない実験例(比較例)である。なお、表1におけるHは、J(磁化の大きさ)−H(磁界の強さ)曲線の第2象限において、Jが0.95×J(Jは残留磁化、J=B)の値になる位置のHの値である。 Each of the obtained compacts is inserted into a sintering furnace, heated to 1100 ° C. at a heating rate of 1000 ° C./hour, and raised from 1100 ° C. to the firing temperature shown in Table 1 at 1 ° C./min. After warming, it is fired for 1 hour, and the temperature is lowered from the firing temperature shown in Table 1 to 900 ° C. at 25 ° C./min while sending air of 40 L / min, and then cooled to room temperature over 6 hours to 11 kinds of ferrites. A sintered magnet was obtained. B r of resultant sintered ferrite magnet, the measurement result of H cJ and H k / H cJ shown in Table 1. In Table 1, sample No. Sample No. not marked with * next to. Examples 1 to 6 are experimental examples based on the embodiments of the present disclosure, and sample Nos. marked with *. 7 to 11 are experimental examples (comparative examples) that do not satisfy the embodiments of the present disclosure. In Table 1, H k is 0.95 × J r (J r is residual magnetization, J r = B) in the second quadrant of the J (magnitude of magnetization) −H (strength of magnetic field) curve. It is the value of H at the position where the value of r) is obtained.

なお、表1における原子比は原料粉末の配合時の原子比(配合組成)を示す。焼成後の焼結体(フェライト焼結磁石)における原子比(焼結磁石の組成)は、配合時の原子比を元に、仮焼工程前に添加される添加物(HBOなど)の添加量や、仮焼工程後成形工程前に添加される焼結助剤(CaCO及びSiO)の添加量を考慮し、計算によって求めることができ、その計算値は、フェライト焼結磁石をICP発光分光分析装置(例えば、島津製作所製ICPV−1017など)で分析した結果と基本的に同様となる。 The atomic ratio in Table 1 indicates the atomic ratio (blending composition) of the raw material powder at the time of blending. The atomic ratio (composition of the sintered magnet) in the sintered body (ferrite sintered magnet) after firing is based on the atomic ratio at the time of compounding, and additives (H 3 BO 3, etc.) added before the calcining process. Can be obtained by calculation in consideration of the amount of the sintering aid (CaCO 3 and SiO 2 ) added after the calcining process and before the molding process, and the calculated value is the ferrite sintered magnet. Is basically the same as the result of analysis with an ICP emission spectroscopic analyzer (for example, ICPV-1017 manufactured by Shimadzu Corporation).

Figure 2021153093
Figure 2021153093

比較例である平均粒度が0.60μmの試料No.7〜11の磁石特性と、実施例である平均粒度が0.7μmの試料No.5、6の磁石特性を比較すると、B、HcJ、H/HcJのいずれも同等程度の特性が得られていることが分かる。また、実施例である平均粒度が0.8μmの試料No.1〜4も同様に、比較例と磁石特性を比較すると、B、HcJ、H/HcJのいずれも同等程度の特性が得られていることが分かる。 Sample No. with an average particle size of 0.60 μm, which is a comparative example. Sample Nos. 7 to 11 with magnet characteristics and an average particle size of 0.7 μm, which is an example. Comparing the magnetic properties of 5,6, B r, H cJ, it can be seen that H k / H both almost equal to the properties of the cJ is obtained. In addition, the sample No. of the example having an average particle size of 0.8 μm. 1-4 likewise, when comparing the Comparative Example and the magnetic properties, B r, H cJ, it can be seen that H k / H both almost equal to the properties of the cJ is obtained.

また、焼結助剤であるCaCOの添加量を、比較例である試料No.7〜11と実施例である試料No.1〜6とで比較すると、比較例の添加量に比べて実施例の添加量が少ないことが分かる。更に、試料No.1、2、5ではCaCOを添加しなくても良いことが分かった。 In addition, the amount of CaCO 3 added as a sintering aid was adjusted to the sample No. which is a comparative example. Sample Nos. 7 to 11 and Sample Nos. Comparing 1 to 6, it can be seen that the addition amount of the example is smaller than the addition amount of the comparative example. Furthermore, the sample No. It was found that CaCO 3 does not need to be added in 1, 2 and 5.

このことから、比較例よりも平均粒度を大きくしても、比較例と同等の特性を得られると共に、焼結助剤の使用量を減らすことができるため、より安価にフェライト焼結磁石を提供することができることが分かった。 From this, even if the average particle size is larger than that of the comparative example, the same characteristics as those of the comparative example can be obtained, and the amount of the sintering aid used can be reduced, so that the ferrite sintered magnet can be provided at a lower cost. It turns out that it can be done.

本開示によれば、磁石特性の低下が少なく、フェライト焼結磁石を安価に提供することが可能となるので、各種モータなどに好適に利用することができる。

According to the present disclosure, since the deterioration of magnet characteristics is small and the ferrite sintered magnet can be provided at low cost, it can be suitably used for various motors and the like.

Claims (8)

Ca、R、Fe、Co及びZnの金属元素(ただし、Rは希土類元素の少なくとも一種であってLaを必須に含む元素)の原子比を示す一般式:Ca1−xFe2n−y−zCoZnにおいて、
前記x、y及びz、並びにn(ただし、2nはモル比であって、2n=(Fe+Co+Zn)/(Ca+R)で表される)が、
0.4<x≦0.5、
0.15≦y≦0.25、
0<z<0.11、及び
4.5≦n≦5.5、
を満足するCa、R、Fe、Co及びZnと、
焼結助剤である、
0mass%より多く、1.0mass%以下のSiOと、
0mass%以上、0.3mass%未満のCaCOと、
を含有し、
平均粒径が、0.6μmより大きく0.9μm以下である、フェライト仮焼体粉末。
General formula showing the atomic ratio of metal elements of Ca, R, Fe, Co and Zn (where R is at least one of rare earth elements and essentially contains La): Ca 1-x R x Fe 2ny in -z Co y Zn z,
The x, y and z, and n (where 2n is a molar ratio and is represented by 2n = (Fe + Co + Zn) / (Ca + R)) are
0.4 <x ≦ 0.5,
0.15 ≤ y ≤ 0.25,
0 <z <0.11, and 4.5 ≦ n ≦ 5.5,
Ca, R, Fe, Co and Zn that satisfy
Sintering aid,
SiO 2 with more than 0 mass% and less than 1.0 mass%,
CaCO 3 of 0 mass% or more and less than 0.3 mass%,
Contains,
Ferrite calcined powder having an average particle size of more than 0.6 μm and 0.9 μm or less.
SiOが、0.4〜0.7mass%、
CaCOが、0mass%以上、0.2mass%未満である、請求項2に記載のフェライト仮焼体粉末。
SiO 2 is 0.4 to 0.7 mass%,
The ferrite calcined body powder according to claim 2, wherein CaCO 3 is 0 mass% or more and less than 0.2 mass%.
平均粒径が、0.7〜0.8μmである、請求項1又は2に記載のフェライト仮焼体粉末。 The ferrite calcined body powder according to claim 1 or 2, wherein the average particle size is 0.7 to 0.8 μm. Ca、R、Fe、Co及びZnの金属元素(ただし、Rは希土類元素の少なくとも一種であってLaを必須に含む元素)の原子比を示す一般式:Ca1−xFe2n−y−zCoZnにおいて、
前記x、y及びz、並びにn(ただし、2nはモル比であって、2n=(Fe+Co+Zn)/(Ca+R)で表される)が、
0.35<x≦0.5、
0.15≦y≦0.25、
0<z<0.11、及び
4.0≦n≦5.5、
を満足するCa、R、Fe、Co及びZnと、
0mass%より多く、1.0mass%以下のSiOと、
を含有するフェライト焼結磁石。
General formula showing the atomic ratio of metal elements of Ca, R, Fe, Co and Zn (where R is at least one of rare earth elements and essentially contains La): Ca 1-x R x Fe 2ny in -z Co y Zn z,
The x, y and z, and n (where 2n is a molar ratio and is represented by 2n = (Fe + Co + Zn) / (Ca + R)) are
0.35 <x ≦ 0.5,
0.15 ≤ y ≤ 0.25,
0 <z <0.11, and 4.0 ≤ n ≤ 5.5,
Ca, R, Fe, Co and Zn that satisfy
SiO 2 with more than 0 mass% and less than 1.0 mass%,
Ferrite sintered magnet containing.
SiOが、0.4〜0.7mass%である、請求項4に記載のフェライト焼結磁石。 The ferrite sintered magnet according to claim 4, wherein SiO 2 is 0.4 to 0.7 mass%. Ca、R、Fe、Co及びZnの金属元素(ただし、Rは希土類元素の少なくとも一種であってLaを必須に含む元素)の原子比を示す一般式:Ca1−xFe2n−y−zCoZnにおいて、
前記x、y及びz、並びにn(ただし、2nはモル比であって、2n=(Fe+Co+Zn)/(Ca+R)で表される)が、
0.4<x≦0.5、
0.15≦y≦0.25、
0<z<0.11、及び
4.5≦n≦5.5、
を満足する原料粉末を混合し、混合原料粉末を得る原料粉末混合工程と、
前記混合原料粉末を仮焼し、仮焼体を得る仮焼工程と、
前記仮焼体を粉砕し、平均粒径が0.6μmより大きく0.9μm以下の仮焼体の粉末を得る粉砕工程と、
前記仮焼体の粉末を成形し、成形体を得る成形工程と、
前記成形体を焼成し、焼結体を得る焼成工程と、
を含み、
前記仮焼工程後、前記成形工程前に、添加する対象となる仮焼体又は仮焼体の粉末100mass%に対して、
0mass%より多く、1.0mass%以下のSiOと、
0mass%以上、0.3mass%未満のCaCOと、
を添加する工程を更に含む、フェライト焼結磁石の製造方法。
General formula showing the atomic ratio of metal elements of Ca, R, Fe, Co and Zn (where R is at least one of rare earth elements and essentially contains La): Ca 1-x R x Fe 2ny in -z Co y Zn z,
The x, y and z, and n (where 2n is a molar ratio and is represented by 2n = (Fe + Co + Zn) / (Ca + R)) are
0.4 <x ≦ 0.5,
0.15 ≤ y ≤ 0.25,
0 <z <0.11, and 4.5 ≦ n ≦ 5.5,
In the raw material powder mixing step of mixing the raw material powders satisfying the above to obtain the mixed raw material powder,
A calcining step of calcining the mixed raw material powder to obtain a calcined body, and
A crushing step of crushing the calcined product to obtain a powder of the calcined product having an average particle size of more than 0.6 μm and 0.9 μm or less.
The molding process of molding the powder of the calcined body to obtain the molded body, and
A firing step of calcining the molded body to obtain a sintered body, and
Including
After the calcining step and before the molding step, with respect to 100 mass% of the calcined body or the powder of the calcined body to be added.
SiO 2 with more than 0 mass% and less than 1.0 mass%,
CaCO 3 of 0 mass% or more and less than 0.3 mass%,
A method for manufacturing a ferrite sintered magnet, which further comprises a step of adding a ferrite magnet.
SiOが、0.4〜0.7mass%、
CaCOが、0mass%以上、0.2mass%未満である、請求項6に記載のフェライト焼結磁石の製造方法。
SiO 2 is 0.4 to 0.7 mass%,
The method for producing a ferrite sintered magnet according to claim 6, wherein CaCO 3 is 0 mass% or more and less than 0.2 mass%.
前記仮焼体の粉末の平均粒径が、0.7〜0.8μmである、請求項6又は7に記載のフェライト焼結磁石の製造方法。

The method for producing a ferrite sintered magnet according to claim 6 or 7, wherein the powder of the calcined product has an average particle size of 0.7 to 0.8 μm.

JP2020052528A 2020-03-24 2020-03-24 Ferrite calcined powder, sintered ferrite magnet and method for producing same Active JP7468045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020052528A JP7468045B2 (en) 2020-03-24 2020-03-24 Ferrite calcined powder, sintered ferrite magnet and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020052528A JP7468045B2 (en) 2020-03-24 2020-03-24 Ferrite calcined powder, sintered ferrite magnet and method for producing same

Publications (3)

Publication Number Publication Date
JP2021153093A true JP2021153093A (en) 2021-09-30
JP2021153093A5 JP2021153093A5 (en) 2023-02-20
JP7468045B2 JP7468045B2 (en) 2024-04-16

Family

ID=77886685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020052528A Active JP7468045B2 (en) 2020-03-24 2020-03-24 Ferrite calcined powder, sintered ferrite magnet and method for producing same

Country Status (1)

Country Link
JP (1) JP7468045B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052912A (en) * 1999-08-17 2001-02-23 Hitachi Metals Ltd Ferrite magnet material, sintered magnet and bonded magnet
JP2009246243A (en) * 2008-03-31 2009-10-22 Tdk Corp Ferrite sintered magnet
JP2015020926A (en) * 2013-07-18 2015-02-02 日立金属株式会社 Ferrite compound
JP2018160672A (en) * 2017-03-23 2018-10-11 日立金属株式会社 Manufacturing method of ferrite sintered magnet and ferrite sintered magnet
WO2018216594A1 (en) * 2017-05-24 2018-11-29 日立金属株式会社 Ferrite sintered magnet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052912A (en) * 1999-08-17 2001-02-23 Hitachi Metals Ltd Ferrite magnet material, sintered magnet and bonded magnet
JP2009246243A (en) * 2008-03-31 2009-10-22 Tdk Corp Ferrite sintered magnet
JP2015020926A (en) * 2013-07-18 2015-02-02 日立金属株式会社 Ferrite compound
JP2018160672A (en) * 2017-03-23 2018-10-11 日立金属株式会社 Manufacturing method of ferrite sintered magnet and ferrite sintered magnet
WO2018216594A1 (en) * 2017-05-24 2018-11-29 日立金属株式会社 Ferrite sintered magnet

Also Published As

Publication number Publication date
JP7468045B2 (en) 2024-04-16

Similar Documents

Publication Publication Date Title
WO2018216594A1 (en) Ferrite sintered magnet
JP7247467B2 (en) Method for producing sintered ferrite magnet and sintered ferrite magnet
JP6860285B2 (en) Manufacturing method of Ca-La-Co-based ferrite sintered magnet and Ca-La-Co-based ferrite sintered magnet
JP6070454B2 (en) Ferrite compound
JP6414372B1 (en) Ferrite sintered magnet
KR102281215B1 (en) Ferrite plastic body, ferrite sintered magnet and manufacturing method thereof
JP6927404B1 (en) Ferrite calcined body, ferrite sintered magnet and its manufacturing method
JP7468009B2 (en) Ferrite calcined body, sintered ferrite magnet and method for producing same
JP7468045B2 (en) Ferrite calcined powder, sintered ferrite magnet and method for producing same
JP7238917B2 (en) Method for producing calcined ferrite powder and sintered ferrite magnet
JP7396137B2 (en) Ferrite calcined body, sintered ferrite magnet and manufacturing method thereof
JP2020155609A (en) Method for manufacturing ferrite sintered magnet
JP7508967B2 (en) Ferrite calcined body, sintered ferrite magnet and method for producing same
KR102386512B1 (en) Calcined ferrite, and sintered ferrite magnet and its production method
JP7287371B2 (en) Calcined ferrite body, sintered ferrite magnet and method for producing the same
KR102587856B1 (en) Ferrite calcined body and method for manufacturing sintered ferrite magnet
JP2024126609A (en) Ferrite calcined body, sintered ferrite magnet, and method for producing sintered ferrite magnet
JP2024122839A (en) Ferrite calcined body, sintered ferrite magnet, and method for producing sintered ferrite magnet
JP2024052568A (en) Manufacturing method of ferrite sintered magnet
JP2022151842A (en) Method for manufacturing ferrite sintered magnet
JP2022151652A (en) Preliminarily baked ferrite material, and method for manufacturing ferrite sintered magnet
JP2017183335A (en) Method for manufacturing ferrite sintered magnet

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240318

R150 Certificate of patent or registration of utility model

Ref document number: 7468045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150