JP2021153029A - Positive electrode active material layer, positive electrode using the same, and secondary battery - Google Patents

Positive electrode active material layer, positive electrode using the same, and secondary battery Download PDF

Info

Publication number
JP2021153029A
JP2021153029A JP2020053510A JP2020053510A JP2021153029A JP 2021153029 A JP2021153029 A JP 2021153029A JP 2020053510 A JP2020053510 A JP 2020053510A JP 2020053510 A JP2020053510 A JP 2020053510A JP 2021153029 A JP2021153029 A JP 2021153029A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
material layer
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020053510A
Other languages
Japanese (ja)
Other versions
JP7400580B2 (en
Inventor
敦志 門田
Atsushi Kadota
敦志 門田
友美 岩本
Tomomi Iwamoto
友美 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2020053510A priority Critical patent/JP7400580B2/en
Publication of JP2021153029A publication Critical patent/JP2021153029A/en
Application granted granted Critical
Publication of JP7400580B2 publication Critical patent/JP7400580B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a positive electrode active material layer which is excellent in positive electrode capacity area density, a positive electrode using the same, and a secondary battery.SOLUTION: There is provided a positive electrode active material layer 24 which includes a positive electrode active material, a positive electrode conductive aid, and a positive electrode binder. The positive electrode active material includes an active material having a carbon-sulfur bond. The positive electrode binder includes a fluoro-based copolymer skeleton and a pendant chain coupled to the skeleton, the atomic weight ratio (number of fluorine atom/number of oxygen atom) in the positive electrode binder being 5-60.SELECTED DRAWING: Figure 1

Description

本開示は、正極活物質層、それを用いた正極および二次電池に関する。 The present disclosure relates to a positive electrode active material layer, a positive electrode using the same, and a secondary battery.

リチウムイオン二次電池は、充放電容量が高く、高出力化が可能な二次電池である。リチウムイオン二次電池は、現在、主として携帯電子機器用の電源として用いられており、更に、今後普及が予想される電気自動車用の電源として期待されている。しかしながら、これらの用途に用いる場合、特に、自動車用電源として用いる場合には、コストダウンと省スペース化が求められている。また、現在の主要用途である携帯電子機器用としては、更なる短小軽薄化が要望されている。 A lithium ion secondary battery is a secondary battery having a high charge / discharge capacity and capable of increasing output. Lithium-ion secondary batteries are currently mainly used as a power source for portable electronic devices, and are expected to be a power source for electric vehicles, which are expected to become widespread in the future. However, when used for these purposes, especially when used as a power source for automobiles, cost reduction and space saving are required. Further, for portable electronic devices, which are the main applications at present, further shortening, smallness, and thinning are required.

現在使用されているリチウムイオン二次電池では、正極活物質として、コバルト、ニッケルなどのリチウム金属酸化物を用いるものが主流である。一方、硫黄を正極活物質に用いるという試みもなされている。硫黄は資源的に豊富で安価な材料であり、しかも理論的には既知の正極活物質の中で最大の電気容量(1675mAh/g)を有する材料である。現在主流のコバルト酸リチウム正極材料に比べて、約6倍の電気容量が得られるとされている。そのため、硫黄の正極活物質としての実用化が望まれている。 Most of the lithium ion secondary batteries currently in use use lithium metal oxides such as cobalt and nickel as the positive electrode active material. On the other hand, attempts have been made to use sulfur as a positive electrode active material. Sulfur is a resource-rich and inexpensive material, and theoretically has the largest electric capacity (1675 mAh / g) among known positive electrode active materials. It is said that about 6 times the electric capacity can be obtained as compared with the current mainstream lithium cobalt oxide positive electrode material. Therefore, it is desired to put sulfur into practical use as a positive electrode active material.

しかしながら、正極中において充放電過程で生成される、硫黄とリチウムとの化合物は、リチウムイオン二次電池用の非水系電解液に可溶性である。そのため、硫黄を正極活物質として用いると、上記化合物が電解液へ溶出することにより正極が次第に劣化し、電池容量が低下するという問題点がある。 However, the compound of sulfur and lithium produced in the positive electrode during the charge / discharge process is soluble in a non-aqueous electrolyte solution for a lithium ion secondary battery. Therefore, when sulfur is used as the positive electrode active material, there is a problem that the positive electrode is gradually deteriorated due to the elution of the above compound into the electrolytic solution, and the battery capacity is lowered.

硫黄に比べて若干電気容量は劣るものの、上記溶出を抑制する試みとして、テトラチオナフタレン重合体や、硫黄変性ポリアクリロニトリルを活物質に用いた硫黄系ポリマー正極が提案されている(特許文献1、2参照)。 Although the electric capacity is slightly inferior to that of sulfur, a sulfur-based polymer positive electrode using a tetrathionaphthalene polymer or sulfur-modified polyacrylonitrile as an active material has been proposed as an attempt to suppress the above elution (Patent Document 1, Patent Document 1, 2).

一般的に、上記正極は、正極活物質、導電助剤、および集電体―活物質間や活物質同士の結着性を向上させるためのバインダーを含むスラリーを集電体上に塗布、乾燥することで作製される。硫黄元素の化学的ポテンシャルにより電極電位が低く、セル電圧が2V程度(現行のリチウムイオン電池は3.6〜3.8V程度)にとどまるため、エネルギー密度(セル電圧×容量)を高めるには、電池構成部材全体に対する正極活物質層の割合を高める必要がある。その有効な手段の一つが正極活物質層の厚膜化であり、言い換えれば、正極容量面密度の向上である。しかし、厚膜化はクラックの発生や正極集電体からの剥離を引き起こす。その場合、バインダーを増量することで改善の余地はあるものの、正極全体の正極活物質濃度が低下するため、結果として高容量化が実現できていないのが現状である。 Generally, the positive electrode is coated with a slurry containing a positive electrode active material, a conductive auxiliary agent, and a binder for improving the binding property between the current collector and the active material or between the active materials, and dried. It is produced by doing. The electrode potential is low due to the chemical potential of the sulfur element, and the cell voltage remains at about 2V (current lithium-ion battery is about 3.6 to 3.8V). Therefore, in order to increase the energy density (cell voltage x capacity), It is necessary to increase the ratio of the positive electrode active material layer to the entire battery component. One of the effective means is to thicken the positive electrode active material layer, in other words, to improve the positive electrode capacitance surface density. However, the thickening of the film causes cracks and peeling from the positive electrode current collector. In that case, although there is room for improvement by increasing the amount of the binder, the concentration of the positive electrode active material in the entire positive electrode decreases, and as a result, the capacity cannot be increased.

特開2008−66125公報Japanese Unexamined Patent Publication No. 2008-66125

WO2011/129103公報WO2011 / 129103 Gazette

特許文献1〜2に記載の正極活物質層では、厚膜化による正極容量面密度の向上は困難であった。本開示は上記問題に鑑みてなされたものであり、厚膜化による正極容量面密度に優れた正極活物質層およびそれを用いた正極および二次電池を提供することを目的とする。 In the positive electrode active material layer described in Patent Documents 1 and 2, it was difficult to improve the positive electrode capacitance surface density by thickening the film. The present disclosure has been made in view of the above problems, and an object of the present invention is to provide a positive electrode active material layer having an excellent positive electrode capacitance surface density due to a thick film, and a positive electrode and a secondary battery using the same.

上記課題を解決するために、本開示のある観点によれば、正極活物質と、正極導電助剤と、正極バインダーと、を含み、正極活物質は、炭素―硫黄結合を有する活物質を含み、正極バインダーは、フルオロ系共重合体骨格と、骨格に結合されたペンダント鎖と、を含み、バインダー中の原子量比率(フッ素原子数/酸素原子数)が、5〜60である、正極活物質層が提供される。 In order to solve the above problems, according to a certain viewpoint of the present disclosure, a positive electrode active material, a positive electrode conductive auxiliary agent, and a positive electrode binder are included, and the positive electrode active material includes an active material having a carbon-sulfur bond. The positive electrode binder includes a fluorocopolymer skeleton and a pendant chain bonded to the skeleton, and the atomic weight ratio (number of fluorine atoms / oxygen atoms) in the binder is 5 to 60. Layers are provided.

この観点によれば、正極バインダーと正極活物質表面の炭素―硫黄結合との非常に高い相互作用が生じることで正極活物質同士の凝集確率が低減し、厚膜化によるクラックの発生や正極集電体からの剥離を抑制することができ、容量面密度に優れた正極活物質層が実現可能となる。 From this point of view, the very high interaction between the positive electrode binder and the carbon-sulfur bond on the surface of the positive electrode active material reduces the agglomeration probability between the positive electrode active materials, causing cracks due to the thickening of the film and collecting the positive electrodes. Peeling from the electric body can be suppressed, and a positive electrode active material layer having an excellent capacitance surface density can be realized.

正極活物質層中のバインダー比率が、3〜15質量%である、正極活物質層が提供される。 A positive electrode active material layer having a binder ratio of 3 to 15% by mass in the positive electrode active material layer is provided.

この観点によれば、正極容量面密度が更に向上する。 From this point of view, the positive electrode capacitance surface density is further improved.

正極活物質層の厚さが151〜300μmである、正極活物質層が提供される。 A positive electrode active material layer having a thickness of 151 to 300 μm is provided.

この観点によれば、正極容量面密度が更に向上する。 From this point of view, the positive electrode capacitance surface density is further improved.

正極活物質が硫黄変性ポリアクリロニトリルである、正極活物質層が提供される。 A positive electrode active material layer is provided in which the positive electrode active material is sulfur-modified polyacrylonitrile.

この観点によれば、正極容量面密度およびレート特性比に優れた正極活物質層が実現可能となる。 From this point of view, it is possible to realize a positive electrode active material layer having excellent positive electrode capacitance surface density and rate characteristic ratio.

上記の何れかに記載の正極活物質層と、正極集電体と、を含む正極、が提供される。 A positive electrode including the positive electrode active material layer according to any one of the above and a positive electrode current collector is provided.

この観点によれば、正極容量面密度に優れた正極が実現可能となる。 From this point of view, it is possible to realize a positive electrode having an excellent positive electrode capacitance surface density.

上記に記載の正極と、負極と、セパレータと電解液と、を含む二次電池が提供される。 A secondary battery including the positive electrode, the negative electrode, the separator, and the electrolytic solution described above is provided.

この観点によれば、正極容量面密度に優れた二次電池が実現可能となる。 From this point of view, a secondary battery having an excellent positive electrode capacitance surface density can be realized.

以上説明したように本開示によれば、正極活物質層およびそれを用いた正極および二次電池の正極容量面密度が大幅に向上する。 As described above, according to the present disclosure, the positive electrode active material layer and the positive electrode capacitance surface density of the positive electrode and the secondary battery using the same are significantly improved.

本開示の実施形態に係る二次電池を示す断面図である。It is sectional drawing which shows the secondary battery which concerns on embodiment of this disclosure.

以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Preferred embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings. In the present specification and the drawings, components having substantially the same functional configuration are designated by the same reference numerals, so that duplicate description will be omitted.

[二次電池の構成]
まず、図1に基づいて、本実施形態に係る二次電池100の構成について説明する。
[Secondary battery configuration]
First, the configuration of the secondary battery 100 according to the present embodiment will be described with reference to FIG.

二次電池100は、正極20と、負極30と、セパレータ層10とを備える。二次電池100の形態は、特に限定されない。即ち、二次電池100は、円筒形、角形、ラミネート形、ボタン形等のいずれであってもよい。 The secondary battery 100 includes a positive electrode 20, a negative electrode 30, and a separator layer 10. The form of the secondary battery 100 is not particularly limited. That is, the secondary battery 100 may be any of a cylindrical type, a square type, a laminated type, a button type, and the like.

正極20は、正極集電体22と、その一面に設けられた正極活物質層24とを有する。正極集電体22は、導電性を有する材料により構成されていればよく、例えば、アルミニウム、銅、ニッケル、ステンレス、またこれらの合金系材料などの金属薄板を用いることができる。 The positive electrode 20 has a positive electrode current collector 22 and a positive electrode active material layer 24 provided on one surface thereof. The positive electrode current collector 22 may be made of a conductive material, and for example, a thin metal plate such as aluminum, copper, nickel, stainless steel, or an alloy-based material thereof can be used.

正極活物質層24に用いる正極活物質は、リチウム、ナトリウム、カリウムなどのアルカリ金属イオンの吸蔵及び放出を可逆的に進行させることが可能な炭素―硫黄結合を有する活物質を用いることができる。 As the positive electrode active material used for the positive electrode active material layer 24, an active material having a carbon-sulfur bond capable of reversibly advancing the occlusion and release of alkali metal ions such as lithium, sodium and potassium can be used.

例えば、特開平7−29599公報に記載の(CSx )n (式中xは1.2〜2.3の値であり、nは2以上の値である)のポリ(カーボンジサルファイド)や、特開2008−66125公報に記載のテトラチオナフタレンの硫黄原子架橋ポリマーや、WO2011/129103公報に記載の硫黄変性ポリアクリロニトリル等が挙げられる。中でも、レート特性比の観点から、硫黄変性ポリアクリロニトリルが好ましい。 For example, poly (carbon denaturide) of (CSx) n (x is a value of 1.2 to 2.3 and n is a value of 2 or more) described in JP-A-7-295999. Examples thereof include the sulfur atomic cross-linked polymer of tetrathionaphthalene described in JP-A-2008-66125, and the sulfur-modified polyacrylonitrile described in WO2011 / 129103. Of these, sulfur-modified polyacrylonitrile is preferable from the viewpoint of rate characteristic ratio.

また正極活物質層24は、正極導電助剤を有していてもよい。正極導電助剤としては、例えば、カーボンブラック類等のカーボン粉末、カーボンナノチューブ、炭素材料、銅、ニッケル、ステンレス、鉄等の金属微粉、炭素材料及び金属微粉の混合物、ITO等の導電性酸化物が挙げられる。正極活物質のみで十分な導電性を確保できる場合は、正極活物質層24は正極導電助剤を含んでいなくてもよい。 Further, the positive electrode active material layer 24 may have a positive electrode conductive auxiliary agent. Examples of the positive electrode conductive auxiliary agent include carbon powder such as carbon black, carbon nanotubes, carbon material, metal fine powder such as copper, nickel, stainless steel and iron, a mixture of carbon material and metal fine powder, and conductive oxide such as ITO. Can be mentioned. When sufficient conductivity can be ensured only by the positive electrode active material, the positive electrode active material layer 24 does not have to contain the positive electrode conductive auxiliary agent.

また正極活物質層24は、正極バインダーを含む。正極バインダーは、正極活物質同士を結合すると共に、正極活物質と正極集電体22とを結合する。正極バインダーとしては、フルオロ系共重合体骨格と、前記骨格に結合されたペンダント鎖とを有する。 Further, the positive electrode active material layer 24 contains a positive electrode binder. The positive electrode binder binds the positive electrode active materials to each other and also binds the positive electrode active material and the positive electrode current collector 22. The positive electrode binder has a fluoropolymer skeleton and a pendant chain bonded to the skeleton.

正極バインダー中のフッ素原子数と酸素原子数との原子量比率(フッ素原子数/酸素原子数)は、5〜60であることが好ましい。上記範囲内であると、厚膜化によるクラックの発生や正極集電体からの剥離を効果的に抑制できる。 The atomic weight ratio (number of fluorine atoms / number of oxygen atoms) between the number of fluorine atoms and the number of oxygen atoms in the positive electrode binder is preferably 5 to 60. Within the above range, the generation of cracks due to the thickening of the film and the peeling from the positive electrode current collector can be effectively suppressed.

本開示者らは本実施形態のメカニズムについて以下のように推定している。炭素―硫黄結合を持つ正極活物質は、正極活物質同士における表面での相互作用により非常に凝集しやすい。したがって、正極活物質層の成膜過程において、溶媒が揮発するにつれて上記凝集が進み、最終的には、体積収縮によりクラック、ひいては正極集電体から正極活物質の剥離が発生する。これは、厚膜化により、正極活物質同士の凝集確率が高まるほどより顕著となる。 The Disclosers presume the mechanism of this embodiment as follows. The positive electrode active material having a carbon-sulfur bond is very likely to aggregate due to the surface interaction between the positive electrode active materials. Therefore, in the process of forming the positive electrode active material layer, the aggregation proceeds as the solvent volatilizes, and finally, cracks occur due to volume shrinkage, and eventually the positive electrode active material is peeled off from the positive electrode current collector. This becomes more remarkable as the probability of aggregation between the positive electrode active materials increases due to the thickening of the film.

上記課題は、正極バインダー中の原子量比率(フッ素原子数/酸素原子数)を5〜60とすることで正極活物質表面の炭素―硫黄結合と非常に高い相互作用が生じ、正極活物質同士の凝集を抑制できる。その結果、厚膜化によるクラックの発生や正極集電体からの剥離を効果的に防止できる。前記原子量比率(フッ素原子数/酸素原子数)が、5未満の場合は酸素原子同士の相互作用によって、正極バインダー同士が凝集してしまい、上記効果を奏しない。また、60を超える場合は、フッ素原子の高い表面エネルギーによって正極活物質との相互作用が失われ、上記効果を奏しない。 The problem is that by setting the atomic weight ratio (number of fluorine atoms / oxygen atoms) in the positive electrode binder to 5 to 60, a very high interaction with the carbon-sulfur bond on the surface of the positive electrode active material occurs, and the positive electrode active materials have a very high interaction with each other. Aggregation can be suppressed. As a result, it is possible to effectively prevent the generation of cracks due to the thickening of the film and the peeling from the positive electrode current collector. When the atomic weight ratio (number of fluorine atoms / number of oxygen atoms) is less than 5, the positive electrode binders agglomerate due to the interaction between oxygen atoms, and the above effect is not exhibited. If it exceeds 60, the interaction with the positive electrode active material is lost due to the high surface energy of the fluorine atom, and the above effect is not exhibited.

なお、前期比率が5〜60の場合であっても、ペンダント鎖を有しないフルオロ系共重合体骨格からなるポリマーと、ペンダント鎖に相当するポリマー(例えば、ポリオキシアルキレンポリマー)との単純なブレンドでは、両者が相分離を起こし、上記効果は得られない。 Even when the ratio in the previous term is 5 to 60, a simple blend of a polymer composed of a fluoropolymer skeleton having no pendant chain and a polymer corresponding to the pendant chain (for example, a polyoxyalkylene polymer). Then, both cause phase separation, and the above effect cannot be obtained.

本実施形態のフルオロ系共重合体骨格としては、フッ化モノマーと(メタ)アクリルモノマーとの共重合体が挙げられる。 Examples of the fluoropolymer skeleton of the present embodiment include a copolymer of a fluorinated monomer and a (meth) acrylic monomer.

フッ化モノマーとしては、テトラフルオロエチレン、およびヘキサフルオロプロペンなどのC3〜C8パーフルオロオレフィンや、フッ化ビニリデン、フッ化ビニル、1,2−ジフルオロエチレンおよびトリフルオロエチレンなどのC2〜C8含水素フルオロオレフィンや、式CH=CH−R(式中、Rは、C1〜C6パーフルオロアルキルである)で示されるパーフルオロアルキルエチレンや、クロロトリフルオロエチレンのような、クロロ−および/またはブロモ−および/またはヨード−のC2〜C6フルオロオレフィンや、式CF=CFOR(式中、Rは、C1〜C6のフルオロ−またはパーフルオロアルキル、例えばCF、C、Cである)で示される(パー)フルオロアルキルビニルエーテルや、式CF=CFORで示される(パー)フルオロ−オキシアルキルビニルエーテル(式中、Rは、C1〜C12アルキル、またはC1〜C12オキシアルキル、またはパーフルオロ−2−プロポキシ−プロピルのような、1つもしくは複数のエーテル基を有するC1〜C12(パー)フルオロオキシアルキルである)や、式CF=CFOCFOR(式中、Rは、C1〜C6フルオロ−もしくはパーフルオロアルキル基、例えばCF、C、Cまたは−C−O−CFのような、1つもしくは複数のエーテル基を有するC1〜C6(パー)フルオロオキシアルキル基である)で示される(パー)フルオロアルキルビニルエーテルや、式CF=CFOR(式中、Rは、C1〜C12アルキルもしくは(パー)フルオロアルキル、またはC1〜C12オキシアルキル、または1つもしくは複数のエーテル基を有するC1〜C12(パー)フルオロオキシアルキルであり、Rは、その酸、酸ハライドもしくは塩の形態での、カルボン酸もしくはスルホン酸を含む)で示される官能性(パー)フルオロ−オキシアルキルビニルエーテルや、フルオロジオキソール、特にパーフルオロジオキソールなどが挙げられる。 Fluorinated monomers include C3-C8 perfluoroolefins such as tetrafluoroethylene and hexafluoropropene, and C2-C8 hydrogenated fluoros such as vinylidene fluoride, vinyl fluoride, 1,2-difluoroethylene and trifluoroethylene. Olefin, perfluoroalkylethylene represented by the formula CH 2 = CH-R a (where Ra is C1-C6 perfluoroalkyl), and chloro- and / or chlorotrifluoroethylene such as chlorotrifluoroethylene. C2-C6 fluoroolefins of bromo- and / or iodo-, and formula CF 2 = CFOR b (where R b is a fluoro- or perfluoroalkyl of C1-C6, such as CF 3 , C 2 F 5 , C. The (per) fluoroalkyl vinyl ether represented by 3 F 7 ) or the (per) fluoro-oxyalkyl vinyl ether represented by the formula CF 2 = CFOR c (in the formula, R c is C1 to C12 alkyl, or C1 to C1 to C1 to C12 (per) fluorooxyalkyl having one or more ether groups, such as C12 oxyalkyl, or perfluoro-2-propoxy-propyl), or the formula CF 2 = CFOCF 2 OR d (formula). Among them, R d is one or more C1-C6 fluoro- or perfluoroalkyl groups such as CF 3 , C 2 F 5 , C 3 F 7 or -C 2 F 5- O-CF 3. represented by C1~C6 having an ether group (per) fluorooxyalkyl group) (per) or fluoroalkyl vinyl ethers, wherein CF 2 = CFOR e (wherein, R e may, Cl -C 12 alkyl or (per) fluoroalkyl, or Cl -C 12 oxyalkyl, or a Cl -C 12 (per) fluorooxyalkyl having one or more ether groups,, R e, the acid, in the form of an acid halide or salt, a carboxylic acid Alternatively, functional (per) fluoro-oxyalkyl vinyl ether represented by (including sulfonic acid), fluorodioxol, particularly perfluorodioxol, and the like can be mentioned.

(メタ)アクリルモノマーとしては、ペンダント鎖を形成するための官能基を有する。官能基としては、ヒドロキシル基、カルボン酸基、アミノ基、イソシアネート基、エポキシ基などが挙げられる。(メタ)アクリルモノマーの具体的な例としては、アクリル酸、メタアクリル酸、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、ヒドロキシエチルメタアクリレート、ヒドロキシプロピルメタアクリレート、アミノエチルアクリレート、2−イソシアネートエチルアクリレート、グリシジルアクリレートなどが挙げられる。 The (meth) acrylic monomer has a functional group for forming a pendant chain. Examples of the functional group include a hydroxyl group, a carboxylic acid group, an amino group, an isocyanate group and an epoxy group. Specific examples of the (meth) acrylic monomer include acrylic acid, methacrylic acid, hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, aminoethyl acrylate, 2-isocyanate ethyl acrylate, and glycidyl acrylate. And so on.

フッ化モノマーと(メタ)アクリルモノマーとの共重合体を合成する方法としては、任意の方法を用いることができるが、具体的には、水性懸濁重合や水性乳化重合法が挙げられる。 As a method for synthesizing a copolymer of a fluoride monomer and a (meth) acrylic monomer, any method can be used, and specific examples thereof include an aqueous suspension polymerization method and an aqueous emulsion polymerization method.

フッ化モノマーと(メタ)アクリルモノマーとの比率は、ポリマー成分中の(フッ素原子数/酸素原子数)が5〜60となるよう、ペンダント鎖の導入量を考慮しながら適宜決定すればよい。具体的には、60モル%〜99.9モル%のフッ化モノマーと0.1モル%〜40モル%の(メタ)アクリルモノマーが含まれる範囲が好ましい。 The ratio of the fluorine monomer to the (meth) acrylic monomer may be appropriately determined in consideration of the amount of the pendant chain introduced so that the (fluorine atom number / oxygen atom number) in the polymer component is 5 to 60. Specifically, a range containing 60 mol% to 99.9 mol% of fluorine monomer and 0.1 mol% to 40 mol% (meth) acrylic monomer is preferable.

ペンダント鎖を形成するための化合物としては、フルオロ系共重合体骨格と結合させるための官能基と、酸素原子を複数含む化合物が好ましい。官能基としては、ヒドロキシル基、カルボン酸基、アミノ基、イソシアネート基、エポキシ基などが挙げられる。具体的には、上記官能基を1〜2個有する、分子量80〜10000程度のポリオキシアルキレンが好ましい。 As the compound for forming the pendant chain, a compound containing a plurality of functional groups for binding to the fluoropolymer skeleton and a plurality of oxygen atoms is preferable. Examples of the functional group include a hydroxyl group, a carboxylic acid group, an amino group, an isocyanate group and an epoxy group. Specifically, a polyoxyalkylene having one or two of the above functional groups and having a molecular weight of about 80 to 10,000 is preferable.

正極活物質層24中の正極バインダーの構成比率は、質量比で1〜20質量%、より好ましくは、3〜15質量%の範囲であることが好ましい。正極活物質層中の正極バインダー比率が、3〜15質量%の場合、成膜性と、正極容量面密度とのバランスを特に確保できる。3質量%未満の場合、正極バインダーが少なすぎて成膜性が劣り、15質量%を超える場合は、正極全体の正極活物質濃度が低下するため、正極容量面密度が低下する。また、必要以上に正極バインダーが正極活物質を被覆することで、レート特性比が悪化する。 The composition ratio of the positive electrode binder in the positive electrode active material layer 24 is preferably in the range of 1 to 20% by mass, more preferably 3 to 15% by mass in terms of mass ratio. When the ratio of the positive electrode binder in the positive electrode active material layer is 3 to 15% by mass, the balance between the film forming property and the positive electrode capacitance surface density can be particularly ensured. If it is less than 3% by mass, the amount of the positive electrode binder is too small and the film forming property is inferior. Further, when the positive electrode binder coats the positive electrode active material more than necessary, the rate characteristic ratio deteriorates.

正極活物質層24は、例えば、正極活物質、正極導電助剤、及び正極バインダーを適当な有機溶媒(例えばN−メチル−2−ピロリドン)に分散させることで塗工液を形成し、この塗工液を正極集電体22上に塗工、乾燥し、必要に応じて圧延することで形成される。 The positive electrode active material layer 24 forms a coating liquid by dispersing, for example, the positive electrode active material, the positive electrode conductive auxiliary agent, and the positive electrode binder in an appropriate organic solvent (for example, N-methyl-2-pyrrolidone), and the coating liquid is formed. It is formed by applying a working liquid onto the positive electrode current collector 22, drying it, and rolling it if necessary.

また、正極活物質層の膜厚は、70μm以上、さらには、100μm以上、より好ましくは151〜300μmの範囲であることが好ましい。この範囲であると、正極容量面密度が十分確保できる。正極容量面密度としては、5mAh/cm以上が好ましい。300μmを超えると、正極活物質層への電解液の浸透性が困難となり、正極容量面密度やレート特性比が悪化する傾向にある。 The film thickness of the positive electrode active material layer is preferably 70 μm or more, more preferably 100 μm or more, and more preferably 151 to 300 μm. Within this range, the positive electrode capacitance surface density can be sufficiently secured. The positive electrode capacitance surface density is preferably 5 mAh / cm 2 or more. If it exceeds 300 μm, the permeability of the electrolytic solution into the positive electrode active material layer becomes difficult, and the positive electrode capacitance surface density and the rate characteristic ratio tend to deteriorate.

負極30は、負極集電体32と、負極活物質層34とを有する。 The negative electrode 30 has a negative electrode current collector 32 and a negative electrode active material layer 34.

負極集電体32は、導電性の板材であればよく、例えば、アルミニウム、銅、ニッケル、ステンレス、またこれらの合金系材料の金属薄板を用いることができる。 The negative electrode current collector 32 may be any conductive plate material, and for example, aluminum, copper, nickel, stainless steel, or a thin metal plate made of an alloy-based material thereof can be used.

負極活物質層34は、負極活物質を有し、必要に応じて負極バインダーや負極導電助剤を有する。 The negative electrode active material layer 34 has a negative electrode active material, and if necessary, a negative electrode binder and a negative electrode conductive auxiliary agent.

負極活物質としては、リチウム、ナトリウム、カリウムなどのアルカリ金属、黒鉛などの炭素系材料、ケイ素、SiOx(0<x<2)で表されるケイ素酸化物などのケイ素含有化合物、銅−スズやコバルト−スズなどの合金系材料を使用することが出来る。 Examples of the negative electrode active material include alkali metals such as lithium, sodium and potassium, carbon-based materials such as graphite, silicon, silicon-containing compounds such as silicon oxide represented by SiOx (0 <x <2), copper-tin and the like. Alloy-based materials such as cobalt-tin can be used.

なお、負極活物質として、アルカリ金属を含まない材料、例えば、上記した負極活物質の内で、炭素系材料、シリコン系材料、合金系材料等を用いる場合には、デンドライドの発生による正負極間の短絡を生じ難い点が有利である。 When a material containing no alkali metal, for example, a carbon-based material, a silicon-based material, an alloy-based material, or the like is used as the negative electrode active material among the above-mentioned negative electrode active materials, between the positive and negative electrodes due to the generation of dendride. It is advantageous that a short circuit is unlikely to occur.

ただし、これらのアルカリ金属を含まない負極の活物質材料を用いる場合には、本開示の正極と組み合わせて用いると、正極及び負極がいずれもアルカリ金属を含まないため、負極にあらかじめアルカリ金属をプリドープする処理が必要となる。 However, when these alkali metal-free negative electrode active material materials are used, when used in combination with the positive electrode of the present disclosure, neither the positive electrode nor the negative electrode contains alkali metal, so the negative electrode is pre-doped with an alkali metal in advance. Processing is required.

例えば、リチウムのプリドープ法としては、対極に金属リチウムを用いて半電池を組み、電気化学的にリチウムをドープする電解ドープ法によってリチウムを挿入する方法、金属リチウムを負極表面または負極中に入れたあと、負極を電解液の中に放置し負極へのリチウムの拡散を利用してドープする貼り付けプリドープ法によりリチウムを挿入する方法、などの方法を用いることが出来る。 For example, as a lithium predoping method, a semi-battery is assembled using metallic lithium at the counter electrode, and lithium is inserted by an electrolytic doping method in which lithium is electrochemically doped. Metallic lithium is placed on the surface of the negative electrode or in the negative electrode. After that, a method such as a method in which the negative electrode is left in an electrolytic solution and lithium is inserted by a pasting pre-doping method in which lithium is doped by utilizing the diffusion of lithium into the negative electrode can be used.

負極導電助剤としては、正極導電助剤と同等のものを用いることが出来る。負極活物質のみで十分な導電性を確保できる場合は、負極活物質層34は負極導電助剤を含んでいなくてもよい。 As the negative electrode conductive auxiliary agent, the same one as that of the positive electrode conductive auxiliary agent can be used. When sufficient conductivity can be ensured only by the negative electrode active material, the negative electrode active material layer 34 may not contain the negative electrode conductive auxiliary agent.

負極バインダーは、負極活物質同士を結合すると共に、負極活物質と負極集電体32とを結合する。負極バインダーとしては、正極バインダーと同等のものや、その他にも、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂、ビニリデンフルオライド−ヘキサフルオロプロピレン系フッ素ゴム(VDF−HFP系フッ素ゴム)、ビニリデンフルオライド−ヘキサフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−HFPTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、セルロース、スチレン・ブタジエンゴム、エチレン・プロピレンゴム、ポリイミド樹脂、ポリアミドイミド樹脂、アクリル樹脂等が挙げられる。 The negative electrode binder binds the negative electrode active materials to each other and also binds the negative electrode active material and the negative electrode current collector 32. Examples of the negative electrode binder include those equivalent to the positive electrode binder, fluororesins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), and vinylidene fluoride-hexafluoropropylene-based fluororubber (VDF-HFP). Fluororesin), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene fluororubber (VDF-HFPTFE fluororubber) and other vinylidene fluoride fluororubbers, cellulose, styrene / butadiene rubber, ethylene / propylene rubber, polyimide resin , Polypolyimide resin, acrylic resin and the like.

負極活物質層34中の負極活物質、負極導電助剤及び負極バインダーの含有量は特に限定されない。 The contents of the negative electrode active material, the negative electrode conductive auxiliary agent, and the negative electrode binder in the negative electrode active material layer 34 are not particularly limited.

負極活物質層34は、例えば、負極活物質、導電助剤、及びバインダーを適当な有機溶媒(例えばN−メチル−2−ピロリドン)に分散させることで塗工液を形成し、この塗工液を負極集電体32上に塗工、乾燥し、必要に応じて圧延することで形成される。 The negative electrode active material layer 34 forms a coating liquid by dispersing, for example, the negative electrode active material, the conductive auxiliary agent, and the binder in an appropriate organic solvent (for example, N-methyl-2-pyrrolidone), and the coating liquid is formed. Is coated on the negative electrode current collector 32, dried, and rolled if necessary.

また、箔状の負極活物質を用いる場合は、厚さ0.01〜200μmの箔状の負極活物質を負極集電体32上に貼り付け、負極シートを作製する。 When a foil-shaped negative electrode active material is used, a foil-shaped negative electrode active material having a thickness of 0.01 to 200 μm is attached onto the negative electrode current collector 32 to prepare a negative electrode sheet.

セパレータ10は、電気絶縁性の多孔質構造から形成されていればよく、例えば、ポリエチレン、ポリプロピレン又はポリオレフィンからなるフィルムの単層体、積層体や上記樹脂の混合物の延伸膜、或いはセルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布があげられる。 The separator 10 may be formed from an electrically insulating porous structure, for example, a monolayer of a film made of polyethylene, polypropylene or polyolefin, a laminate or a stretched film of a mixture of the above resins, or cellulose, polyester and Examples thereof include fibrous nonwoven fabrics made of at least one constituent material selected from the group consisting of polypropylene.

また、上記のセパレータ材料には無機粒子やポリマー成分がコートされていてもよい。無機粒子としては、アルミナ、シリカ、酸化ジルコニウム、酸化チタン、酸化マグネシウムなどの酸化物やチタン酸バリウムなどの誘電材料があげられる。ポリマー成分としては、負極用のバインダー類、正極用のバインダー類、高分子電解質類(ポリエチレングリコールやポリエチレンカーボネートなどの高分子材料とリチウム塩の複合物)、イオン交換樹脂類(ポリジメチルジアリルアンモニウム塩、ポリスチレンスルホン酸塩等)、その他には、ポリビニルアルコール、CMC、ポリブチラール、ポリアクリル酸などがあげられる。 Further, the separator material may be coated with inorganic particles or a polymer component. Examples of the inorganic particles include oxides such as alumina, silica, zirconium oxide, titanium oxide and magnesium oxide, and dielectric materials such as barium titanate. Polymer components include binders for negative electrodes, binders for positive electrodes, polyelectrolytes (composites of polymer materials such as polyethylene glycol and polyethylene carbonate and lithium salts), and ion exchange resins (polydimethyldiallyl ammonium salts). , Polystyrene sulfonate, etc.), and other examples include polyvinyl alcohol, CMC, polybutyral, and polyacrylic acid.

非水電解液は、電解質であるアルカリ金属塩と、溶媒とを含む。リチウム塩としては、LiPF、LiBF、LiClO、LiSOCF、LiN(SOF)、LiN(SOCF、LiN(SOF)(SOCF)、LiN(SOCFCF、LiC(SOCFCF、LiC(SOCF、LiI、LiCl、LiF、LiPF(SOCF)、LiPF(SOCF等が挙げられる。ナトリウム塩としては、NaN(SOF)、NaN(SOCF等が挙げられる。カリウム塩としては、KN(SOF)、KN(SOCF等が挙げられる。 The non-aqueous electrolyte solution contains an alkali metal salt which is an electrolyte and a solvent. Lithium salts include LiPF 6 , LiBF 4 , LiClO 4 , LiSO 3 CF 3 , LiN (SO 2 F) 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 F) (SO 2 CF 3 ), LiN. (SO 2 CF 2 CF 3 ) 2 , LiC (SO 2 CF 2 CF 3 ) 3 , LiC (SO 2 CF 3 ) 3 , LiI, LiCl, LiF, LiPF 5 (SO 2 CF 3 ), LiPF 4 (SO 2) CF 3 ) 2 etc. can be mentioned. Examples of the sodium salt include NaN (SO 2 F) 2 , NaN (SO 2 CF 3 ) 2, and the like. Examples of the potassium salt include KN (SO 2 F) 2 , KN (SO 2 CF 3 ) 2, and the like.

アルカリ金属塩の濃度は、0.8〜5.0mol/L程度であることが好ましい。 The concentration of the alkali metal salt is preferably about 0.8 to 5.0 mol / L.

溶媒としては、例えば、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、ジ−n−プロピルカーボネート、メチル−n−プロピルカーボネート、エチル−n−プロピルカーボネート、メチルイソプロピルカーボネート、エチル−n−プロピルカーボネート、エチルイソプロピルカーボネート、ジ−n−プロピルカーボネート、ジイソプロピルカーボネート、3−フルオロプロピルメチルカーボネート、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、4−クロロ−1,3−ジオキソラン−2−オン、4−フルオロ−1,3−ジオキソラン−2−オン、4−トリフルオロメチル−1,3−ジオキソラン−2−オン、ビニレンカーボネート、ジメチルビニレンカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート等の炭酸エステル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル、トリメチル酢酸エチル等のカルボン酸エステル、γ−ブチロラクトン、γ−バレロラクトン等の環状エステル、ジメチルスルホキシド、亜硫酸ジメチル等の鎖状スルホン酸エステル、スルホラン、プロパンサルトン等の環状スルホン酸エステル、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3−メトキシプロピオニトリル、スクシノニトリル等のニトリル化合物、1,2−ジメトキシエタン、ジメチルエーテル、メチルエチルエーテル、ジエチルエーテル、ブチルメチルエーテル、ジプロピルエーテル、シクロペンチルメチルエーテル、ジブチルエーテル、ジイソペンチルエーテル、トリグライム、テトラグライム等の鎖状エーテル、オキセタン、テトラヒドロフラン、テトラヒドロピラン、1,3−ジオキソラン、1,4−ジオキサン等の環状エーテル、1,1,2,2−テトラフルオロエチル2,2,3,3−テトラフルオロプロピルエーテル等のハイドロフルオロエーテル、リン酸トリエチル、リン酸トリメチル等のリン酸エステル類、メチルホスホン酸ジメチル等のホスホン酸エステル類、1,1,2,2−テトラフルオロエチル2,2,3,3−テトラフルオロプロピルエーテル、2,2,2−トリフルオロエチルエーテル、ジフルオロメチル2,2,3,3−テトラフルオロプロピルエーテル、1,1,1,2,2,3,4,5,5,5−デカフルオロ−3−メトキシ−4−(トリフルオロメチル)ペンタンなどのフッ素化エーテル類などが挙げられる。これらは単独で用いてもよいし、複数種を混合して用いてもよい。アルカリ金属塩の溶解性の観点から、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、プロピレンカーボネート、エチレンカーボネート、1,2―ジメトキシエタン、トリグライム、テトラグライム、アセトニトリルが好ましい。 Examples of the solvent include dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, di-n-propyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, methyl isopropyl carbonate, ethyl-n-propyl carbonate and ethyl isopropyl. Carbonate, di-n-propyl carbonate, diisopropyl carbonate, 3-fluoropropylmethyl carbonate, propylene carbonate, ethylene carbonate, butylene carbonate, 4-chloro-1,3-dioxolan-2-one, 4-fluoro-1,3- Dioxolan-2-one, 4-trifluoromethyl-1,3-dioxolan-2-one, vinylene carbonate, dimethylvinylene carbonate, vinylene carbonate, carbonates such as fluoroethylene carbonate, methyl acetate, ethyl acetate, methyl propionate, Carboic acid esters such as ethyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethylacetate and ethyl trimethylacetate, cyclic esters such as γ-butyrolactone and γ-valerolactone, chain sulfonic acid esters such as dimethylsulfoxide and dimethyl sulfite, Cyclic sulfonic acid esters such as sulfolane and propanesarton, nitrile compounds such as acetonitrile, glutaronitrile, adiponitrile, methoxyacetyl, 3-methoxypropionitrile and succinonitrile, 1,2-dimethoxyethane, dimethyl ether and methyl ethyl ether. , Diethyl ether, butyl methyl ether, dipropyl ether, cyclopentyl methyl ether, dibutyl ether, diisopentyl ether, triglime, chain ether such as tetraglyme, oxetane, tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 1,4 -Cyclic ethers such as dioxane, hydrofluoro ethers such as 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether, phosphate esters such as triethyl phosphate and trimethyl phosphate, Phosphonic acid esters such as dimethyl methylphosphonate, 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether, 2,2,2-trifluoroethyl ether, difluoromethyl 2,2 , 3,3-Tetrafluoropropyl ether, 1,1,1,2,2,3,4,5,5,5-decaf Examples thereof include fluorinated ethers such as ruolo-3-methoxy-4- (trifluoromethyl) pentane. These may be used alone or in admixture of a plurality of types. From the viewpoint of the solubility of the alkali metal salt, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, triglime, tetraglime and acetonitrile are preferable.

また、溶媒としてイオン液体が含まれていてもよい。イオン液体としては、−30℃〜120℃で液体であるカチオン種とアニオン種とを含む化合物が使用できる。 Further, an ionic liquid may be contained as a solvent. As the ionic liquid, a compound containing a cationic species and an anionic species that are liquid at −30 ° C. to 120 ° C. can be used.

カチオン種としては、窒素を含む窒素系カチオン、リンを含むリン系カチオン、硫黄を含む硫黄系カチオンを用いることができる。これらのカチオン成分は単独で用いてもよいし、複数種を組み合わせて用いてもよい。窒素系カチオンの例としては、イミダゾリウムカチオン、ピロリジニウムカチオン、ピペリジニウムカチオン、ピリジニウムカチオン、アゾニアスピロカチオンなど鎖状または環状のアンモニウムカチオンを挙げることができる。リン系カチオンの例としては、鎖状または環状のホスホニウムカチオンが挙げられる。硫黄系カチオンの例としては、鎖状または環状のスルホニウムカチオンが挙げられる。 As the cation species, a nitrogen-based cation containing nitrogen, a phosphorus-based cation containing phosphorus, and a sulfur-based cation containing sulfur can be used. These cation components may be used alone or in combination of two or more. Examples of nitrogen-based cations include chain or cyclic ammonium cations such as imidazolium cations, pyrrolidinium cations, piperidinium cations, pyridinium cations, and azoniaspirocations. Examples of phosphorus-based cations include chain or cyclic phosphonium cations. Examples of sulfur-based cations include chain or cyclic sulfonium cations.

アニオン種としては、AlCl 、NO 、NO 、I、BF 、PF 、AsF 、SbF 、NbF 、TaF 、F(HF)2.3 、CHCO 、CFCO 、CHSO 、CFSO 、(CFSO、CCO 、CSO 、(CFSO)(CFCO)N、(CN)、次式で表されるイミドアニオン((SO(CF)xF)(SO2(CF2)yF)N(ただし、xとyはそれぞれ独立しており、0〜5の整数を示す。))、等が挙げられる。これらのアニオン種は単独で用いてもよいし、複数種を組み合わせて用いてもよい。 Examples of the anionic species, AlCl 4 -, NO 2 - , NO 3 -, I -, BF 4 -, PF 6 -, AsF 6 -, SbF 6 -, NbF 6 -, TaF 6 -, F (HF) 2. 3 , CH 3 CO 2 , CF 3 CO 2 , CH 3 SO 3 , CF 3 SO 3 , (CF 3 SO 2 ) 3 C , C 3 F 7 CO 2 , C 4 F 9 SO 3 -, (CF 3 SO 2 ) (CF 3 CO) N -, (CN) 2 N -, imide anion represented by the following formula ((SO 2 (CF 2) xF) (SO2 (CF2) yF) N - (However, x and y are independent of each other and indicate an integer of 0 to 5.)), Etc. can be mentioned. These anion species may be used alone or in combination of two or more.

アルカリ金属塩の溶解性の観点から、カチオン成分としては、ピロリジニウムカチオン、ピペリジニウムカチオンが好ましく、アニオン成分としては、イミドアニオン、PF 、BF のアニオンが好ましく、さらに、(SOF)、(SOCF、(SOCF)(SOF)N、がより好ましい。 From the viewpoint of the solubility of the alkali metal salt, the cation component is preferably a pyrrolidinium cation or a piperidinium cation, and the anion component is preferably an imide anion, a PF 6 − or a BF 4 anion, and further, ( SO 2 F) 2 N , (SO 2 CF 3 ) 2 N , and (SO 2 CF 3 ) (SO 2 F) N are more preferred.

なお、非水電解液には、各種の添加剤(負極SEI(Solid Electrolyte Interface)形成剤、界面活性剤等)を添加してもよい。このような添加剤としては、例えば、炭酸ビニレン、炭酸ビニルエチレン、炭酸フェニルエチレン、コハク酸無水物、リチウムビスオキサラート、テトラフルオロホウ酸リチウム、ジニトリル化合物、プロパンスルトン、ブタンスルトン、プロペンスルトン、3−スルフォレン、フッ素化アリルエーテル、フッ素化アクリレート等が挙げられる。 In addition, various additives (negative electrode SEI (Solid Electrolyte Interface) forming agent, surfactant, etc.) may be added to the non-aqueous electrolyte solution. Examples of such additives include vinylene carbonate, vinyl carbonate ethylene, phenylethylene carbonate, succinic acid anhydride, lithium bisoxalate, lithium tetrafluoroborate, dinitrile compounds, propane sultone, butane sultone, propensultone, 3-. Examples thereof include sulfolene, fluorinated allyl ether, and fluorinated acrylate.

外装体50は、その内部に積層体40及び電解液を密封するものである。外装体50は、電解液の外部への漏出や、外部からの二次電池100内部への水分等の侵入等を抑止できる物であれば特に限定されない。 The exterior body 50 seals the laminate 40 and the electrolytic solution inside the exterior body 50. The exterior body 50 is not particularly limited as long as it can suppress leakage of the electrolytic solution to the outside and invasion of moisture or the like into the inside of the secondary battery 100 from the outside.

例えば、外装体50として、図1に示すように、金属箔52を高分子膜54で両側からコーティングした金属ラミネートフィルムを利用できる。金属箔52としては例えばアルミ箔を、高分子膜54としてはポリプロピレン等の膜を利用できる。例えば、外側の高分子膜54の材料としては融点の高い高分子、例えば、ポリエチレンテレフタレート(PET)、ポリアミド等が好ましく、内側の高分子膜54の材料としてはポリエチレン(PE)、ポリプロピレン(PP)等が好ましい。 For example, as the exterior body 50, as shown in FIG. 1, a metal laminate film in which a metal foil 52 is coated with a polymer film 54 from both sides can be used. For example, an aluminum foil can be used as the metal foil 52, and a film such as polypropylene can be used as the polymer film 54. For example, the material of the outer polymer film 54 is preferably a polymer having a high melting point, for example, polyethylene terephthalate (PET) or polyamide, and the material of the inner polymer film 54 is polyethylene (PE) or polypropylene (PP). Etc. are preferable.

リード60、62は、アルミ等の導電助剤料から形成されている。そして、公知の方法により、リード60、62を正極集電体22、負極集電体32にそれぞれ溶接し、正極20の正極活物質層24と負極30の保護膜31との間にセパレータ10を挟んだ状態で、電解液と共に外装体50内に挿入し、外装体50の入り口をシールすることで二次電池100が製造される。 The leads 60 and 62 are formed of a conductive additive such as aluminum. Then, the leads 60 and 62 are welded to the positive electrode current collector 22 and the negative electrode current collector 32, respectively, by a known method, and the separator 10 is placed between the positive electrode active material layer 24 of the positive electrode 20 and the protective film 31 of the negative electrode 30. The secondary battery 100 is manufactured by inserting it into the exterior body 50 together with the electrolytic solution in a sandwiched state and sealing the entrance of the exterior body 50.

以下、本開示を実施例により具体的に説明する。実施例1〜27として、下記に記載の通りに正極活物質層を作製し膜質評価を行った。また、二次電池を作製し、正極容量面密度とレート特性比の測定を行った。比較のために、比較例1〜3を作製し、同様に評価を行った。その結果を表3に示す。なお、実施例1〜27および比較例1〜3で用いたフルオロ系共重合体骨格およびペンダント鎖形成化合物としては、それぞれ表1のNo.F−1〜F−2、および表2のNo.M−1〜M−18で示した。 Hereinafter, the present disclosure will be specifically described with reference to Examples. As Examples 1 to 27, a positive electrode active material layer was prepared as described below and the film quality was evaluated. In addition, a secondary battery was manufactured, and the positive electrode capacitance surface density and the rate characteristic ratio were measured. For comparison, Comparative Examples 1 to 3 were prepared and evaluated in the same manner. The results are shown in Table 3. The fluoropolymer skeleton and the pendant chain-forming compound used in Examples 1 to 27 and Comparative Examples 1 to 3 are No. 1 in Table 1, respectively. F-1 to F-2, and No. 1 in Table 2. It is shown by M-1 to M-18.

Figure 2021153029
Figure 2021153029

Figure 2021153029
Figure 2021153029

(実施例1)
[正極バインダーの合成]
フルオロ系共重合体骨格(F−1)を以下のように合成した。
1000rpmの速度で作動するメカニカルスタラーを備えた2リットル反応器内に、500gの純水と0.2gのMETHOCEL(登録商標)K100GR沈殿防止剤を順に導入した。反応器内を減圧してから、窒素で1バールまで加圧し、75容量%のt−アミルパーピバレート/イソドデカン溶液2gを反応器に導入した後、220gのフッ化ビニリデンを導入した。次に、55℃まで徐々に加熱した。さらに、メタクリル酸の10質量%水溶液150mlを添加し、圧力を110バールとして5時間反応した。室温まで冷却後、大気圧に開放し、得られたポリマーを回収した。純水、メタノールで順に洗浄した後、50℃のオーブンで乾燥した(収量208g)。このようにして得られたフルオロ系共重合体骨格は、NMR測定より、98.8モル%のフッ化ビニリデンおよび1.2モル%のメタクリル酸を含有していた。
(Example 1)
[Synthesis of positive electrode binder]
The fluoropolymer skeleton (F-1) was synthesized as follows.
500 g of pure water and 0.2 g of METHOCEL® K100GR anti-precipitation agent were sequentially introduced into a 2 liter reactor equipped with a mechanical stirrer operating at a speed of 1000 rpm. The inside of the reactor was depressurized, the mixture was pressurized to 1 bar with nitrogen, 2 g of a 75% by volume t-amyl perpivalate / isododecane solution was introduced into the reactor, and then 220 g of vinylidene fluoride was introduced. Next, it was gradually heated to 55 ° C. Further, 150 ml of a 10 mass% aqueous solution of methacrylic acid was added, and the reaction was carried out at a pressure of 110 bar for 5 hours. After cooling to room temperature, the mixture was opened to atmospheric pressure and the obtained polymer was recovered. After washing with pure water and methanol in this order, the mixture was dried in an oven at 50 ° C. (yield 208 g). The fluoropolymer skeleton thus obtained contained 98.8 mol% vinylidene fluoride and 1.2 mol% methacrylic acid as measured by NMR measurement.

次に、得られたフルオロ系共重合体骨格(F−1)とペンダント鎖形成化合物(M−2)との反応を行った。20gのF−1と、2.0gのM−2を100mlのN−メチル−2−ピロリドンに溶解し、さらに触媒として0.15gのトリフェニルホスフィンを添加した。これを80℃で2時間反応させた。反応終了後、反応液を1リットルのメタノールに滴下し、析出したポリマー成分を回収した。さらに2回、メタノールで洗浄した。得られたポリマー成分を60℃のオーブンで乾燥した(収量19.8g)。 Next, the obtained fluoropolymer skeleton (F-1) was reacted with the pendant chain forming compound (M-2). 20 g of F-1 and 2.0 g of M-2 were dissolved in 100 ml of N-methyl-2-pyrrolidone, and 0.15 g of triphenylphosphine was further added as a catalyst. This was reacted at 80 ° C. for 2 hours. After completion of the reaction, the reaction solution was added dropwise to 1 liter of methanol to recover the precipitated polymer component. It was washed with methanol twice more. The obtained polymer component was dried in an oven at 60 ° C. (yield 19.8 g).

1H−NMRより、ポリマー成分のフルオロ系共重合体骨格の−CH−部分(約2.5および3ppm)と、ペンダント鎖形成化合物由来の約3.5〜3.6ppmのオキシアルキレン繰り返し単位に関係するシグナルが観測されたことにより、フルオロ系共重合体骨格に対しペンダント鎖が導入されていることを確認した。 From 1H-NMR, the −CH 2 − portion (about 2.5 and 3 ppm) of the fluoropolymer skeleton of the polymer component and the oxyalkylene repeating unit of about 3.5 to 3.6 ppm derived from the pendant chain forming compound were obtained. By observing the related signals, it was confirmed that the pendant chain was introduced into the fluoropolymer skeleton.

正極バインダー中の原子量比率(フッ素原子数/酸素原子数)は、XPS表面分析装置を用いて測定することができる。XPS表面分析装置としては、いかなる機種も使用することができるが、本実施例においてはVGサイエンティフィック社製のESCALAB−200Rを用いた。なお、(フッ素原子数/酸素原子数)は45であった。 The atomic weight ratio (number of fluorine atoms / number of oxygen atoms) in the positive electrode binder can be measured using an XPS surface analyzer. Any model can be used as the XPS surface analyzer, but in this embodiment, ESCALAB-200R manufactured by VG Scientific Co., Ltd. was used. The (number of fluorine atoms / number of oxygen atoms) was 45.

[正極活物質層および正極の作製]
正極活物質として硫黄変性ポリアクリロニトリル(商品名SPAN(登録商標),ADEKA製)90質量%、正極導電助剤としてケッチェンブラック5質量%、および上記の正極バインダー5質量%をN−メチル−2−ピロリドンに分散させることで、塗工液を調整した。塗工液中の全固形分濃度は35質量%とした。次いで、塗工液を正極集電体であるアルミニウム箔上に450μmのギャップを有するドクターブレードで塗工し、100℃で2時間真空乾燥させることで、正極活物質層24を形成した。乾燥後の正極活物質層の厚さを接触式膜厚計で測定したところ、163μmであった。
[Preparation of positive electrode active material layer and positive electrode]
90% by mass of sulfur-modified polyacrylonitrile (trade name: SPAN (registered trademark), manufactured by ADEKA) as the positive electrode active material, 5% by mass of Ketjen Black as the positive electrode conductive aid, and 5% by mass of the above positive electrode binder as N-methyl-2. -The coating solution was adjusted by dispersing in pyrrolidone. The total solid content concentration in the coating liquid was 35% by mass. Next, the coating liquid was applied onto an aluminum foil which is a positive electrode current collector with a doctor blade having a gap of 450 μm, and vacuum dried at 100 ° C. for 2 hours to form a positive electrode active material layer 24. The thickness of the positive electrode active material layer after drying was measured with a contact film thickness meter and found to be 163 μm.

[膜質評価]
正極活物質層24の様子を目視で観察し、クラックや正極集電体からの剥離が無い場合は〇、若干のクラックは見られるが正極集電体からの剥離が無い場合は△、クラックや正極集電体からの剥離がある場合は×と評価した。結果を表3に示す。
[Membrane quality evaluation]
Visually observe the state of the positive electrode active material layer 24, and if there are no cracks or peeling from the positive electrode current collector, 〇, if some cracks are seen but there is no peeling from the positive electrode current collector, △, cracks or When there was peeling from the positive electrode current collector, it was evaluated as x. The results are shown in Table 3.

[負極の作製]
厚さ10μmの銅箔上に厚さ20μmのリチウム箔を圧着し、これから、φ13サイズの負極30を作製した。
[Preparation of negative electrode]
A lithium foil having a thickness of 20 μm was crimped onto a copper foil having a thickness of 10 μm to prepare a φ13 size negative electrode 30.

[電解液の調整]
ジメチルカーボネート、及びフッ素化エーテルとして1,1,2,2−テトラフルオロエチル2,2,3,3−テトラフルオロプロピルエーテルを80:20の体積比で混合した溶媒に、リチウム塩としてLiN(SOF)を4.2mol/Lの濃度となるように溶解することで、電解液を調整した。
[Adjustment of electrolyte]
LiN (SO) as a lithium salt in a solvent obtained by mixing dimethyl carbonate and 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether as a fluorinated ether in a volume ratio of 80:20. 2 F) The electrolytic solution was adjusted by dissolving 2 to a concentration of 4.2 mol / L.

[二次電池の作製]
厚さ13μmのポリプロピレンセパレータを準備し、φ15サイズのセパレータ10を作製した。正極20、セパレータ10、負極30の順に重ね、コインセルの外装体に載置した。さらに上記電解液を添加して封口し、二次電池100を作製した。
[Making secondary batteries]
A polypropylene separator having a thickness of 13 μm was prepared, and a separator 10 having a size of φ15 was prepared. The positive electrode 20, the separator 10, and the negative electrode 30 were stacked in this order and placed on the outer body of the coin cell. Further, the above electrolytic solution was added and sealed to prepare a secondary battery 100.

[正極容量面密度測定]
正極容量面密度の測定は、以下に示す手順により行った。25℃において、0.1Cに相当する定電流で、終止電圧1.0Vまで放電し、その後0.1Cに相当する定電流で3.0Vまで充電した。さらに、0.1Cに相当する定電流で、終止電圧1.0Vまで放電し、その時の放電容量(0.1Cでの放電容量)を正極面積で除することで正極容量面密度(mAh/cm)を算出した。結果を表3に示す。
[レート特性比測定]
レート特性比の測定は、以下に示す手順により行った。正極容量面密度の測定後、再度0.1Cに相当する定電流で3.0Vまで充電した。さらに、1.0Cに相当する定電流で、終止電圧1.0Vまで放電し、その時の放電容量を1.0Cでの放電容量とした。1.0Cでの放電容量を0.1Cでの放電容量で除することでレート特性比を算出した。値としては、1に近いほど好ましい。結果を表3に示す。
[Measurement of positive electrode capacitance surface density]
The positive electrode capacitance surface density was measured by the procedure shown below. At 25 ° C., the battery was discharged to a final voltage of 1.0 V with a constant current corresponding to 0.1 C, and then charged to 3.0 V with a constant current corresponding to 0.1 C. Further, the discharge is performed to a final voltage of 1.0 V with a constant current corresponding to 0.1 C, and the discharge capacity at that time (discharge capacity at 0.1 C) is divided by the positive electrode area to obtain the positive electrode capacitance surface density (mAh / cm). 2 ) was calculated. The results are shown in Table 3.
[Rate characteristic ratio measurement]
The rate characteristic ratio was measured according to the procedure shown below. After measuring the positive electrode capacitance surface density, the battery was charged again to 3.0 V with a constant current corresponding to 0.1 C. Further, the battery was discharged to a final voltage of 1.0 V with a constant current corresponding to 1.0 C, and the discharge capacity at that time was defined as the discharge capacity at 1.0 C. The rate characteristic ratio was calculated by dividing the discharge capacity at 1.0 C by the discharge capacity at 0.1 C. As the value, the closer it is to 1, the more preferable. The results are shown in Table 3.

(実施例2)
ペンダント鎖形成化合物をM−3と変更する以外は実施例1と同様に行った。
(Example 2)
The procedure was the same as in Example 1 except that the pendant chain forming compound was changed to M-3.

(実施例3)
フルオロ系共重合体骨格の合成において、メタクリル酸をヒドロキシエチルアクリレートに変更し、ペンダント鎖形成化合物をM−6と変更する以外は実施例1と同様に行った。
(Example 3)
In the synthesis of the fluoropolymer skeleton, the same procedure as in Example 1 was carried out except that the methacrylic acid was changed to hydroxyethyl acrylate and the pendant chain forming compound was changed to M-6.

(実施例4)
ペンダント鎖形成化合物をM−7と変更する以外は実施例3と同様に行った。
(Example 4)
The procedure was the same as in Example 3 except that the pendant chain forming compound was changed to M-7.

(実施例5)
ペンダント鎖形成化合物をM−4と変更する以外は実施例1と同様に行った。
(Example 5)
The procedure was the same as in Example 1 except that the pendant chain forming compound was changed to M-4.

(実施例6)
ペンダント鎖形成化合物をM−8と変更する以外は実施例3と同様に行った。
(Example 6)
The procedure was the same as in Example 3 except that the pendant chain forming compound was changed to M-8.

(実施例7)
ペンダント鎖形成化合物をM−10に変更し、フルオロ系共重合体骨格(F−1)とM−10とを反応させる際の触媒をトリヘキシルアミンに変更する以外は実施例1と同様に行った。
(Example 7)
The same procedure as in Example 1 was carried out except that the pendant chain forming compound was changed to M-10 and the catalyst for reacting the fluoropolymer skeleton (F-1) with M-10 was changed to trihexylamine. rice field.

(実施例8)
ペンダント鎖形成化合物をM−11に変更する以外は実施例7と同様に行った。
(Example 8)
The procedure was the same as in Example 7 except that the pendant chain forming compound was changed to M-11.

(実施例9)
ペンダント鎖形成化合物をM−12に変更する以外は実施例7と同様に行った。
(Example 9)
The procedure was the same as in Example 7 except that the pendant chain forming compound was changed to M-12.

(実施例10)
ペンダント鎖形成化合物をM−13に変更する以外は実施例7と同様に行った。
(Example 10)
The procedure was the same as in Example 7 except that the pendant chain forming compound was changed to M-13.

(実施例11)
ペンダント鎖形成化合物をM−14に変更する以外は実施例1と同様に行った。
(Example 11)
The procedure was the same as in Example 1 except that the pendant chain forming compound was changed to M-14.

(実施例12)
ペンダント鎖形成化合物をM−15に変更する以外は実施例1と同様に行った。
(Example 12)
The procedure was the same as in Example 1 except that the pendant chain forming compound was changed to M-15.

(実施例13)
ペンダント鎖形成化合物をM−16に変更する以外は実施例7と同様に行った。
(Example 13)
The procedure was the same as in Example 7 except that the pendant chain forming compound was changed to M-16.

(実施例14)
ペンダント鎖形成化合物をM−17に変更する以外は実施例7と同様に行った。
(Example 14)
The procedure was the same as in Example 7 except that the pendant chain forming compound was changed to M-17.

(実施例15)
ペンダント鎖形成化合物をM−18に変更する以外は実施例7と同様に行った。
(Example 15)
The procedure was the same as in Example 7 except that the pendant chain forming compound was changed to M-18.

(実施例16)
正極活物質および正極の作製を以下に示す方法に変更する以外は、実施例1と同様に行った。結果を表3に示す。
(Example 16)
The same procedure as in Example 1 was carried out except that the positive electrode active material and the positive electrode were prepared by the methods shown below. The results are shown in Table 3.

[正極活物質層および正極の作製]
正極活物質として以下のようにポリ(カーボンジサルファイド)を合成した。1.7gのナトリウム(パラフィン中50%)をヘキサンで洗った。このナトリウムを50mlのDMSO中に加え、ナトリウムが溶解するまで撹拌した。次にDMSO中に同モルの二硫化炭素を滴加し、窒素雰囲気中で48時間還流加熱した。ナトリウムジカーボンジサルファイド塩を水に溶解し、6NのHClで酸性にしたところ暗褐色の沈澱が生じた。反応混合物を室温で24時間撹拌した。次に溶液をその元の容量の1/4まで濃縮した。次に沈澱を分離し、水及びアセトンで洗浄し、得られた固体を24時間50℃で真空乾燥した。
[Preparation of positive electrode active material layer and positive electrode]
Poly (carbon disulfide) was synthesized as the positive electrode active material as follows. 1.7 g of sodium (50% in paraffin) was washed with hexane. The sodium was added to 50 ml DMSO and stirred until the sodium was dissolved. Next, the same mole of carbon disulfide was added dropwise to DMSO, and the mixture was reflux-heated in a nitrogen atmosphere for 48 hours. When the sodium dicarbon disulfide salt was dissolved in water and acidified with 6N HCl, a dark brown precipitate was formed. The reaction mixture was stirred at room temperature for 24 hours. The solution was then concentrated to 1/4 of its original volume. The precipitate was then separated, washed with water and acetone, and the resulting solid was vacuum dried at 50 ° C. for 24 hours.

次に、上記の正極活物質を85質量%、正極導電助剤としてケッチェンブラック5質量%、および実施例1で用いた正極バインダー10質量%をN−メチル−2−ピロリドンに分散させることで、塗工液を調整した。塗工液中の全固形分濃度は35質量%とした。次いで、塗工液を正極集電体であるアルミニウム箔上に500μmのギャップを有するドクターブレードで塗工し、100℃で2時間真空乾燥させることで、正極活物質層24を形成した。これから、φ12サイズの正極20を作製した。 Next, 85% by mass of the above positive electrode active material, 5% by mass of Ketjen Black as a positive electrode conductive auxiliary agent, and 10% by mass of the positive electrode binder used in Example 1 were dispersed in N-methyl-2-pyrrolidone. , The coating liquid was adjusted. The total solid content concentration in the coating liquid was 35% by mass. Next, the coating liquid was applied onto an aluminum foil which is a positive electrode current collector with a doctor blade having a gap of 500 μm, and vacuum dried at 100 ° C. for 2 hours to form a positive electrode active material layer 24. From this, a φ12 size positive electrode 20 was produced.

(実施例17)
正極活物質を以下に示すテトラチオナフタレン重合体に変更する以外は、実施例16と同様に行った。結果を表3に示す。
(Example 17)
The same procedure as in Example 16 was carried out except that the positive electrode active material was changed to the tetrathionaphthalene polymer shown below. The results are shown in Table 3.

[正極活物質の合成]
正極活物質として以下のようにテトラチオナフタレン重合体を合成した。オクタクロロナフタレン15gと硫黄6gを200mlフラスコに入れ、窒素気流下で310℃まで昇温した。310℃で約20分間保持した後、放冷した。室温まで冷却した後、二硫化炭素での還流および洗浄を2度繰り返した。ろ過後、真空乾燥を行った。得られた固体を1.1gと硫黄0.27gと炭酸ナトリウム0.85gを粉砕混合し、耐熱ガラス管に入れた。この管内を、真空ポンプを用いて減圧し、そのまま、バーナーで封入して反応管とした。この封管にリボンヒーターを巻き付けて、320℃まで昇温し、12時間経過後、放冷した。封管内の黒褐色粉末を、蒸留水、アセトン、熱DMFで、ろ液が着色しなくなるまで、還流および洗浄を繰り返した。ろ過後、真空乾燥を行い、テトラチオナフタレン重合体を得た。
[Synthesis of positive electrode active material]
A tetrathionaphthalene polymer was synthesized as a positive electrode active material as follows. 15 g of octachloronaphthalene and 6 g of sulfur were placed in a 200 ml flask, and the temperature was raised to 310 ° C. under a nitrogen stream. After holding at 310 ° C. for about 20 minutes, it was allowed to cool. After cooling to room temperature, refluxing and washing with carbon disulfide were repeated twice. After filtration, vacuum drying was performed. 1.1 g of the obtained solid, 0.27 g of sulfur and 0.85 g of sodium carbonate were pulverized and mixed, and placed in a heat-resistant glass tube. The inside of this tube was depressurized using a vacuum pump and then sealed with a burner as it was to prepare a reaction tube. A ribbon heater was wrapped around this sealed tube, the temperature was raised to 320 ° C., and after 12 hours, the mixture was allowed to cool. The black-brown powder in the sealed tube was refluxed and washed with distilled water, acetone, and hot DMF until the filtrate was no longer colored. After filtration, vacuum drying was performed to obtain a tetrathionaphthalene polymer.

(実施例18)
正極活物質を実施例1で用いた硫黄変性ポリアクリロニトリルに変更し、正極バインダーの比率を2質量%、正極活物質の比率を93質量%に変更する以外は、実施例16と同様に行った。結果を表3に示す。
(Example 18)
The same procedure as in Example 16 was carried out except that the positive electrode active material was changed to the sulfur-modified polyacrylonitrile used in Example 1, the ratio of the positive electrode binder was changed to 2% by mass, and the ratio of the positive electrode active material was changed to 93% by mass. .. The results are shown in Table 3.

(実施例19)
正極バインダーの比率を3質量%、正極活物質の比率を92質量%に変更する以外は、実施例18と同様に行った。結果を表3に示す。
(Example 19)
The same procedure as in Example 18 was carried out except that the ratio of the positive electrode binder was changed to 3% by mass and the ratio of the positive electrode active material was changed to 92% by mass. The results are shown in Table 3.

(実施例20)
正極バインダーの比率を10質量%、正極活物質の比率を85質量%に変更する以外は、実施例18と同様に行った。結果を表3に示す。
(Example 20)
The same procedure as in Example 18 was carried out except that the ratio of the positive electrode binder was changed to 10% by mass and the ratio of the positive electrode active material was changed to 85% by mass. The results are shown in Table 3.

(実施例21)
正極バインダーの比率を15質量%、正極活物質の比率を80質量%に変更する以外は、実施例18と同様に行った。結果を表3に示す。
(Example 21)
The same procedure as in Example 18 was carried out except that the ratio of the positive electrode binder was changed to 15% by mass and the ratio of the positive electrode active material was changed to 80% by mass. The results are shown in Table 3.

(実施例22)
正極バインダーの比率を18質量%、正極活物質の比率を77質量%に変更する以外は、実施例18と同様に行った。結果を表3に示す。
(Example 22)
The same procedure as in Example 18 was carried out except that the ratio of the positive electrode binder was changed to 18% by mass and the ratio of the positive electrode active material was changed to 77% by mass. The results are shown in Table 3.

(実施例23)
塗工液を正極集電体であるアルミニウム箔上に塗工する際のドクターブレードのギャップを420μmに変更する以外は、実施例20と同様に行った。結果を表3に示す。
(Example 23)
The procedure was the same as in Example 20 except that the gap of the doctor blade when the coating liquid was applied onto the aluminum foil which is the positive electrode current collector was changed to 420 μm. The results are shown in Table 3.

(実施例24)
塗工液を正極集電体であるアルミニウム箔上に塗工する際のドクターブレードのギャップを450μmに変更する以外は、実施例23と同様に行った。結果を表3に示す。
(Example 24)
The same procedure as in Example 23 was carried out except that the gap of the doctor blade when the coating liquid was applied onto the aluminum foil which is the positive electrode current collector was changed to 450 μm. The results are shown in Table 3.

(実施例25)
塗工液を正極集電体であるアルミニウム箔上に塗工する際のドクターブレードのギャップを600μmに変更する以外は、実施例23と同様に行った。結果を表3に示す。
(Example 25)
The same procedure as in Example 23 was carried out except that the gap of the doctor blade when the coating liquid was applied onto the aluminum foil which is the positive electrode current collector was changed to 600 μm. The results are shown in Table 3.

(実施例26)
塗工液を正極集電体であるアルミニウム箔上に塗工する際のドクターブレードのギャップを670μmに変更する以外は、実施例23と同様に行った。結果を表3に示す。
(Example 26)
The same procedure as in Example 23 was carried out except that the gap of the doctor blade when the coating liquid was applied onto the aluminum foil which is the positive electrode current collector was changed to 670 μm. The results are shown in Table 3.

(実施例27)
塗工液を正極集電体であるアルミニウム箔上に塗工する際のドクターブレードのギャップを700μmに変更する以外は、実施例23と同様に行った。結果を表3に示す。
(Example 27)
The same procedure as in Example 23 was carried out except that the gap of the doctor blade when the coating liquid was applied onto the aluminum foil which is the positive electrode current collector was changed to 700 μm. The results are shown in Table 3.

(比較例1)
ペンダント鎖形成化合物をM−1と変更する以外は実施例1と同様に行った。結果を表3に示す。
(Comparative Example 1)
The procedure was the same as in Example 1 except that the pendant chain forming compound was changed to M-1. The results are shown in Table 3.

(比較例2)
ペンダント鎖形成化合物をM−5と変更する以外は実施例3と同様に行った。結果を表3に示す。
(Comparative Example 2)
The procedure was the same as in Example 3 except that the pendant chain forming compound was changed to M-5. The results are shown in Table 3.

(比較例3)
ペンダント鎖形成化合物をM−9と変更する以外は実施例3と同様に行った。結果を表3に示す。
(Comparative Example 3)
The procedure was the same as in Example 3 except that the pendant chain forming compound was changed to M-9. The results are shown in Table 3.

Figure 2021153029
Figure 2021153029

実施例1〜27および比較例1〜3の結果より、正極バインダーが、フルオロ系共重合体骨格と、前記骨格に結合されたペンダント鎖とを有し、(フッ素原子数/酸素原子数)を5〜60とすることでクラックや正極集電体からの剥離のない良好な正極活物質層および正極容量面密度とレート特性比が得られることが分かる。 From the results of Examples 1 to 27 and Comparative Examples 1 to 3, the positive electrode binder has a fluoropolymer skeleton and a pendant chain bonded to the skeleton, and has (number of fluorine atoms / number of oxygen atoms). It can be seen that by setting the value to 5 to 60, a good positive electrode active material layer without cracks or peeling from the positive electrode current collector, and a positive electrode capacitance surface density and rate characteristic ratio can be obtained.

10…セパレータ、20…正極、22…正極集電体、24…正極活物質層、30…負極、31…保護膜、32…負極集電体、34…負極活物質層、40…積層体、50…外装体、60,62…リード、100…二次電池 10 ... Separator, 20 ... Positive electrode, 22 ... Positive electrode current collector, 24 ... Positive electrode active material layer, 30 ... Negative electrode, 31 ... Protective film, 32 ... Negative electrode current collector, 34 ... Negative electrode active material layer, 40 ... Laminated body, 50 ... exterior, 60, 62 ... leads, 100 ... secondary battery

Claims (6)

正極活物質と、
正極導電助剤と、
正極バインダーと、を含み、
前記正極活物質は、炭素−硫黄結合を含む活物質を含み、
前記正極バインダーは、フルオロ系共重合体骨格と、前記骨格に結合されたペンダント鎖と、を含み、
前記正極バインダー中の原子量比率(フッ素原子数/酸素原子数)が、5〜60である、正極活物質層。
Positive electrode active material and
Positive electrode conductive auxiliary agent and
Including positive electrode binder,
The positive electrode active material contains an active material containing a carbon-sulfur bond and contains.
The positive electrode binder includes a fluoropolymer skeleton and a pendant chain bonded to the skeleton.
A positive electrode active material layer having an atomic weight ratio (number of fluorine atoms / oxygen atoms) in the positive electrode binder of 5 to 60.
前記正極活物質層中の前記正極バインダー比率が、3〜15質量%である、
請求項1に記載の正極活物質層。
The ratio of the positive electrode binder in the positive electrode active material layer is 3 to 15% by mass.
The positive electrode active material layer according to claim 1.
前記正極活物質層の厚さが151〜300μmである、
請求項1〜2のどちらかに記載の正極活物質層。
The thickness of the positive electrode active material layer is 151 to 300 μm.
The positive electrode active material layer according to any one of claims 1 and 2.
前記正極活物質が硫黄変性ポリアクリロニトリルである、
請求項1〜3の何れか一項に記載の正極活物質層。
The positive electrode active material is sulfur-modified polyacrylonitrile.
The positive electrode active material layer according to any one of claims 1 to 3.
請求項1〜4の何れか一項に記載の正極活物質層と、
正極集電体と、を含む正極。
The positive electrode active material layer according to any one of claims 1 to 4,
Positive electrode current collector and positive electrode including.
請求項5に記載の正極と、
負極と、
セパレータと、
電解液と、を含む二次電池。
The positive electrode according to claim 5 and
With the negative electrode
Separator and
A secondary battery containing an electrolytic solution.
JP2020053510A 2020-03-25 2020-03-25 Positive electrode active material layer, positive electrode and secondary battery using the same Active JP7400580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020053510A JP7400580B2 (en) 2020-03-25 2020-03-25 Positive electrode active material layer, positive electrode and secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020053510A JP7400580B2 (en) 2020-03-25 2020-03-25 Positive electrode active material layer, positive electrode and secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2021153029A true JP2021153029A (en) 2021-09-30
JP7400580B2 JP7400580B2 (en) 2023-12-19

Family

ID=77886648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020053510A Active JP7400580B2 (en) 2020-03-25 2020-03-25 Positive electrode active material layer, positive electrode and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP7400580B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115124686A (en) * 2022-08-31 2022-09-30 拓迪化学(上海)有限公司 Adhesive and insulating adhesive of lithium ion battery and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729599A (en) * 1992-12-17 1995-01-31 Assoc Univ Inc Battery with cathod containing polycarbon disulfide material
JP2005005276A (en) * 2004-08-31 2005-01-06 Sony Corp Nonaqueous electrolyte liquid secondary battery
JP2008066125A (en) * 2006-09-07 2008-03-21 Fuji Heavy Ind Ltd Electrode material, its manufacturing method, and storage battery using it
WO2011129103A1 (en) * 2010-04-16 2011-10-20 株式会社豊田自動織機 Positive electrode for lithium ion secondary battery, and lithium ion secondary battery comprising the positive electrode
JP2012248549A (en) * 2012-09-20 2012-12-13 Toyota Industries Corp Positive electrode for lithium ion secondary battery and manufacturing method thereof
WO2013076958A1 (en) * 2011-11-24 2013-05-30 株式会社豊田自動織機 Positive electrode material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing positive electrode material for nonaqueous electrolyte secondary batteries
JP2019032983A (en) * 2017-08-08 2019-02-28 第一工業製薬株式会社 Electrode material for lithium ion battery, electrode material for lithium ion capacitor, electrode, battery, capacitor, electric apparatus, manufacturing method for electrode material for lithium ion battery, and manufacturing method for electrode material for lithium ion capacitor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729599A (en) * 1992-12-17 1995-01-31 Assoc Univ Inc Battery with cathod containing polycarbon disulfide material
JP2005005276A (en) * 2004-08-31 2005-01-06 Sony Corp Nonaqueous electrolyte liquid secondary battery
JP2008066125A (en) * 2006-09-07 2008-03-21 Fuji Heavy Ind Ltd Electrode material, its manufacturing method, and storage battery using it
WO2011129103A1 (en) * 2010-04-16 2011-10-20 株式会社豊田自動織機 Positive electrode for lithium ion secondary battery, and lithium ion secondary battery comprising the positive electrode
WO2013076958A1 (en) * 2011-11-24 2013-05-30 株式会社豊田自動織機 Positive electrode material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing positive electrode material for nonaqueous electrolyte secondary batteries
JP2012248549A (en) * 2012-09-20 2012-12-13 Toyota Industries Corp Positive electrode for lithium ion secondary battery and manufacturing method thereof
JP2019032983A (en) * 2017-08-08 2019-02-28 第一工業製薬株式会社 Electrode material for lithium ion battery, electrode material for lithium ion capacitor, electrode, battery, capacitor, electric apparatus, manufacturing method for electrode material for lithium ion battery, and manufacturing method for electrode material for lithium ion capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115124686A (en) * 2022-08-31 2022-09-30 拓迪化学(上海)有限公司 Adhesive and insulating adhesive of lithium ion battery and preparation method and application thereof

Also Published As

Publication number Publication date
JP7400580B2 (en) 2023-12-19

Similar Documents

Publication Publication Date Title
KR102303831B1 (en) Polymer, electrolyte comprising the polymer, and lithium secondary battery comprising the electrolyte
JP7245648B2 (en) Electrode-forming composition
CN111433962A (en) Electrolyte for nonaqueous electrolyte battery and nonaqueous electrolyte battery using same
WO2014065246A1 (en) Nonaqueous electrolyte solution for secondary batteries and lithium ion secondary battery
JP5641593B2 (en) Lithium ion battery
JP7046013B2 (en) Flexible battery
CN108292568A (en) Electrochemical apparatus and its manufacturing method
JP7314739B2 (en) lithium secondary battery
JP2018085221A (en) Lithium ion secondary battery
JPWO2015025915A1 (en) Secondary battery
JP6116029B2 (en) Gel electrolyte and polymer secondary battery using the same
WO2016006315A1 (en) Nonaqueous electrolytic solution including ester having 3,3,3-trifluoropropionate group and nonaqueous electrolyte battery using same
JP2009277413A (en) Lithium polymer battery
JP5105807B2 (en) Lithium polymer battery
JP2002203604A (en) Polymer battery and manufacturing method
JP7400580B2 (en) Positive electrode active material layer, positive electrode and secondary battery using the same
JP2013254634A (en) Lithium ion secondary battery manufacturing method, and component for lithium ion secondary battery
JP2010097802A (en) Electrolytic solution
JP6202630B2 (en) Method for manufacturing lithium ion battery
JP5843885B2 (en) Polymer and secondary battery using the same
KR20200032842A (en) Polymer Electrolyte and Method for Preparing the Same
KR102509418B1 (en) Fluoropolymer film
JP6524084B2 (en) Nonaqueous electrolyte secondary battery and nonaqueous electrolyte
JP7099311B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery
JP5896154B2 (en) SOLID ELECTROLYTE FILM FORMING AGENT, ELECTROLYTIC SOLUTION CONTAINING SAME, AND ELECTRIC STORAGE DEVICE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230403

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231120

R150 Certificate of patent or registration of utility model

Ref document number: 7400580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150