WO2013076958A1 - Positive electrode material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing positive electrode material for nonaqueous electrolyte secondary batteries - Google Patents

Positive electrode material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing positive electrode material for nonaqueous electrolyte secondary batteries Download PDF

Info

Publication number
WO2013076958A1
WO2013076958A1 PCT/JP2012/007417 JP2012007417W WO2013076958A1 WO 2013076958 A1 WO2013076958 A1 WO 2013076958A1 JP 2012007417 W JP2012007417 W JP 2012007417W WO 2013076958 A1 WO2013076958 A1 WO 2013076958A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
positive electrode
electrolyte secondary
secondary battery
electrode material
Prior art date
Application number
PCT/JP2012/007417
Other languages
French (fr)
Japanese (ja)
Inventor
一仁 川澄
淳一 丹羽
正孝 仲西
中川 敏
友哉 佐藤
琢寛 幸
敏勝 小島
境 哲男
Original Assignee
株式会社豊田自動織機
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機, 独立行政法人産業技術総合研究所 filed Critical 株式会社豊田自動織機
Priority to JP2013545785A priority Critical patent/JP5754606B2/en
Publication of WO2013076958A1 publication Critical patent/WO2013076958A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/604Polymers containing aliphatic main chain polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries, lithium secondary batteries, sodium secondary batteries and the like.
  • Lithium secondary batteries and lithium ion secondary batteries which are a type of non-aqueous electrolyte secondary battery, are batteries with large charge and discharge capacities, and are mainly used as batteries for portable electronic devices.
  • lithium ion secondary batteries are also expected as batteries for electric vehicles.
  • sodium has a standard redox potential 0.33 V lower and a density about 80% higher than lithium, it is considered that 70-80% performance of a lithium ion secondary battery can be expressed in the whole cell.
  • positive electrode active material of these non-aqueous electrolyte secondary batteries those containing rare metals such as cobalt and nickel are generally used. However, since these metals have low flow rates and are expensive, in recent years, positive electrode active materials using materials that replace these rare metals are being sought.
  • a technology using sulfur as a positive electrode active material of a lithium ion secondary battery is known.
  • sulfur as a positive electrode active material
  • the charge and discharge capacity of the lithium ion secondary battery can be increased.
  • a compound of sulfur and lithium is formed during discharge.
  • the compound of sulfur and lithium is soluble in the non-aqueous electrolyte solution (for example, ethylene carbonate, dimethyl carbonate, etc.) of the lithium ion secondary battery.
  • a lithium ion secondary battery using sulfur as a positive electrode active material has a problem that when charge and discharge are repeated, the elution of the sulfur into the electrolytic solution gradually deteriorates and the battery capacity decreases. That is, a lithium ion secondary battery using sulfur as a positive electrode active material is inferior in cycle characteristics.
  • the inventors of the present invention invented a positive electrode active material obtained by heat-treating a mixture of polyacrylonitrile (PAN) and sulfur as a result of intensive studies (see Patent Document 1).
  • PAN polyacrylonitrile
  • Patent Document 1 a sulfur-based positive electrode active material (hereinafter abbreviated as sulfur-modified PAN) made of PAN and sulfur as a positive electrode active material, the charge / discharge capacity of the lithium ion secondary battery is increased, and the cycle characteristics are also increased. improves.
  • sulfur-modified PAN has a high charge / discharge capacity per mass, it is bulky because the mass density (bulk density) is small. For this reason, in order to produce a battery having high volumetric energy density (for example, 2 times or 3 times the conventional battery ratio), a positive electrode mixture containing sulfur-modified PAN is coated on a current collector to a thickness of 150 ⁇ m or more There is a need to. When the positive electrode mixture is thickly coated in this manner, the electrode surface and the current collector surface are largely separated, which may increase the electrical resistance. If the electrical resistance is excessive, there is a concern that the battery characteristics may be degraded.
  • a positive electrode material containing sulfur-modified PAN and having excellent conductivity is desired.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a positive electrode material for a non-aqueous electrolyte secondary battery which contains sulfur-modified PAN as a positive electrode active material and is excellent in conductivity.
  • sulfur-modified PAN is present in the form of aggregates, and crush the aggregate-like sulfur-modified PAN to obtain small-diameter sulfur-modified PAN particles.
  • the conductive aid By attaching the conductive aid to the surface of the particles, the conductive aid can be highly dispersed in the positive electrode material as compared with the case where the conductive aid is directly attached to the aggregate sulfur-modified PAN. Found out.
  • the manufacturing method of the non-aqueous electrolyte secondary battery of the present invention which solves the above-mentioned subject decomposes a sulfur system positive electrode active material which consists of a carbon frame originating in polyacrylonitrile, the carbon frame and sulfur (S). Crushing process, An auxiliary agent addition step of causing a conductive auxiliary agent to adhere to the surface of the crushed sulfur-based positive electrode active material; And a reaggregation step of reaggregating the sulfur-based positive electrode active material after the auxiliary agent addition step.
  • the positive electrode material for a non-aqueous electrolyte secondary battery of the present invention obtained by such a method is a positive electrode material for a non-aqueous electrolyte secondary battery, Using a carbon skeleton derived from polyacrylonitrile, a sulfur-based positive electrode active material consisting of the carbon skeleton and sulfur (S), and a conductive aid, In the particle size distribution of the sulfur-based positive electrode active material, 50 frequency% or more of the whole particles are particles having a particle diameter of 2 ⁇ m or less.
  • the non-aqueous electrolyte secondary battery of the present invention for solving the above-mentioned problems is characterized in that the positive electrode material for a non-aqueous electrolyte secondary battery of the present invention is contained in the positive electrode.
  • the non-aqueous electrolyte secondary battery of the present invention can be preferably used as a non-aqueous electrolyte secondary battery for vehicles.
  • the positive electrode material for a non-aqueous electrolyte secondary battery of the present invention is simply abbreviated as the positive electrode material of the present invention, and the method for producing a positive electrode material for non-aqueous electrolyte secondary battery of the present invention is simply referred to as the present invention.
  • the sulfur-modified PAN is present in a state of aggregation of many sulfur-modified PAN particles (secondary particles). For this reason, when the conductive aid is directly attached to such aggregate-like sulfur-modified PAN, the conductive aid adheres only to the surface of the aggregate-like sulfur-modified PAN, and the sulfur located at the center of the aggregate The modified PAN particles are largely separated from the conductive aid. For this reason, there is a problem that it is difficult to greatly improve the conductivity of the positive electrode material unless a large amount of the conductive additive is added.
  • the conductive aid is attached to the surface of each sulfur-modified PAN particle by attaching the conductive aid to the sulfur-modified PAN which has been crushed once (that is, broken into fine particles). Adhere to. For this reason, even if the sulfur-modified PAN particles reaggregate, a conductive aid is present inside the aggregate. In other words, the conductive aid is dispersed at a very small distance in the positive electrode material, and the distance between the conductive aid and the sulfur-modified PAN particles located inside the aggregate is small. Therefore, in the positive electrode material of the present invention obtained by such a manufacturing method of the present invention, the conductivity derived from the conductive auxiliary is sufficiently exhibited. That is, according to the manufacturing method of the present invention, a positive electrode material having excellent conductivity can be manufactured.
  • the particle size distribution of the pulverized sulfur-modified PAN 50% or more of all particles are particles having a particle diameter of 2 ⁇ m or less. That is, in the particle size distribution of the sulfur-modified PAN which is a raw material of the positive electrode material of the present invention, 50% by frequency or more of the whole particles are particles having a particle diameter of 2 ⁇ m or less.
  • the conductive auxiliary agent is attached to the small-diameter sulfur-modified PAN particles in this manner, the conductive auxiliary agent is highly dispersed in the positive electrode material. For this reason, the distance from the conductive additive to the center of the sulfur-modified PAN particles is reduced, and the distance between the conductive additives in the positive electrode material is also reduced. If these distances are small, the conductivity of the positive electrode material is necessarily improved, and the increase in electrical resistance can be suppressed even when the positive electrode mixture containing the positive electrode material is thickly coated.
  • FIG. 6 is a graph showing the results of X-ray diffraction of sulfur-modified PAN and sulfur-modified PAN. It is a graph showing the result of having carried out the Raman spectrum analysis of sulfur-modified PAN. It is a graph. It is explanatory drawing which represents typically the reaction apparatus used with the manufacturing method of sulfur-modified PAN of an Example. It is explanatory drawing which represents typically sulfur-modified PAN used by the manufacturing method of the positive electrode material of an Example. It is explanatory drawing which represents typically the sulfur-modified PAN particle
  • the positive electrode active material in the non-aqueous electrolyte secondary battery of the present invention is the above-described sulfur-modified PAN, which comprises a carbon skeleton derived from PAN and sulfur (S).
  • Sulfur-modified PAN is similar to that disclosed in the above-mentioned Patent Document 1.
  • PAN as a material for sulfur-modified PAN is preferably in the form of powder, and the mass average molecular weight is preferably about 10 4 to 3 ⁇ 10 5 .
  • the particle diameter of PAN is preferably about 0.5 to 50 ⁇ m, more preferably about 1 to 10 ⁇ m, as observed by an electron microscope. If the molecular weight and the particle size of PAN are within these ranges, the contact area between PAN and sulfur can be increased, and PAN and sulfur can be reacted with high reliability. Therefore, the elution of sulfur into the electrolyte can be suppressed more reliably.
  • sulfur-modified PAN As the positive electrode active material of the non-aqueous electrolyte secondary battery, the high capacity inherent in sulfur can be maintained, and elution of sulfur into the electrolytic solution can be suppressed, thereby greatly improving cycle characteristics. . It is considered that this is because sulfur is not present as a single substance in sulfur-modified PAN but in a stable state incorporated in the structure of PAN. In the manufacturing method disclosed in Patent Document 1, sulfur is heat-treated together with PAN. When PAN is heated, it is believed that PAN bridges three-dimensionally and forms a condensed ring (mainly a six-membered ring) while closing the ring. For this reason, sulfur is considered to be present in the structure with closed ring PAN.
  • sulfur-modified PAN sulfur is present in a stable state in which it is combined with PAN, or although sulfur is present as a single substance, it is confined in a crosslinked structure when PAN is ring-closed by heating, and It is considered to be in a state where it is difficult to contact, and even if it contacts with the electrolytic solution, the reaction product is difficult to elute. By this, elution of sulfur to the electrolytic solution can be suppressed, and cycle characteristics can be improved.
  • a lithium ion secondary battery having an electrode in which a single inorganic sulfur is used as an active material has a large initial capacity, but when charging and discharging are repeated, soluble Li 2 S x is generated in the electrolytic solution. When this Li 2 S x elutes in the electrolyte, the battery performance represented by the cycle characteristics is rapidly degraded.
  • lithium ion secondary batteries using sulfur-modified PAN have excellent cycle characteristics, and maintain high capacity even after repeated charge and discharge. This is considered to be an effect due to suppression of sulfur desorption from the positive electrode or the negative electrode. That is, in the lithium ion secondary battery using sulfur-modified PAN, it is considered that the contact between sulfur and the electrolytic solution is suppressed.
  • the sulfur used for the sulfur-modified PAN is preferably in powder form.
  • the particle size of sulfur is not particularly limited, but when it is classified using a sieve, those which do not pass through a sieve with a sieve opening of 40 ⁇ m and which have a size within a 150 ⁇ m sieve are preferable. It is more preferable not to pass through a sieve with a sieve opening of 40 ⁇ m and in the size range of passing through a 100 ⁇ m sieve.
  • the compounding ratio of PAN powder to sulfur powder used for sulfur-modified PAN is not particularly limited, but it is preferably 1: 0.5 to 1:10 by mass ratio, 1: 0.5 to 1: 7. It is more preferable to be present, and more preferable to be 1: 2 to 1: 5.
  • Sulfur-modified PAN can be produced by the following method.
  • the mixed raw material which mixed PAN powder and sulfur powder is heated (heat treatment process).
  • the mixed material may be mixed by a general mixing device such as a mortar or a ball mill.
  • a general mixing device such as a mortar or a ball mill.
  • the mixed raw material one obtained by simply mixing sulfur and PAN may be used, but for example, the mixed raw material may be formed into a pellet and used.
  • the mixed raw material may be composed only of PAN and sulfur, or may be blended with a general material (such as a conductive additive) that can be blended in the positive electrode active material.
  • the heat treatment step may be performed in a closed system or an open system, but in order to suppress the dissipation of sulfur vapor, the closed system is preferable.
  • the heat treatment step is not particularly limited as to which atmosphere to carry out, but it is preferable to carry out in an atmosphere which does not prevent the incorporation of sulfur into PAN (for example, an atmosphere containing no hydrogen, a non-oxidative atmosphere).
  • an atmosphere which does not prevent the incorporation of sulfur into PAN for example, an atmosphere containing no hydrogen, a non-oxidative atmosphere.
  • hydrogen when hydrogen is present in the atmosphere, sulfur in the reaction system reacts with hydrogen to form hydrogen sulfide, which may result in loss of sulfur in the reaction system.
  • the non-oxidative atmosphere referred to here includes a reduced pressure state where the oxygen concentration is low to such an extent that the oxidation reaction does not proceed, an inert gas atmosphere such as nitrogen and argon, a sulfur gas atmosphere and the like.
  • the mixed raw material is put in a container in which the sealing property is maintained to the extent that the sulfur vapor does not dissipate, and the pressure in the container is reduced.
  • heating may be performed in an inert gas atmosphere.
  • you may heat in the state vacuum-packed with the material (for example, aluminum laminate film etc.) which is hard to react with a sulfur raw material.
  • the packaged raw material is placed in a pressure container such as an autoclave containing water and heated so that the packaging material is not damaged by the generated sulfur vapor, and the generated steam is added from the outside of the packaging material It is preferable to press.
  • the sulfur vapor prevents the packaging material from being blown and broken.
  • the heating time of the mixed raw material in the heat treatment step may be appropriately set according to the heating temperature, and is not particularly limited.
  • the above-described preferable heating temperature may be a temperature at which incorporation of sulfur into PAN proceeds and the conductive material is not deteriorated.
  • the heating temperature is preferably 250 or more and 500 ° C. or less, more preferably 250 or more and 400 ° C. or less, and still more preferably 250 or more and 300 ° C. or less.
  • sulfur is preferably refluxed.
  • the mixed material may be heated so that a part of the mixed material becomes a gas and a part becomes a liquid.
  • the temperature of the mixed raw material may be a temperature higher than the temperature at which sulfur is vaporized.
  • vaporization refers to phase change of sulfur from liquid or solid to gas, which may be boiling, evaporation or sublimation.
  • the melting point of alpha sulfur is 112.8 ° C
  • the melting point of beta sulfur is 119.6 ° C
  • gamma sulfur monoclinic sulfur
  • the melting point of is 106.8 ° C.
  • the boiling point of sulfur is 444.7.degree.
  • the object to be treated may be used as the sulfur-modified PAN as it is.
  • the target after the single sulfur removing step may be used as the sulfur-modified PAN.
  • the time for the single sulfur removal step is not particularly limited, but is preferably about 1 to 6 hours.
  • Sulfur-modified PAN contains carbon, nitrogen, and sulfur as a result of elemental analysis, and may further contain small amounts of oxygen and hydrogen.
  • FIG. 1 As a result of X-ray diffraction of sulfur-modified PAN with CuK ⁇ rays, only a broad peak having a peak position near 25 ° was confirmed in the diffraction angle (2 ⁇ ) range of 20 ° to 30 °.
  • the for reference X-ray diffraction measurement was performed using a powder X-ray diffractometer (manufactured by MAC Science, model number: M06XCE) using a CuK ⁇ ray. The measurement conditions were: voltage: 40 kV, current: 100 mA, scan rate: 4 ° / min, sampling: 0.02 °, number of integrations: 1 measurement range: diffraction angle (2 ⁇ ) 10 ° to 60 °.
  • the mass loss by thermogravimetric analysis at the time of heating sulfur-modified PAN from a room temperature to 900 ° C. at a temperature rising rate of 20 ° C./min is 10% or less at 400 ° C.
  • a mass loss is recognized from around 120 ° C., and at 200 ° C. or more, a large mass loss due to the disappearance of sulfur is recognized. That is, in sulfur-modified PAN, it is considered that sulfur is not present as a simple substance, but is present in the state of being taken up in the ring-closed PAN.
  • FIG. 2 An example of a Raman spectrum of sulfur-modified PAN is shown in FIG.
  • the Raman spectrum shown in FIG. 2 there are major peak near 1331cm -1 of Raman shift, and, 1548cm -1 in the range of 200cm -1 ⁇ 1800cm -1, 939cm -1 , 479cm -1, 381cm -1, A peak is present around 317 cm -1 .
  • the peak of the above-mentioned Raman shift is observed at the same position even when the ratio of elemental sulfur to PAN is changed. Therefore, these peaks are characteristic of sulfur-modified PAN.
  • Each peak mentioned above exists in the range of about ⁇ 8 cm ⁇ 1 centered on the peak position mentioned above.
  • a "main peak” refers to the peak which peak height becomes the largest among all the peaks which appeared in the Raman spectrum.
  • the peaks of the Raman spectrum may change in number or the position of the peak top may be shifted depending on the wavelength of incident light or the difference in resolution. Therefore, when the Raman spectrum of the positive electrode of the present invention using sulfur-modified PAN as the positive electrode active material is measured, the same peak as the above peak or a peak slightly different in number or peak top position from the above peak is confirmed Ru.
  • the positive electrode material for a non-aqueous electrolyte secondary battery of the present invention contains a sulfur-modified PAN as a positive electrode active material and a conductive aid.
  • the sulfur-modified PAN has been described above.
  • VGCF vapor grown carbon fiber
  • CB carbon black
  • AB acetylene black
  • KB ketjen black
  • positive electrode such as aluminum or titanium
  • fine powders of metals stable at potentials are exemplified.
  • the particle diameter of the conductive aid is preferably 0.005 ⁇ m to 1 ⁇ m, and more preferably 0.01 ⁇ m to 0.1 ⁇ m.
  • the manufacturing method of the present invention for manufacturing the positive electrode material described above comprises a crushing step, an auxiliary agent adding step, and a re-aggregation step.
  • the crushing step is a step of crushing the sulfur-modified PAN.
  • the sulfur-modified PAN before crushing is generally present as an aggregate having a particle diameter (median diameter) of about 10 ⁇ m.
  • the aggregate is crushed to obtain a sulfur-modified PAN having a small diameter.
  • the crushing step may be carried out by any known method as long as it is possible to loosen the aggregated sulfur-modified PAN.
  • an apparatus such as a ball mill, bead mill, air jet mill, in-liquid collision apparatus or the like may be used, or grinding may be performed using a mortar or the like.
  • the sulfur-modified PAN particles after crushing should be "50 frequency% or more of the total particles have a particle diameter of 2 ⁇ m or less".
  • the particle size of the sulfur-modified PAN particles can be measured by a laser diffraction scattering particle size distribution measuring apparatus.
  • the median diameter of the sulfur-modified PAN particles as measured by a laser diffraction / scattering particle size distribution measuring apparatus is preferably 4 ⁇ m or less, and more preferably 2 ⁇ m or less.
  • the crushing step may be carried out in the atmosphere or under an inert gas atmosphere or in a liquid medium, but in order to prevent reaggregation of the broken sulfur-modified PAN particles, it is carried out in a liquid medium Is preferred.
  • a dispersing agent such as Tween 20 (polyoxyethylene sorbitan monolaurate) may also be used.
  • As the liquid medium a known medium such as water or an organic solvent may be used.
  • the auxiliary agent addition step is a step of adhering a conductive auxiliary agent to the surface of the crushed sulfur-modified PAN.
  • the conductive auxiliary may be attached to the surface of the sulfur-modified PAN particles by a known method.
  • the sulfur-modified PAN particles and the conductive auxiliary may be simply mixed, or the sulfur-modified PAN may be used.
  • the conductive aid may be bound by a binder resin or the like. In any case, it is preferable to carry out in the liquid medium in the same manner as the crushing step in order to attach the conductive aid to the surface while preventing reaggregation of the crushed sulfur-modified PAN particles.
  • an auxiliary agent addition process may be performed after the crushing process mentioned above, and you may carry out simultaneously with the crushing process.
  • only a part of the conductive additive may be added at the time of the crushing step, and the remaining part may be added at the time of preparation of the positive electrode mixture described later.
  • the reaggregation step is a step of reaggregating the sulfur-modified PAN (i.e., the sulfur-modified PAN to which the conductive auxiliary is attached) after the above-described auxiliary agent addition step.
  • the conductive auxiliary adheres to the surface of the sulfur-modified PAN particles in the auxiliary addition step, in the aggregate obtained in the reaggregation step, the conductive auxiliary is present not only on the surface but also inside .
  • the particle size of the aggregate obtained in the reaggregation step is not particularly limited, but is preferably about 1 to 10 ⁇ m (median diameter). Moreover, it is preferable that the particle size of the aggregate obtained in a reaggregation process is uniform.
  • the sulfur-modified PAN In order to obtain aggregates of uniform or substantially uniform particle size, it is desirable to reaggregate the sulfur-modified PAN by a method such as spray drying, fluidized bed granulation, or the like that can control the particle size of the aggregates. If the method of crushing in a liquid medium and simultaneously performing drying and aggregation such as spray drying in the reaggregation step is not used, the sulfur modification after the auxiliary agent addition step before the reaggregation step A step of drying the PAN is required. This drying step may be a known method according to the liquid medium such as heat drying, vacuum drying and the like.
  • Non-aqueous electrolyte secondary battery (Non-aqueous electrolyte secondary battery)
  • the configuration of the non-aqueous electrolyte secondary battery of the present invention will be described.
  • the positive electrode in the non-aqueous electrolyte secondary battery of the present invention can have the same structure as that of a general non-aqueous electrolyte secondary battery positive electrode except for the positive electrode material.
  • the positive electrode in the non-aqueous electrolyte secondary battery of the present invention can be manufactured by applying a positive electrode mixture prepared by mixing the above-described positive electrode material, a binder, and a solvent to a current collector.
  • a mixture of the above-mentioned positive electrode material and binder is kneaded with a mortar or press and made into a film, and the film-like mixture is pressure-bonded to a current collector with a press or the like to produce a positive electrode. You can also
  • polyvinylidene fluoride PolyVinylidene DiFluoride: PVDF
  • PVDF polytetrafluoroethylene
  • SBR styrene-butadiene rubber
  • PI polyimide
  • PAI polyamidoimide
  • CMC carboxymethylcellulose
  • PVC vinyl (PVC), methacrylic resin (PMA), polyacrylonitrile (PAN), modified polyphenylene oxide (PPO), polyethylene oxide (PEO), polyethylene (PE), polypropylene (PP) and the like.
  • the solvent examples include N-methyl-2-pyrrolidone, N, N-dimethylformaldehyde, alcohol, water and the like.
  • These conductive aids, binders and solvents may be used in combination of two or more. There are no particular limitations on the amounts of these materials, but it is preferable to blend, for example, about 5 to 100 parts by mass of the conductive additive and 5 to 20 parts by mass of the binder with respect to 100 parts by mass of the sulfur-modified PAN.
  • What is generally used for the positive electrode for nonaqueous electrolyte secondary batteries may be used as a collector.
  • a current collector aluminum foil, aluminum mesh, punching aluminum sheet, aluminum expanded sheet, stainless steel foil, stainless steel mesh, punching stainless steel sheet, stainless steel expanded sheet, foamed nickel, nickel non-woven fabric, copper foil, copper mesh , Punched copper sheet, copper expanded sheet, titanium foil, titanium mesh, carbon paper (non-woven fabric / woven fabric) and the like.
  • a carbon paper current collector made of carbon having a high degree of graphitization does not contain hydrogen and has low reactivity with sulfur, so it is suitable as a current collector for a positive electrode in the non-aqueous electrolyte secondary battery of the present invention. It is.
  • various kinds of pitch that is, by-products such as petroleum, coal, coal tar, etc.
  • an element compound capable of absorbing and releasing lithium ions and having an element capable of alloying with lithium and / or an element capable of alloying with lithium are preferably used.
  • an element compound which is capable of storing and releasing sodium ions and which has an element capable of alloying with sodium and / or an element capable of alloying with atrium is preferably used.
  • elements that can be alloyed with lithium Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si, At least one selected from Ge, Sn, Pb, Sb, and Bi can be mentioned.
  • silicon (Si) or tin (Sn) is particularly preferable to use.
  • the elemental compound having an element capable of alloying reaction with lithium is preferably a silicon compound or a tin compound.
  • the silicon compound include SiO x (0.5 ⁇ x ⁇ 1.5).
  • tin compounds include tin alloys (Cu-Sn alloys, Co-Sn alloys, etc.), tin alloys (Cu-Sn alloys, Co-Sn alloys, etc.), and the like.
  • known carbon-based materials such as metallic lithium, metallic sodium and graphite can also be used.
  • metallic lithium is used as the negative electrode active material
  • the non-aqueous electrolyte secondary battery of the present invention is a lithium secondary battery.
  • metallic sodium is used as the negative electrode active material
  • the non-aqueous electrolyte secondary battery of the present invention is a sodium secondary battery (so-called sodium-sulfur battery).
  • a material containing no lithium for example, a carbon-based material, a silicon-based material, an alloy-based material or the like among the above-mentioned negative electrode materials is used as the negative electrode material
  • short circuit between positive and negative electrodes due to generation of dendrite hardly occurs It is advantageous in point.
  • these negative electrode materials not containing lithium are used in combination with the positive electrode material of the present invention, neither the positive electrode nor the negative electrode contains lithium. Therefore, a lithium pre-doping process is required in which lithium is inserted in advance into one or both of the negative electrode and the positive electrode.
  • a known method may be used as the lithium pre-doping method.
  • the negative electrode when the negative electrode is doped with lithium, a method of inserting lithium by an electrolytic doping method in which metal lithium is used as a counter electrode to form a half cell and electrochemically dopes lithium, or a metal lithium foil is attached to an electrode After that, there is a method of inserting lithium by a sticking pre-doping method of leaving in an electrolytic solution and doping using diffusion of lithium to the electrode.
  • the above-described electrolytic doping method can be used also in the case of pre-doping lithium to the positive electrode.
  • the negative electrode material not containing lithium particularly, a silicon-based material which is a high capacity negative electrode material is preferable, and among them, thin film silicon which has a thin electrode thickness and is advantageous in capacity per volume is more preferable.
  • aluminum foil, aluminum mesh, punching aluminum sheet, aluminum expanded sheet, stainless steel foil, stainless steel mesh, punching stainless steel sheet, stainless steel expanded sheet, foamed nickel, nickel non-woven fabric, copper foil examples thereof include copper mesh, punched copper sheet, copper expanded sheet, titanium foil, titanium mesh, carbon paper (nonwoven fabric / woven fabric) and the like.
  • ⁇ Electrolytes As an electrolyte used for a non-aqueous electrolyte secondary battery, what melt
  • the organic solvent it is preferable to use at least one selected from non-aqueous solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dimethyl ether, isopropyl methyl carbonate, vinylene carbonate, ⁇ -butyrolactone and acetonitrile. .
  • LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiI, LiClO 4 or the like can be used as the electrolyte.
  • sodium it is selected from NaPF 6 , NaBF 4 , NaClO 4 , NaAsF 6 , NaSbF 6 , NaCF 3 SO 3 , NaN (SO 2 CF 3 ) 2 , lower fatty acid sodium salt, NaAlCl 4 etc. One or more of these can be used.
  • LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , NaPF 6 , NaBF 4 , NaAsF 6 , NaSbF 6 , NaSbF 6 , NaCF 3 SO 3 , NaN (SO 2 CF 3 ) 2 etc. contain fluorine (F) Are preferably used.
  • the concentration of the electrolyte may be about 0.5 mol / L to 1.7 mol / L.
  • the electrolyte is not limited to liquid, and may be solid (for example, polymer gel).
  • the non-aqueous electrolyte secondary battery may include members such as a separator in addition to the above-described negative electrode, positive electrode, and electrolyte.
  • the separator is interposed between the positive electrode and the negative electrode, allows movement of ions between the positive electrode and the negative electrode, and prevents an internal short circuit between the positive electrode and the negative electrode. If the non-aqueous electrolyte secondary battery is a closed type, the separator is also required to have a function of holding the electrolytic solution.
  • the separator it is preferable to use a thin, microporous or non-woven membrane made of polyethylene, polypropylene, PAN, aramid, polyimide, cellulose, glass or the like.
  • the shape of the non-aqueous electrolyte secondary battery is not particularly limited, and various shapes such as a cylindrical shape, a laminated shape, and a coin shape can be used.
  • various shapes such as a cylindrical shape, a laminated shape, and a coin shape can be used.
  • the non-aqueous electrolyte secondary battery of the present invention and a method of manufacturing the same will be specifically described.
  • the non-aqueous electrolyte secondary battery of the example is a lithium ion secondary battery.
  • the nonaqueous electrolyte secondary battery of the example was produced as follows.
  • ⁇ Sulfur-modified PAN> [1] Mixed raw material As a sulfur powder, when it classified using a sieve, the thing used as a particle size of 50 micrometers or less was prepared. As a PAN powder, one having a particle diameter in the range of 0.2 ⁇ m to 2 ⁇ m as prepared by an electron microscope was prepared. 5 parts by mass of sulfur powder and 1 part by mass of PAN powder were mixed and pulverized in a mortar to obtain a mixed raw material.
  • the reaction device 1 comprises a reaction vessel 2, a lid 3, a thermocouple 4, an alumina protective tube 40, two alumina tubes (gas inlet tube 5, gas outlet tube 6), argon gas It has a piping 50, a gas tank 51 containing argon gas, a trap piping 60, a trap tank 62 containing an aqueous sodium hydroxide solution 61, an electric furnace 7, and a temperature controller 70 connected to the electric furnace.
  • reaction vessel 2 a bottomed cylindrical glass tube (made of quartz glass) was used.
  • the mixed raw material 9 was accommodated in the reaction container 2 in the heat treatment process mentioned later.
  • the opening of the reaction vessel 2 was closed by a glass lid 3 having three through holes.
  • An alumina protective tube 40 (alumina SSA-S, manufactured by Nikkato Co., Ltd.) containing a thermocouple 4 was attached to one of the through holes.
  • a gas introduction pipe 5 (alumina SSA-S, manufactured by Nikkato Co., Ltd.) was attached to the other one of the through holes.
  • a gas exhaust pipe 6 (alumina SSA-S, manufactured by Nikkato Co., Ltd.) was attached to the remaining one of the through holes.
  • the reaction vessel 2 had an outer diameter of 60 mm, an inner diameter of 50 mm, and a length of 300 mm.
  • the alumina protective tube 40 had an outer diameter of 4 mm, an inner diameter of 2 mm, and a length of 250 mm.
  • the gas introduction pipe 5 and the gas discharge pipe 6 had an outer diameter of 6 mm, an inner diameter of 4 mm, and a length of 150 mm.
  • the tips of the gas introduction pipe 5 and the gas discharge pipe 6 were exposed to the outside of the lid 3 (in the reaction vessel 2). The length of this exposed portion was 3 mm.
  • the tips of the gas introduction pipe 5 and the gas discharge pipe 6 become almost 100 ° C. or less in the heat treatment step described later. For this reason, the sulfur vapor generated in the heat treatment step does not flow out from the gas introduction pipe 5 and the gas discharge pipe 6 and is returned (refluxed) to the reaction vessel 2.
  • thermocouple 4 placed in the alumina protective tube 40 indirectly measured the temperature of the mixed raw material 9 in the reaction vessel 2.
  • the temperature measured by the thermocouple 4 was fed back to the temperature controller 70 of the electric furnace 7.
  • An argon gas pipe 50 was connected to the gas introduction pipe 5.
  • the argon gas pipe 50 was connected to a gas tank 51 containing argon gas.
  • One end of a trap pipe 60 was connected to the gas discharge pipe 6.
  • the other end of the trap pipe 60 was inserted into the sodium hydroxide aqueous solution 61 in the trap tank 62.
  • the trap pipe 60 and the trap tank 62 are traps of hydrogen sulfide gas generated in a heat treatment process described later.
  • the object to be treated after the heat treatment step was crushed in a mortar. 2 g of the pulverized material was placed in a glass tube oven and heated at 200 ° C. for 3 hours while vacuum suction was performed. The temperature rising temperature at this time was 10 ° C./min. In this step, the elemental sulfur remaining on the object to be treated after the heat treatment step is evaporated and removed to obtain sulfur-modified PAN containing (or substantially not containing) elemental sulfur.
  • the sulfur-modified PAN 80 obtained in the above step is in the form of an aggregate in which primary particles 81 of the sulfur-modified PAN particles are aggregated.
  • this aggregate-like sulfur-modified PAN 80 is dispersed in water, and subjected to collision crushing in liquid using a Starburst Lab HJP-25005 (oblique collision chamber, pressurized at 245 MPa) manufactured by Sugino Machine Co., Ltd.
  • the sulfur-modified PANs 80 in aggregate form were allowed to collide with each other in water.
  • this step yielded sulfur-modified PAN particles 82 in which aggregate-like sulfur-modified PAN 80 was crushed.
  • acetylene black (AB) as the conductive auxiliary agent 83 was added to the sample tank of the above-mentioned crushing apparatus.
  • the blending amount of AB was 6 parts by mass with respect to 100 parts by mass of the sulfur-modified PAN.
  • the particle diameter of this AB was 0.02 ⁇ m (median value).
  • FIG. 4C after the addition of the conductive aid 83, the crushing cycle was repeated four cycles to adhere the conductive aid 83 to the surface of the sulfur-modified PAN particles 82.
  • Positive Electrode A slurry was prepared by mixing 80 parts by mass of the positive electrode material obtained in the above step, 20 parts by mass of polyimide (PI), and N-methyl-2-pyrrolidone (NMP).
  • a current collector made of carbon paper (Toray; TGP-H-030) punched out to a diameter of 11 mm was prepared, filled with the above slurry, and dried at 200 ° C. for 2 hours under reduced pressure to prepare a positive electrode. .
  • Negative Electrode As a negative electrode, a metal lithium foil punched out to a size of 11 mm in diameter was used.
  • Electrolyte A non-aqueous electrolyte in which LiPF 6 was dissolved in propylene carbonate was used as the electrolyte.
  • the concentration of LiPF 6 in the electrolyte was 1.0 mol / L.
  • [4] Battery A coin battery was produced using the positive electrode, the negative electrode and the electrolyte obtained in the above [1], [2] and [3]. Specifically, in a dry room, a separator (made of “Celgard 2400” Celgard) made of a 25 ⁇ m-thick polypropylene microporous film and a 500 ⁇ m-thick glass non-woven filter are sandwiched between a positive electrode and a negative electrode. As an electrode body battery. The electrode battery was housed in a battery case (CR2032 type coin battery member manufactured by Takasen Co., Ltd.) consisting of a stainless steel container. The electrolytic solution obtained in [3] was injected into the battery case. The battery case was sealed with a caulking machine to obtain the non-aqueous electrolyte secondary battery of the example.
  • a separator made of “Celgard 2400” Celgard
  • the positive electrode material for a non-aqueous electrolyte secondary battery of the comparative example is the same as the positive electrode material for a non-aqueous electrolyte secondary battery of the example except that the conductive auxiliary is directly attached to the sulfur-modified PAN aggregate before crushing. It is a thing.
  • the positive electrode material for a non-aqueous electrolyte secondary battery of Comparative Example was obtained by mixing the sulfur-modified PAN aggregate before crushing and the conductive additive in an agate mortar. As shown in FIG. 5A, the sulfur-modified PAN 80 used in the comparative example is in the form of aggregates.
  • the non-aqueous electrolyte secondary battery of the comparative example is the same as the non-aqueous electrolyte secondary battery of the example except for the positive electrode material.
  • ⁇ Particle size distribution of sulfur-modified PAN> The particle size distributions of the sulfur-modified PAN before crushing and the sulfur-modified PAN after crushing were measured.
  • a sulfur-modified PAN aqueous dispersion after the same crushing step as in the example was collected from a sample tank of a crushing apparatus.
  • the particle size distribution of each sulfur-modified PAN was measured by a laser diffraction scattering particle size distribution method using a particle size distribution analyzer LA-910W manufactured by Horiba, Ltd. The measurement results are shown in FIG. 6, FIG. 7 and Table 1. Specifically, FIG. 6 shows the particle size distribution of the sulfur-modified PAN before crushing, and FIG. 7 shows the particle size distribution of the sulfur-modified PAN after crushing.
  • small-sized sulfur-modified PAN particles having a median diameter of 2 ⁇ m or less can be obtained from large-sized sulfur-modified PAN aggregates having a median diameter of 10 ⁇ m or more by the crushing step. Further, sulfur-modified PAN particles having a substantially uniform particle diameter can be obtained by the crushing step. In the sulfur-modified PAN aggregate before the crushing step, particles having a particle diameter of 2 ⁇ m or less are less than 1% (about 0.6 frequency%) of the whole, while in the sulfur-modified PAN particles after the crushing step, Particles having a particle size of 2 ⁇ m or less are 50% or more of the whole (about 70% by frequency).
  • the conductive support agent is dispersed and disposed at intervals of the particle diameter of the sulfur-modified PAN particles.
  • the region where the conductive support agent is not present in the range of 2 ⁇ m or more is less than 30% of the entire positive electrode material.
  • the positive electrode material of the example (that is, the positive electrode material of the present invention) It can be determined that there is. In other words, it can be judged that the positive electrode material of the present invention is a region in which adjacent conductive assistants are separated by 2 ⁇ m or more from less than 30% of the entire positive electrode material.
  • the surface of the positive electrode material of the example and the sulfur-modified PAN before crushing were observed with a scanning electron microscope (SEM; Scanning Electron Microscope).
  • the acceleration voltage at this time was 5 kV and the magnification was 5000 times.
  • the SEM image of sulfur-modified PAN before crushing is shown in FIG. 8, and the SEM image of the positive electrode material of the example is shown in FIG.
  • the positive electrode material of the example has a smaller diameter than the sulfur-modified PAN before crushing.
  • particles of acetylene black, which is a conductive additive, can be observed on the surface of the sulfur-modified PAN having a reduced diameter.
  • the battery voltage immediately after the start of discharge was 2.68 V.
  • the battery voltage immediately after the start of discharge was 2.53 V. From these results, it can be seen that the internal resistance of the non-aqueous electrolyte secondary battery of the example is lower than that of the non-aqueous electrolyte secondary battery of the comparative example. This indicates that the positive electrode material of the example is more conductive than the positive electrode material of the comparative example.
  • the conductivity is the same even with the same amount of conductive auxiliary as compared to the case where the conductive auxiliary is attached to the sulfur-modified PAN before the crushing. Can be improved.
  • Reactor 2 Reaction vessel 3: Lid 4: Thermocouple 5: Gas inlet tube 6: Gas outlet tube 7: Electric furnace 80: Aggregate-like sulfur-modified PAN 81: Primary particles 82 of sulfur-modified PAN particles: Sulfur Modified PAN particle 83: conductive aid 84: positive electrode material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The purpose of the present invention is to provide a positive electrode material for nonaqueous electrolyte secondary batteries, which contains a sulfur-modified polyacrylonitrile as a positive electrode active material and has excellent electrical conductivity. The present invention relates to: positive electrode material particles for nonaqueous electrolyte secondary batteries, which have particle diameters of 2 μm or less and use sulfur-modified polyacrylonitrile particles and a conductive assistant, said positive electrode material particles being obtained by crushing a sulfur-modified polyacrylonitrile in the form of aggregates, having the conductive assistant adhere to the thus-obtained sulfur-modified polyacrylonitrile particles, and causing the sulfur-modified polyacrylonitrile to aggregate again, as a starting material for the positive electrode material for nonaqueous electrolyte secondary batteries, after the addition of the conductive assistant; and a method for producing the positive electrode material particles for nonaqueous electrolyte secondary batteries.

Description

非水電解質二次電池用正極材料、非水電解質二次電池、および非水電解質二次電池用正極材料の製造方法Positive electrode material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of manufacturing positive electrode material for non-aqueous electrolyte secondary battery
 本発明は、リチウムイオン二次電池、リチウム二次電池、ナトリウム二次電池等に代表される非水電解質二次電池に関する。 The present invention relates to non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries, lithium secondary batteries, sodium secondary batteries and the like.
 非水電解質二次電池の一種であるリチウム二次電池、リチウムイオン二次電池は、充放電容量の大きな電池であり、主として携帯電子機器用の電池として用いられている。また、リチウムイオン二次電池は、電気自動車用の電池としても期待されている。非水電解質二次電池の一種であるナトリウム二次電池、ナトリウムイオン二次電池は、リチウムに代えて入手容易なナトリウムを用いるため、安価に提供できる利点がある。ナトリウムは、リチウムに比べて標準酸化還元電位が0.33V低く、密度が約80%高いが、セル全体ではリチウムイオン二次電池の70~80%の性能が発現できると考えられている。 Lithium secondary batteries and lithium ion secondary batteries, which are a type of non-aqueous electrolyte secondary battery, are batteries with large charge and discharge capacities, and are mainly used as batteries for portable electronic devices. In addition, lithium ion secondary batteries are also expected as batteries for electric vehicles. A sodium secondary battery and a sodium ion secondary battery, which are a type of non-aqueous electrolyte secondary battery, have the advantage that they can be provided at low cost because sodium is used instead of lithium and is readily available. Although sodium has a standard redox potential 0.33 V lower and a density about 80% higher than lithium, it is considered that 70-80% performance of a lithium ion secondary battery can be expressed in the whole cell.
 これらの非水電解質二次電池の正極活物質としては、コバルトやニッケル等のレアメタルを含有するものが一般的である。しかし、これらの金属は流通量が少なく高価であるため、近年では、これらのレアメタルにかわる物質を用いた正極活物質が求められている。 As a positive electrode active material of these non-aqueous electrolyte secondary batteries, those containing rare metals such as cobalt and nickel are generally used. However, since these metals have low flow rates and are expensive, in recent years, positive electrode active materials using materials that replace these rare metals are being sought.
 リチウムイオン二次電池の正極活物質として、硫黄を用いる技術が知られている。硫黄を正極活物質として用いることで、リチウムイオン二次電池の充放電容量を大きくできる。しかし、正極活物質として単体硫黄を用いたリチウムイオン二次電池においては、放電時に硫黄とリチウムとの化合物が生成する。この硫黄とリチウムとの化合物は、リチウムイオン二次電池の非水系電解液(例えば、エチレンカーボネートやジメチルカーボネート等)に可溶である。このため、正極活物質として硫黄を用いたリチウムイオン二次電池は、充放電を繰り返すと、硫黄の電解液への溶出により次第に劣化し、電池容量が低下する問題がある。つまり、正極活物質として硫黄を用いたリチウムイオン二次電池はサイクル特性に劣る。 A technology using sulfur as a positive electrode active material of a lithium ion secondary battery is known. By using sulfur as a positive electrode active material, the charge and discharge capacity of the lithium ion secondary battery can be increased. However, in a lithium ion secondary battery using elemental sulfur as a positive electrode active material, a compound of sulfur and lithium is formed during discharge. The compound of sulfur and lithium is soluble in the non-aqueous electrolyte solution (for example, ethylene carbonate, dimethyl carbonate, etc.) of the lithium ion secondary battery. For this reason, a lithium ion secondary battery using sulfur as a positive electrode active material has a problem that when charge and discharge are repeated, the elution of the sulfur into the electrolytic solution gradually deteriorates and the battery capacity decreases. That is, a lithium ion secondary battery using sulfur as a positive electrode active material is inferior in cycle characteristics.
 本発明の発明者等は、鋭意研究の結果、ポリアクリロニトリル(PAN)と硫黄との混合物を熱処理して得られる正極活物質を発明した(特許文献1参照)。正極活物質として、PANおよび硫黄を材料とする硫黄系正極活物質(以下、硫黄変性PANと略する)を用いることで、リチウムイオン二次電池の充放電容量は大きくなり、かつ、サイクル特性も向上する。 The inventors of the present invention invented a positive electrode active material obtained by heat-treating a mixture of polyacrylonitrile (PAN) and sulfur as a result of intensive studies (see Patent Document 1). By using a sulfur-based positive electrode active material (hereinafter abbreviated as sulfur-modified PAN) made of PAN and sulfur as a positive electrode active material, the charge / discharge capacity of the lithium ion secondary battery is increased, and the cycle characteristics are also increased. improves.
 ところで、硫黄変性PANは、質量当たりの充放電容量は高いものの、質量密度(嵩密度)が小さいために嵩高い。このため体積エネルギー密度の高い(例えば従来電池比で2倍、3倍等)電池を作製するためには、硫黄変性PANを含む正極合剤を集電体上に150μm以上の厚さに塗工する必要がある。正極合剤をこのように厚く塗工すると、電極表面と集電体表面とが大きく離間し、電気抵抗が大きくなる恐れがある。電気抵抗が過大であれば、電池特性の低下が懸念される。 By the way, although sulfur-modified PAN has a high charge / discharge capacity per mass, it is bulky because the mass density (bulk density) is small. For this reason, in order to produce a battery having high volumetric energy density (for example, 2 times or 3 times the conventional battery ratio), a positive electrode mixture containing sulfur-modified PAN is coated on a current collector to a thickness of 150 μm or more There is a need to. When the positive electrode mixture is thickly coated in this manner, the electrode surface and the current collector surface are largely separated, which may increase the electrical resistance. If the electrical resistance is excessive, there is a concern that the battery characteristics may be degraded.
 したがって、正極合剤を厚く塗工した場合にも電気抵抗の増大を抑制できるよう、硫黄変性PANを含む正極材料であって導電性に優れるものが望まれている。 Therefore, in order to suppress an increase in electrical resistance even when the positive electrode mixture is thickly coated, a positive electrode material containing sulfur-modified PAN and having excellent conductivity is desired.
国際公開第2010/044437号WO 2010/044437
 本発明は上記事情に鑑みてなされたものであり、正極活物質として硫黄変性PANを含み、かつ、導電性に優れる非水電解質二次電池用正極材料を提供することを目的とする。 The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a positive electrode material for a non-aqueous electrolyte secondary battery which contains sulfur-modified PAN as a positive electrode active material and is excellent in conductivity.
 本発明の発明者等は、鋭意研究を重ねた結果、硫黄変性PANが凝集体状で存在すること、および、凝集体状の硫黄変性PANを解砕することで小径の硫黄変性PAN粒子を得ることができ、この粒子の表面に導電助剤を付着させることで、凝集体状の硫黄変性PANに直接導電助剤を付着させる場合に比べて正極材料中で導電助剤を高分散させ得ることを見出した。 As a result of intensive studies, the inventors of the present invention have obtained that sulfur-modified PAN is present in the form of aggregates, and crush the aggregate-like sulfur-modified PAN to obtain small-diameter sulfur-modified PAN particles. By attaching the conductive aid to the surface of the particles, the conductive aid can be highly dispersed in the positive electrode material as compared with the case where the conductive aid is directly attached to the aggregate sulfur-modified PAN. Found out.
 すなわち、上記課題を解決する本発明の非水電解質二次電池の製造方法は、ポリアクリロニトリルに由来する炭素骨格と該炭素骨格と硫黄(S)とからなる硫黄系正極活物質を解砕する解砕工程と、
 解砕された該硫黄系正極活物質の表面に導電助剤を付着させる助剤添加工程と、
 該助剤添加工程後に該硫黄系正極活物質を再凝集させる再凝集工程と、を備えることを特徴とする。
That is, the manufacturing method of the non-aqueous electrolyte secondary battery of the present invention which solves the above-mentioned subject decomposes a sulfur system positive electrode active material which consists of a carbon frame originating in polyacrylonitrile, the carbon frame and sulfur (S). Crushing process,
An auxiliary agent addition step of causing a conductive auxiliary agent to adhere to the surface of the crushed sulfur-based positive electrode active material;
And a reaggregation step of reaggregating the sulfur-based positive electrode active material after the auxiliary agent addition step.
 また、このような方法で得られる本発明の非水電解質二次電池用正極材料は、非水電解質二次電池用の正極材料であって、
 ポリアクリロニトリルに由来する炭素骨格と該炭素骨格と硫黄(S)とからなる硫黄系正極活物質と、導電助剤と、を材料とし、
 該硫黄系正極活物質の粒度分布において、全体の粒子の50頻度%以上が粒子径2μm以下の粒子であることを特徴とする。
Further, the positive electrode material for a non-aqueous electrolyte secondary battery of the present invention obtained by such a method is a positive electrode material for a non-aqueous electrolyte secondary battery,
Using a carbon skeleton derived from polyacrylonitrile, a sulfur-based positive electrode active material consisting of the carbon skeleton and sulfur (S), and a conductive aid,
In the particle size distribution of the sulfur-based positive electrode active material, 50 frequency% or more of the whole particles are particles having a particle diameter of 2 μm or less.
 また、上記課題を解決する本発明の非水電解質二次電池は、本発明の非水電解質二次電池用正極材料を正極に含むことを特徴とする。 The non-aqueous electrolyte secondary battery of the present invention for solving the above-mentioned problems is characterized in that the positive electrode material for a non-aqueous electrolyte secondary battery of the present invention is contained in the positive electrode.
 本発明の非水電解質二次電池は、車両用の非水電解質二次電池として好ましく使用できる。 The non-aqueous electrolyte secondary battery of the present invention can be preferably used as a non-aqueous electrolyte secondary battery for vehicles.
 以下、特に断りのない場合、本発明の非水電解質二次電池用正極材料を単に本発明の正極材料と略し、本発明の非水電解質二次電池用正極材料の製造方法を単に本発明の製造方法と略する。 Hereinafter, unless otherwise noted, the positive electrode material for a non-aqueous electrolyte secondary battery of the present invention is simply abbreviated as the positive electrode material of the present invention, and the method for producing a positive electrode material for non-aqueous electrolyte secondary battery of the present invention is simply referred to as the present invention. Abbreviated as manufacturing method.
 硫黄変性PANは、多数の硫黄変性PAN粒子が凝集した状態(二次粒子状)で存在している。このため、このような凝集体状の硫黄変性PANに直接導電助剤を付着させると、凝集体状の硫黄変性PANの表面のみに導電助剤が付着し、凝集体の中心部に位置する硫黄変性PAN粒子は導電助剤と大きく離間する。このため、多量の導電助剤を添加しなければ正極材料の導電性を大きく向上させ難い問題があった。本発明の製造方法によると、一旦解砕した(つまり、細かい粒子状にほぐした)後の硫黄変性PANに導電助剤を付着させることで、個々の硫黄変性PAN粒子の表面に導電助剤が付着する。このため、この硫黄変性PAN粒子が再凝集しても、凝集体の内部に導電助剤が存在する。換言すると、導電助剤は正極材料中において非常に小さい間隔で分散し、導電助剤と凝集体内部に位置する硫黄変性PAN粒子との距離は小さい。したがって、このような本発明の製造方法で得られた本発明の正極材料においては、導電助剤に由来する導電性が充分に発揮される。つまり、本発明の製造方法によると導電性に優れる正極材料を製造できる。 The sulfur-modified PAN is present in a state of aggregation of many sulfur-modified PAN particles (secondary particles). For this reason, when the conductive aid is directly attached to such aggregate-like sulfur-modified PAN, the conductive aid adheres only to the surface of the aggregate-like sulfur-modified PAN, and the sulfur located at the center of the aggregate The modified PAN particles are largely separated from the conductive aid. For this reason, there is a problem that it is difficult to greatly improve the conductivity of the positive electrode material unless a large amount of the conductive additive is added. According to the production method of the present invention, the conductive aid is attached to the surface of each sulfur-modified PAN particle by attaching the conductive aid to the sulfur-modified PAN which has been crushed once (that is, broken into fine particles). Adhere to. For this reason, even if the sulfur-modified PAN particles reaggregate, a conductive aid is present inside the aggregate. In other words, the conductive aid is dispersed at a very small distance in the positive electrode material, and the distance between the conductive aid and the sulfur-modified PAN particles located inside the aggregate is small. Therefore, in the positive electrode material of the present invention obtained by such a manufacturing method of the present invention, the conductivity derived from the conductive auxiliary is sufficiently exhibited. That is, according to the manufacturing method of the present invention, a positive electrode material having excellent conductivity can be manufactured.
 また、後述するように、解砕した硫黄変性PANは、その粒度分布において、全体の粒子の50%頻度以上が粒子径2μm以下の粒子である。すなわち、本発明の正極材料の原料たる硫黄変性PANは、その粒度分布において、全体の粒子の50頻度%以上が粒子径2μm以下の粒子である。このように小径な硫黄変性PAN粒子に導電助剤を付着させれば、導電助剤が正極材料中に高分散する。このため導電助剤から硫黄変性PAN粒子の中心部までの距離は小さくなり、正極材料中における導電助剤同士の距離も小さくなる。これらの距離が小さければ正極材料の導電性は必然的に向上し、正極材料を含む正極合剤を厚く塗工した場合にも電気抵抗の増大を抑制できる。 In addition, as described later, in the particle size distribution of the pulverized sulfur-modified PAN, 50% or more of all particles are particles having a particle diameter of 2 μm or less. That is, in the particle size distribution of the sulfur-modified PAN which is a raw material of the positive electrode material of the present invention, 50% by frequency or more of the whole particles are particles having a particle diameter of 2 μm or less. When the conductive auxiliary agent is attached to the small-diameter sulfur-modified PAN particles in this manner, the conductive auxiliary agent is highly dispersed in the positive electrode material. For this reason, the distance from the conductive additive to the center of the sulfur-modified PAN particles is reduced, and the distance between the conductive additives in the positive electrode material is also reduced. If these distances are small, the conductivity of the positive electrode material is necessarily improved, and the increase in electrical resistance can be suppressed even when the positive electrode mixture containing the positive electrode material is thickly coated.
硫黄変性PAN硫黄変性PANをX線回折した結果を表すグラフである。6 is a graph showing the results of X-ray diffraction of sulfur-modified PAN and sulfur-modified PAN. 硫黄変性PANをラマンスペクトル分析した結果を表すグラフである。グラフである。It is a graph showing the result of having carried out the Raman spectrum analysis of sulfur-modified PAN. It is a graph. 実施例の硫黄変性PANの製造方法で用いた反応装置を模式的に表す説明図である。It is explanatory drawing which represents typically the reaction apparatus used with the manufacturing method of sulfur-modified PAN of an Example. 実施例の正極材料の製造方法で用いた硫黄変性PANを模式的に表す説明図である。It is explanatory drawing which represents typically sulfur-modified PAN used by the manufacturing method of the positive electrode material of an Example. 実施例の正極材料の製造方法における解砕工程で得られた硫黄変性PAN粒子を模式的に表す説明図である。It is explanatory drawing which represents typically the sulfur-modified PAN particle | grains obtained at the crushing process in the manufacturing method of the positive electrode material of an Example. 実施例の正極材料の製造方法における助剤添加工程で得られた硫黄変性PAN粒子と導電助剤との水分散物を模式的に表す説明図である。It is explanatory drawing which represents typically the water dispersion of the sulfur-modified PAN particle and the conductive support agent obtained at the auxiliary agent addition process in the manufacturing method of the positive electrode material of an Example. 実施例の正極材料の製造方法における再凝集工程で得られた正極材料を模式的に表す説明図である。It is explanatory drawing which represents typically the positive electrode material obtained by the reaggregation process in the manufacturing method of the positive electrode material of an Example. 比較例の正極材料の製造方法で用いた硫黄変性PANを模式的に表す説明図である。It is explanatory drawing which represents typically sulfur-modified PAN used by the manufacturing method of the positive electrode material of a comparative example. 比較例の正極材料の製造方法で得られた正極材料を模式的に表す説明図である。It is explanatory drawing which represents typically the positive electrode material obtained by the manufacturing method of the positive electrode material of a comparative example. 解砕前の硫黄変性PANの粒度分布を表すグラフおよび表である。It is a graph and table showing the particle size distribution of sulfur modification PAN before crushing. 解砕後の硫黄変性PANの粒度分布を表すグラフおよび表である。It is a graph and table showing the particle size distribution of sulfur-modified PAN after disintegration. 解砕前の硫黄変性PANのSEM像である。It is a SEM image of sulfur-modified PAN before crushing. 実施例の正極材料のSEM像である。It is a SEM image of the positive electrode material of an Example. 実施例の非水電解質二次電池の放電特性を表すグラフである。It is a graph showing the discharge characteristic of the nonaqueous electrolyte secondary battery of an example. 比較例の非水電解質二次電池の放電特性を表すグラフである。It is a graph showing the discharge characteristic of the nonaqueous electrolyte secondary battery of a comparative example.
 (正極活物質)
 本発明の非水電解質二次電池における正極活物質は、上述した硫黄変性PANであり、PANに由来する炭素骨格と硫黄(S)とからなる。
(Positive electrode active material)
The positive electrode active material in the non-aqueous electrolyte secondary battery of the present invention is the above-described sulfur-modified PAN, which comprises a carbon skeleton derived from PAN and sulfur (S).
 硫黄変性PANは、上記の特許文献1に開示されたものと同様のものである。硫黄変性PAN用の材料としてのPANは、粉末状であるのが好ましく、質量平均分子量が10~3×10程度であるのが好ましい。また、PANの粒径は、電子顕微鏡によって観察した際に、0.5~50μm程度であるのが好ましく、1~10μm程度であるのがより好ましい。PANの分子量および粒径がこれらの範囲内であれば、PANと硫黄との接触面積を大きくでき、PANと硫黄とを信頼性高く反応させ得る。このため、電解液への硫黄の溶出をより信頼性高く抑制できる。 Sulfur-modified PAN is similar to that disclosed in the above-mentioned Patent Document 1. PAN as a material for sulfur-modified PAN is preferably in the form of powder, and the mass average molecular weight is preferably about 10 4 to 3 × 10 5 . In addition, the particle diameter of PAN is preferably about 0.5 to 50 μm, more preferably about 1 to 10 μm, as observed by an electron microscope. If the molecular weight and the particle size of PAN are within these ranges, the contact area between PAN and sulfur can be increased, and PAN and sulfur can be reacted with high reliability. Therefore, the elution of sulfur into the electrolyte can be suppressed more reliably.
 非水電解質二次電池の正極活物質として硫黄変性PANを用いることで、硫黄が本来有する高い容量を維持でき、かつ、硫黄の電解液への溶出が抑制されるため、サイクル特性が大きく向上する。これは、硫黄変性PAN中で硫黄が単体として存在するのでなくPANの構造中に取り込まれた安定な状態で存在するためだと考えられる。特許文献1に開示されている製造方法において、硫黄はPANとともに加熱処理されている。PANを加熱すると、PANが3次元的に架橋して縮合環(主として六員環)を形成しつつ閉環すると考えられる。このため硫黄は、閉環の進行したPANとの構造中に存在していると考えられる。硫黄変性PAN中で硫黄はPANと結合した安定な状態で存在するか、または、硫黄が単体として存在するものの、PANが加熱により閉環する際の架橋構造中に閉じ込められているために電解液と接触し難く、たとえ電解液と接触しても反応生成物が溶出し難い状態にあると考えられる。このことにより、硫黄の電解液への溶出を抑制でき、サイクル特性を向上させ得る。 By using sulfur-modified PAN as the positive electrode active material of the non-aqueous electrolyte secondary battery, the high capacity inherent in sulfur can be maintained, and elution of sulfur into the electrolytic solution can be suppressed, thereby greatly improving cycle characteristics. . It is considered that this is because sulfur is not present as a single substance in sulfur-modified PAN but in a stable state incorporated in the structure of PAN. In the manufacturing method disclosed in Patent Document 1, sulfur is heat-treated together with PAN. When PAN is heated, it is believed that PAN bridges three-dimensionally and forms a condensed ring (mainly a six-membered ring) while closing the ring. For this reason, sulfur is considered to be present in the structure with closed ring PAN. In sulfur-modified PAN, sulfur is present in a stable state in which it is combined with PAN, or although sulfur is present as a single substance, it is confined in a crosslinked structure when PAN is ring-closed by heating, and It is considered to be in a state where it is difficult to contact, and even if it contacts with the electrolytic solution, the reaction product is difficult to elute. By this, elution of sulfur to the electrolytic solution can be suppressed, and cycle characteristics can be improved.
 ところで、単体の無機硫黄を活物質とした電極をもつリチウムイオン二次電池は、初期容量は大きいが、充放電を繰り返すと電解液に可溶なLiが生成する。このLiが電解液に溶出すると、サイクル特性に代表される電池性能が急激に劣化する。 By the way, a lithium ion secondary battery having an electrode in which a single inorganic sulfur is used as an active material has a large initial capacity, but when charging and discharging are repeated, soluble Li 2 S x is generated in the electrolytic solution. When this Li 2 S x elutes in the electrolyte, the battery performance represented by the cycle characteristics is rapidly degraded.
 -C-S結合によって硫黄を固定化した有機スルフィドを活物質として用いる場合にも、-C-S結合が切断されるとLiが生成して電解液に溶出する。また、一旦切断された-C-S結合は元に戻り難い。したがってこの場合にも、サイクル特性の劣化は避け難い。 Even when an organic sulfide in which sulfur is fixed by —C—S bond is used as an active material, when the —C—S bond is cleaved, Li 2 S x is generated and eluted in the electrolytic solution. In addition, the once-cut -CS bond is hard to return. Therefore, also in this case, deterioration of the cycle characteristics is inevitable.
 さらに、カーボン材料の細孔中に硫黄を固定した硫黄系活物質を用いても、細孔に硫黄の出入り口が残っており、硫黄と電解液とは容易に接触するため、Liが電解液中に溶出してしまう。 Furthermore, even when using a sulfur-based active material in which sulfur is fixed in the pores of the carbon material, the sulfur inlet / outlet remains in the pores, and the sulfur easily contacts the electrolyte, so Li 2 S x It will elute into the electrolyte.
 ところが、硫黄変性PANを用いたリチウムイオン二次電池は、何れもサイクル特性に優れ、充放電を繰り返した後にも高い容量を維持している。これは、正極または負極からの硫黄の脱離が抑制されていることによる効果であると考えられる。つまり、硫黄変性PANを用いたリチウムイオン二次電池においては、硫黄と電解液との接触が抑制されていると考えられる。 However, all lithium ion secondary batteries using sulfur-modified PAN have excellent cycle characteristics, and maintain high capacity even after repeated charge and discharge. This is considered to be an effect due to suppression of sulfur desorption from the positive electrode or the negative electrode. That is, in the lithium ion secondary battery using sulfur-modified PAN, it is considered that the contact between sulfur and the electrolytic solution is suppressed.
 すなわち硫黄変性PANにおいては、PANの閉環反応が起こる温度で、PANと硫黄とが共存しているため、硫黄がPANの架橋構造中に取り込まれ、出口のない細孔中に硫黄が閉じ込められていると考えられる。そのため電解液と硫黄との直接接触が抑制され、Liの溶出が防止されることで、硫黄変性PANを用いた電池はサイクル特性に優れると考えられる。なお一部の硫黄が電解液と直接接触可能であっても、その硫黄が初回の充放電時にLiとして電解液に溶出した後は、安定した充放電容量が維持される。 That is, in the case of sulfur-modified PAN, since PAN and sulfur coexist at a temperature at which the ring closure reaction of PAN occurs, sulfur is incorporated into the crosslinked structure of PAN, and sulfur is trapped in the pore without outlet. It is thought that Therefore, the direct contact of the electrolytic solution with sulfur is suppressed, and the elution of Li 2 S x is prevented, so that the battery using the sulfur-modified PAN is considered to be excellent in the cycle characteristics. Even if part of the sulfur can be in direct contact with the electrolyte, stable charge-discharge capacity is maintained after the sulfur is eluted into the electrolyte as Li 2 S x at the first charge / discharge.
 硫黄変性PANに用いられる硫黄は、PANと同様に、粉末状であるのが好ましい。硫黄の粒径については特に限定しないが、篩いを用いて分級した際に、篩目開き40μmの篩を通過せず、かつ、150μmの篩を通過する大きさの範囲内にあるものが好ましく、篩目開き40μmの篩を通過せず、かつ、100μmの篩を通過する大きさの範囲内にあるものがより好ましい。 The sulfur used for the sulfur-modified PAN, like PAN, is preferably in powder form. The particle size of sulfur is not particularly limited, but when it is classified using a sieve, those which do not pass through a sieve with a sieve opening of 40 μm and which have a size within a 150 μm sieve are preferable. It is more preferable not to pass through a sieve with a sieve opening of 40 μm and in the size range of passing through a 100 μm sieve.
 硫黄変性PANに用いるPAN粉末と硫黄粉末との配合比については特に限定しないが、質量比で、1:0.5~1:10であるのが好ましく、1:0.5~1:7であるのがより好ましく、1:2~1:5であるのがさらに好ましい。 The compounding ratio of PAN powder to sulfur powder used for sulfur-modified PAN is not particularly limited, but it is preferably 1: 0.5 to 1:10 by mass ratio, 1: 0.5 to 1: 7. It is more preferable to be present, and more preferable to be 1: 2 to 1: 5.
 硫黄変性PANは、以下の方法で製造できる。 Sulfur-modified PAN can be produced by the following method.
 PAN粉末と硫黄粉末とを混合した混合原料を加熱する(熱処理工程)。混合原料は、乳鉢やボールミル等の一般的な混合装置で混合すれば良い。混合原料としては、硫黄とPANとを単に混合したものを用いても良いが、例えば、混合原料をペレット状に成形して用いても良い。混合原料は、PANおよび硫黄のみで構成しても良いし、正極活物質に配合可能な一般的な材料(導電助剤等)を配合しても良い。 The mixed raw material which mixed PAN powder and sulfur powder is heated (heat treatment process). The mixed material may be mixed by a general mixing device such as a mortar or a ball mill. As the mixed raw material, one obtained by simply mixing sulfur and PAN may be used, but for example, the mixed raw material may be formed into a pellet and used. The mixed raw material may be composed only of PAN and sulfur, or may be blended with a general material (such as a conductive additive) that can be blended in the positive electrode active material.
 熱処理工程において混合原料を加熱することで、混合原料に含まれる硫黄がPANの構造中に取り込まれる。熱処理工程は、密閉系でおこなっても良いし開放系でおこなっても良いが、硫黄蒸気の散逸を抑制するためには、密閉系で行うのが好ましい。また、熱処理工程を如何なる雰囲気で行うかについては特に問わないが、PANに硫黄が取り込まれるのを妨げない雰囲気(例えば、水素を含有しない雰囲気、非酸化性雰囲気)下で行うのが好ましい。例えば、雰囲気中に水素が存在すると、反応系中の硫黄が水素と反応して硫化水素となるため、反応系中の硫黄が失われる場合がある。また、非酸化性雰囲気下で熱処理することで、PANの閉環反応と同時に、蒸気状態の硫黄がPANと反応して、硫黄によって変性されたPANが得られると考えられる。ここでいう非酸化性雰囲気とは、酸化反応が進行しない程度の低酸素濃度とした減圧状態、窒素やアルゴン等の不活性ガス雰囲気、硫黄ガス雰囲気等を含む。 By heating the mixed raw material in the heat treatment step, sulfur contained in the mixed raw material is incorporated into the structure of PAN. The heat treatment step may be performed in a closed system or an open system, but in order to suppress the dissipation of sulfur vapor, the closed system is preferable. The heat treatment step is not particularly limited as to which atmosphere to carry out, but it is preferable to carry out in an atmosphere which does not prevent the incorporation of sulfur into PAN (for example, an atmosphere containing no hydrogen, a non-oxidative atmosphere). For example, when hydrogen is present in the atmosphere, sulfur in the reaction system reacts with hydrogen to form hydrogen sulfide, which may result in loss of sulfur in the reaction system. Further, it is considered that by heat treatment in a non-oxidative atmosphere, sulfur in the vapor state reacts with PAN simultaneously with the ring closure reaction of PAN, and PAN modified with sulfur is obtained. The non-oxidative atmosphere referred to here includes a reduced pressure state where the oxygen concentration is low to such an extent that the oxidation reaction does not proceed, an inert gas atmosphere such as nitrogen and argon, a sulfur gas atmosphere and the like.
 密閉状態の非酸化性雰囲気とするための具体的な方法については特に限定はなく、例えば、硫黄蒸気が散逸しない程度の密閉性が保たれる容器中に混合原料を入れて、容器内を減圧または不活性ガス雰囲気にして加熱すれば良い。その他、混合原料を硫黄蒸気と反応し難い材料(例えばアルミニウムラミネートフィルム等)で真空包装した状態で加熱しても良い。この場合、発生した硫黄蒸気によって包装材料が破損しないように、例えば、水を入れたオートクレーブ等の耐圧容器中に、包装された原料を入れて加熱し、発生した水蒸気で包装材の外部から加圧することが好ましい。この方法によれば、包装材料の外部から水蒸気によって加圧されるので、硫黄蒸気によって包装材料が膨れて破損することが防止される。 There is no particular limitation on a specific method for making a non-oxidative atmosphere in a sealed state, for example, the mixed raw material is put in a container in which the sealing property is maintained to the extent that the sulfur vapor does not dissipate, and the pressure in the container is reduced. Alternatively, heating may be performed in an inert gas atmosphere. In addition, you may heat in the state vacuum-packed with the material (for example, aluminum laminate film etc.) which is hard to react with a sulfur raw material. In this case, for example, the packaged raw material is placed in a pressure container such as an autoclave containing water and heated so that the packaging material is not damaged by the generated sulfur vapor, and the generated steam is added from the outside of the packaging material It is preferable to press. According to this method, since the steam is pressurized by steam from the outside of the packaging material, the sulfur vapor prevents the packaging material from being blown and broken.
 熱処理工程における混合原料の加熱時間は、加熱温度に応じて適宜設定すれば良く、特に限定しない。上述した好ましい加熱温度は、硫黄のPANへの取り込みが進行し、かつ、伝導材が変質しないような温度であれば良い。具体的には、加熱温度は、250以上500℃以下とすることが好ましく、250以上400℃以下とすることがより好ましく、250以上300℃以下とすることがさらに好ましい。 The heating time of the mixed raw material in the heat treatment step may be appropriately set according to the heating temperature, and is not particularly limited. The above-described preferable heating temperature may be a temperature at which incorporation of sulfur into PAN proceeds and the conductive material is not deteriorated. Specifically, the heating temperature is preferably 250 or more and 500 ° C. or less, more preferably 250 or more and 400 ° C. or less, and still more preferably 250 or more and 300 ° C. or less.
 熱処理工程においては、硫黄を還流するのが好ましい。この場合、混合原料の一部が気体となり、一部が液体となるように混合原料を加熱すれば良い。換言すると、混合原料の温度は、硫黄が気化する温度以上の温度であれば良い。ここで言う気化とは、硫黄が液体または固体から気体に相変化することを指し、沸騰、蒸発、昇華の何れによっても良い。参考までに、α硫黄(斜方硫黄、常温付近で最も安定な構造である)の融点は112.8℃、β硫黄(単斜硫黄)の融点は119.6℃、γ硫黄(単斜硫黄)の融点は106.8℃である。硫黄の沸点は444.7℃である。ところで、硫黄の蒸気圧は高いため、混合原料の温度が150℃以上になると、硫黄の蒸気の発生が目視でも確認できる。したがって、混合原料の温度が150℃以上であれば硫黄の還流は可能である。なお、熱処理工程において硫黄を還流する場合には、既知構造の還流装置を用いて硫黄を還流すれば良い。 In the heat treatment step, sulfur is preferably refluxed. In this case, the mixed material may be heated so that a part of the mixed material becomes a gas and a part becomes a liquid. In other words, the temperature of the mixed raw material may be a temperature higher than the temperature at which sulfur is vaporized. The term "vaporization" as used herein refers to phase change of sulfur from liquid or solid to gas, which may be boiling, evaporation or sublimation. For reference, the melting point of alpha sulfur (orthogonal sulfur, which is the most stable structure around normal temperature) is 112.8 ° C, the melting point of beta sulfur (monoclinic sulfur) is 119.6 ° C, gamma sulfur (monoclinic sulfur) The melting point of) is 106.8 ° C. The boiling point of sulfur is 444.7.degree. By the way, since the vapor pressure of sulfur is high, when the temperature of the mixed raw material reaches 150 ° C. or more, the generation of sulfur vapor can be visually confirmed. Therefore, if the temperature of the mixed raw material is 150 ° C. or more, sulfur reflux is possible. In addition, what is necessary is just to reflux sulfur using the reflux apparatus of known structure, when refluxing sulfur in a heat treatment process.
 混合原料中の硫黄の配合量が過大である場合にも、熱処理工程においてPANに充分な量の硫黄を取り込むことができる。このため、PANに対して硫黄を過大に配合する場合には、熱処理工程後の被処理体から単体硫黄を除去することで、上述した単体硫黄による悪影響を抑制できる。詳しくは、混合原料中のPANと硫黄との配合比を、質量比で1:2~1:10とする場合、熱処理工程後の被処理体を、減圧しつつ200℃~250℃で加熱する(単体硫黄除去工程)ことで、PANに充分な量の硫黄を取り込みつつ、残存する単体硫黄による悪影響を抑制できる。熱処理工程後の被処理体に単体硫黄除去工程を施さない場合には、この被処理体をそのまま硫黄変性PANとして用いれば良い。また、熱処理工程後の被処理体に単体硫黄除去工程を施す場合には、単体硫黄除去工程後の被処理体を硫黄変性PANとして用いれば良い。単体硫黄除去工程の時間は特に限定しないが、1~6時間程度であるのが好ましい。 Even when the blending amount of sulfur in the mixed raw material is excessive, sufficient amount of sulfur can be taken into PAN in the heat treatment step. For this reason, when mix | blending sulfur with respect to PAN excessively, the bad influence by the single-piece | unit sulfur mentioned above can be suppressed by removing single-piece | unit sulfur from the to-be-processed object after a heat treatment process. Specifically, when the blending ratio of PAN and sulfur in the mixed raw material is 1: 2 to 1:10 in mass ratio, the object to be treated after the heat treatment step is heated at 200 ° C. to 250 ° C. while reducing pressure. By the (single sulfur removing step), it is possible to suppress an adverse effect due to the remaining single sulfur while taking a sufficient amount of sulfur into PAN. When the single sulfur removing step is not performed on the object to be treated after the heat treatment step, the object to be treated may be used as the sulfur-modified PAN as it is. When the single sulfur removing step is performed on the target after the heat treatment step, the target after the single sulfur removing step may be used as the sulfur-modified PAN. The time for the single sulfur removal step is not particularly limited, but is preferably about 1 to 6 hours.
 硫黄変性PANは、元素分析の結果、炭素、窒素、及び硫黄を含み、更に、少量の酸素及び水素を含む場合もある。また、図1に示すように、硫黄変性PANをCuKα線によりX線回折した結果、回折角(2θ)20~30°の範囲では、25°付近にピーク位置を有するブロードなピークのみが確認された。参考までに、X線回折は、粉末X線回折装置(MAC Science社製、型番:M06XCE)により、CuKα線を用いてX線回折測定を行なった。測定条件は、電圧:40kV、電流:100mA、スキャン速度:4°/分、サンプリング:0.02°、積算回数:1回、測定範囲:回折角(2θ)10°~60°であった。 Sulfur-modified PAN contains carbon, nitrogen, and sulfur as a result of elemental analysis, and may further contain small amounts of oxygen and hydrogen. In addition, as shown in FIG. 1, as a result of X-ray diffraction of sulfur-modified PAN with CuKα rays, only a broad peak having a peak position near 25 ° was confirmed in the diffraction angle (2θ) range of 20 ° to 30 °. The For reference, X-ray diffraction measurement was performed using a powder X-ray diffractometer (manufactured by MAC Science, model number: M06XCE) using a CuKα ray. The measurement conditions were: voltage: 40 kV, current: 100 mA, scan rate: 4 ° / min, sampling: 0.02 °, number of integrations: 1 measurement range: diffraction angle (2θ) 10 ° to 60 °.
 さらに硫黄変性PANを、室温から900℃まで20℃/分の昇温速度で加熱した際の熱重量分析による質量減は400℃時点で10%以下である。これに対して、硫黄粉末とPAN粉末の混合物を同様の条件で加熱すると120℃付近から質量減少が認められ、200℃以上になると急激に硫黄の消失に基づく大きな質量減が認められる。
 すなわち、硫黄変性PANにおいて、硫黄は単体としては存在せず、閉環の進行したPANに取り込まれた状態で存在していると考えられる。
Furthermore, the mass loss by thermogravimetric analysis at the time of heating sulfur-modified PAN from a room temperature to 900 ° C. at a temperature rising rate of 20 ° C./min is 10% or less at 400 ° C. On the other hand, when a mixture of sulfur powder and PAN powder is heated under the same conditions, a mass loss is recognized from around 120 ° C., and at 200 ° C. or more, a large mass loss due to the disappearance of sulfur is recognized.
That is, in sulfur-modified PAN, it is considered that sulfur is not present as a simple substance, but is present in the state of being taken up in the ring-closed PAN.
 硫黄変性PANのラマンスペクトルの一例を図2に示す。図2に示すラマンスペクトルにおいて、ラマンシフトの1331cm-1付近に主ピークが存在し、かつ、200cm-1~1800cm-1の範囲で1548cm-1、939cm-1、479cm-1、381cm-1、317cm-1付近にピークが存在する。上記したラマンシフトのピークは、PANに対する単体硫黄の比率を変更した場合にも同様の位置に観測される。このためこれらのピークは硫黄変性PANを特徴づけるものである。上記した各ピークは、上記したピーク位置を中心として、ほぼ±8cm-1の範囲内に存在する。なお、本明細書において、「主ピーク」とは、ラマンスペクトルで現れた全てのピークのなかでピーク高さが最大となるピークを指す。 An example of a Raman spectrum of sulfur-modified PAN is shown in FIG. In the Raman spectrum shown in FIG. 2, there are major peak near 1331cm -1 of Raman shift, and, 1548cm -1 in the range of 200cm -1 ~ 1800cm -1, 939cm -1 , 479cm -1, 381cm -1, A peak is present around 317 cm -1 . The peak of the above-mentioned Raman shift is observed at the same position even when the ratio of elemental sulfur to PAN is changed. Therefore, these peaks are characteristic of sulfur-modified PAN. Each peak mentioned above exists in the range of about ± 8 cm −1 centered on the peak position mentioned above. In addition, in this specification, a "main peak" refers to the peak which peak height becomes the largest among all the peaks which appeared in the Raman spectrum.
 参考までに、上記したラマンシフトは、日本分光社製 RMP-320(励起波長λ=532nm、グレーチング:1800gr/mm、分解能:3cm-1)で測定したものである。なお、ラマンスペクトルのピークは、入射光の波長や分解能の違いなどにより、数が変化したり、ピークトップの位置がずれたりすることがある。したがって正極活物質として硫黄変性PANを用いた本発明の正極のラマンスペクトルを測定すると、上記のピークと同じピーク、または、上記のピークとは数やピークトップの位置が僅かに異なるピークが確認される。 For reference, the above-mentioned Raman shift is measured by RMP-320 (excitation wavelength λ = 532 nm, grating: 1800 gr / mm, resolution: 3 cm −1 ) manufactured by JASCO Corporation. Note that the peaks of the Raman spectrum may change in number or the position of the peak top may be shifted depending on the wavelength of incident light or the difference in resolution. Therefore, when the Raman spectrum of the positive electrode of the present invention using sulfur-modified PAN as the positive electrode active material is measured, the same peak as the above peak or a peak slightly different in number or peak top position from the above peak is confirmed Ru.
 (非水電解質二次電池用正極材料)
 本発明の非水電解質二次電池用正極材料は、正極活物質としての硫黄変性PANと、導電助剤とを含有する。硫黄変性PANに関しては上述した。
(Positive material for non-aqueous electrolyte secondary batteries)
The positive electrode material for a non-aqueous electrolyte secondary battery of the present invention contains a sulfur-modified PAN as a positive electrode active material and a conductive aid. The sulfur-modified PAN has been described above.
 導電助剤としては、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)、炭素粉末、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック(KB)、黒鉛、アルミニウムやチタンなどの正極電位において安定な金属の微粉末等が例示される。 As a conductive support agent, vapor grown carbon fiber (VGCF), carbon powder, carbon black (CB), acetylene black (AB), ketjen black (KB), graphite, positive electrode such as aluminum or titanium For example, fine powders of metals stable at potentials are exemplified.
 この導電助剤の粒径は0.005μm~1μmであるのが好ましく、0.01μm~0.1μmであるのがより好ましい。導電助剤の配合量が同じ場合、導電助剤の粒径が小さい方が正極中に多くの導電パスを形成できるためである。
 (正極材料の製造方法)
 上述した正極材料を製造する本発明の製造方法は、解砕工程と、助剤添加工程と、再凝集工程とを備える。
The particle diameter of the conductive aid is preferably 0.005 μm to 1 μm, and more preferably 0.01 μm to 0.1 μm. When the compounding amount of the conductive aid is the same, the smaller the particle diameter of the conductive aid is, the more conductive paths can be formed in the positive electrode.
(Method of manufacturing positive electrode material)
The manufacturing method of the present invention for manufacturing the positive electrode material described above comprises a crushing step, an auxiliary agent adding step, and a re-aggregation step.
  〔解砕工程〕
 解砕工程は、硫黄変性PANを解砕する工程である。後述するように解砕前の硫黄変性PANは、一般に、粒径(メジアン径)10μm程度の凝集体として存在する。解砕工程においては、この凝集体を解砕し、小径の硫黄変性PANを得る。解砕工程は凝集した硫黄変性PANをほぐすことができれば良く既知の方法を用いれば良い。例えばボールミル、ビーズミル、エアジェットミル、液中衝突装置等の装置を用いても良いし、乳鉢等ですりつぶしても良い。解砕後の硫黄変性PAN粒子は、上述したように、「全体の粒子の50頻度%以上が粒子径2μm以下」にであれば良い。硫黄変性PAN粒子の粒径は、レーザ回折散乱法粒度分布測定装置によって測定できる。さらに、硫黄変性PAN粒子のレーザ回折散乱法粒度分布測定装置によるメジアン径は、4μm以下であるのが好ましく、メジアン径2μm以下であるのがより好ましい。解砕工程は、大気中や不活性ガス雰囲気下で行っても良いし、液状媒体中で行っても良いが、解砕した硫黄変性PAN粒子の再凝集を防ぐためには、液状媒体中で行うのが好ましい。またTween20(ポリオキシエチレンソルビタンモノラウラート)などの分散剤を用いても良い。液状媒体としては、水や有機溶媒等の既知の媒体を用いれば良い。
[Crushing process]
The crushing step is a step of crushing the sulfur-modified PAN. As described later, the sulfur-modified PAN before crushing is generally present as an aggregate having a particle diameter (median diameter) of about 10 μm. In the crushing step, the aggregate is crushed to obtain a sulfur-modified PAN having a small diameter. The crushing step may be carried out by any known method as long as it is possible to loosen the aggregated sulfur-modified PAN. For example, an apparatus such as a ball mill, bead mill, air jet mill, in-liquid collision apparatus or the like may be used, or grinding may be performed using a mortar or the like. As described above, the sulfur-modified PAN particles after crushing should be "50 frequency% or more of the total particles have a particle diameter of 2 μm or less". The particle size of the sulfur-modified PAN particles can be measured by a laser diffraction scattering particle size distribution measuring apparatus. Furthermore, the median diameter of the sulfur-modified PAN particles as measured by a laser diffraction / scattering particle size distribution measuring apparatus is preferably 4 μm or less, and more preferably 2 μm or less. The crushing step may be carried out in the atmosphere or under an inert gas atmosphere or in a liquid medium, but in order to prevent reaggregation of the broken sulfur-modified PAN particles, it is carried out in a liquid medium Is preferred. A dispersing agent such as Tween 20 (polyoxyethylene sorbitan monolaurate) may also be used. As the liquid medium, a known medium such as water or an organic solvent may be used.
  〔助剤添加工程〕
 助剤添加工程は、解砕された硫黄変性PANの表面に導電助剤を付着させる工程である。助剤添加工程において、導電助剤は既知の方法で硫黄変性PAN粒子の表面に付着させれば良く、例えば、硫黄変性PAN粒子と導電助剤とを単に混合するだけでも良いし、硫黄変性PANと導電助剤とをバインダ樹脂等によって結着しても良い。何れの場合にも、解砕した硫黄変性PAN粒子の再凝集を防ぎつつ、その表面に導電助剤を付着させるためには、解砕工程と同様に液状媒体中で行うのが好ましい。なお、助剤添加工程は、上述した解砕工程後に行っても良いし、解砕工程と同時に行っても良い。また導電助剤の一部のみを解砕工程時に添加し、残部を後述の正極合材作製時に添加しても良い。
[Auxiliary agent addition process]
The auxiliary agent addition step is a step of adhering a conductive auxiliary agent to the surface of the crushed sulfur-modified PAN. In the auxiliary addition step, the conductive auxiliary may be attached to the surface of the sulfur-modified PAN particles by a known method. For example, the sulfur-modified PAN particles and the conductive auxiliary may be simply mixed, or the sulfur-modified PAN may be used. And the conductive aid may be bound by a binder resin or the like. In any case, it is preferable to carry out in the liquid medium in the same manner as the crushing step in order to attach the conductive aid to the surface while preventing reaggregation of the crushed sulfur-modified PAN particles. In addition, an auxiliary agent addition process may be performed after the crushing process mentioned above, and you may carry out simultaneously with the crushing process. Alternatively, only a part of the conductive additive may be added at the time of the crushing step, and the remaining part may be added at the time of preparation of the positive electrode mixture described later.
  〔再凝集工程〕
 再凝集工程は、上述した助剤添加工程後の硫黄変性PAN(すなわち導電助剤が付着した硫黄変性PAN)を再凝集させる工程である。上述したように、助剤添加工程において導電助剤は硫黄変性PAN粒子の表面に付着するため、再凝集工程で得られた凝集体においては、表面だけでなく内部にまで導電助剤が存在する。再凝集工程において得られる凝集体の粒径は特に問わないが、1~10μm(メジアン径)程度であるのが好ましい。また、再凝集工程において得られる凝集体の粒径は均一であるのが好ましい。均一または略均一粒径の凝集体を得るためには、スプレードライ、流動層造粒等、凝集体の粒径を制御できる方法で硫黄変性PANを再凝集させるのが望ましい。なお、液状媒体中で解砕し、かつ、再凝集工程にスプレードライ等の乾燥と凝集とを同時に行い得る方法を用いない場合には、再凝集工程の前に助剤添加工程後の硫黄変性PANを乾燥する工程が必要である。この乾燥工程は加熱乾燥、真空乾燥など液状媒体に応じた既知の方法で良い。
[Reaggregation process]
The reaggregation step is a step of reaggregating the sulfur-modified PAN (i.e., the sulfur-modified PAN to which the conductive auxiliary is attached) after the above-described auxiliary agent addition step. As described above, since the conductive auxiliary adheres to the surface of the sulfur-modified PAN particles in the auxiliary addition step, in the aggregate obtained in the reaggregation step, the conductive auxiliary is present not only on the surface but also inside . The particle size of the aggregate obtained in the reaggregation step is not particularly limited, but is preferably about 1 to 10 μm (median diameter). Moreover, it is preferable that the particle size of the aggregate obtained in a reaggregation process is uniform. In order to obtain aggregates of uniform or substantially uniform particle size, it is desirable to reaggregate the sulfur-modified PAN by a method such as spray drying, fluidized bed granulation, or the like that can control the particle size of the aggregates. If the method of crushing in a liquid medium and simultaneously performing drying and aggregation such as spray drying in the reaggregation step is not used, the sulfur modification after the auxiliary agent addition step before the reaggregation step A step of drying the PAN is required. This drying step may be a known method according to the liquid medium such as heat drying, vacuum drying and the like.
 (非水電解質二次電池)
 以下、本発明の非水電解質二次電池の構成について説明する。
(Non-aqueous electrolyte secondary battery)
Hereinafter, the configuration of the non-aqueous electrolyte secondary battery of the present invention will be described.
  〔正極〕
 本発明の非水電解質二次電池における正極は、正極材料以外は、一般的な非水電解質二次電池用正極と同様の構造にできる。例えば、上述した正極材料、バインダ、および溶媒を混合した正極合剤を集電体に塗布することによって本発明の非水電解質二次電池における正極を製作できる。また、その他の方法として、上述した正極材料およびバインダの混合物を乳鉢やプレス機などで混練しかつフィルム状にし、フィルム状の混合物をプレス機等で集電体に圧着することで、正極を製造することもできる。
[Positive electrode]
The positive electrode in the non-aqueous electrolyte secondary battery of the present invention can have the same structure as that of a general non-aqueous electrolyte secondary battery positive electrode except for the positive electrode material. For example, the positive electrode in the non-aqueous electrolyte secondary battery of the present invention can be manufactured by applying a positive electrode mixture prepared by mixing the above-described positive electrode material, a binder, and a solvent to a current collector. As another method, a mixture of the above-mentioned positive electrode material and binder is kneaded with a mortar or press and made into a film, and the film-like mixture is pressure-bonded to a current collector with a press or the like to produce a positive electrode. You can also
 バインダとしては、ポリフッ化ビニリデン(PolyVinylidene DiFluoride:PVDF)、ポリ四フッ化エチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリイミド(PI)、ポリアミドイミド(PAI)、カルボキシメチルセルロース(CMC)、ポリ塩化ビニル(PVC)、メタクリル樹脂(PMA)、ポリアクリロニトリル(PAN)、変性ポリフェニレンオキシド(PPO)、ポリエチレンオキシド(PEO)、ポリエチレン(PE)、ポリプロピレン(PP)等が例示される。 As a binder, polyvinylidene fluoride (PolyVinylidene DiFluoride: PVDF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyimide (PI), polyamidoimide (PAI), carboxymethylcellulose (CMC), polychlorinated Examples include vinyl (PVC), methacrylic resin (PMA), polyacrylonitrile (PAN), modified polyphenylene oxide (PPO), polyethylene oxide (PEO), polyethylene (PE), polypropylene (PP) and the like.
 溶媒としては、N-メチル-2-ピロリドン、N,N-ジメチルホルムアルデヒド、アルコール、水等が例示される。これら導電助剤、バインダおよび溶媒は、それぞれ複数種を混合して用いても良い。これらの材料の配合量は特に問わないが、例えば、硫黄変性PAN100質量部に対して、導電助剤5~100質量部程度、バインダ5~20質量部程度を配合するのが好ましい。 Examples of the solvent include N-methyl-2-pyrrolidone, N, N-dimethylformaldehyde, alcohol, water and the like. These conductive aids, binders and solvents may be used in combination of two or more. There are no particular limitations on the amounts of these materials, but it is preferable to blend, for example, about 5 to 100 parts by mass of the conductive additive and 5 to 20 parts by mass of the binder with respect to 100 parts by mass of the sulfur-modified PAN.
 集電体としては、非水電解質二次電池用正極に一般に用いられるものを使用すれば良い。例えば集電体としては、アルミニウム箔、アルミニウムメッシュ、パンチングアルミニウムシート、アルミニウムエキスパンドシート、ステンレススチール箔、ステンレススチールメッシュ、パンチングステンレススチールシート、ステンレススチールエキスパンドシート、発泡ニッケル、ニッケル不織布、銅箔、銅メッシュ、パンチング銅シート、銅エキスパンドシート、チタン箔、チタンメッシュ、カーボンペーパー(不織布/織布)等が例示される。このうち黒鉛化度の高いカーボンからなるカーボンペーパー集電体は、水素を含まず、硫黄との反応性が低いために、本発明の非水電解質二次電池における正極用の集電体として好適である。黒鉛化度の高い炭素繊維の原料としては、カーボン繊維の材料となる各種のピッチ(すなわち、石油、石炭、コールタールなどの副生成物)やPAN繊維等を用いることができる。 What is generally used for the positive electrode for nonaqueous electrolyte secondary batteries may be used as a collector. For example, as a current collector, aluminum foil, aluminum mesh, punching aluminum sheet, aluminum expanded sheet, stainless steel foil, stainless steel mesh, punching stainless steel sheet, stainless steel expanded sheet, foamed nickel, nickel non-woven fabric, copper foil, copper mesh , Punched copper sheet, copper expanded sheet, titanium foil, titanium mesh, carbon paper (non-woven fabric / woven fabric) and the like. Among them, a carbon paper current collector made of carbon having a high degree of graphitization does not contain hydrogen and has low reactivity with sulfur, so it is suitable as a current collector for a positive electrode in the non-aqueous electrolyte secondary battery of the present invention. It is. As a raw material of carbon fiber having a high degree of graphitization, various kinds of pitch (that is, by-products such as petroleum, coal, coal tar, etc.), PAN fiber, etc. can be used as a material of carbon fiber.
  〔負極〕
 本発明の非水電解質二次電池用における負極活物質としては、リチウムイオンを吸蔵・放出可能であって、リチウムと合金化可能な元素および/またはリチウムと合金化可能な元素を有する元素化合物からなるものが好ましく用いられる。或いは、ナトリウムイオンを吸蔵・放出可能であって、ナトリウムと合金化可能な元素および/またはアトリウムと合金化可能な元素を有する元素化合物からなるものが好ましく用いられる。例えば、リチウムと合金化可能な元素としては、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Biから選ばれる少なくとも一種が挙げられる。このうち、ケイ素(Si)またはスズ(Sn)を用いるのが特に好ましい。また、リチウムと合金化反応可能な元素を有する元素化合物は、ケイ素化合物またはスズ化合物であるのが好ましい。ケイ素化合物としては、SiO(0.5≦x≦1.5)が挙げられる。スズ化合物としては、例えば、スズ合金(Cu-Sn合金、Co-Sn合金等)、スズ合金(Cu-Sn合金、Co-Sn合金等)などが挙げられる。その他、公知の金属リチウム、金属ナトリウム、黒鉛などの炭素系材料を使用することもできる。なお、金属リチウムを負極活物質に用いる場合、本発明の非水電解質二次電池はリチウム二次電池である。金属ナトリウムを負極活物質に用いる場合、本発明の非水電解質二次電池はナトリウム二次電池(所謂ナトリウム硫黄電池)である。負極材料として、リチウムを含まない材料、例えば、上記した負極材料のなかで、炭素系材料、シリコン系材料、合金系材料等を用いる場合には、デンドライドの発生による正負極間の短絡を生じ難い点で有利である。ただし、これらのリチウムを含まない負極材料を本発明の正極材料と組み合わせて用いる場合には、正極および負極が何れもリチウムを含まない。このため、負極および正極の何れか一方、または両方にあらかじめリチウムを挿入するリチウムプリドープ処理が必要となる。リチウムのプリドープ法としては公知の方法に従えば良い。例えば負極にリチウムをドープする場合には、対極に金属リチウムを用いて半電池を組み、電気化学的にリチウムをドープする電解ドープ法によってリチウムを挿入する方法や、金属リチウム箔を電極に貼り付けたあと電解液の中に放置し電極へのリチウムの拡散を利用してドープする貼り付けプリドープ法によりリチウムを挿入する方法が挙げられる。また、正極にリチウムをプリドープする場合にも、上記した電解ドープ法を利用することができる。
[Negative electrode]
As a negative electrode active material for the non-aqueous electrolyte secondary battery of the present invention, an element compound capable of absorbing and releasing lithium ions and having an element capable of alloying with lithium and / or an element capable of alloying with lithium Are preferably used. Alternatively, it is preferable to use an element compound which is capable of storing and releasing sodium ions and which has an element capable of alloying with sodium and / or an element capable of alloying with atrium. For example, as elements that can be alloyed with lithium, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si, At least one selected from Ge, Sn, Pb, Sb, and Bi can be mentioned. Among these, it is particularly preferable to use silicon (Si) or tin (Sn). The elemental compound having an element capable of alloying reaction with lithium is preferably a silicon compound or a tin compound. Examples of the silicon compound include SiO x (0.5 ≦ x ≦ 1.5). Examples of tin compounds include tin alloys (Cu-Sn alloys, Co-Sn alloys, etc.), tin alloys (Cu-Sn alloys, Co-Sn alloys, etc.), and the like. In addition, known carbon-based materials such as metallic lithium, metallic sodium and graphite can also be used. When metallic lithium is used as the negative electrode active material, the non-aqueous electrolyte secondary battery of the present invention is a lithium secondary battery. When metallic sodium is used as the negative electrode active material, the non-aqueous electrolyte secondary battery of the present invention is a sodium secondary battery (so-called sodium-sulfur battery). When a material containing no lithium, for example, a carbon-based material, a silicon-based material, an alloy-based material or the like among the above-mentioned negative electrode materials is used as the negative electrode material, short circuit between positive and negative electrodes due to generation of dendrite hardly occurs It is advantageous in point. However, when these negative electrode materials not containing lithium are used in combination with the positive electrode material of the present invention, neither the positive electrode nor the negative electrode contains lithium. Therefore, a lithium pre-doping process is required in which lithium is inserted in advance into one or both of the negative electrode and the positive electrode. A known method may be used as the lithium pre-doping method. For example, when the negative electrode is doped with lithium, a method of inserting lithium by an electrolytic doping method in which metal lithium is used as a counter electrode to form a half cell and electrochemically dopes lithium, or a metal lithium foil is attached to an electrode After that, there is a method of inserting lithium by a sticking pre-doping method of leaving in an electrolytic solution and doping using diffusion of lithium to the electrode. In addition, the above-described electrolytic doping method can be used also in the case of pre-doping lithium to the positive electrode.
 リチウムを含まない負極材料としては、特に、高容量の負極材料であるシリコン系材料が好ましく、そのなかでも電極厚さが薄くて体積当りの容量で有利となる薄膜シリコンがより好ましい。 As the negative electrode material not containing lithium, particularly, a silicon-based material which is a high capacity negative electrode material is preferable, and among them, thin film silicon which has a thin electrode thickness and is advantageous in capacity per volume is more preferable.
 負極用の集電体としては、アルミニウム箔、アルミニウムメッシュ、パンチングアルミニウムシート、アルミニウムエキスパンドシート、ステンレススチール箔、ステンレススチールメッシュ、パンチングステンレススチールシート、ステンレススチールエキスパンドシート、発泡ニッケル、ニッケル不織布、銅箔、銅メッシュ、パンチング銅シート、銅エキスパンドシート、チタン箔、チタンメッシュ、カーボンペーパー(不織布/織布)等が例示される。 As a current collector for the negative electrode, aluminum foil, aluminum mesh, punching aluminum sheet, aluminum expanded sheet, stainless steel foil, stainless steel mesh, punching stainless steel sheet, stainless steel expanded sheet, foamed nickel, nickel non-woven fabric, copper foil, Examples thereof include copper mesh, punched copper sheet, copper expanded sheet, titanium foil, titanium mesh, carbon paper (nonwoven fabric / woven fabric) and the like.
  〔電解質〕
 非水電解質二次電池に用いる電解質としては、有機溶媒に電解質であるアルカリ金属塩を溶解させたものを用いることができる。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジメチルエーテル、イソプロピルメチルカーボネート、ビニレンカーボネート、γ-ブチロラクトン、アセトニトリル等の非水系溶媒から選ばれる少なくとも一種を用いるのが好ましい。電解質としては、負極活物質としてリチウムを用いる場合には、LiPF、LiBF、LiAsF、LiCFSO、LiI、LiClO等を用いることができる。負極活物質としてナトリウムを用いる場合には、NaPF、NaBF、NaClO、NaAsF、NaSbF、NaCFSO、NaN(SOCF、低級脂肪酸ナトリウム塩、NaAlCl等から選ばれる一種又は複数種を用いることができる。なかでもLiPF、LiBF、LiAsF、LiCFSO、NaPF、NaBF、NaAsF、NaSbF、NaCFSO、NaN(SOCF等は、フッ素(F)を含むために好ましく用いられる。電解質の濃度は、0.5mol/L~1.7mol/L程度であれば良い。なお、電解質は液状に限定されず、固体状(例えば高分子ゲル状)であっても良い。
〔Electrolytes〕
As an electrolyte used for a non-aqueous electrolyte secondary battery, what melt | dissolved the alkali metal salt which is electrolyte in an organic solvent can be used. As the organic solvent, it is preferable to use at least one selected from non-aqueous solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dimethyl ether, isopropyl methyl carbonate, vinylene carbonate, γ-butyrolactone and acetonitrile. . When lithium is used as the negative electrode active material, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiI, LiClO 4 or the like can be used as the electrolyte. When using sodium as the negative electrode active material, it is selected from NaPF 6 , NaBF 4 , NaClO 4 , NaAsF 6 , NaSbF 6 , NaCF 3 SO 3 , NaN (SO 2 CF 3 ) 2 , lower fatty acid sodium salt, NaAlCl 4 etc. One or more of these can be used. Among them, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , NaPF 6 , NaBF 4 , NaAsF 6 , NaSbF 6 , NaSbF 6 , NaCF 3 SO 3 , NaN (SO 2 CF 3 ) 2 etc. contain fluorine (F) Are preferably used. The concentration of the electrolyte may be about 0.5 mol / L to 1.7 mol / L. The electrolyte is not limited to liquid, and may be solid (for example, polymer gel).
  〔その他〕
 非水電解質二次電池は、上述した負極、正極、電解質以外にも、セパレータ等の部材を備えても良い。セパレータは、正極と負極との間に介在し、正極と負極との間のイオンの移動を許容するとともに、正極と負極との内部短絡を防止する。非水電解質二次電池が密閉型であれば、セパレータには電解液を保持する機能も求められる。セパレータとしては、ポリエチレン、ポリプロピレン、PAN、アラミド、ポリイミド、セルロース、ガラス等を材料とする薄肉かつ微多孔性または不織布状の膜を用いるのが好ましい。非水電解質二次電池の形状は特に限定されず、円筒型、積層型、コイン型等、種々の形状にできる。
 以下、本発明の非水電解質二次電池およびその製造方法を具体的に説明する。
[Others]
The non-aqueous electrolyte secondary battery may include members such as a separator in addition to the above-described negative electrode, positive electrode, and electrolyte. The separator is interposed between the positive electrode and the negative electrode, allows movement of ions between the positive electrode and the negative electrode, and prevents an internal short circuit between the positive electrode and the negative electrode. If the non-aqueous electrolyte secondary battery is a closed type, the separator is also required to have a function of holding the electrolytic solution. As the separator, it is preferable to use a thin, microporous or non-woven membrane made of polyethylene, polypropylene, PAN, aramid, polyimide, cellulose, glass or the like. The shape of the non-aqueous electrolyte secondary battery is not particularly limited, and various shapes such as a cylindrical shape, a laminated shape, and a coin shape can be used.
Hereinafter, the non-aqueous electrolyte secondary battery of the present invention and a method of manufacturing the same will be specifically described.
 (実施例)
 実施例の非水電解質二次電池はリチウムイオン二次電池である。実施例の非水電解質二次電池は以下のように作製した。
(Example)
The non-aqueous electrolyte secondary battery of the example is a lithium ion secondary battery. The nonaqueous electrolyte secondary battery of the example was produced as follows.
 <硫黄変性PAN>
  〔1〕混合原料
 硫黄粉末として、篩いを用いて分級した際に粒径50μm以下となるものを準備した。PAN粉末として、電子顕微鏡で確認した場合に粒径が0.2μm~2μmの範囲にあるものを準備した。硫黄粉末5質量部と、PAN粉末1質量部とを乳鉢で混合・粉砕して、混合原料を得た。
<Sulfur-modified PAN>
[1] Mixed raw material As a sulfur powder, when it classified using a sieve, the thing used as a particle size of 50 micrometers or less was prepared. As a PAN powder, one having a particle diameter in the range of 0.2 μm to 2 μm as prepared by an electron microscope was prepared. 5 parts by mass of sulfur powder and 1 part by mass of PAN powder were mixed and pulverized in a mortar to obtain a mixed raw material.
  〔2〕装置
 図3に示すように、反応装置1は、反応容器2、蓋3、熱電対4、アルミナ保護管40、2つのアルミナ管(ガス導入管5、ガス排出管6)、アルゴンガス配管50、アルゴンガスを収容したガスタンク51、トラップ配管60、水酸化ナトリウム水溶液61を収容したトラップ槽62、電気炉7、電気炉に接続されている温度コントローラ70を持つ。
[2] Device As shown in FIG. 3, the reaction device 1 comprises a reaction vessel 2, a lid 3, a thermocouple 4, an alumina protective tube 40, two alumina tubes (gas inlet tube 5, gas outlet tube 6), argon gas It has a piping 50, a gas tank 51 containing argon gas, a trap piping 60, a trap tank 62 containing an aqueous sodium hydroxide solution 61, an electric furnace 7, and a temperature controller 70 connected to the electric furnace.
 反応容器2としては、有底筒状をなすガラス管(石英ガラス製)を用いた。後述する熱処理工程において、反応容器2には混合原料9を収容した。反応容器2の開口部は、3つの貫通孔を持つガラス製の蓋3で閉じた。貫通孔の1つには、熱電対4を収容したアルミナ保護管40(アルミナSSA-S、株式会社ニッカトー製)を取り付けた。貫通孔の他の1つには、ガス導入管5(アルミナSSA-S、株式会社ニッカトー製)を取り付けた。貫通孔の残りの1つには、ガス排出管6(アルミナSSA-S、株式会社ニッカトー製)を取り付けた。なお、反応容器2は、外径60mm、内径50mm、長さ300mmであった。アルミナ保護管40は、外径4mm、内径2mm、長さ250mmであった。ガス導入管5およびガス排出管6は、外径6mm、内径4mm、長さ150mmであった。ガス導入管5およびガス排出管6の先端は、蓋3の外部(反応容器2内)に露出した。この露出した部分の長さは3mmであった。ガス導入管5およびガス排出管6の先端は、後述する熱処理工程においてほぼ100℃以下となる。このため、熱処理工程において生じる硫黄蒸気は、ガス導入管5およびガス排出管6から流出せず、反応容器2に戻される(還流する)。 As the reaction vessel 2, a bottomed cylindrical glass tube (made of quartz glass) was used. The mixed raw material 9 was accommodated in the reaction container 2 in the heat treatment process mentioned later. The opening of the reaction vessel 2 was closed by a glass lid 3 having three through holes. An alumina protective tube 40 (alumina SSA-S, manufactured by Nikkato Co., Ltd.) containing a thermocouple 4 was attached to one of the through holes. A gas introduction pipe 5 (alumina SSA-S, manufactured by Nikkato Co., Ltd.) was attached to the other one of the through holes. A gas exhaust pipe 6 (alumina SSA-S, manufactured by Nikkato Co., Ltd.) was attached to the remaining one of the through holes. The reaction vessel 2 had an outer diameter of 60 mm, an inner diameter of 50 mm, and a length of 300 mm. The alumina protective tube 40 had an outer diameter of 4 mm, an inner diameter of 2 mm, and a length of 250 mm. The gas introduction pipe 5 and the gas discharge pipe 6 had an outer diameter of 6 mm, an inner diameter of 4 mm, and a length of 150 mm. The tips of the gas introduction pipe 5 and the gas discharge pipe 6 were exposed to the outside of the lid 3 (in the reaction vessel 2). The length of this exposed portion was 3 mm. The tips of the gas introduction pipe 5 and the gas discharge pipe 6 become almost 100 ° C. or less in the heat treatment step described later. For this reason, the sulfur vapor generated in the heat treatment step does not flow out from the gas introduction pipe 5 and the gas discharge pipe 6 and is returned (refluxed) to the reaction vessel 2.
 アルミナ保護管40に入れた熱電対4の先端は、間接的に反応容器2中の混合原料9の温度を測定した。熱電対4で測定した温度は、電気炉7の温度コントローラ70にフィードバックした。 The tip of the thermocouple 4 placed in the alumina protective tube 40 indirectly measured the temperature of the mixed raw material 9 in the reaction vessel 2. The temperature measured by the thermocouple 4 was fed back to the temperature controller 70 of the electric furnace 7.
 ガス導入管5にはアルゴンガス配管50を接続した。アルゴンガス配管50はアルゴンガスを収容したガスタンク51に接続した。ガス排出管6にはトラップ配管60の一端を接続した。トラップ配管60の他端は、トラップ槽62中の水酸化ナトリウム水溶液61に挿入した。なお、トラップ配管60およびトラップ槽62は、後述する熱処理工程で生じる硫化水素ガスのトラップである。 An argon gas pipe 50 was connected to the gas introduction pipe 5. The argon gas pipe 50 was connected to a gas tank 51 containing argon gas. One end of a trap pipe 60 was connected to the gas discharge pipe 6. The other end of the trap pipe 60 was inserted into the sodium hydroxide aqueous solution 61 in the trap tank 62. The trap pipe 60 and the trap tank 62 are traps of hydrogen sulfide gas generated in a heat treatment process described later.
  〔3〕熱処理工程
 混合原料9を収容した反応容器2を、電気炉7(ルツボ炉、開口幅φ80mm、加熱高さ100mm)に収容した。このとき、ガス導入管5を介して反応容器2の内部にアルゴンを導入した。このときのアルゴンガスの流速は100ml/分であった。アルゴンガスの導入開始10分後に、アルゴンガスの導入を継続しつつ反応容器2中の混合原料9の加熱を開始した。このときの昇温速度は5℃/分であった。混合原料9が100℃になった時点で、混合原料9の加熱を継続しつつアルゴンガスの導入を停止した。混合原料9が約200℃になるとガスが発生した。混合原料9が360℃になった時点で加熱を停止した。加熱停止後、混合原料9の温度は400℃にまで上昇し、その後低下した。したがって、この熱処理工程において、混合原料9は400℃にまで加熱された。その後、混合原料9を自然冷却し、混合原料9が室温(約25℃)にまで冷却された時点で反応容器2から生成物(すなわち、熱処理工程後の被処理体)を取り出した。なお、このときの加熱時間は400℃で約10分であり、硫黄は還流された。
[3] Heat Treatment Step The reaction vessel 2 containing the mixed raw material 9 was housed in an electric furnace 7 (crucible furnace, opening width φ 80 mm, heating height 100 mm). At this time, argon was introduced into the reaction vessel 2 through the gas introduction pipe 5. The flow rate of argon gas at this time was 100 ml / min. Ten minutes after the start of the introduction of the argon gas, heating of the mixed material 9 in the reaction vessel 2 was started while continuing the introduction of the argon gas. The temperature rising rate at this time was 5 ° C./min. When the mixed material 9 reached 100 ° C., the introduction of argon gas was stopped while continuing to heat the mixed material 9. When the mixed material 9 reached about 200 ° C., gas was generated. Heating was stopped when the mixed material 9 reached 360 ° C. After the heating was stopped, the temperature of the mixed material 9 rose to 400 ° C. and then dropped. Therefore, the mixed raw material 9 was heated to 400 ° C. in this heat treatment step. Thereafter, the mixed raw material 9 was naturally cooled, and when the mixed raw material 9 was cooled to room temperature (about 25 ° C.), the product (that is, the object to be treated after the heat treatment step) was taken out from the reaction vessel 2. The heating time at this time was about 10 minutes at 400 ° C., and sulfur was refluxed.
  〔4〕単体硫黄除去工程
 熱処理工程後の被処理体に残存する単体硫黄(遊離の硫黄)を除去するために、以下の工程をおこなった。
[4] Single Sulfur Removal Step In order to remove single sulfur (free sulfur) remaining on the object to be treated after the heat treatment step, the following steps were carried out.
 熱処理工程後の被処理体を乳鉢で粉砕した。粉砕物2gをガラスチューブオーブンに入れ、真空吸引しつつ200℃で3時間加熱した。このときの昇温温度は10℃/分であった。この工程により、熱処理工程後の被処理体に残存する単体硫黄が蒸発・除去され、単体硫黄を含まない(または、ほぼ含まない)硫黄変性PANを得た。 The object to be treated after the heat treatment step was crushed in a mortar. 2 g of the pulverized material was placed in a glass tube oven and heated at 200 ° C. for 3 hours while vacuum suction was performed. The temperature rising temperature at this time was 10 ° C./min. In this step, the elemental sulfur remaining on the object to be treated after the heat treatment step is evaporated and removed to obtain sulfur-modified PAN containing (or substantially not containing) elemental sulfur.
 <正極材料>
  〔1〕解砕工程
 図4Aに示すように、上記の工程で得られた硫黄変性PAN80は、硫黄変性PAN粒子の一次粒子81が凝集した凝集体状をなす。解砕工程においては、この凝集体状の硫黄変性PAN80を、水中に分散させ、スギノマシン社製スターバーストラボHJP-25005(斜向衝突チャンバー、245MPa加圧)を用いて液中衝突解砕処理を施し、水中で凝集体状の硫黄変性PAN80同士を衝突させた。図4Bに示すように、この工程により、凝集体状の硫黄変性PAN80が解砕された硫黄変性PAN粒子82を得た。
<Positive material>
[1] Crushing Step As shown in FIG. 4A, the sulfur-modified PAN 80 obtained in the above step is in the form of an aggregate in which primary particles 81 of the sulfur-modified PAN particles are aggregated. In the crushing step, this aggregate-like sulfur-modified PAN 80 is dispersed in water, and subjected to collision crushing in liquid using a Starburst Lab HJP-25005 (oblique collision chamber, pressurized at 245 MPa) manufactured by Sugino Machine Co., Ltd. The sulfur-modified PANs 80 in aggregate form were allowed to collide with each other in water. As shown in FIG. 4B, this step yielded sulfur-modified PAN particles 82 in which aggregate-like sulfur-modified PAN 80 was crushed.
  〔2〕助剤添加工程
 解砕工程が1サイクル完了した後、上記解砕装置の試料タンクに、導電助剤83としてのアセチレンブラック(AB)を添加した。ABの配合量は、硫黄変性PAN100質量部に対して6質量部であった。このABの粒径は0.02μm(メジアン値)であった。図4Cに示すように、導電助剤83の添加後、解砕サイクルを4サイクル繰り返すことで、硫黄変性PAN粒子82の表面に導電助剤83を付着させた。
[2] Auxiliary Agent Addition Step After one cycle of the crushing step was completed, acetylene black (AB) as the conductive auxiliary agent 83 was added to the sample tank of the above-mentioned crushing apparatus. The blending amount of AB was 6 parts by mass with respect to 100 parts by mass of the sulfur-modified PAN. The particle diameter of this AB was 0.02 μm (median value). As shown in FIG. 4C, after the addition of the conductive aid 83, the crushing cycle was repeated four cycles to adhere the conductive aid 83 to the surface of the sulfur-modified PAN particles 82.
  〔3〕再凝集工程
 助剤添加工程で得られた硫黄変性PAN粒子82と導電助剤83との水分散物を、藤崎電機製スプレードライ装置 MDL-050Bを用いて、スプレードライした。この工程により、水が蒸発すると共に粒径略一定の凝集体が得られた。この凝集体は実施例の正極材料84である。図4Dに示すように、実施例の正極材料84において、導電助剤83は正極材料84の表面および内部に存在する。
[3] Reaggregation Step The aqueous dispersion of the sulfur-modified PAN particles 82 and the conductive auxiliary agent 83 obtained in the auxiliary agent addition step was spray-dried using a spray dryer MDL-050B manufactured by Fujisaki Electric. By this process, water was evaporated and aggregates having a substantially constant particle size were obtained. This aggregate is the positive electrode material 84 of the example. As shown in FIG. 4D, in the positive electrode material 84 of the embodiment, the conductive auxiliary agent 83 exists on the surface and inside of the positive electrode material 84.
 <リチウム二次電池> <Lithium rechargeable battery>
  〔1〕正極
 上記の工程で得られた正極材料80質量部と、ポリイミド(PI)20質量部と、N-メチル-2-ピロリドン(NMP)と、を混合してスラリーを作製した。
[1] Positive Electrode A slurry was prepared by mixing 80 parts by mass of the positive electrode material obtained in the above step, 20 parts by mass of polyimide (PI), and N-methyl-2-pyrrolidone (NMP).
 一方、カーボンペーパー(東レ社製;TGP-H-030)を直径φ11mmに打ち抜いた集電体を用意し、上記スラリーを充填した後に200℃で2時間、減圧下で乾燥して正極を作製した。 On the other hand, a current collector made of carbon paper (Toray; TGP-H-030) punched out to a diameter of 11 mm was prepared, filled with the above slurry, and dried at 200 ° C. for 2 hours under reduced pressure to prepare a positive electrode. .
  〔2〕負極
 負極としては、金属リチウム箔を直径φ11mmのサイズに打ち抜いたものを用いた。
[2] Negative Electrode As a negative electrode, a metal lithium foil punched out to a size of 11 mm in diameter was used.
  〔3〕電解液
 電解液としては、プロピレンカーボネートに、LiPFを溶解した非水電解質を用いた。電解液中のLiPFの濃度は、1.0mol/Lであった。
[3] Electrolyte A non-aqueous electrolyte in which LiPF 6 was dissolved in propylene carbonate was used as the electrolyte. The concentration of LiPF 6 in the electrolyte was 1.0 mol / L.
  〔4〕電池
 上記〔1〕、〔2〕、〔3〕で得た正極、負極および電解液を用いて、コイン電池を製作した。詳しくは、ドライルーム内で、厚さ25μmのポリプロピレン微多孔質膜からなるセパレータ(「Celgard2400」Celgard社製)と、厚さ500μmのガラス不織布フィルタと、を正極と負極との間に挟装して、電極体電池とした。この電極体電池を、ステンレス容器からなる電池ケース(CR2032型コイン電池用部材、宝泉株式会社製)に収容した。電池ケースには〔3〕で得られた電解液を注入した。電池ケースをカシメ機で密閉して、実施例の非水電解質二次電池を得た。
[4] Battery A coin battery was produced using the positive electrode, the negative electrode and the electrolyte obtained in the above [1], [2] and [3]. Specifically, in a dry room, a separator (made of “Celgard 2400” Celgard) made of a 25 μm-thick polypropylene microporous film and a 500 μm-thick glass non-woven filter are sandwiched between a positive electrode and a negative electrode. As an electrode body battery. The electrode battery was housed in a battery case (CR2032 type coin battery member manufactured by Takasen Co., Ltd.) consisting of a stainless steel container. The electrolytic solution obtained in [3] was injected into the battery case. The battery case was sealed with a caulking machine to obtain the non-aqueous electrolyte secondary battery of the example.
 (比較例)
 比較例の非水電解質二次電池用正極材料は、解砕前の硫黄変性PAN凝集体に直接導電助剤を付着させたこと以外は、実施例の非水電解質二次電池用正極材料と同じものである。比較例の非水電解質二次電池用正極材料は、解砕前の硫黄変性PAN凝集体と導電助剤とを、めのう製乳鉢で混合することで得られた。図5Aに示すように、比較例で用いた硫黄変性PAN80は凝集体状である。この凝集体状の硫黄変性PAN80に直接導電助剤83を付着させると、図5Bに示すように導電助剤83は凝集体状の硫黄変性PAN80の表面のみに付着する。比較例の非水電解質二次電池は、正極材料以外は実施例の非水電解質二次電池と同じものである。
(Comparative example)
The positive electrode material for a non-aqueous electrolyte secondary battery of the comparative example is the same as the positive electrode material for a non-aqueous electrolyte secondary battery of the example except that the conductive auxiliary is directly attached to the sulfur-modified PAN aggregate before crushing. It is a thing. The positive electrode material for a non-aqueous electrolyte secondary battery of Comparative Example was obtained by mixing the sulfur-modified PAN aggregate before crushing and the conductive additive in an agate mortar. As shown in FIG. 5A, the sulfur-modified PAN 80 used in the comparative example is in the form of aggregates. When the conductive auxiliary agent 83 is directly attached to the aggregate-like sulfur-modified PAN 80, the conductive auxiliary agent 83 is attached only to the surface of the aggregate-like sulfur-modified PAN 80 as shown in FIG. 5B. The non-aqueous electrolyte secondary battery of the comparative example is the same as the non-aqueous electrolyte secondary battery of the example except for the positive electrode material.
 <硫黄変性PANの粒度分布>
 解砕前の硫黄変性PANおよび解砕後の硫黄変性PANの粒度分布を測定した。解砕後の硫黄変性PANとしては、実施例と同じ解砕工程後の硫黄変性PAN水分散物を解砕装置の試料タンクから分取したものを用いた。
<Particle size distribution of sulfur-modified PAN>
The particle size distributions of the sulfur-modified PAN before crushing and the sulfur-modified PAN after crushing were measured. As the sulfur-modified PAN after crushing, a sulfur-modified PAN aqueous dispersion after the same crushing step as in the example was collected from a sample tank of a crushing apparatus.
 各硫黄変性PANの粒度分布は、堀場製作所製粒度分布測定装置 LA-910Wを用いたレーザ回折散乱法粒度分布法により測定した。測定結果を図6、図7および表1に示す。詳しくは、図6は解砕前の硫黄変性PANの粒度分布を表し、図7は解砕後の硫黄変性PANの粒度分布を表す。 The particle size distribution of each sulfur-modified PAN was measured by a laser diffraction scattering particle size distribution method using a particle size distribution analyzer LA-910W manufactured by Horiba, Ltd. The measurement results are shown in FIG. 6, FIG. 7 and Table 1. Specifically, FIG. 6 shows the particle size distribution of the sulfur-modified PAN before crushing, and FIG. 7 shows the particle size distribution of the sulfur-modified PAN after crushing.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図6、図7および表1に示すように、解砕工程により、メジアン径10μm以上の大径な硫黄変性PAN凝集体からメジアン径2μm以下の小径な硫黄変性PAN粒子を得ることができる。また解砕工程により粒子径の略均一な硫黄変性PAN粒子を得ることができる。解砕工程前の硫黄変性PAN凝集体において、粒径2μm以下の粒子は全体の1頻度%未満(約0.6頻度%)であるのに対し、解砕工程後の硫黄変性PAN粒子において、粒径2μm以下の粒子は全体の50頻度%以上(約70頻度%)である。 As shown in FIG. 6, FIG. 7 and Table 1, small-sized sulfur-modified PAN particles having a median diameter of 2 μm or less can be obtained from large-sized sulfur-modified PAN aggregates having a median diameter of 10 μm or more by the crushing step. Further, sulfur-modified PAN particles having a substantially uniform particle diameter can be obtained by the crushing step. In the sulfur-modified PAN aggregate before the crushing step, particles having a particle diameter of 2 μm or less are less than 1% (about 0.6 frequency%) of the whole, while in the sulfur-modified PAN particles after the crushing step, Particles having a particle size of 2 μm or less are 50% or more of the whole (about 70% by frequency).
 このような硫黄変性PAN粒子の表面に導電助剤を付着させた実施例の正極材料では、導電助剤が硫黄変性PAN粒子の粒径程度の間隔で分散配置される。上述したように、解砕後の硫黄変性PAN粒子の粒度分布において、粒径2μm以下の粒子は全体の約70頻度%である。このため、実施例の正極材料においては、導電助剤が2μm以上の範囲で存在していない領域は、正極材料全体の30%未満となる。つまり、正極材料を分析した際に、導電助剤が2μm以上の範囲で存在していない領域が正極材料全体の30%未満であれば、実施例の正極材料(つまり本発明の正極材料)であると判断できる。換言すると、隣接する導電助剤同士が2μm以上離間している領域が正極材料全体の30%未満であれば、本発明の正極材料であると判断できる。
 <SEMによる正極材料の観察>
In the positive electrode material of the example in which the conductive support agent is attached to the surface of such sulfur-modified PAN particles, the conductive support agent is dispersed and disposed at intervals of the particle diameter of the sulfur-modified PAN particles. As described above, in the particle size distribution of the sulfur-modified PAN particles after crushing, particles having a particle diameter of 2 μm or less account for about 70% of the whole. For this reason, in the positive electrode material of the example, the region where the conductive support agent is not present in the range of 2 μm or more is less than 30% of the entire positive electrode material. That is, when the positive electrode material is analyzed, if the region in which the conductive additive is not present in the range of 2 μm or more is less than 30% of the entire positive electrode material, the positive electrode material of the example (that is, the positive electrode material of the present invention) It can be determined that there is. In other words, it can be judged that the positive electrode material of the present invention is a region in which adjacent conductive assistants are separated by 2 μm or more from less than 30% of the entire positive electrode material.
<Observation of positive electrode material by SEM>
 実施例の正極材料および解砕前の硫黄変性PANを、走査型電子顕微鏡(SEM;Scanning Electron Microscope)により表面観察した。このときの加速電圧は5kVであり倍率は5000倍であった。解砕前の硫黄変性PANのSEM像を図8に示し、実施例の正極材料のSEM像を図9に示す。 The surface of the positive electrode material of the example and the sulfur-modified PAN before crushing were observed with a scanning electron microscope (SEM; Scanning Electron Microscope). The acceleration voltage at this time was 5 kV and the magnification was 5000 times. The SEM image of sulfur-modified PAN before crushing is shown in FIG. 8, and the SEM image of the positive electrode material of the example is shown in FIG.
 図8および図9に示すように、実施例の正極材料は解砕前の硫黄変性PANに比べて小径である。また、小径化した硫黄変性PANの表面に導電助剤であるアセチレンブラックの粒子が観察できる。 As shown in FIGS. 8 and 9, the positive electrode material of the example has a smaller diameter than the sulfur-modified PAN before crushing. In addition, particles of acetylene black, which is a conductive additive, can be observed on the surface of the sulfur-modified PAN having a reduced diameter.
 <充放電特性>
 実施例および比較例の非水電解質二次電池の充放電特性を測定した。詳しくは、各非水電解質二次電池で繰り返し充放電を行った。このときの放電レートは0.1C、カットオフ電圧は3.0V~1.0Vであった。温度は25~30℃であった。充放電特性試験のうち、2サイクル目の放電試験結果を図10、図11に示す。図10は実施例の非水電解質二次電池に関し、図11は比較例の非水電解質二次電池に関する。
<Charge / discharge characteristics>
The charge and discharge characteristics of the non-aqueous electrolyte secondary batteries of Examples and Comparative Examples were measured. Specifically, charge and discharge were repeatedly performed in each non-aqueous electrolyte secondary battery. The discharge rate at this time was 0.1 C, and the cut-off voltage was 3.0 V to 1.0 V. The temperature was 25-30 ° C. Among the charge and discharge characteristic tests, the results of the second cycle discharge test are shown in FIG. 10 and FIG. FIG. 10 relates to the nonaqueous electrolyte secondary battery of the example, and FIG. 11 relates to the nonaqueous electrolyte secondary battery of the comparative example.
 比較例の非水電解質二次電池(図11)では放電開始直後の電池電圧が2.68Vであった。これに対して、実施例の非水電解質二次電池(図10)では、放電開始直後の電池電圧は2.53Vであった。この結果から、実施例の非水電解質二次電池が比較例の非水電解質二次電池に比べて内部抵抗が低減していることが分かる。これは、実施例の正極材料が比較例の正極材料よりも導電性に優れることを示している。つまり、解砕された硫黄変性PANに導電助剤を付着させた場合には、解砕前の硫黄変性PANに導電助剤を付着させた場合に比べて、同じ導電助剤の量でも導電率を向上させ得ると言える。 In the nonaqueous electrolyte secondary battery (FIG. 11) of the comparative example, the battery voltage immediately after the start of discharge was 2.68 V. On the other hand, in the non-aqueous electrolyte secondary battery (FIG. 10) of the example, the battery voltage immediately after the start of discharge was 2.53 V. From these results, it can be seen that the internal resistance of the non-aqueous electrolyte secondary battery of the example is lower than that of the non-aqueous electrolyte secondary battery of the comparative example. This indicates that the positive electrode material of the example is more conductive than the positive electrode material of the comparative example. That is, when the conductive auxiliary is attached to the crushed sulfur-modified PAN, the conductivity is the same even with the same amount of conductive auxiliary as compared to the case where the conductive auxiliary is attached to the sulfur-modified PAN before the crushing. Can be improved.
1:反応装置   2:反応容器   3:蓋   4:熱電対
5:ガス導入管  6:ガス排出管  7:電気炉
80:凝集体状の硫黄変性PAN  81:硫黄変性PAN粒子の一次粒子
82:硫黄変性PAN粒子     83:導電助剤    84:正極材料
1: Reactor 2: Reaction vessel 3: Lid 4: Thermocouple 5: Gas inlet tube 6: Gas outlet tube 7: Electric furnace 80: Aggregate-like sulfur-modified PAN 81: Primary particles 82 of sulfur-modified PAN particles: Sulfur Modified PAN particle 83: conductive aid 84: positive electrode material

Claims (9)

  1.  非水電解質二次電池用の正極材料であって、
     ポリアクリロニトリルに由来する炭素骨格と該炭素骨格と硫黄(S)とからなる硫黄系正極活物質と、導電助剤と、を材料とし、
     該硫黄系正極活物質の粒度分布において、全体の粒子の50頻度%以上が粒子径2μm以下の粒子であることを特徴とする非水電解質二次電池用正極材料。
    A positive electrode material for a non-aqueous electrolyte secondary battery,
    Using a carbon skeleton derived from polyacrylonitrile, a sulfur-based positive electrode active material consisting of the carbon skeleton and sulfur (S), and a conductive aid,
    What is claimed is: 1. A positive electrode material for a non-aqueous electrolyte secondary battery, wherein 50% by frequency or more of the particles in the particle size distribution of the sulfur-based positive electrode active material is particles having a particle diameter of 2 μm or less.
  2.  前記硫黄系正極活物質のラマンスペクトルにおいて、ラマンシフトの1331cm-1付近に主ピークが存在し、かつ、200cm-1~1800cm-1の範囲内で1548cm-1、939cm-1、479cm-1、381cm-1、317cm-1付近にそれぞれピークが存在する請求項1に記載の非水電解質二次電池用正極材料。 In the Raman spectrum of the sulfur-based positive active material, there is a main peak near 1331cm -1 of Raman shift, and, 1548cm -1 in the range of 200cm -1 ~ 1800cm -1, 939cm -1 , 479cm -1, The positive electrode material for a non-aqueous electrolyte secondary battery according to claim 1, wherein peaks are present respectively at 381 cm -1 and 317 cm -1 .
  3.  前記硫黄系正極活物質の粒度分布において、全体の粒子の70頻度%以上が粒子径2μm以下の粒子である請求項1または請求項2に記載の非水電解質二次電池用正極材料。 3. The positive electrode material for a non-aqueous electrolyte secondary battery according to claim 1, wherein 70% or more of the particles in the particle size distribution of the sulfur-based positive electrode active material are particles having a particle diameter of 2 μm or less.
  4.  請求項1~3の何れか一つに記載の非水電解質二次電池用正極材料を正極に含むことを特徴とする非水電解質二次電池。 A non-aqueous electrolyte secondary battery comprising the positive electrode material for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 3 in a positive electrode.
  5.  請求項1~3の何れか一つに記載の非水電解質二次電池用正極材料を製造する方法であって、
     ポリアクリロニトリルに由来する炭素骨格と該炭素骨格と硫黄(S)とからなる硫黄系正極活物質を解砕する解砕工程と、
     解砕された該硫黄系正極活物質の表面に導電助剤を付着させる助剤添加工程と、
     該助剤添加工程後に該硫黄系正極活物質を再凝集させる再凝集工程と、を備えることを特徴とする非水電解質二次電池用正極材料の製造方法。
    A method for producing a positive electrode material for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 3,
    A crushing step of crushing a sulfur-based positive electrode active material comprising a carbon skeleton derived from polyacrylonitrile and the carbon skeleton and sulfur (S);
    An auxiliary agent addition step of causing a conductive auxiliary agent to adhere to the surface of the crushed sulfur-based positive electrode active material;
    A method for producing a positive electrode material for a non-aqueous electrolyte secondary battery, comprising: a reaggregation step of reaggregating the sulfur-based positive electrode active material after the auxiliary agent addition step.
  6.  前記解砕工程は液状媒体中で行う請求項5に記載の非水電解質二次電池用正極材料の製造方法。 The method for producing a positive electrode material for a non-aqueous electrolyte secondary battery according to claim 5, wherein the crushing step is performed in a liquid medium.
  7.  前記助剤添加工程は液状媒体中で行う請求項5または請求項6に記載の非水電解質二次電池用正極材料の製造方法。 The method for producing a positive electrode material for a non-aqueous electrolyte secondary battery according to claim 5, wherein the auxiliary agent addition step is performed in a liquid medium.
  8.  前記助剤添加工程は前記解砕工程と同時に行う請求項5~7の何れか一つに記載の非水電解質二次電池用正極材料の製造方法。 The method for producing a positive electrode material for a non-aqueous electrolyte secondary battery according to any one of claims 5 to 7, wherein the auxiliary agent addition step is performed simultaneously with the crushing step.
  9.  前記再凝集工程は、スプレードライまたは流動層造粒によって行う請求項7または請求項8に記載の非水電解質二次電池用正極材料の製造方法。 The method for producing a positive electrode material for a non-aqueous electrolyte secondary battery according to claim 7, wherein the reaggregation step is performed by spray drying or fluidized bed granulation.
PCT/JP2012/007417 2011-11-24 2012-11-19 Positive electrode material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing positive electrode material for nonaqueous electrolyte secondary batteries WO2013076958A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013545785A JP5754606B2 (en) 2011-11-24 2012-11-19 Non-aqueous electrolyte secondary battery positive electrode material, non-aqueous electrolyte secondary battery, and method for producing positive electrode material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011256504 2011-11-24
JP2011-256504 2011-11-24

Publications (1)

Publication Number Publication Date
WO2013076958A1 true WO2013076958A1 (en) 2013-05-30

Family

ID=48469425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007417 WO2013076958A1 (en) 2011-11-24 2012-11-19 Positive electrode material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing positive electrode material for nonaqueous electrolyte secondary batteries

Country Status (2)

Country Link
JP (1) JP5754606B2 (en)
WO (1) WO2013076958A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018055998A (en) * 2016-09-29 2018-04-05 国立研究開発法人産業技術総合研究所 Electrode slurry and method of manufacturing electrode using the same
JP2018174136A (en) * 2017-03-31 2018-11-08 株式会社Adeka Electrode for nonaqueous electrolyte secondary battery
WO2019031208A1 (en) * 2017-08-08 2019-02-14 第一工業製薬株式会社 Lithium-ion battery electrode material, lithium-ion capacitor electrode material, electrode, battery, capacitor, electric device, production method for lithium-ion battery electrode material, and production method for lithium-ion capacitor electrode material
JP2021511646A (en) * 2018-01-16 2021-05-06 アルケマ フランス Formulations in solid-liquid dispersion form for the manufacture of cathodes for LI / S batteries and methods for preparing the formulations.
JP2021153029A (en) * 2020-03-25 2021-09-30 Tdk株式会社 Positive electrode active material layer, positive electrode using the same, and secondary battery
WO2021251234A1 (en) * 2020-06-12 2021-12-16 株式会社Adeka Electrode and lithium ion secondary battery
JP7524606B2 (en) 2020-05-25 2024-07-30 住友ゴム工業株式会社 Sulfur-based active material, electrode, non-aqueous electrolyte secondary battery, and manufacturing method
KR20240117078A (en) 2021-11-30 2024-07-31 니폰 제온 가부시키가이샤 Composite particles and their manufacturing method, electrodes for electrochemical devices, and electrochemical devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119367A (en) * 2002-09-23 2004-04-15 Samsung Sdi Co Ltd Positive electrode activator for lithium-sulfur battery, lithium-sulfur battery, and electronic product
WO2010044437A1 (en) * 2008-10-17 2010-04-22 独立行政法人産業技術総合研究所 Sulfur-modified polyacrylonitrile, manufacturing method therefor, and application thereof
JP2010153296A (en) * 2008-12-26 2010-07-08 National Institute Of Advanced Industrial Science & Technology Sulfur modified polyacrylonitrile sheet, method for manufacturing the same, and application of the same
WO2011129103A1 (en) * 2010-04-16 2011-10-20 株式会社豊田自動織機 Positive electrode for lithium ion secondary battery, and lithium ion secondary battery comprising the positive electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119367A (en) * 2002-09-23 2004-04-15 Samsung Sdi Co Ltd Positive electrode activator for lithium-sulfur battery, lithium-sulfur battery, and electronic product
WO2010044437A1 (en) * 2008-10-17 2010-04-22 独立行政法人産業技術総合研究所 Sulfur-modified polyacrylonitrile, manufacturing method therefor, and application thereof
JP2010153296A (en) * 2008-12-26 2010-07-08 National Institute Of Advanced Industrial Science & Technology Sulfur modified polyacrylonitrile sheet, method for manufacturing the same, and application of the same
WO2011129103A1 (en) * 2010-04-16 2011-10-20 株式会社豊田自動織機 Positive electrode for lithium ion secondary battery, and lithium ion secondary battery comprising the positive electrode

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018055998A (en) * 2016-09-29 2018-04-05 国立研究開発法人産業技術総合研究所 Electrode slurry and method of manufacturing electrode using the same
JP2018174136A (en) * 2017-03-31 2018-11-08 株式会社Adeka Electrode for nonaqueous electrolyte secondary battery
JP7053337B2 (en) 2017-03-31 2022-04-12 株式会社Adeka Electrodes for non-aqueous electrolyte secondary batteries
WO2019031208A1 (en) * 2017-08-08 2019-02-14 第一工業製薬株式会社 Lithium-ion battery electrode material, lithium-ion capacitor electrode material, electrode, battery, capacitor, electric device, production method for lithium-ion battery electrode material, and production method for lithium-ion capacitor electrode material
US11289693B2 (en) 2017-08-08 2022-03-29 Dai-Ichi Kogyo Seiyaku Co., Ltd. Sulfur modified cellulose containing lithium-ion battery electrode material, lithium-ion capacitor electrode material, electrode, battery, capacitor, electric device, production method for lithium-ion battery electrode material, and production method for lithium-ion capacitor electrode material
JP2021511646A (en) * 2018-01-16 2021-05-06 アルケマ フランス Formulations in solid-liquid dispersion form for the manufacture of cathodes for LI / S batteries and methods for preparing the formulations.
JP7057443B2 (en) 2018-01-16 2022-04-19 アルケマ フランス Formulations in solid-liquid dispersion form for the manufacture of cathodes for LI / S batteries and methods for preparing the formulations.
JP2021153029A (en) * 2020-03-25 2021-09-30 Tdk株式会社 Positive electrode active material layer, positive electrode using the same, and secondary battery
JP7400580B2 (en) 2020-03-25 2023-12-19 Tdk株式会社 Positive electrode active material layer, positive electrode and secondary battery using the same
JP7524606B2 (en) 2020-05-25 2024-07-30 住友ゴム工業株式会社 Sulfur-based active material, electrode, non-aqueous electrolyte secondary battery, and manufacturing method
WO2021251234A1 (en) * 2020-06-12 2021-12-16 株式会社Adeka Electrode and lithium ion secondary battery
KR20240117078A (en) 2021-11-30 2024-07-31 니폰 제온 가부시키가이샤 Composite particles and their manufacturing method, electrodes for electrochemical devices, and electrochemical devices

Also Published As

Publication number Publication date
JP5754606B2 (en) 2015-07-29
JPWO2013076958A1 (en) 2015-04-27

Similar Documents

Publication Publication Date Title
JP5618112B2 (en) Sulfur-modified polyacrylonitrile, evaluation method thereof, positive electrode using sulfur-modified polyacrylonitrile, nonaqueous electrolyte secondary battery, and vehicle
JP5754606B2 (en) Non-aqueous electrolyte secondary battery positive electrode material, non-aqueous electrolyte secondary battery, and method for producing positive electrode material for non-aqueous electrolyte secondary battery
JP5589154B2 (en) Non-aqueous electrolyte secondary battery negative electrode carbonaceous material and method for producing the same
JP5255143B2 (en) Positive electrode material, lithium ion secondary battery using the same, and method for manufacturing positive electrode material
WO2013001693A1 (en) Sulfur-containing positive electrode active material and method for producing same, and positive electrode for lithium ion secondary battery
JP2014096326A (en) Negative electrode active material for secondary cell, and negative electrode and secondary cell using the same
WO2012098614A1 (en) Positive electrode for lithium ion secondary batteries, lithium ion secondary battery, method of producing a positive electrode for lithium ion secondary batteries, and vehicle
WO2013168605A1 (en) Negative electrode for nonaqueous electrolyte rechargeable battery and nonaqueous electrolyte rechargeable battery using same
WO2017143021A1 (en) Immobilized selenium, a method of making, and uses of immobilized selenium in a rechargeable battery
JP2013235682A (en) Negative electrode material for lithium ion secondary batteries and its manufacturing method, and lithium ion secondary battery arranged by use thereof
JP7350817B2 (en) Anode material for lithium ion batteries and its manufacturing and usage methods
JP7404852B2 (en) Sulfur-based active material
JP7163983B2 (en) Organic sulfur material, electrode, lithium ion secondary battery, and manufacturing method
JP4996827B2 (en) Metal-graphite composite particles for negative electrode of lithium ion secondary battery and manufacturing method thereof, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5774444B2 (en) Negative electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
US20210126254A1 (en) Anode materials for and methods of making and using same
JP7136244B2 (en) Organic sulfur material, electrode, lithium ion secondary battery, and manufacturing method
JP7337580B2 (en) Anode materials for lithium-ion batteries containing multicomponent silicides and silicon
WO2020174937A1 (en) Method for producing positive electrode active substance for non-aqueous electrolyte secondary battery
JP6614196B2 (en) Positive electrode material for non-aqueous secondary battery and non-aqueous secondary battery
EP3902045A2 (en) Organic sulfur material, electrode, and litium-ion secondary batteries, and producing method
KR20210130101A (en) Organic sulfur material, electrode and lithium ion secondary battery, and manufacturing method thereof
JP2021051921A (en) Method for manufacturing Si-Ti-C negative electrode material
JP2018170221A (en) Composition for negative electrode active material layer formation of lithium ion secondary battery, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851392

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013545785

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12851392

Country of ref document: EP

Kind code of ref document: A1