JP2021151731A - 光照射装置、三次元造形装置及び三次元造形方法 - Google Patents

光照射装置、三次元造形装置及び三次元造形方法 Download PDF

Info

Publication number
JP2021151731A
JP2021151731A JP2020052752A JP2020052752A JP2021151731A JP 2021151731 A JP2021151731 A JP 2021151731A JP 2020052752 A JP2020052752 A JP 2020052752A JP 2020052752 A JP2020052752 A JP 2020052752A JP 2021151731 A JP2021151731 A JP 2021151731A
Authority
JP
Japan
Prior art keywords
light
region
modeling material
optical system
modeling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020052752A
Other languages
English (en)
Inventor
由起子 林
Yukiko Hayashi
由起子 林
幸英 茂野
Yukie Shigeno
幸英 茂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2020052752A priority Critical patent/JP2021151731A/ja
Publication of JP2021151731A publication Critical patent/JP2021151731A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

【課題】所望の所定形状の三次元造形物を素早く製造できる光照射装置を提供する。【解決手段】光照射装置40は、三次元造形物を製造するための造形材料に対して所定形状に応じて変調された光を照射する。光照射装置40は、光源10と、光変調器14と、照明光学系11と、第1光学系18と、第2光学系50とを備える。光源10は、光を出射する。光変調器14は、光を回折光に変調する。照明光学系11は、光源10からの光を光変調器14に導く。第1光学系18は、回折光の内、所定形状に応じて変調されたm次光を造形材料上の第1領域に導く。第2光学系50は、回折光の内のn次光を造形材料上の第2領域に導く。第1領域と第2領域とは異なる。第1領域と第2領域とに、造形材料が配置される。m次光とn次光とは異なる。【選択図】図1

Description

本発明は、光照射装置、三次元造形装置及び三次元造形方法に関する。
スポット状のレーザ光を金属粉体に照射することによって、スポット状の領域に存在する金属粉体を焼結させる積層造形装置が知られている。これにより、スポット状のレーザ光を順次、金属粉体に照射して、金属製の三次元造形物を製造する。また、Grating Light Valve(GLV:登録商標)を用いて、レーザ光源からのレーザ光を、強度分布を有する照射光に変調して、ライン状の領域に存在する金属粉体に照射する積層造形装置も開示されている(例えば、特許文献1参照)。
特開2003−80604号公報
しかしながら、特許文献1に記載の積層造形装置では、レーザ光の内、金属粉体に照射されない光が存在した。つまり、レーザ光を照射光として利用するときの効率が悪かった。その結果、照射光を金属粉体に照射するときの時間を長くする必要があった。よって、所望の所定形状の三次元造形物を素早く製造できなかった。
本発明は上記課題に鑑みてなされたものであり、その目的は、所望の所定形状の三次元造形物を素早く製造できる光照射装置、三次元造形装置及び三次元造形方法を提供することにある。
本発明の一局面によれば、光照射装置は、三次元造形物を製造するための造形材料に対して所定形状に応じて変調された光を照射する。前記光照射装置は、光源と、光変調器と、照明光学系と、第1光学系と、第2光学系とを備える。前記光源は、光を出射する。前記光変調器は、前記光を回折光に変調する。前記照明光学系は、前記光源からの前記光を前記光変調器に導く。前記第1光学系は、前記回折光の内、前記所定形状に応じて変調されたm次光を前記造形材料上の第1領域に導く。前記第2光学系は、前記回折光の内のn次光を前記造形材料上の第2領域に導く。前記第1領域と前記第2領域とは異なる。前記第1領域と前記第2領域とに、前記造形材料が配置される。前記m次光と前記n次光とは異なる。
本発明の光照射装置において、前記m次光は、0次光であり、前記n次光は、1次光を含み、前記1次光を前記第2領域にある前記造形材料に照射して、当該造形材料を第1温度未満に加熱するとともに、前記0次光を前記第1領域にある前記造形材料に照射して、当該造形材料を前記第1温度以上に加熱することが好ましい。
本発明の光照射装置において、前記第2光学系は、前記n次光を拡散又は拡大して、前記第2領域に導く光学系を含むことが好ましい。
本発明の光照射装置において、前記第2光学系は、前記第1光学系中に配置されることが好ましい。
本発明の他の局面によれば、三次元造形装置は、上記の光照射装置と、制御部とを備える。前記制御部は、前記所定形状に応じて前記光変調器を制御する。
本発明の三次元造形装置において、前記第2領域で前記n次光が照射された後の前記造形材料に、前記第1領域で前記m次光を照射する走査部を更に備えることが好ましい。
本発明の三次元造形装置において、前記第2光学系から出射される前記n次光の進行方向を変更する変更部を更に備え、前記制御部は、前記所定形状に応じて、前記第1領域と前記第2領域との間の距離を調整するように、前記変更部を制御することが好ましい。
本発明の他の局面によれば、三次元造形方法は、三次元造形物を製造するための造形材料に対して所定形状に応じて変調された光を照射する。前記三次元造形方法は、照明工程と、変調工程と、第1工程と、第2工程と、走査工程とを含む。前記照明工程では、光源からの光を光変調器に導く。前記変調工程では、前記光を回折光に変調する。前記第1工程では、前記回折光の内、前記所定形状に応じて変調されたm次光を前記造形材料上の第1領域に導く。前記第2工程では、前記回折光の内のn次光を前記造形材料上の第2領域に導く。前記第1領域と前記第2領域とは異なる。前記m次光と前記n次光とは異なる。
本発明によれば、所望の所定形状の三次元造形物を素早く製造できる。
本発明に係る実施形態1の三次元造形装置を示す図である。 実施形態1に係るLPLVを示す平面図である。 図2のIII−III線の断面図である。 実施形態1に係るLPLVの一例を示す断面図である。 実施形態1に係るZX面での光路を示す図である。 実施形態1に係るXY面での光路を示す図である。 実施形態1に係る第1プリズムを示す図である。 実施形態1に係る制御装置の処理の一例を示すフローチャートである。 実施形態1に係る所定方向における0次光の強度分布の一例を示す図である。 実施形態1に係る所定方向における1次光の強度分布の一例を示す図である。 実施形態1に係る所定方向における1次光の強度分布の他の一例を示す図である。 実施形態1に係る所定方向における1次光の強度分布の他の一例を示す図である。 実施形態1に係る所定方向における1次光の強度分布の他の一例を示す図である。 実施形態1に係る所定方向における0次光の強度分布の他の一例を示す図である。 実施形態1に係る所定方向における1次光の強度分布の他の一例を示す図である。 実施形態1に係る単位空間での温度変化の一例を示す図である。 実施形態1に係る単位空間での温度変化の一例を示す図である。 実施形態1に係るずれ量と入射角との関係を示す図である。 本発明に係る実施形態2の三次元造形装置を示す図である。 本発明に係る実施形態3の光変調器を示す平面図である。 実施形態3に係る光変調器の一部を示す拡大斜視図である。
以下、添付される図面を参照しながら実施の形態について説明する。以下の実施の形態では、技術の説明のために詳細な特徴等も示されるが、それらは例示であり、実施の形態が実施可能となるためにそれらすべてが必ずしも必須の特徴ではない。
なお、図面は概略的に示されるものであり、説明の便宜のため、適宜、構成の省略、又は、構成の簡略化が図面においてなされるものである。また、異なる図面にそれぞれ示される構成等の大きさ及び位置の相互関係は、必ずしも正確に記載されるものではなく、適宜変更され得るものである。また、断面図ではない平面図等の図面においても、実施形態の内容を理解することを容易にするために、ハッチングが付される場合がある。
また、以下に示される説明では、同様の構成要素には同じ符号を付して図示し、それらの名称と機能とについても同様のものとする。従って、それらについての詳細な説明を、重複を避けるために省略する場合がある。
また、以下に記載される説明において、「第1」又は「第2」等の序数が用いられる場合があっても、これらの用語は、実施の形態の内容を理解することを容易にするために便宜上用いられるものであり、これらの序数によって生じ得る順序等に限定されるものではない。
また、以下に記載される説明における、相対的又は絶対的な位置関係を示す表現、例えば、「一方向に」、「一方向に沿って」、「平行」、「直交」、「中心」、「同心」又は「同軸」等は、特に断らない限りは、その位置関係を厳密に示す場合、及び、公差又は同程度の機能が得られる範囲において角度又は距離が変位している場合を含むものとする。
また、以下に記載される説明において、等しい状態であることを示す表現、例えば、「同一」、「等しい」、「均一」又は「均質」等は、特に断らない限りは、厳密に等しい状態であることを示す場合、及び、公差又は同程度の機能が得られる範囲において差が生じている場合を含むものとする。
また、以下に記載される説明において、「上」、「下」、「左」、「右」、「側」、「底」、「表」又は「裏」等の特定の位置又は方向を意味する用語が用いられる場合があっても、これらの用語は、実施形態の内容を理解することを容易にするために便宜上用いられるものであり、実際に実施される際の位置又は方向とは関係しないものである。
以下、本発明の実施形態に関する光照射装置、三次元造形装置及び三次元造形方法について説明する。
<実施形態1>
図1を参照して、本発明の実施形態1に関する三次元造形装置100を説明する。図1は、実施形態1の三次元造形装置100を示す図である。なお、本願明細書では、発明の理解を容易にするため、互いに直交するX軸、Y軸及びZ軸を記載することがある。X軸及びY軸は水平方向に平行であり、Z軸は鉛直方向に平行である。
図1に示すように、三次元造形装置100は、ビーム照射部40と、制御装置20とを備える。ビーム照射部40は光照射装置の一例である。ビーム照射部40は、造形材料にビームL32を照射する。制御装置20は、ビーム照射部40を制御する。具体的には、制御装置20は、CPU(Central Processing Unit)のようなプロセッサーを含む。
また、三次元造形装置100は、走査機構19と、供給機構16と、記憶部30とを更に備える。記憶部30は、記憶装置を含む。具体的には、記憶部30は、半導体メモリーのような主記憶装置、並びに、半導体メモリー及び/又はハードディスクドライブのような補助記憶装置を含む。
三次元造形装置100は、所定造形空間SP中に三次元造形物を製造する。所定造形空間SPは、三次元空間である。所定造形空間SPは、複数の単位空間を含む。例えば、複数の単位空間は、それぞれ互いに同じ体積を有する立方体形状を有する。例えば、複数の単位空間は、S行×T列×U層の単位空間を含む。S及びTのうちの少なくとも1つは2以上の整数を示す。複数の単位空間は、Y方向に第1行から第S行まで順に並び、X方向に第1列から第T列まで順に並び、Z方向に第1層から第U層まで順に並んでいる。供給機構16の所定の空間に所定造形空間SPが設定されたデータを、記憶部30は記憶する。
三次元造形物は、造形材料を用いて所望の所定形状に製造される。造形材料は、三次元造形物を製造するための材料であり、粉末又はペーストであり、例えば、金属粉体、エンジニアリングプラスチック、セラミックス、合成樹脂、砂又はワックスである。金属粉体は、チタン又はステンレスである。三次元造形物を製造する造形材料には、複数の種類の造形材料が含まれてもよい。
造形材料は、例えば、供給機構16によって所定の単位空間に供給される。そして、ビームL32が照射されると造形材料の温度が第1温度T1まで上昇して、造形材料の表面又は全体が溶融して、ビームL32の照射が停止されると、造形材料は焼結体となる。第1温度T1は、例えば、造形材料の表面又は全体が溶融する温度である。また、所望の所定形状としては、特に限定されない。所望の所定形状を示す造形データは、例えば、製造者により記憶部30に記憶される。造形データは、例えば、CAD(Computer Aided Design)データである。
引き続き、造形材料にビームL32を照射するビーム照射部40の詳細を説明する。ビーム照射部40は、レーザ光源10と、照明光学系11と、光変調器14と、投影光学系18と、第2光学系50とを有する。投影光学系18は第1光学系の一例である。
レーザ光源10は、レーザ光L30を照明光学系11に出射する。レーザ光源10は、例えば、ファイバーレーザ光源である。レーザ光L30の波長は、例えば、1064nmである。例えば、レーザ光L30の進行方向に対して垂直な面におけるレーザ光L3の断面形状は、略円形である。また、レーザ光L30の進行方向に対して垂直な面におけるレーザ光L3の断面寸法は、進行方向に進行すればするほど大きくなっていく。なお、レーザ光源10は、シャッターを備えてもよい。シャッターは、レーザ光L30を遮断したり、レーザ光L30を通過させたりする。
照明光学系11は、レーザ光L30をラインビームL31に整形して、ラインビームL31を光変調器14に導く。具体的には、照明光学系11は、複数のレンズを備える。例えば、ラインビームL31は、ラインビームL31の進行方向に対して垂直な面において進行方向に進行しても大きさが略一定である略平行光である。また、ラインビームL31は、垂直な面において略均一な強度を有する。例えば、ラインビームL31は、垂直な面において所定方向D1に長い略長方形を有する。所定方向D1は、例えばY軸方向に沿って延びている。
光変調器14は、ラインビームL31をビームL32に変調して、ビームL32を投影光学系18に出射する。ビームL32は、回折光の一例である。光変調器14は、例えば、LPLV(Linear Planar Light Valve)、GLV(登録商標)又はPLV(Planar Light Valve)である。光変調器14は、制御装置20によって制御される。その結果、ビームL32は、所定形状に応じて変調される。詳細には、ビームL32は、所定方向D1において異なる強度の分布を有する。
投影光学系18は、ビームL32で中間像を形成した後、ビームL32を走査機構19に出射する。具体的には、投影光学系18は、複数のレンズを備える。
引き続き、走査機構19の詳細を説明する。走査機構19は、ビームL32を反射して、ビームL32を造形材料に照射する。走査機構19は、例えば、ガルバノミラーを有する。ガルバノミラーは、例えば、所定方向D1を回転軸として回転する。
詳細には、走査機構19は、複数の単位空間のうち少なくとも2つの単位空間に対して、それぞれ、互いに異なる強度を有するビームL32を導く。具体的には、走査機構19は、所定方向D1に並んだ複数の単位空間に対してビームL32を導く。例えば、第1の単位空間に対して、第1の強度を有するビームL32を導く。また、第2の単位空間に対して、第2の強度を有するビームL32を導く。その結果、複数の単位空間に造形材料が供給されていると、第1の単位空間に存在する造形材料に第1の強度を有するビームL32が照射され、第2の単位空間に存在する造形材料に第2の強度を有するビームL32が照射される。
また、走査機構19は、複数の単位空間のうち選択された所定の複数の単位空間に順次、ビームL32を導く。すなわち、走査機構19は、ビームL32を所定速度で走査する。所定速度は、ビームL32が照射された造形材料の温度が第1温度T1まで上昇するための速度である。
詳細には、ガルバノミラーは、ビーム照射部40から出射されたビームL32の進行方向を変更する。具体的には、ガルバノミラーが回転して、ビームL32を走査方向D2に走査する。走査方向D2は、所定方向D1に対して垂直な方向であり、例えば、X軸方向に沿って延びている。具体的には、第t列の複数の単位空間に対してビームL32を導く。例えば、第t列第s行の単位空間に対して、第1の強度を有するビームL32を導くと同時に、第t列第(s+1)行の単位空間に対して、第2の強度を有するビームL32を導く。その後、第(t+1)列の複数の単位空間に対してビームL32を導く。例えば、第(t+1)列第s行の単位空間に対して、第3の強度を有するビームL32を導くと同時に、第(t+1)列第(s+1)行の単位空間に対して、第4の強度を有するビームL32を導く。
引き続き、複数の単位空間に造形材料を供給する供給機構16の詳細を説明する。詳細には、供給機構16は、複数の単位空間のうち選択された所定の複数の単位空間に順次、造形材料層を形成する。造形材料層は、造形材料からなる。例えば、第u層の複数の単位空間に第1の造形材料層を形成する。その後、第(u+1)層の複数の単位空間に第2の造形材料層を形成する。具体的には、供給機構16は、パートシリンダー16Aと、フィードシリンダー16Bと、スキージ16Dとを備える。
フィードシリンダー16Bは、フィードシリンダー16Bの内部に下面を有する。下面は、フィードシリンダー16Bの内部でZ軸方向に移動可能である。フィードシリンダー16Bの内部で下面の上部には、造形材料が収容されている。一方、パートシリンダー16Aは、パートシリンダー16Aの内部に下面を有する。下面は、パートシリンダー16Aの内部でZ軸方向に移動可能である。パートシリンダー16Aの内部で下面の上部には、所定造形空間SPが設定されている。
パートシリンダー16Aの内部には、フィードシリンダー16Bから造形材料が供給される。具体的には、パートシリンダー16Aの下面を所定距離、下降させる。一方、フィードシリンダー16Bの下面を所定距離、上昇させる。そして、フィードシリンダー16Bからパートシリンダー16Aへ向かって、スキージ16Dを移動させる。その結果、所定量の造形材料がフィードシリンダー16Bの内部からパートシリンダー16Aの内部へ移動する。
次に、制御装置20の詳細を説明する。制御装置20は、ビーム照射部40及び供給機構16を制御する。具体的には、制御装置20は、照射制御部21と、走査制御部20Bとを含む。そして、制御装置20のプロセッサーは、記憶部30の記憶装置に記憶されたコンピュータープログラムを実行することによって、照射制御部21として機能する。
走査制御部20Bは、走査機構19を制御する。具体的には、走査制御部20Bは、ガルバノミラーを回転させる。
照射制御部21は、ビーム照射部40を制御する。具体的には、照射制御部21は、レーザ制御部20Cと、変調制御部20Aとを有する。
レーザ制御部20Cは、レーザ光源10を制御する。詳細には、レーザ制御部20Cは、レーザ光源10からレーザ光L30を発振させる。また、レーザ制御部20Cは、レーザ光源10からレーザ光L30を発振させた状態で、レーザ光源10内又はレーザ光源10外に設けられたシャッターを開閉してもよい。
変調制御部20Aは、ビームL32を造形材料に照射するように、光変調器14を制御する。ビームL32は、強度の分布を有する。強度の分布は、造形データに基づいて作成される。
ここで、図2及び図3を参照して、所定方向D1に並んだ複数の単位空間に対してビームL32を同時に導く光変調器14として、LPLV14を説明する。図2は、LPLV14を示す平面図である。図3は、図2のIII−III線の断面図である。図2及び図3に示すように、LPLV14は、基台2と、光変調素子群4とを有する。なお、図2及び図3では、X方向と逆方向は、上方に沿って延び、所定方向D1は、Y方向に沿って延びているものとして説明する。
光変調素子群4は、複数の可動部材41a及び1つの固定部材41bを有する。X軸方向から視た場合、固定部材41bには、複数の円形状の開口が形成されている。固定部材41bの上面には固定反射面が設けられる。そして、複数の開口は、2次元(S×V)に配列されている。すなわち、複数の開口は、Y方向に第1行から第S行まで順に並び、Z方向と逆方向に第1列から第V列まで順に並んでいる。
複数の可動部材41aの各々は、円形状の板である。可動部材41aの上面には可動反射面が設けられる。複数の可動部材41aは、固定部材41bに形成された複数の開口に配置されている。つまり、複数の可動部材41aは、2次元(S×V)に配列されている。
基台2の上面は、S個の共通電極3を有する。S個の共通電極3の各々は、Z方向に沿って延びている。そして、S個の共通電極3は、Y方向に配列されている。
固定部材41bの下面は、S個の共通電極3の上面と所定距離を空けて、基台2に対して固定される。また、(S×V)個の可動部材41aは、固定部材41bに対して、可動反射面に対して垂直な方向に移動可能である。すなわち、(S×V)個の可動部材41aは、固定部材41bに対して、X方向に移動可能である。
そして、LPLV14では、例えば、1列に並ぶV個の可動部材41aの集合が1つの単位空間に対応する変調素子となる。従って、LPLV14は、S個の変調素子を有する光変調器として機能する。
変調制御部20Aは、可動部材41aと共通電極3との間に電圧(電位差)を与えることにより、可動部材41aを共通電極3側に変位させる。詳細には、変調制御部20Aは、1本の共通電極3ごとに電圧を印加する。更に、変調制御部20Aは、1本の共通電極3に印加する電圧を調整することで、V個の可動部材41aの変位量を調整する。
続いて、図3及び図4を参照して、LPLV14の動作を詳細に説明する。図4は、LPLV14の一例を示す断面図である。
図3に示すように、共通電極3の面に対して垂直な方向において、可動部材41aの位置と固定部材41bの位置とが同じ高さにある。その結果、可動部材41aで反射した光と、固定部材41bで反射した光との位相差は、0(ゼロ)である。以下、可動部材41aで反射した光と、固定部材41bで反射した光との位相差が、0(ゼロ)となる変調素子の状態を、「ON」状態ともいう。なお、可動部材41aの位置と固定部材41bの位置とが同じ高さにある状態で反射した0次光L32aの強度は、強度ION0であり、例えばラインビームL31の強度の約70%以上80%以下であり、+1次光L32baの強度は、強度ION1であり、例えばラインビームL31の強度の約2.5%であり、−1次光L32bbの強度は、強度ION1であり、例えばラインビームL31の強度の約2.5%である。なお、+1次光L32baの進行方向は、0次光L32aの進行方向に対してZ方向側に傾き、−1次光L32bbの進行方向は、0次光L32aの進行方向に対して−Z方向側に傾く。強度ION0は、強度ION1より大きい。
図4に示すように、V個の可動部材41aが下降している。LPLV14へのラインビームL31の入射角Aと、可動部材41aの位置と固定部材41bの位置との高さの差Dfとに基づいて、可動部材41aで反射した光と固定部材41bで反射した光との光路差(2Df・cosA)が示される。
可動部材41aで反射した光と固定部材41bで反射した光の光路差(2Df・cosα)が、例えば、(m+1/2)・λとなるように、高さの差Dfは調整される。mは0以上の整数であり、λは光の波長である。換言すれば、可動部材41aで反射した光と固定部材41bで反射した光との位相差が、πradとなるように、可動部材41aの位置と固定部材41bの位置との高さの差Dfは調整される。以下、可動部材41aで反射した光と、固定部材41bで反射した光との位相差が、πradとなる変調素子の状態を、「OFF」状態ともいう。位相差がπradである状態で反射した0次光L32aの強度は、強度IOFF0であり、例えばラインビームL31の強度の約20%であり、+1次光L32baの強度は、強度IOFF1であり、例えばラインビームL31の強度の約40%であり、−1次光L32bbの強度は、強度IOFF1であり、例えばラインビームL31の強度の約40%である。強度IOFF0は、強度ION0より小さい。
次に、図5及び図6を参照して、三次元造形装置100での光路を詳細に説明する。図5及び図6は、三次元造形装置100での光路を示す図である。図5は、ZX面での光路を示す図である。また、図6は、XY面での光路を示す図である。なお、図5及び図6では、走査機構19による光路の変化を省略している。
図5及び図6に示すように、投影光学系18は、例えば、フーリエ変換レンズ18aと、集光レンズ18bとを備える。なお、投影光学系18は、必ずしも図5及び図6に示されるように構成される必要はなく、他の光学素子が追加されてもよい。
フーリエ変換レンズ18aの前側焦点面に光変調器14が配置されるように、フーリエ変換レンズ18aは配置される。
集光レンズ18bは、回折光の内、所定形状に応じて変調された0次光L32aを第1領域に導く。0次光L32aは、m次光の一例である。第1領域は、例えば、第t列のS個の単位空間である。第1領域に造形材料が配置される。例えば、変調素子が「ON」状態である場合に、強度ION0を有する0次光L32aが第1領域に導かれ、変調素子が「OFF」状態である場合に、強度IOFF0を有する0次光L32aが第1領域に導かれる。詳細には、第1領域の所定の単位空間に配置された造形材料は、強度ION0を有する0次光L32aで加熱される。その結果、第1領域の所定の単位空間に配置された造形材料は、0次光L32aで第1温度T1以上に加熱される。すなわち、造形材料の表面又は全体が溶融する。一方、第1領域の所定の単位空間以外に配置された造形材料は、強度IOFF0を有する0次光L32aで加熱される。その結果、第1領域の所定の単位空間以外に配置された造形材料は、0次光L32aで第1温度T1未満に加熱される。すなわち、造形材料は溶融しない。
ビーム照射部40は、第2光学系50を更に備える。第2光学系50は、回折光の内の±1次光L32bを、第2領域に導く。±1次光L32bは、n次光の一例である。第1領域と第2領域とは異なる。第2領域は、例えば、第(t+2)列のS個の単位空間である。第2領域に造形材料が配置される。例えば、変調素子が「ON」状態である場合に、強度ION1の2倍の強度を有する±1次光L32bが第2領域に導かれる。詳細には、第2領域に配置された造形材料は、強度ION1を有する+1次光L32baと、強度ION1を有する−1次光L32bbとで加熱される。その結果、造形材料は、±1次光L32bで第1温度T1未満に加熱される。すなわち、造形材料の表面又は全体が溶融するまでいかずに温められる。
具体的には、ビーム照射部40は、複数の第2光学系50を備える。複数の第2光学系50は、第1プリズム51と、第2プリズム52とを含む。第1プリズム51は、フーリエ変換レンズの後側焦点面に配置される。第2プリズム52は、フーリエ変換レンズ18aの後側焦点面に配置される。
続けて図7を参照して、第1プリズム51について説明する。図7は、第1プリズム51を示す図である。図7に示すように、第1プリズム51の形状は、三角柱である。プリズムの材料は、例えば合成石英であり、屈折率nを有する。詳細には、第1プリズム51は、入射面と出射面とを有する。入射面と出射面との間の角度は、頂角αである。頂角αは、例えば10degである。
LPLV14からの+1次光L32baは、入射面に入射角θ1で入射し、入射面から出射角θ2で内部を進行する。内部を進行した光は、出射面に入射角θ2’で入射し、出射面から出射角θ1’で出射する。つまり、第1プリズム51は、+1次光L32baの進行方向を変更する。
第2光学系50は、投影光学系18中に配置されることが好ましい。詳細には、±1次光L32bは、フーリエ変換レンズ18aを通過し、第2光学系50を通過し、集光レンズ18bを通過した後、第2領域に導かれる。±1次光L32bが導かれる第2領域は、下記式(1)及び(2)に基づいて、第t列のS個の単位空間からずれ量xでずれる。
x=f×tanδ ・・・・・ (1)
δ=θ1+θ1’−α ・・・ (2)
なお、fは、集光レンズ18bの焦点距離を示す。
例えば、焦点距離f=100mm、入射角θ1=7deg、プリズム頂角α=10degであり、+1次光L32baの波長が1064nmあり、第1プリズム51の材料が合成石英である場合、ずれ量x=7.9mmである。具体的には、+1次光L32baは、第t列のS個の単位空間でなく、第(t+2)列のS個の単位空間に導かれる。
走査機構19は、第2領域で±1次光L32bが照射された後の造形材料に、第1領域で0次光L32aを照射する。その結果、造形材料は±1次光L32bで第1温度T1未満に加熱される。第1温度T1未満に加熱された造形材料は、0次光で第1温度T1以上に加熱される。換言すれば、±1次光L32bで温められた造形材料が、0次光で造形される。
以上のように、実施形態1によれば、第2光学系50は、回折光の内の±1次光L32bを、第2領域に導く。その結果、回折光の内の±1次光L32bも、造形材料に照射される照射光として利用できる。よって、所望の所定形状の三次元造形物を素早く製造できる。
また、実施形態1によれば、±1次光L32bを第2領域にある造形材料に照射して、造形材料を第1温度T1未満に加熱するとともに、0次光L32aを第1領域にある造形材料に照射して、造形材料を第1温度T1以上に加熱する。詳細には、走査機構19は、第2領域で±1次光L32bが照射された後の造形材料に、第1領域で0次光L32aを照射する。その結果、温められた造形材料は、0次光L32aで第1温度T1以上に加熱される。よって、0次光L32aを造形材料に照射するときの時間を短くできる。その結果、所望の所定形状の三次元造形物を素早く製造できる。
更に、実施形態1によれば、第2光学系50は、投影光学系18中に配置される。その結果、投影光学系18を利用して、±1次光L32bを第2領域に導くことができる。
次に、図8を参照して、実施形態1に係る制御装置20の処理の一例について説明する。図8は、制御装置20の処理の一例を示すフローチャートである。実施形態1に係る制御装置20の処理は、照明工程と、第1工程と、第2工程と、走査工程とを含む。具体的には、実施形態1に係る制御装置20の処理は、ステップS101〜ステップS106を含む。
まず、ステップS101において、レーザ制御部20Cは、レーザ光源10を制御する。そして、処理はステップS102に進む。
次に、ステップS102において、変調制御部20Aは、ビームL32を造形材料に照射するように、LPLV14を制御する。ビームL32は、造形データに基づいて作成された強度の分布を有する。そして、処理はステップS103とステップS104とに進む。
次に、ステップS103において、所定形状に応じて変調された0次光L32aは、造形材料が配置された第1領域に導かれる。
一方、ステップS104において、±1次光L32bは、造形材料が配置された第2領域に導かれる。
次に、ステップS105において、終了するか否かを判定する。終了しないと判定した場合(ステップS105のNo)、処理は、ステップS106に進む。一方、終了すると判定した場合(ステップS105のYes)、処理を終了する。
ステップS106において、走査機構19は、第2領域で±1次光L32bが照射された後の造形材料に、第1領域で0次光L32aを照射する。そして、処理は、ステップS102に戻る。
続けて、図9を参照して、造形データに基づいて作成された0次光L32aの強度分布の一例を詳細に説明する。図9は、所定方向D1における0次光L32aの強度分布の一例を示す図である。図9において、縦軸は強度を示し、横軸は所定方向D1における所定造形空間SPの位置を示す。
図9に示すように、第t列において、所定方向D1にはS個の単位空間が第1の単位空間から順に並んでいる。第3、第4、第7及び第8の単位空間には、強度ION0を有する0次光L32aが導かれる。その結果、第3、第4、第7及び第8の単位空間に存在する造形材料は、第1温度T1以上に加熱され溶融する。一方、第1、第2、第5、第6、第9及び第10の単位空間には、強度IOFF0を有する0次光L32aが導かれる。その結果、第1、第2、第5、第6、第9及び第10の単位空間に存在する造形材料は溶融しない。
続けて、図10を参照して、図9に示す0次光L32aが作成された際の±1次光L32bの強度分布を詳細に説明する。図10は、所定方向D1における±1次光L32bの強度分布の一例を示す図である。図10において、縦軸は強度を示し、横軸は所定方向D1における所定造形空間SPの位置を示す。
図10に示すように、第(t+2)列において、所定方向D1にはS個の単位空間が第1の単位空間から順に並んでいる。第(t+2)列は、第t列に対して走査方向D2側に位置する。第1、第2、第5、第6、第9及び第10の単位空間には、強度IOFF1の2倍の強度を有する±1次光L32bが導かれる。その結果、第1、第2、第5、第6、第9及び第10の単位空間に存在する造形材料は、第1温度T1未満に加熱されるが溶融するまでいかない。すなわち、第1、第2、第5、第6、第9及び第10の単位空間に存在する造形材料は、温められる。一方、第3、第4、第7及び第8の単位空間には、強度ION1の2倍の強度を有する±1次光L32bが導かれる。その結果、第3、第4、第7及び第8の単位空間に存在する造形材料は、第1温度T1未満に加熱されるが溶融するまでいかない。すなわち、第3、第4、第7及び第8の単位空間に存在する造形材料は、温められる。
第2光学系50は、±1次光L32bを拡散又は拡大して、第2領域に導く光学系を含むことが好ましい。具体的には、第1プリズム51の出射面は、拡散部を有する。拡散部は、例えば、レンチキュラーレンズである。なお、第1プリズム51の出射面は、±1次光L32bを、Y方向に拡散し、好ましくはY方向とX方向との両方に拡散する。
また、第2領域は、第1領域より広いことが好ましい。第2領域は、例えば、第(t+1)列のS個の単位空間と、第(t+2)列のS個の単位空間と、第(t+3)列のS個の単位空間とを含む。
続けて、図11A〜図11Cを参照して、±1次光L32bの強度分布を詳細に説明する。図11Aは、第(t+3)列において、所定方向D1における±1次光L32bの強度分布の他の一例を示す図である。図11Bは、第(t+2)列において、所定方向D1における±1次光L32bの強度分布の他の一例を示す図である。図11Cは、第(t+1)列において、所定方向D1における±1次光L32bの強度分布の他の一例を示す図である。図11A〜図11Cにおいて、縦軸は強度を示し、横軸は所定方向D1における所定造形空間SPの位置を示す。
図11Aに示すように、第(t+3)列において、所定方向D1には複数の単位空間が第1の単位空間から順に並んでいる。第1から第10の単位空間には、強度ION1の2倍と強度IOFF1の2倍との強度分布を有する±1次光L32bの内の一部の光が導かれる。具体的には、±1次光L32bの内のX方向に拡散された拡散光が導かれる。その結果、第1から第10の単位空間に存在する造形材料は、第1温度T1未満に温められる。
図11Cに示すように、第(t+1)列において、所定方向D1には複数の単位空間が第1の単位空間から順に並んでいる。第1から第10の単位空間には、強度ION1の2倍と強度IOFF1の2倍との強度分布を有する±1次光L32bの内の一部の光が導かれる。具体的には、±1次光L32bの内の−X方向に拡散された拡散光が導かれる。その結果、第1から第10の単位空間に存在する造形材料は、第1温度T1未満に温められる。
図11Bに示すように、第(t+2)列において、所定方向D1には複数の単位空間が第1の単位空間から順に並んでいる。第1から第10の単位空間には、強度ION1の2倍と強度IOFF1の2倍との強度分布を有する±1次光L32bの内の一部の光が導かれる。具体的には、±1次光L32bの内、図11A及び図11Cに示す拡散光が除外され、Y方向に拡散された拡散光が導かれる。その結果、第1から第10の単位空間に存在する造形材料は、第1温度T1未満に温められる。
以上のように、実施形態1によれば、第2光学系50は、±1次光L32bを拡散又は拡大して、第2領域に導く光学系を含む。その結果、0次光L32aを照射する前に、単位空間を第1温度T1以上に加熱することなく、複数の単位空間を略均一に温めることができる。
続けて、図12及び図13を参照して、造形データに基づいて作成された0次光L32a及び±1次光L32bの強度分布の他の一例を詳細に説明する。図12は、所定方向D1における0次光L32aの強度分布の他の一例を示す図である。図13は、図12に示す0次光L32aが作成された際の所定方向D1における±1次光L32bの強度分布の他の一例を示す図である。図12及び図13において、縦軸は強度を示し、横軸は所定方向D1における所定造形空間SPの位置を示す。
図12に示すように、第t列において、所定方向D1には複数の単位空間が第1の単位空間から順に並んでいる。第1から第10の単位空間には、強度IOFF0を有する0次光L32aが導かれる。その結果、第1から第10の単位空間に存在する造形材料は、第1温度T1未満に加熱され溶融しない。すなわち、図12は、第1領域の全ての単位空間で造形材料が溶融しない場合の0次光L32aの強度分布を示す。
図13に示すように、第(t+2)列において、所定方向D1には複数の単位空間が第1の単位空間から順に並んでいる。第1から第10の単位空間には、強度IOFF1の2倍の強度を有する±1次光L32bが導かれる。その結果、第1から第10の単位空間に存在する造形材料は、第1温度T1未満に加熱され溶融するまでいかない。ただし、図11Bに示す強度分布を有する±1次光L32bが導かれた場合と比較すると、第1から第10の単位空間に存在する造形材料は、高い温度に加熱される。
ここで、図14及び図15を参照して、単位空間に照射される±1次光L32bの強度と、単位空間の温度との関係を詳細に説明する。図14は、図11Bに示す強度分布を有する±1次光L32bが照射された単位空間の温度変化の一例を示す図である。図15は、図13に示す強度分布を有する±1次光L32bが照射された単位空間の温度変化の一例を示す図である。図14及び図15において、縦軸は温度を示し、横軸は時間を示す。
図14に示すように、強度ION1の2倍の強度を有する±1次光L32bが照射された単位空間の温度は、第3温度T3まで上昇し、時間t2後に、第4温度T4になる。
一方、図15に示すように、強度IOFF1の2倍の強度を有する±1次光L32bが照射された単位空間の温度は、第2温度T2まで上昇し、時間t2後に、第4温度T4になる。第2温度T2は、第1温度T1より低く、第3温度T3より高い。時間t3は、時間t2より長い。
変更部60は、第2光学系50から出射されるn次光の進行方向を変更する。具体的には、変更部60は、第2光学系50から出射される±1次光L32bの進行方向を変更する。詳細には、第1プリズム51及び第2プリズム52の各々は、回動する。
その結果、LPLV14からの±1次光L32bは、第1プリズム51の入射面に、様々な入射角θ1で入射する。
続けて、図16を参照して、±1次光L32bの照射位置を詳細に説明する。図16は、ずれ量xと入射角θ1との関係を示す図である。なお、図16は、焦点距離f=100mm、プリズム頂角α=10degであり、第1プリズム51の材料が合成石英である場合を示す。図16において、縦軸はずれ量xを示し、横軸は入射角θ1を示す。図16に示すように、入射角θ1が大きくなればするほど、ずれ量xも大きくなっていく。例えば、入射角θ1=7degである場合、ずれ量x=7.9mmである。入射角θ1=70degである場合、ずれ量x=22.7mmである。
変調制御部20Aは、所定形状に応じて、第1領域と第2領域との間の距離を調整するように、変更部60を制御する。具体的には、変調制御部20Aは、所定形状に応じて、光変調器14を制御するとともに、第1プリズム51及び第2プリズム52の各々の角度を制御する。その結果、第1領域と第2領域との間の距離が調整される。詳細には、図10に示す強度分布を有する±1次光L32bが照射される場合、第1領域と第2領域との間の距離を短くする。具体的には、第1領域は、第t列のS個の単位空間である。また、第2領域は、例えば、第(t+2)列のS個の単位空間である。その結果、第2領域で±1次光L32bが照射された時間から時間t2後の造形材料に、第1領域で0次光L32aを照射する。一方、図13に示す強度分布を有する±1次光L32bが照射される場合、第1領域と第2領域との間の距離を長くする。具体的には、第2領域は、第t列のS個の単位空間である。第2領域は、例えば、第(t+4)列のS個の単位空間である。その結果、第2領域で±1次光L32bが照射された時間から時間t3後の造形材料に、第1領域で0次光L32aを照射する。
以上のように、実施形態1によれば、変調制御部20Aは、所定形状に応じて、第1領域と第2領域との間の距離を調整するように、変更部60を制御する。その結果、全ての造形材料は、0次光L32aが照射される前に、第4温度T4に加熱される。その結果、所望の所定形状の三次元造形物を精度よく製造できる。
また、走査機構19は、ビームL32を往復方向で走査することが好ましい。変調制御部20Aは、変更部60を制御する。詳細には、ビームL32をX方向で走査する場合、第2光学系50は、第1領域のX方向側に位置する第2領域に±1次光L32bを導く。一方、ビームL32を−X方向で走査する場合、第2光学系50は、第1領域の−X方向側に位置する第2領域に±1次光L32bを導く。
<実施形態2>
次に、図17を参照して、実施形態2に係る三次元造形装置100について説明する。図17は、実施形態2の三次元造形装置100の他の一例を示す図である。実施形態2では、供給機構16は、テーブル16Cを備える点で実施形態1と相違する。
図17に示すように、供給機構16は、テーブル16Cを備える。テーブル16Cは、X軸方向に移動する。具体的には、テーブル16Cの上面に、造形材料層を形成して、テーブル16CがX軸方向に移動して、テーブル16Cの上面におけるビームL32が照射される領域が位置決めされる。なお、テーブル16Cは、Y軸方向に移動可能であってもよい。
また、供給機構16又はテーブル16C上に梁部材を設け、ビーム照射部40をX軸方向及び/又はY軸方向に移動させる構成としてもよい。更に、テーブル16Cを移動させる構成と、ガルバノミラーを用いる構成と、ビーム照射部40を移動させる構成とを組み合わせてもよい。
<実施形態3>
次に、図18及び図19を参照して、実施形態2に係る三次元造形装置100について説明する。図18は、光変調器14を示す平面図である。また、図19は、光変調器14の一部を示す拡大斜視図である。実施形態3では、所定方向D1に並んだ複数の単位空間に対してビームL32を同時に導く光変調器14として、GLVを備える点で実施形態1と相違する。
図18及び図19に示すように、光変調器14は、基台2と、光変調素子群4とを有する。基台2の上面は、共通電極3を有する。
光変調素子群4は、複数の可動リボン1a及び複数の固定リボン1bを有する。複数の固定リボン1bの下面は、共通電極3の上面と所定距離を空けて、基台2に対して固定される。固定リボン1bの上面には固定反射面が設けられる。複数の可動リボン1aの下面は、共通電極3の上面と所定距離を空けて、基台2に対して、可動反射面に垂直な方向に移動可能である。可動リボン1aの上面には可動反射面が設けられている。複数の可動リボン1a及び複数の固定リボン1bは、所定方向D1に交互に平行に配列形成される。
そして、光変調器14では、1本の可動リボン1aと1本の固定リボン1bとを格子要素とすると、例えば、隣接する4個の格子要素の集合が1つの単位空間に対応する変調素子となる。
変調制御部20Aは、可動リボン1aと共通電極3との間に電圧(電位差)を与えることにより、可動リボン1aを共通電極3側に変位させる。詳細には、変調制御部20Aは、1本の可動リボン1aごとに電圧を印加する。更に、変調制御部20Aは、可動リボン1aに印加する電圧を調整することで、可動リボン1aの変位量を調整する。
以上、図面(図1〜図19)を参照しながら本発明の実施形態を説明した。但し、本発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲で種々の態様において実施することが可能である。図面は、理解しやすくするために、それぞれの構成要素を主体に模式的に示しており、図示された各構成要素の厚み、長さ、個数等は、図面作成の都合上から実際とは異なる。また、上記の実施形態で示す各構成要素の材質や形状、寸法等は一例であって、特に限定されるものではなく、本発明の効果から実質的に逸脱しない範囲で種々の変更が可能である。
(1)図1〜図19を参照して説明したように、実施形態1では、回折光の内の0次光L32aは第1領域に導かれ、±1次光L32bは第2領域に導かれたが、本発明はこれに限定されない。回折光の内の±1次光L32bは第1領域に導かれ、0次光L32aは第2領域に導かれてもよい。また、±2次光が第2領域に導かれてもよい。更に、±1次光L32bと±2次光とが第2領域に導かれてもよい。
(2)図1〜図19を参照して説明したように、実施形態1では、走査機構19は、第2領域で±1次光L32bが照射された後の造形材料に、第1領域で0次光L32aを照射したが、本発明はこれに限定されない。走査機構19は、第1領域で0次光L32aが照射された後の造形材料に、第2領域で±1次光L32bを照射してもよい。その結果、0次光L32aで第1温度T1以上に加熱された造形材料は、±1次光L32bで更に加熱される。
本発明は、光照射装置、三次元造形装置及び三次元造形方法に好適に用いられる。
10 レーザ光源
11 照明光学系
14 光変調器
16 供給機構
18 投影光学系(第1光学系)
19 走査機構
19b ガルバノミラー
20 制御装置
21 照射制御部
40 ビーム照射部(光照射装置)
50 第2光学系
100 製造装置
L30 レーザ光
L31 ラインビーム
L32 ビーム

Claims (8)

  1. 三次元造形物を製造するための造形材料に対して所定形状に応じて変調された光を照射する光照射装置であって、
    光を出射する光源と、
    前記光を回折光に変調する光変調器と、
    前記光源からの前記光を前記光変調器に導く照明光学系と、
    前記回折光の内、前記所定形状に応じて変調されたm次光を前記造形材料上の第1領域に導く第1光学系と、
    前記回折光の内の前記m次光とは異なるn次光を前記造形材料上の前記第1領域とは異なる第2領域に導く第2光学系と
    を備える、光照射装置。
  2. 前記m次光は、0次光であり、
    前記n次光は、1次光を含み、
    前記1次光を前記第2領域にある前記造形材料に照射して、当該造形材料を第1温度未満に加熱するとともに、前記0次光を前記第1領域にある前記造形材料に照射して、当該造形材料を前記第1温度以上に加熱する、請求項1に記載の光照射装置。
  3. 前記第2光学系は、前記n次光を拡散又は拡大して、前記第2領域に導く光学系を含む、請求項2に記載の光照射装置。
  4. 前記第2光学系は、前記第1光学系中に配置される、請求項1から請求項3のいずれか1項に記載の光照射装置。
  5. 請求項1から請求項4のいずれか1項に記載の光照射装置と、
    前記所定形状に応じて前記光変調器を制御する制御部と
    を備える、三次元造形装置。
  6. 前記第2領域で前記n次光が照射された後の前記造形材料に、前記第1領域で前記m次光を照射する走査部を更に備える、請求項5に記載の三次元造形装置。
  7. 前記第2光学系から出射される前記n次光の進行方向を変更する変更部を更に備え、
    前記制御部は、前記所定形状に応じて、前記第1領域と前記第2領域との間の距離を調整するように、前記変更部を制御する、請求項6に記載の三次元造形装置。
  8. 三次元造形物を製造するための造形材料に対して所定形状に応じて変調された光を照射する三次元造形方法であって、
    光源からの光を光変調器に導く照明工程と、
    前記光を回折光に変調する変調工程と、
    前記回折光の内、前記所定形状に応じて変調されたm次光を、前記造形材料上の第1領域に導く第1工程と、
    前記回折光の内の前記m次光とは異なるn次光を、前記造形材料上の前記第1領域とは異なる第2領域に導く第2工程と
    を含む、三次元造形方法。
JP2020052752A 2020-03-24 2020-03-24 光照射装置、三次元造形装置及び三次元造形方法 Pending JP2021151731A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020052752A JP2021151731A (ja) 2020-03-24 2020-03-24 光照射装置、三次元造形装置及び三次元造形方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020052752A JP2021151731A (ja) 2020-03-24 2020-03-24 光照射装置、三次元造形装置及び三次元造形方法

Publications (1)

Publication Number Publication Date
JP2021151731A true JP2021151731A (ja) 2021-09-30

Family

ID=77887066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020052752A Pending JP2021151731A (ja) 2020-03-24 2020-03-24 光照射装置、三次元造形装置及び三次元造形方法

Country Status (1)

Country Link
JP (1) JP2021151731A (ja)

Similar Documents

Publication Publication Date Title
AU2007240215B2 (en) Optical modeling apparatus
EP2067607B1 (en) Optical shaping apparatus and optical shaping method
US7758329B2 (en) Optical modeling apparatus
WO2016042792A1 (ja) 光造形装置および光造形方法
EP1449636B1 (en) Photo-fabrication apparatus
TWI576612B (zh) 光照射裝置及描繪裝置
JP7395410B2 (ja) 光学装置および3次元造形装置
JP2009113294A (ja) 光造形装置及び光造形方法
WO2021192988A1 (ja) 3次元造形装置
JP2009083240A (ja) 光造形装置
JP2019059993A (ja) 3次元造形製造装置および3次元造形製造方法
JP2021151731A (ja) 光照射装置、三次元造形装置及び三次元造形方法
WO2019058883A1 (ja) 3次元造形製造装置および3次元造形製造方法
JP6833431B2 (ja) 光造形装置、光造形方法および光造形プログラム
JP7221107B2 (ja) 三次元造形物の製造装置及び三次元造形物の製造方法
JP7434012B2 (ja) 3次元造形装置
JP2021045887A (ja) 3次元造形製造装置、および、3次元造形製造方法
JP6940350B2 (ja) 3次元造形製造装置および3次元造形製造方法
JP7183763B2 (ja) 三次元物体の造形装置および造形方法
JP2009160859A (ja) 光造形装置および光造形方法、並びに光造形物
US20220009167A1 (en) Optical system for optical shaping apparatus
WO2024075396A1 (ja) 露光方法及び露光装置
US20140029270A1 (en) Processing machine
WO2022113908A1 (ja) 光学装置および3次元造形装置
JP2009137230A (ja) 光造形装置