JP2021148755A - Inspection method and diagnosis method for building - Google Patents

Inspection method and diagnosis method for building Download PDF

Info

Publication number
JP2021148755A
JP2021148755A JP2020052019A JP2020052019A JP2021148755A JP 2021148755 A JP2021148755 A JP 2021148755A JP 2020052019 A JP2020052019 A JP 2020052019A JP 2020052019 A JP2020052019 A JP 2020052019A JP 2021148755 A JP2021148755 A JP 2021148755A
Authority
JP
Japan
Prior art keywords
image
sound
ray transmission
digital
defective portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020052019A
Other languages
Japanese (ja)
Other versions
JP7222373B2 (en
Inventor
哲史 小路
Tetsushi Shoji
哲史 小路
慶晃 西名
Yoshiaki Nishina
慶晃 西名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2020052019A priority Critical patent/JP7222373B2/en
Publication of JP2021148755A publication Critical patent/JP2021148755A/en
Application granted granted Critical
Publication of JP7222373B2 publication Critical patent/JP7222373B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To propose an inspection method and a diagnosis method for a building enabling reliable detection of defect areas present in the building.SOLUTION: An inspection method for a building is provided, including: a step 1 of irradiating a structure being an inspection target with an X ray to acquire a digital X-ray transmission image, a step 2 of discriminating defect areas and sound areas from an image obtained by image-processing the digital X-ray transmission image and the digital X-ray transmission image, a step 3 of storing position information of the defect areas and sound areas, a step 4 of acquiring an average luminance of a prescribed area of each of the defect areas and sound areas of the digital X-ray transmission image before the image processing based on the position information and further acquiring a difference in the respective average luminances of the defect areas and sound areas, and a step 5 of acquiring the thicknesses of the defect areas and sound areas from the average luminances of the defect areas and sound areas and the luminance difference between the defect areas and sound areas. A building diagnosis method using the inspection method is also provided.SELECTED DRAWING: Figure 2

Description

本発明は、構造物の検査方法およびその方法を用いた構造物の診断方法に関するものである。 The present invention relates to a method for inspecting a structure and a method for diagnosing a structure using the method.

例えば、配管などの構造物を非破壊で検査する方法としては、被検査対象物である構造物にX線を照射してその透過X線画像から欠陥の有無を判定する方法が知られている。この検査方法は、構造物内に存在する欠陥に起因して、透過X線強度が変化することに基づき欠陥を検出するものである。しかし、対象物を透過するX線の強度は、その対象物の厚みに対して指数関数的に減衰するため、対象物が厚くなると、欠陥の有無に起因する透過X線強度の差が小さくなり、欠陥の検出が困難になる。特に、対象物の厚さが、測定範囲の中で大きく変わっている場合には、厚い部分と薄い部分の両方で、同じ測定精度を確保することが困難になる。 For example, as a method of non-destructively inspecting a structure such as a pipe, a method of irradiating a structure to be inspected with X-rays and determining the presence or absence of defects from the transmitted X-ray image is known. .. This inspection method detects defects based on changes in transmitted X-ray intensity due to defects existing in the structure. However, since the intensity of X-rays transmitted through an object is exponentially attenuated with respect to the thickness of the object, the thicker the object, the smaller the difference in transmitted X-ray intensity due to the presence or absence of defects. , Defect detection becomes difficult. In particular, when the thickness of the object varies greatly within the measurement range, it becomes difficult to ensure the same measurement accuracy in both the thick portion and the thin portion.

そこで、この問題への対策として、例えば、特許文献1には、肉厚補正治具を用いることにより、対象物の厚み変化の影響を小さくする技術が開示されている。また、特許文献2には、センサ出力値が飽和しているか否かを画素毎に判定し、その判定結果に基づいて蓄積容量を画素毎に決定することで、撮影領域全体において飽和や入出力特性が不良な出力を減らしつつ、良好なコントラストの画像を得る技術が開示されている。 Therefore, as a countermeasure to this problem, for example, Patent Document 1 discloses a technique for reducing the influence of a change in the thickness of an object by using a wall thickness correction jig. Further, in Patent Document 2, it is determined for each pixel whether or not the sensor output value is saturated, and the storage capacity is determined for each pixel based on the determination result. A technique for obtaining a good contrast image while reducing an output having poor characteristics is disclosed.

特開平08−254507号公報Japanese Unexamined Patent Publication No. 08-254507 特開2013−062792号公報Japanese Unexamined Patent Publication No. 2013-062792

しかしながら、特許文献1に記載の方法は、肉厚補正治具を作製して、これを測定対象物に装着する必要があり、測定に手間がかかる。また、特許文献1においても言及されているように、肉厚補正治具自体が有する欠陥などによる測定精度の低下も懸念される。また、特許文献2に記載の方法は、良好なコントラスト画像を得るのに有効であるが、画素毎に測定条件を変更するため、センサの測定条件の厳密な制御が必要であり、広範囲の測定には不向きである。また、画素間で測定結果を定量的に比較することが困難であるため、欠陥部分の厚さを定量的に評価する方法としては適用できない。 However, in the method described in Patent Document 1, it is necessary to prepare a wall thickness correction jig and attach it to the object to be measured, which is troublesome to measure. Further, as mentioned in Patent Document 1, there is a concern that the measurement accuracy may be lowered due to a defect or the like of the wall thickness correction jig itself. Further, the method described in Patent Document 2 is effective for obtaining a good contrast image, but since the measurement conditions are changed for each pixel, strict control of the measurement conditions of the sensor is required, and a wide range of measurements are performed. Not suitable for. Further, since it is difficult to quantitatively compare the measurement results between the pixels, it cannot be applied as a method for quantitatively evaluating the thickness of the defective portion.

本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、特殊な治具や、センサの画素の蓄積容量を各画素ごとに変更する等の特殊な処理を行うことなく、構造物内に存在する欠陥部を確実に検出することができる構造物の検査方法と、その方法を用いた構造物の診断方法を提案することにある。 The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to perform a special process such as changing the storage capacity of the pixels of a special jig or a sensor for each pixel. It is an object of the present invention to propose a structure inspection method capable of reliably detecting a defective portion existing in a structure, and a structure diagnosis method using the method.

発明者らは、上記の課題を解決するべく鋭意検討を重ねた。その結果、X線検査で得たデジタルのX線透過画像を解析し、欠陥部の存在有無を判別することに加えてさらに、上記X線透過画像に数段階の適切な画像処理を施し、欠陥部と健全部との間の平均輝度差を拡大することで、微小な欠陥でも明確に判別することが可能となることを見出し、本発明を開発するに至った。 The inventors have made extensive studies to solve the above problems. As a result, in addition to analyzing the digital X-ray transmission image obtained by the X-ray inspection and determining the presence or absence of the defect portion, the X-ray transmission image is further subjected to several stages of appropriate image processing to obtain defects. We have found that it is possible to clearly discriminate even minute defects by increasing the average luminance difference between the portion and the sound portion, and have developed the present invention.

すなわち、本発明は、検査対象である構造物にX線を照射してデジタルX線透過画像を得るステップ1と、上記デジタルX線透過画像に画像処理を施した画像と、上記デジタルX線透過画像と、から欠陥部と健全部とを判別するステップ2と、上記欠陥部と健全部の位置情報を記憶するステップ3と、上記位置情報に基づき、上記画像処理前のデジタルX線透過画像の欠陥部と健全部のそれぞれについて所定面積における平均輝度を求め、さらに、上記欠陥部と健全部との平均輝度の差を求めるステップ4と、上記欠陥部および健全部の平均輝度およびそれらの輝度差から、欠陥部および健全部の肉厚を求めるステップ5を有することを特徴とする構造物の検査方法を提案する。 That is, the present invention includes step 1 of irradiating a structure to be inspected with X-rays to obtain a digital X-ray transmission image, an image obtained by performing image processing on the digital X-ray transmission image, and the digital X-ray transmission. Based on the image, step 2 for discriminating between the defective portion and the sound portion, step 3 for storing the position information of the defective portion and the sound portion, and the position information, the digital X-ray transmission image before image processing. Step 4 to obtain the average brightness in a predetermined area for each of the defective part and the sound part, and further to obtain the difference in the average brightness between the defective part and the sound part, and the average brightness of the defective part and the sound part and their brightness difference. Therefore, we propose a method for inspecting a structure, which comprises step 5 of determining the wall thickness of a defective portion and a sound portion.

本発明の上記構造物の検査方法における上記画像処理は、ステップ1で得たデジタルX線透過画像に対して、膨張処理、収縮処理およびコントラスト拡張処理(ヒストグラムの拡張処理)のいずれか1の画像処理を、あるいは2以上を組み合わせた画像処理を、複数回、順次実施するサブステップからなることを特徴とする。 The image processing in the structure inspection method of the present invention is an image of any one of expansion processing, contraction processing, and contrast expansion processing (histogram expansion processing) with respect to the digital X-ray transmission image obtained in step 1. It is characterized in that it comprises a sub-step in which the processing or the image processing in which two or more are combined is sequentially performed a plurality of times.

また、本発明の上記構造物の検査方法における上記ステップ2は、ステップ1で得たデジタルX線透過画像および該デジタルX線透過画像に画像処理を施した画像において、所定面積の平均輝度と健全部の平均輝度との差が、全階調数の1%以上である部分を欠陥部と判別することを特徴とする。 Further, in step 2 of the above-mentioned structure inspection method of the present invention, in the digital X-ray transmission image obtained in step 1 and the image obtained by subjecting the digital X-ray transmission image to image processing, the average brightness and soundness of a predetermined area are obtained. It is characterized in that a portion where the difference from the average brightness of the portion is 1% or more of the total number of gradations is determined as a defective portion.

また、本発明の上記構造物の検査方法は、上記構造物が、配管であることを特徴とする。 Further, the method for inspecting the structure of the present invention is characterized in that the structure is a pipe.

また、本発明は、上記のいずれかに記載の構造物の検査方法を用いて構造物の減肉厚または残肉厚を求め、構造物の健全性を評価することを特徴とする構造物の診断方法を提案する。 Further, the present invention is characterized in that the reduced wall thickness or the residual wall thickness of the structure is obtained by using the method for inspecting the structure according to any one of the above, and the soundness of the structure is evaluated. Propose a diagnostic method.

本発明の構造物の検査方法によれば、X線透過画像に画像処理を施すことで、健全部との輝度差が小さな微小な欠陥部でもその存在を確実に識別することができる。したがって、本発明を構造物の検査方法を、配管等の診断に適用した場合には、漏洩トラブルによる損失や災害を防止するともに、配管が上記の状態に至る前にパッチ当て等の補修を行うことが可能となるので、産業上、奏する効果は大である。 According to the structure inspection method of the present invention, by performing image processing on an X-ray transmission image, the existence of a minute defect portion having a small difference in brightness from the sound portion can be reliably identified. Therefore, when the present invention is applied to the diagnosis of piping, etc., the inspection method of the structure is applied to prevent loss and disaster due to leakage trouble, and repair such as patching is performed before the piping reaches the above state. Since it is possible to do so, the effect of the industry is great.

本発明で用いるX線検査装置システムの一例を示す図である。It is a figure which shows an example of the X-ray inspection apparatus system used in this invention. 本発明のステップ2における欠陥判別方法を説明するフロー図である。It is a flow figure explaining the defect determination method in step 2 of this invention. X線透過画像の画像処理前と画像処理後を比較した一例を示す図である。It is a figure which shows an example which compared the X-ray transmission image before image processing and after image processing. 残肉厚と欠陥部と健全部の平均輝度差との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the residual wall thickness and the average luminance difference between a defective part and a healthy part.

前述したように、本発明の構造物の検査方法は、検査対象である構造物にX線を照射してデジタルX線透過画像を得るステップ1と、上記X線透過画像から欠陥部と健全部とを判別するステップ2と、上記欠陥部と健全部の位置情報を記憶するステップ3と、上記位置情報に基づき、上記画像処理前のX線透過画像の欠陥部と健全部の所定面積における平均輝度と、上記欠陥部と健全部の平均輝度差を求めるステップ4と、上記欠陥部および健全部の輝度および輝度差から、欠陥部および健全部の厚さおよび欠陥部の深さを求めるステップ5を有し、上記ステップ2は、ステップ1で得たX線透過画像と、そのX線透過画像に画像処理を施した画像から欠陥部と健全部とを判別することを特徴とするものである。以下、具体的に説明する。 As described above, the method for inspecting a structure of the present invention includes step 1 of irradiating the structure to be inspected with X-rays to obtain a digital X-ray transmission image, and a defective portion and a sound portion from the X-ray transmission image. Based on the step 2 for determining the above, the step 3 for storing the position information of the defective part and the sound part, and the position information, the average of the defective part and the sound part in the predetermined area of the X-ray transmission image before the image processing. Step 4 for obtaining the brightness and the average brightness difference between the defective portion and the sound portion, and step 5 for obtaining the thickness of the defective portion and the healthy portion and the depth of the defective portion from the brightness and the brightness difference between the defective portion and the healthy portion. The above step 2 is characterized in that a defective portion and a sound portion are discriminated from the X-ray transmission image obtained in step 1 and the image obtained by subjecting the X-ray transmission image to image processing. .. Hereinafter, a specific description will be given.

ステップ1
このステップ1は、検査対象である構造物にX線を照射してデジタルX線透過画像を得るステップである。デジタルのX線透過画像を得るX線検査装置は、例えば、図1に示したようなシステムのものを用いることができる。図中、1はX線源、2はX線源を制御するコントローラ、3はX線源とコントローラを制御するパーソナルコンピュータ(PC)、4は検査対象である構造物である(図1には、一例として、鋼管を示した)。また、5は上記X線源3から放射され、検査対象である構造物を透過したX線を検知するX線検出器、6は上記X線検出器で検出したX線データをデジタル画像に変換するPCである。上記X線検出器は、デジタル画像を得る観点から、フラット・パネル・ディスプレイ(FPD(Flat Panel Detector))やイメージング・プレート(IP(Imaging
Plate))であることが好ましい。なお、上記図1に示したX線検査装置は一例であり、これに制限されるものではなく、例えば、PC3は必須ではない。
Step 1
This step 1 is a step of irradiating the structure to be inspected with X-rays to obtain a digital X-ray transmission image. As the X-ray inspection apparatus for obtaining a digital X-ray transmission image, for example, an X-ray inspection apparatus having a system as shown in FIG. 1 can be used. In the figure, 1 is an X-ray source, 2 is a controller that controls the X-ray source, 3 is a personal computer (PC) that controls the X-ray source and the controller, and 4 is a structure to be inspected (FIG. 1 shows). , As an example, a steel pipe is shown). Further, 5 is an X-ray detector that detects X-rays emitted from the X-ray source 3 and transmitted through the structure to be inspected, and 6 is a conversion of X-ray data detected by the X-ray detector into a digital image. It is a PC to do. The X-ray detector is a flat panel display (FPD (Flat Panel Detector)) or an imaging plate (IP (Imaging)) from the viewpoint of obtaining a digital image.
Plate)) is preferable. The X-ray inspection apparatus shown in FIG. 1 is an example and is not limited thereto. For example, PC3 is not essential.

ステップ2
このステップ2は、上記X線透過画像を解析し、欠陥部と健全部とを判別するステップである。検査対象である構造物中に欠陥が存在するか否かの判別を行うフローの一例を図2に示した。まず、上記ステップ1で得られたままのX線画像(この画像を、以降、「元画像」とも称する)を解析し、欠陥の有無を判定するサブステップ1を実施する。このとき、大きな欠陥は、X線画像中の輝度差から欠陥部と健全部を容易に識別できる。しかし、小さな欠陥は、周囲の健全部との輝度差が小さいため、欠陥部の存在を認識できていないおそれがある。
Step 2
This step 2 is a step of analyzing the X-ray transmission image and discriminating between a defective portion and a sound portion. FIG. 2 shows an example of a flow for determining whether or not a defect exists in the structure to be inspected. First, a sub-step 1 for determining the presence or absence of a defect is performed by analyzing the X-ray image as it is obtained in step 1 (this image is also referred to as "original image" hereafter). At this time, the large defect can be easily distinguished from the defective portion and the sound portion from the difference in brightness in the X-ray image. However, a small defect may not be able to recognize the existence of the defective portion because the difference in brightness from the surrounding healthy portion is small.

また、X線検査によって得られるX線画像(元画像)の状態は、欠陥部の肉厚差の他に、表面状態や減肉量によっても変化し、欠陥部の識別性に大きく影響する。例えば、図3の上段に示したX線透過画像は、100mm角×厚さが5mmの鋼板の表面中央部に直径が10mmφで深さが1〜3mmの欠陥部を模擬した穴を設けた試験片を、前述した図1のX線検査装置で検査を行ったときに得られるX線画像を示したもので、(a)は深さが3mmで、フライス加工した平滑な表面状態、(b)は深さが2mmで、フライス加工した平滑な表面状態、(c)は深さが1mmで、フライス加工した平滑な表面状態および(d)は深さが2mmで、空気雰囲気で加熱処理後の錆がある表面状態のものである。
そのため、元画像を対象とした解析だけでは、欠陥部が識別されず、微小欠陥を見逃すおそれが多分にある。
Further, the state of the X-ray image (original image) obtained by the X-ray inspection changes depending on the surface condition and the amount of wall thinning in addition to the difference in the wall thickness of the defective part, which greatly affects the distinguishability of the defective part. For example, the X-ray transmission image shown in the upper part of FIG. 3 is a test in which a hole simulating a defect portion having a diameter of 10 mmφ and a depth of 1 to 3 mm is provided in the center of the surface of a steel plate of 100 mm square × thickness of 5 mm. An X-ray image obtained when one piece is inspected by the above-mentioned X-ray inspection apparatus of FIG. 1 is shown. FIG. ) Is a depth of 2 mm and a milled smooth surface state, (c) is a depth of 1 mm and a milled smooth surface state and (d) is a depth of 2 mm after heat treatment in an air atmosphere. It has a rusty surface condition.
Therefore, the defective portion cannot be identified only by the analysis of the original image, and there is a possibility that a minute defect may be overlooked.

そこで、本発明は、上記元画像に、画像処理を施して欠陥部と健全部の輝度差を拡大して、欠陥部の検出精度を高め、欠陥部の存在有無を判定することとした。具体的には、図2に示したように、元画像に基づく解析(サブステップ1)で欠陥部の存在が確認できなかった場合は、上記元画像に画像処理を施してから欠陥部の存在有無を判定する次のステップ(サブステップ2)に移行し、それでも欠陥部の存在が確認できなかった場合は、さらに上記画像処理後の画像に別の条件の画像処理を施してから欠陥部の存在有無を判定する次のサブステップに移行する。そして、このサブステップを複数回繰り返して行い、いずれのサブステップにおいても欠陥部が浮かび上がらず、存在が確認できなかったときに、欠陥部なしと最終判断することとした。上記画像処理を施す回数は、多ければ多いほど検査精度を高めることができて好ましいが、検査に要する時間を考慮し、5回程度とするのが好ましい。より好ましくは2〜5回の範囲である。 Therefore, in the present invention, it is determined that the original image is subjected to image processing to increase the brightness difference between the defective portion and the sound portion to improve the detection accuracy of the defective portion and determine the presence or absence of the defective portion. Specifically, as shown in FIG. 2, when the existence of the defective portion cannot be confirmed by the analysis based on the original image (sub-step 1), the existence of the defective portion is performed after performing image processing on the original image. If the presence or absence is determined by moving to the next step (sub-step 2) and the existence of the defective portion cannot be confirmed even after that, the image after the above image processing is further subjected to image processing under different conditions, and then the defective portion is found. Move to the next sub-step to determine the existence. Then, this sub-step is repeated a plurality of times, and when the defective portion does not emerge in any of the sub-steps and the existence cannot be confirmed, it is finally determined that there is no defective portion. The number of times the image processing is performed is preferable because the inspection accuracy can be improved as the number of times is increased, but it is preferably about 5 times in consideration of the time required for the inspection. More preferably, it is in the range of 2 to 5 times.

ここで、上記の画像処理の方法としては、種々の方法があるが、本発明では、少なくとも下記に示す方法の1以上を適用することが好ましい。
・膨張処理:注目した画素の近傍に、白色の画素が1つでもあれば、その注目画素を白色に置き換えることで二値画像の白色領域を増やす処理である。
・収縮処理:注目した画素の近傍に、黒色の画素が1つでもあれば、その注目画素を黒色に置き換えることで、膨張処理とは逆に、二値画像の白色領域を減らす処理である。
上記、膨張処理や収縮処理を施すことで、ノイズを低減することができる。
・コントラスト(ヒストグラム)の拡張処理:画像の明るさの分布を表すヒストグラム、すなわち輝度のヒストグラムに補正を加えることで、コントラストを強調し、より鮮明な画像を得る処理である。具体的には、元画像の輝度の階調数が256(8bit)で、輝度の最小値が0、最大値が255であった場合、輝度差が例えば1の場合、その輝度差は全階調数の0.4%でしかないので、輝度差があるのを識別することができない。そこで、例えば、元画像の輝度25を補正後の画像の輝度0とし、元画像の輝度50を補正後の画像の輝度255とした場合、元画像の輝度差1は、補正後の輝度差4に拡大することができる。
上記に示す方法の2以上を組み合わせて適用することも可能である。
なお、画像処理の方法として、上記方法に限定されるものではなく、他の方法を用いてもよいことは勿論である。
Here, there are various methods for image processing described above, but in the present invention, it is preferable to apply at least one or more of the methods shown below.
-Expansion processing: If there is even one white pixel in the vicinity of the pixel of interest, the white region of the binary image is increased by replacing the pixel of interest with white.
-Shrinking process: If there is even one black pixel in the vicinity of the pixel of interest, the pixel of interest is replaced with black, which is a process of reducing the white region of the binary image, contrary to the expansion process.
Noise can be reduced by performing the above-mentioned expansion treatment and contraction treatment.
-Contrast (histogram) expansion processing: A processing for enhancing contrast and obtaining a clearer image by adding correction to a histogram showing the distribution of brightness of an image, that is, a histogram of brightness. Specifically, when the number of gradations of the brightness of the original image is 256 (8 bits), the minimum value of the brightness is 0, and the maximum value is 255, when the brightness difference is, for example, 1, the brightness difference is all floors. Since it is only 0.4% of the frequency, it is not possible to identify that there is a difference in brightness. Therefore, for example, when the brightness 25 of the original image is set to 0 and the brightness 50 of the original image is set to the brightness 255 of the corrected image, the brightness difference 1 of the original image is the brightness difference 4 after correction. Can be expanded to.
It is also possible to apply two or more of the methods shown above in combination.
The image processing method is not limited to the above method, and it goes without saying that another method may be used.

上記の画像処理を行うことで、欠陥部と健全部の輝度差を拡大することができるので、小さな欠陥部でも検出することが可能となる。なお、欠陥部が存在すると明確に判断できる欠陥部と健全部の輝度差は、全階調数の1.0%以上である。したがって、全階調数が4096(12bit)の場合、平均輝度差が41以上であれば、欠陥部を容易に検出することができる。好ましくは1.5%以上である。 By performing the above image processing, it is possible to increase the brightness difference between the defective portion and the sound portion, so that even a small defective portion can be detected. The difference in brightness between the defective portion and the sound portion, which can be clearly determined to have the defective portion, is 1.0% or more of the total number of gradations. Therefore, when the total number of gradations is 4096 (12 bits) and the average luminance difference is 41 or more, the defective portion can be easily detected. It is preferably 1.5% or more.

参考として、図3の上段に示した穴部深さと表面状態が異なる(a)〜(d)の元画像のそれぞれに対して、膨張処理→コントラスト拡張処理→膨張処理→収縮処理の画像処理を施した結果を、図3の下段に示した。この結果から、適切な画像処理を施すことで、欠陥部と健全部の平均輝度差を拡大することができ、欠陥部の検出精度を高めることができることがわかる。 For reference, for each of the original images (a) to (d) having different hole depths and surface states shown in the upper part of FIG. 3, image processing of expansion processing → contrast expansion processing → expansion processing → contraction processing is performed. The results of the application are shown in the lower part of FIG. From this result, it can be seen that by performing appropriate image processing, the average brightness difference between the defective portion and the sound portion can be increased, and the detection accuracy of the defective portion can be improved.

なお、上記の欠陥部と健全部の平均輝度を求めるときの面積は、欠陥部の大きさにもよるが、画素数にして10〜40000画素の範囲であることが好ましい。画素数が10画素未満では、平均輝度を求めるには範囲が狭すぎる。一方、40000画素を超えて大きくすると、欠陥部以外の部分や健全部以外の部分が含まれてくるおそれがある。より好ましくは画素数にして25〜20000画素の範囲である。 The area for determining the average brightness of the defective portion and the sound portion is preferably in the range of 10 to 40,000 pixels in terms of the number of pixels, although it depends on the size of the defective portion. If the number of pixels is less than 10, the range is too narrow to obtain the average brightness. On the other hand, if the pixel size exceeds 40,000 pixels, a portion other than the defective portion and a portion other than the sound portion may be included. More preferably, the number of pixels is in the range of 25 to 20000 pixels.

ステップ3
このステップ3は、上記ステップ2において欠陥部が検出された場合には、次のステップ4において必要な欠陥部とその周囲の健全部の位置情報を記憶するステップである。なお、上記欠陥部と健全部の位置情報の他に、欠陥部が発見できた画像処理条件(ステップ2のサブステップ条件)も併せて記憶することが望ましい。これにより、例えば、欠陥が検出された位置の隣接部を検査する場合に、上記画像処理条件を優先的に採用することで、欠陥部の存在有無の判定および画像処理に必要な時間を短縮できる。
Step 3
This step 3 is a step of storing the position information of the defective portion and the sound portion around the defective portion required in the next step 4 when the defective portion is detected in the above step 2. In addition to the position information of the defective portion and the sound portion, it is desirable to also store the image processing condition (sub-step condition of step 2) in which the defective portion can be found. As a result, for example, when inspecting an adjacent portion at a position where a defect is detected, by preferentially adopting the above image processing conditions, it is possible to shorten the time required for determining the presence or absence of the defective portion and image processing. ..

ステップ4
このステップは、上記欠陥部と健全部の位置情報に基づき、画像処理前のX線透過画像の欠陥部と健全部の所定面積における平均輝度と、上記欠陥部と健全部の平均輝度差を求めるステップである。ここで、画像処理前のX線透過画像(元画像)の欠陥部と健全部の平均輝度を求める理由は、画像処理を施した後の画像は、輝度が元画像から変化しているため、次のステップ5における欠陥部と健全部の厚さを求めるデータとして使用できないからである。なお、平均輝度を求める面積は、前述した欠陥有無の判別に用いる平均輝度を求めるときの面積(画素数)であればよい。
Step 4
In this step, based on the position information of the defective part and the sound part, the average brightness in a predetermined area of the defective part and the sound part of the X-ray transmission image before image processing and the average brightness difference between the defective part and the sound part are obtained. It's a step. Here, the reason for obtaining the average brightness of the defective portion and the sound portion of the X-ray transmission image (original image) before the image processing is that the brightness of the image after the image processing is changed from the original image. This is because it cannot be used as data for obtaining the thickness of the defective portion and the sound portion in the next step 5. The area for obtaining the average brightness may be the area (number of pixels) for obtaining the average brightness used for determining the presence or absence of defects as described above.

ステップ5
このステップは、画像処理前のX線透過画像(元画像)から求めた欠陥部および健全部の平均輝度から、欠陥部および健全部の厚さを求めるステップである。欠陥部および健全部の厚さを求める方法は、構造物と同じ材質の表面状態を有する肉厚が異なる試験片を用いて、肉厚と輝度との関係を予め求めておき、それと対比することで求めることができる。また、欠陥部および健全部の肉厚から、欠陥部の減肉厚も求めることができる。
Step 5
This step is a step of obtaining the thickness of the defective portion and the sound portion from the average brightness of the defective portion and the sound portion obtained from the X-ray transmission image (original image) before image processing. The method of determining the thickness of the defective part and the sound part is to obtain the relationship between the wall thickness and the brightness in advance using test pieces having the same surface condition as the structure but different wall thickness, and compare them. Can be found at. Further, the wall thickness of the defective portion can be obtained from the wall thickness of the defective portion and the sound portion.

また、上記欠陥部と健全部の平均輝度差と、予め求めておいた、元板厚毎の残肉厚と欠陥部と健全部の平均輝度差との関係と対比することで欠陥部の残肉厚を求めるようにしてもよい。 Further, by comparing the average brightness difference between the defective portion and the sound portion with the previously obtained relationship between the residual wall thickness for each original plate thickness and the average brightness difference between the defective portion and the healthy portion, the residual portion of the defective portion remains. You may ask for the wall thickness.

上記に説明した本発明の構造物の検査方法は、欠陥部および健全部の厚さ(残肉量)や欠陥部の深さ(減肉厚)を求めることができるので、構造物の健全性を評価する診断に適用してもよい。これにより、構造物の劣化の程度や補修・取替えの要否・時期等を判断することで、構造物に起因したトラブルや災害の発生を未然に防止することができる。 In the structure inspection method of the present invention described above, the thickness of the defective portion and the sound portion (remaining wall thickness) and the depth of the defective portion (thickness reduction) can be obtained, so that the soundness of the structure is obtained. May be applied to the diagnosis to evaluate. As a result, it is possible to prevent troubles and disasters caused by the structure by determining the degree of deterioration of the structure and the necessity / timing of repair / replacement.

なお、本発明を適用できる構造物としては、特に限定されないが、内部が確認できない鋼管のような配管の検査に好適に用いることができる。また、本発明は、裸状態の配管に限定されるものではなく、保温材を巻いた被覆鋼管や、円柱状の鉄塔、煙突などの欠陥検査にも適用することができる。 The structure to which the present invention can be applied is not particularly limited, but can be suitably used for inspection of pipes such as steel pipes whose inside cannot be confirmed. Further, the present invention is not limited to the pipe in a bare state, and can be applied to defect inspection of a coated steel pipe wrapped with a heat insulating material, a columnar steel tower, a chimney, and the like.

100mm角で厚さが5mmのSS400製鋼板の表面中央部に、直径が10mmφで深さが1mmの減厚欠陥部を模擬した穴を設けた試験片を、図1に示した加速電圧が135kVの小型X線探傷システムを用いてX線検査を行った。この際、X線検出器としてFPD(Flat Panel Detector)を使用し、12bit(階調数:4096)で、モノクロのX線透過画像(元画像)を得た。この画像から、欠陥部に相当する位置における2025画素の平均輝度およびその周辺の健全部に相当する位置の37700画素の平均輝度を求めたところ、欠陥部の平均輝度は115.9、健全部の平均輝度は131.3で、その差は15.4しかなかった。この輝度差は、全階調数の0.4%以下で、周囲の健全部との輝度差が小さいため、穴部の検出は不可能であった。 A test piece having a hole simulating a thickened defect portion having a diameter of 10 mmφ and a depth of 1 mm was provided in the center of the surface of a 100 mm square and 5 mm thick SS400 steel plate, and the acceleration voltage shown in FIG. 1 was 135 kV. X-ray inspection was performed using the small X-ray flaw detection system of. At this time, an FPD (Flat Panel Detector) was used as the X-ray detector, and a monochrome X-ray transmission image (original image) was obtained with 12 bits (number of gradations: 4096). From this image, the average brightness of 2025 pixels at the position corresponding to the defective part and the average brightness of 37700 pixels at the position corresponding to the healthy part around it were obtained. The average brightness was 131.3, and the difference was only 15.4. This luminance difference was 0.4% or less of the total number of gradations, and the luminance difference from the surrounding sound portion was small, so that it was impossible to detect the hole portion.

そこで、上記元画像に対して、画像処理ソフト(キーエンス社製 XG Vision Editor)を用いて、膨張処理、収縮処理およびコントラスト拡張処理を組み合わせて、膨張処理→コントラスト拡張処理→膨張処理→収縮処理の画像処理を施した。その結果、画像処理前と同位置、同面積における欠陥部とその周辺の健全部の平均輝度を求めたところ、欠陥部の平均輝度は44.9、健全部の平均輝度は168.1に変化し、欠陥部と健全部の平均輝度差は123.2に拡大した。この輝度差は、全階調数の2.8%に相当し、欠陥部の検出を容易に行うことができた。 Therefore, for the above original image, using image processing software (XG Vision Editor manufactured by KEYENCE), expansion processing, contraction processing, and contrast expansion processing are combined to perform expansion processing → contrast expansion processing → expansion processing → contraction processing. Image processing was applied. As a result, when the average brightness of the defective part and the surrounding healthy part in the same position and the same area as before the image processing was obtained, the average brightness of the defective part changed to 44.9 and the average brightness of the healthy part changed to 168.1. However, the average brightness difference between the defective part and the healthy part expanded to 123.2. This luminance difference corresponds to 2.8% of the total number of gradations, and the defective portion could be easily detected.

次いで、上述の手順によって検出された欠陥部について、欠陥部の平均輝度を測定し、その結果から、残肉厚を推定する。
そのためには、まず、事前に、何種類か作成した減厚試験片についてX線透過試験を実施し、その測定結果から、元板厚(健全部)の残肉厚と輝度差との関係を求めておく。その際、減厚部の減厚量が小さくて減厚部の板厚と元板厚との差が小さい場合には、測定精度が低下するので、複数の元板厚を有する減厚試験片を用意して、元板厚(健全部)の残肉厚と輝度差との関係を求めておくことが好ましい。本実施例においては、元板厚が5mmの鋼板と10mmの鋼板から作製した減厚試験片について予めX線透過試験を実施して、図4の関係を得た。なお、図4の縦軸に記載した中央・周辺輝度差とは、欠陥部(黒色部)の領域内の中央部の平均輝度と、周辺の減肉の無い健全部(白色部)の領域内の平均輝度との輝度差のことである。
次に、前述の手順によって欠陥部と判定された場所について、元画像における欠陥部と健全部の平均輝度差を求める。本実施例の場合は、すでに記載されたとおり15.4である。この平均輝度差から残肉厚を推定するために、あらかじめ求めた元板厚(健全部)の残肉厚と輝度差との関係、本実施例では図4を用いる。図4において、平均輝度差が15.4の場合に対応する残肉厚は4mmと読み取れる。すなわち、残肉厚が4mmであると推定される。これは、供試材である試験片の穴部の板厚4mm(=板厚5mm−穴深さ1mm)と一致している。このことから、本発明の有効性が確認できた。
Next, with respect to the defective portion detected by the above procedure, the average brightness of the defective portion is measured, and the residual wall thickness is estimated from the result.
For that purpose, first, an X-ray transmission test is carried out on several types of thinning test pieces prepared in advance, and from the measurement results, the relationship between the residual wall thickness of the original plate thickness (healthy part) and the brightness difference is determined. I'll ask for it. At that time, if the amount of thickness reduction of the thickened portion is small and the difference between the plate thickness of the thickened portion and the original plate thickness is small, the measurement accuracy is lowered. It is preferable to prepare the above and obtain the relationship between the residual wall thickness of the original plate thickness (healthy portion) and the brightness difference. In this example, an X-ray transmission test was carried out in advance on a thickness reduction test piece made of a steel plate having a base plate thickness of 5 mm and a steel plate having a base plate thickness of 10 mm, and the relationship shown in FIG. 4 was obtained. The difference between the central and peripheral brightness shown on the vertical axis of FIG. 4 is the average brightness of the central portion in the region of the defective portion (black portion) and the region of the healthy portion (white portion) without thinning of the periphery. It is the difference in brightness from the average brightness of.
Next, the average brightness difference between the defective portion and the sound portion in the original image is obtained for the location determined to be the defective portion by the above procedure. In the case of this embodiment, it is 15.4 as already described. In order to estimate the residual wall thickness from this average brightness difference, the relationship between the residual wall thickness and the brightness difference of the original plate thickness (healthy portion) obtained in advance, FIG. 4 is used in this embodiment. In FIG. 4, it can be read that the residual wall thickness corresponding to the case where the average brightness difference is 15.4 is 4 mm. That is, it is estimated that the residual wall thickness is 4 mm. This is consistent with the plate thickness of 4 mm (= plate thickness 5 mm − hole depth 1 mm) of the hole portion of the test piece which is the test material. From this, the effectiveness of the present invention was confirmed.

1:X線源
2:X線源のコントローラ
3:X線源制御用パーソナルコンピュータ(PC)
4:検査対象(鋼管)
5:X線検出器
6:X線検出器用パーソナルコンピュータ(PC)
X:X線
1: X-ray source 2: X-ray source controller 3: Personal computer for X-ray source control (PC)
4: Inspection target (steel pipe)
5: X-ray detector 6: Personal computer (PC) for X-ray detector
X: X-ray

Claims (5)

検査対象である構造物にX線を照射してデジタルX線透過画像を得るステップ1と、
上記デジタルX線透過画像に画像処理を施した画像と、上記デジタルX線透過画像と、から欠陥部と健全部とを判別するステップ2と、
上記欠陥部と健全部の位置情報を記憶するステップ3と、
上記位置情報に基づき、上記画像処理前のデジタルX線透過画像の欠陥部と健全部のそれぞれについて所定面積における平均輝度を求め、さらに、上記欠陥部と健全部との平均輝度の差を求めるステップ4と、
上記欠陥部および健全部の平均輝度およびそれらの輝度差から、欠陥部および健全部の肉厚を求めるステップ5を有することを特徴とする構造物の検査方法。
Step 1 of irradiating the structure to be inspected with X-rays to obtain a digital X-ray transmission image,
Step 2 of discriminating between a defective portion and a sound portion from the image obtained by subjecting the digital X-ray transmission image to image processing and the digital X-ray transmission image.
Step 3 to store the position information of the defective part and the sound part, and
Based on the above position information, the average brightness in a predetermined area is obtained for each of the defective portion and the sound portion of the digital X-ray transmission image before image processing, and further, the difference in the average brightness between the defective portion and the sound portion is obtained. 4 and
A method for inspecting a structure, which comprises step 5 of obtaining the wall thickness of the defective portion and the sound portion from the average brightness of the defective portion and the sound portion and the difference in brightness between them.
上記画像処理は、ステップ1で得たデジタルX線透過画像に対して、膨張処理、収縮処理およびコントラスト拡張処理(ヒストグラムの拡張処理)のいずれか1の画像処理を、あるいは2以上を組み合わせた画像処理を、複数回、順次実施するサブステップからなることを特徴とする請求項1に記載の構造物の検査方法。 In the above image processing, the digital X-ray transmission image obtained in step 1 is subjected to any one of expansion processing, contraction processing and contrast expansion processing (histogram expansion processing), or an image in which two or more are combined. The method for inspecting a structure according to claim 1, wherein the process comprises substeps in which the process is sequentially performed a plurality of times. 上記ステップ2は、ステップ1で得たデジタルX線透過画像および該デジタルX線透過画像に画像処理を施した画像において、所定面積の平均輝度と健全部の平均輝度との差が、全階調数の1%以上である部分を欠陥部と判別することを特徴とする請求項1または2に記載の構造物の検査方法。 In step 2, in the digital X-ray transmission image obtained in step 1 and the image obtained by subjecting the digital X-ray transmission image to image processing, the difference between the average brightness of the predetermined area and the average brightness of the sound portion is all gradations. The method for inspecting a structure according to claim 1 or 2, wherein a portion of 1% or more of the number is determined to be a defective portion. 上記構造物が、配管であることを特徴とする請求項1〜3のいずれか1項に記載の構造物の検査方法。 The method for inspecting a structure according to any one of claims 1 to 3, wherein the structure is a pipe. 請求項1〜4のいずれか1項に記載の構造物の検査方法を用いて構造物の減肉厚または残肉厚を求め、構造物の健全性を評価することを特徴とする構造物の診断方法。 A structure characterized in that the reduced wall thickness or the residual wall thickness of the structure is determined by using the method for inspecting the structure according to any one of claims 1 to 4, and the soundness of the structure is evaluated. Diagnostic method.
JP2020052019A 2020-03-24 2020-03-24 Structural inspection method and diagnostic method Active JP7222373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020052019A JP7222373B2 (en) 2020-03-24 2020-03-24 Structural inspection method and diagnostic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020052019A JP7222373B2 (en) 2020-03-24 2020-03-24 Structural inspection method and diagnostic method

Publications (2)

Publication Number Publication Date
JP2021148755A true JP2021148755A (en) 2021-09-27
JP7222373B2 JP7222373B2 (en) 2023-02-15

Family

ID=77848547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020052019A Active JP7222373B2 (en) 2020-03-24 2020-03-24 Structural inspection method and diagnostic method

Country Status (1)

Country Link
JP (1) JP7222373B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08212341A (en) * 1995-02-03 1996-08-20 Nippon Hihakai Kensa Kk Method and device for image processing of radiograph
JPH08306082A (en) * 1995-05-09 1996-11-22 Ricoh Co Ltd Defect detecting device of optical disk
JPH11118735A (en) * 1997-10-14 1999-04-30 Hitachi Eng & Service Co Ltd Method and apparatus for evaluating thinning state of piping, etc.
JP2000028553A (en) * 1998-07-14 2000-01-28 Sodick Co Ltd X-ray transmission inspecting method and device therefor
JP2007271434A (en) * 2006-03-31 2007-10-18 Mitsubishi Heavy Ind Ltd Inspection apparatus, inspection method, inspection program, and inspection system
JP2008256603A (en) * 2007-04-06 2008-10-23 Toshiba Corp Nondestructive inspection device and non-destructive inspection method
JP2013088924A (en) * 2011-10-14 2013-05-13 Toshiba Digital Media Engineering Corp Image processing method and device
JP2016114416A (en) * 2014-12-12 2016-06-23 アンリツインフィビス株式会社 X-ray inspection device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08212341A (en) * 1995-02-03 1996-08-20 Nippon Hihakai Kensa Kk Method and device for image processing of radiograph
JPH08306082A (en) * 1995-05-09 1996-11-22 Ricoh Co Ltd Defect detecting device of optical disk
JPH11118735A (en) * 1997-10-14 1999-04-30 Hitachi Eng & Service Co Ltd Method and apparatus for evaluating thinning state of piping, etc.
JP2000028553A (en) * 1998-07-14 2000-01-28 Sodick Co Ltd X-ray transmission inspecting method and device therefor
JP2007271434A (en) * 2006-03-31 2007-10-18 Mitsubishi Heavy Ind Ltd Inspection apparatus, inspection method, inspection program, and inspection system
JP2008256603A (en) * 2007-04-06 2008-10-23 Toshiba Corp Nondestructive inspection device and non-destructive inspection method
JP2013088924A (en) * 2011-10-14 2013-05-13 Toshiba Digital Media Engineering Corp Image processing method and device
JP2016114416A (en) * 2014-12-12 2016-06-23 アンリツインフィビス株式会社 X-ray inspection device

Also Published As

Publication number Publication date
JP7222373B2 (en) 2023-02-15

Similar Documents

Publication Publication Date Title
RU2665806C2 (en) Method and device for investigating inspection system used for detecting surface defects
US9805461B2 (en) Fluoroscopic image density correction method, and image processing device
US5345514A (en) Method for inspecting components having complex geometric shapes
JP7050470B2 (en) Inspection support system, learning device, and judgment device
US6873680B2 (en) Method and apparatus for detecting defects using digital radiography
CN115803619A (en) Information processing device, determination method, and information processing program
WO2019216071A1 (en) Ultrasonic testing device, method, and program, and ultrasonic testing system
CN111521626A (en) X-ray detection method for welding quality of pressure pipeline
CN115836218A (en) Inspection device, inspection method, and inspection program
JP7222373B2 (en) Structural inspection method and diagnostic method
JP2008151653A (en) Inspection device, inspection method, inspection program and inspection system
JP2006189349A (en) Nondestructive defect inspection system
JP2005331262A (en) Non-destructive inspection method and non-destructive inspection device
CN115266774A (en) Weld ray detection and evaluation method based on artificial intelligence
TWM604396U (en) Weld checking system based on radiography
Mohamad et al. Image enhancement process on digital radiographic image with weld discontinuities
JPH0634564A (en) Weld part inspection method of steel plate
JP4185841B2 (en) Method for determining the resolution of a radiographic test image
JP7455046B2 (en) Underwater inspection equipment and underwater inspection method
JP7142825B1 (en) Image judgment method and image judgment system
RU2815195C1 (en) Method for automated x-ray inspection of products of complex shape and device for its implementation
JP2009128323A (en) Inspection device and inspection method of laminate
Wardhani RADIOGRAPHIC EXAMINATION PROCEDURE AS NON DESTRUCTIVE TESTING METHOD IN PROCESS PIPING
RU2008125112A (en) METHODS, SYSTEMS AND COMPUTER SOFTWARE PRODUCTS FOR STRUCTURE DIAGNOSTICS
Senin et al. Machine Learning Application for Concrete Surface Defects Automatic Damage Classification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230117

R150 Certificate of patent or registration of utility model

Ref document number: 7222373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150