JP2021146372A - Method for manufacturing hot-rolled steel sheet and apparatus for manufacturing hot-rolled steel sheet - Google Patents

Method for manufacturing hot-rolled steel sheet and apparatus for manufacturing hot-rolled steel sheet Download PDF

Info

Publication number
JP2021146372A
JP2021146372A JP2020049006A JP2020049006A JP2021146372A JP 2021146372 A JP2021146372 A JP 2021146372A JP 2020049006 A JP2020049006 A JP 2020049006A JP 2020049006 A JP2020049006 A JP 2020049006A JP 2021146372 A JP2021146372 A JP 2021146372A
Authority
JP
Japan
Prior art keywords
hot
rolling
peripheral speed
steel sheet
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020049006A
Other languages
Japanese (ja)
Other versions
JP7460894B2 (en
Inventor
拓也 高山
Takuya Takayama
拓也 高山
寛 原田
Hiroshi Harada
寛 原田
健二 山田
Kenji Yamada
健二 山田
真士 阪本
Shinji Sakamoto
真士 阪本
悠衣 山下
Yui Yamashita
悠衣 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2020049006A priority Critical patent/JP7460894B2/en
Publication of JP2021146372A publication Critical patent/JP2021146372A/en
Application granted granted Critical
Publication of JP7460894B2 publication Critical patent/JP7460894B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To improve an inner quality of a hot-rolled steel sheet produced by a continuous casting machine.SOLUTION: There is provided a method for manufacturing a hot-rolled steel sheet using an apparatus for manufacturing a hot-rolled steel sheet in which a continuous casting line and a hot rolling line are directly connected to each other. The continuous casting line and the hot rolling line perform rolling at different peripheral velocities so as to give a peripheral velocity difference to upper and lower rolling rolls, in at least one rolling stand which forms a conveyance path of the hot-rolled steel sheet in this order and is arranged in the hot rolling line with a solid phase rate of a plate thickness center of a cast slab manufactured in the continuous casting line of 0.8-1.0.SELECTED DRAWING: Figure 1

Description

本発明は、熱延鋼板の製造方法及び熱延鋼板製造装置に関する。 The present invention relates to a method for manufacturing a hot-rolled steel sheet and a hot-rolled steel sheet manufacturing apparatus.

薄板鋼板の連続鋳造設備として、例えば50mm〜150mm厚の鋳片を製造する連続鋳造機と圧延ラインが組み合わさったライン(以下、「TSCR:Thin Slab Casting and Rolling」という。)が知られている。TSCRは、連続鋳造機と圧延ラインとが直結して設けられることで従来プロセスと比較してコンパクトであり、低コストで熱延鋼板を製造することができる。 As a continuous casting facility for thin steel sheets, for example, a line in which a continuous casting machine for producing slabs having a thickness of 50 mm to 150 mm and a rolling line are combined (hereinafter referred to as "TSCR: Thin Slab Casting and Rolling") is known. .. Since the TSCR is provided by directly connecting the continuous casting machine and the rolling line, it is more compact than the conventional process, and the hot-rolled steel sheet can be manufactured at low cost.

特許文献1には、かかるTSCRにより鋼板を連続的に製造する方法であって、連続鋳造素材の凝固後に1100℃よりも高い温度で鋳片を成形し、当該鋳片の全断面にわたり1100℃まで再び誘導加熱した後、圧下することが開示されている。特許文献1によれば、低装置コスト、低エネルギーコストで鋼板を連続鋳造し、また仕上げ圧延をすることができる。 Patent Document 1 describes a method of continuously producing a steel sheet by such TSCR, in which a slab is formed at a temperature higher than 1100 ° C. after solidification of the continuously cast material, and the temperature is up to 1100 ° C. over the entire cross section of the slab. It is disclosed that the pressure is reduced after induction heating again. According to Patent Document 1, steel sheets can be continuously cast and finish-rolled at low equipment cost and low energy cost.

ところで、近年の製品としての鋼板の軽量化及び高強度化の観点から、製造されるスラブには、カーボン(C)、ケイ素(Si)、マンガン(Mn)等の合金元素が添加されている。しかしながら、かかるスラブ成分の高合金化に伴い、スラブの内質劣化が課題となっている。スラブの内質劣化は、例えば中心偏析やポロシティといったスラブの内部欠陥に起因することが知られている。 By the way, from the viewpoint of weight reduction and high strength of steel sheet as a product in recent years, alloying elements such as carbon (C), silicon (Si) and manganese (Mn) are added to the produced slab. However, with the increase in alloying of the slab component, deterioration of the internal quality of the slab has become an issue. It is known that the internal deterioration of the slab is caused by internal defects of the slab such as central segregation and porosity.

特許文献2には、中心偏析を低減する鋳片の連続鋳造方法であって、鋳片の厚さ方向中心が凝固した直後に圧下を加え、凝固組織の微細化、偏析の分散化により偏析を低減することが開示されている。また、特許文献2によれば、圧下直前の鋳片の厚みを圧下直後の鋳片の厚みで割った値である圧下比を大きくすることで、鋳片内部に与えるひずみ量を増加させている。 Patent Document 2 describes a continuous casting method for slabs that reduces central segregation. Immediately after the center of the slab in the thickness direction solidifies, a reduction is applied to refine the solidified structure and disperse the segregation. It is disclosed to reduce. Further, according to Patent Document 2, the amount of strain applied to the inside of the slab is increased by increasing the reduction ratio, which is the value obtained by dividing the thickness of the slab immediately before reduction by the thickness of the slab immediately after reduction. ..

特許文献3には、センターポロシティを低減する連続鋳造方法であって、連続鋳造中において凝固完了後の鋳片を圧下するに際し、鋳片の中心部と表面とで温度差をつけることが開示されている。特許文献3によれば、鋳片内において温度差をつけることにより、同じ圧下比でも鋳片内部のひずみ量を増加させることができ、センターポロシティを低減できる。 Patent Document 3 discloses a continuous casting method for reducing center porosity, in which a temperature difference is provided between the central portion and the surface of a slab when the slab after solidification is completed during continuous casting. ing. According to Patent Document 3, by making a temperature difference in the slab, the amount of strain inside the slab can be increased and the center porosity can be reduced even with the same reduction ratio.

特許第2726919号公報Japanese Patent No. 2726919 特開2015−006680号公報JP 2015-006680 特開2016−175104号公報Japanese Unexamined Patent Publication No. 2016-175104

特許文献1、2に記載されるように、スラブ内部に付与するひずみ量を増加させることにより、スラブの内部欠陥の発生を抑制、すなわち、内質を改善できる。 As described in Patent Documents 1 and 2, by increasing the amount of strain applied to the inside of the slab, the occurrence of internal defects in the slab can be suppressed, that is, the internal quality can be improved.

しかしながら、上述のようなTSCRにより熱延鋼板を製造する場合、製造される熱延鋼板が薄いことから、特許文献2に記載の連続鋳造方法ように圧下比を大きくすることが困難である。また、特許文献3に記載の連続鋳造方法のように温度差をつける場合、欠陥の多い板厚中心部に効率的にひずみを付与するために板厚中心の温度を高くして表面温度を下げる必要があるが、かかる場合、表面温度の低下により表面割れが発生するおそれがある。 However, when the hot-rolled steel sheet is manufactured by TSCR as described above, it is difficult to increase the reduction ratio as in the continuous casting method described in Patent Document 2 because the manufactured hot-rolled steel sheet is thin. Further, when a temperature difference is provided as in the continuous casting method described in Patent Document 3, the temperature at the center of the plate thickness is raised and the surface temperature is lowered in order to efficiently apply strain to the center portion of the plate thickness having many defects. It is necessary, but in such a case, surface cracks may occur due to a decrease in surface temperature.

また一般的には、鋳片のソーキング処理(長時間熱処理)により偏析拡散を行うことができるが、TSCRにおいては連続鋳造された鋳片はすぐに熱間圧延されるため、ソーキング処理を施すこともできない。 In general, segregation and diffusion can be performed by soaking treatment (long-term heat treatment) of slabs, but in TSCR, continuously cast slabs are immediately hot-rolled, so soaking treatment is performed. I can't do that.

そこで本発明者らは、連続鋳造される鋳片内部のひずみ量を増やすことができる異周速圧延に着目した。具体的には、上下のワークロールをそれぞれ異なる周速で回転させることにより、鋳片内部にせん断ひずみを付与し、これにより熱延鋼板の内質改善効果が得られると推定した。 Therefore, the present inventors have focused on different peripheral speed rolling that can increase the amount of strain inside the slab that is continuously cast. Specifically, it was presumed that shear strain was applied to the inside of the slab by rotating the upper and lower work rolls at different peripheral speeds, thereby obtaining the effect of improving the internal quality of the hot-rolled steel sheet.

特許文献2及び特許文献3には、上述のような内部欠陥としての中心偏析やポロシティを改善する方法としての異周速圧延については記載がなく、また、このことについて示唆もされていない。また特許文献1には熱延鋼板の連続鋳造方法が開示されているが、やはり当該熱延鋼板の製造にあたり異周速圧延を行うことについては記載がない。すなわち、従来の熱延鋼板の内質改善方法には改善の余地があった。 Patent Document 2 and Patent Document 3 do not describe center segregation as an internal defect and different peripheral speed rolling as a method for improving porosity as described above, and do not suggest this. Further, Patent Document 1 discloses a method for continuously casting a hot-rolled steel sheet, but there is also no description about performing different peripheral speed rolling in manufacturing the hot-rolled steel sheet. That is, there was room for improvement in the conventional method for improving the internal quality of hot-rolled steel sheets.

本発明は、上記事情に鑑みてなされたものであり、連続鋳造により生産される熱延鋼板の内質を改善することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to improve the internal quality of a hot-rolled steel sheet produced by continuous casting.

上記目的を達成するため、本発明は、連続鋳造ラインと熱間圧延ラインが直結された熱延鋼板製造装置を用いた熱延鋼板の製造方法であって、前記連続鋳造ラインと前記熱間圧延ラインは、この順に前記熱延鋼板の搬送経路を形成し、前記熱間圧延ラインにおいて、前記連続鋳造ラインで製造された鋳片の板厚中心の固相率が0.8〜1.0となる範囲に配置される少なくとも1つの圧延スタンドにおいて、上下の圧延ロールに周速差を与える異周速圧延を行うことを特徴としている。 In order to achieve the above object, the present invention is a method for manufacturing a hot-rolled steel sheet using a hot-rolled steel sheet manufacturing apparatus in which a continuous casting line and a hot-rolling line are directly connected, wherein the continuous casting line and the hot-rolling are performed. The lines form a transport path for the hot-rolled steel sheet in this order, and in the hot-rolled line, the solid-state ratio at the center of the plate thickness of the slab produced by the continuous casting line is 0.8 to 1.0. At least one rolling stand arranged in the above range is characterized in that different peripheral speed rolling is performed so as to give a difference in peripheral speed to the upper and lower rolling rolls.

本発明によれば、鋳片の固相率が0.8〜1.0となる範囲、すなわち凝固末期から凝固直後の熱延鋼板に異周速圧延を行うことにより、当該鋳片の内部に適切にひずみを付与できる。 According to the present invention, the solid phase ratio of the slab is in the range of 0.8 to 1.0, that is, the hot-rolled steel sheet from the end of solidification to immediately after solidification is rolled at different peripheral speeds to form the inside of the slab. Strain can be applied appropriately.

前記異周速圧延は、前記搬送経路における前記熱間圧延ラインの最上流側に設けられる圧延スタンドにおいて行われることが望ましい。 It is desirable that the different peripheral speed rolling is performed at a rolling stand provided on the most upstream side of the hot rolling line in the transport path.

下記式(1)により求められる異周速率χが、0%よりも大きく8%以下であることが望ましい。
χ=(|Va−Vb|/Vf)×100 ・・・(1)
Va:上側の圧延ロールの周速
Vb:下側の圧延ロールの周速
Vf:Va及びVbのうち、高周速側の圧延ロールの周速
It is desirable that the different peripheral speed ratio χ obtained by the following formula (1) is larger than 0% and 8% or less.
χ = (| Va-Vb | / Vf) × 100 ... (1)
Va: Peripheral speed of the upper rolling roll Vb: Peripheral speed of the lower rolling roll Vf: Peripheral speed of the rolling roll on the higher peripheral speed side of Va and Vb

前記搬送経路における前記異周速圧延を行う圧延スタンドの下流側において、反り防止ロールにより当該異周速圧延により生じる前記鋳片の反りを防止してもよい。 On the downstream side of the rolling stand that performs the different peripheral speed rolling in the transfer path, the warp prevention roll may prevent the warp of the slab caused by the different peripheral speed rolling.

別の観点にかかる本発明は、連続鋳造ラインと熱間圧延ラインが直結された熱延鋼板製造装置であって、前記連続鋳造ラインと前記熱間圧延ラインは、この順に熱延鋼板の搬送経路を形成し、前記熱間圧延ラインにおける、前記連続鋳造ラインで製造された鋳片の板厚中心の固相率が0.8〜1.0となる範囲に配置される少なくとも1つの圧延スタンドは、上下の圧延ロールに周速差を与える異周速圧延スタンドであることを特徴としている。 The present invention according to another viewpoint is a hot-rolled steel sheet manufacturing apparatus in which a continuous casting line and a hot-rolled line are directly connected, and the continuous casting line and the hot-rolled line are in this order as a transport path for the hot-rolled steel sheet. At least one rolling stand in the hot rolling line, which is arranged in a range where the solid phase ratio at the center of the plate thickness of the slab produced in the continuous casting line is 0.8 to 1.0. It is characterized by being a different peripheral speed rolling stand that gives a difference in peripheral speed to the upper and lower rolling rolls.

前記異周速圧延スタンドは、前記搬送経路における前記熱間圧延ラインの最上流側に設けられることが望ましい。 It is desirable that the different peripheral speed rolling stand is provided on the most upstream side of the hot rolling line in the transport path.

前記搬送経路における前記異周速圧延スタンドの下流側において、当該異周速圧延スタンドにより生じる前記鋳片の反りを防止する反り防止ロールがさらに設けられていてもよい。 On the downstream side of the different peripheral speed rolling stand in the transfer path, a warp prevention roll for preventing the warpage of the slab caused by the different peripheral speed rolling stand may be further provided.

本発明によれば、熱延鋼板の連続鋳造に際して異周速圧延を実施することにより、生産される熱延鋼板の内質を改善できる。 According to the present invention, the internal quality of the hot-rolled steel sheet produced can be improved by performing different peripheral speed rolling during continuous casting of the hot-rolled steel sheet.

熱延鋼板の製造装置の構造を模式的に示す説明図である。It is explanatory drawing which shows typically the structure of the manufacturing apparatus of a hot-rolled steel sheet.

以下、本発明の実施形態について、図面を参照しながら説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present specification and the drawings, elements having substantially the same functional configuration are designated by the same reference numerals, so that duplicate description will be omitted.

<熱延鋼板製造装置の構成>
先ず、本発明の実施形態に係る熱延鋼板製造装置1の構成について説明する。図1は、熱延鋼板製造装置1の構成の概略を模式的に示す説明図である。なお、以下の説明においては、「熱延鋼板製造設備」が前述のTSCRに相当する。
<Structure of hot-rolled steel sheet manufacturing equipment>
First, the configuration of the hot-rolled steel sheet manufacturing apparatus 1 according to the embodiment of the present invention will be described. FIG. 1 is an explanatory diagram schematically showing an outline of the configuration of a hot-rolled steel sheet manufacturing apparatus 1. In the following description, "hot-rolled steel sheet manufacturing equipment" corresponds to the above-mentioned TSCR.

図1に示すように本実施形態に係る熱延鋼板製造装置1においては、連続鋳造ライン10と熱間圧延ライン20とが直結しており、連続鋳造から熱間圧延まで一貫し連続して実施する鋳造圧延連続ラインにより、熱延鋼板を連続的に製造する。より具体的には、連続鋳造ライン10により製造される「鋳片」を粗圧延した後、「粗バー」として仕上げ圧延することで「熱延鋼板」を製造する。製造された熱延鋼板は、所定の切断長で切断され製品として回収される。 As shown in FIG. 1, in the hot-rolled steel sheet manufacturing apparatus 1 according to the present embodiment, the continuous casting line 10 and the hot rolling line 20 are directly connected, and continuous casting to hot rolling are carried out continuously. The hot-rolled steel sheet is continuously manufactured by the continuous casting and rolling line. More specifically, a "hot-rolled steel sheet" is manufactured by rough-rolling the "slab" produced by the continuous casting line 10 and then finish-rolling it as a "rough bar". The manufactured hot-rolled steel sheet is cut to a predetermined cutting length and recovered as a product.

連続鋳造ライン10は、タンディッシュ11と、鋳型12と、連続鋳造機13と、を備えている。 The continuous casting line 10 includes a tundish 11, a mold 12, and a continuous casting machine 13.

タンディッシュ11は、底部に設けられた浸漬ノズル(図示せず)と一体となって鉛直方向に移動自在に構成されており、浸漬ノズルの鋳型12への引き抜きを行うことができる。 The tundish 11 is integrally formed with a dipping nozzle (not shown) provided at the bottom so as to be movable in the vertical direction, and the dipping nozzle can be pulled out to the mold 12.

鋳型12は、鋳片を所定の断面形状に成形するための矩形の形状を有している。鋳型12は、例えば水冷銅板により構成されている。 The mold 12 has a rectangular shape for forming a slab into a predetermined cross-sectional shape. The mold 12 is made of, for example, a water-cooled copper plate.

連続鋳造機13においては、鋳型12を介してタンディッシュ11から注がれる溶鋼を、当該連続鋳造機13のロール群によって引き出し、例えば50〜150mmの板厚を有する鋳片を製造する。 In the continuous casting machine 13, the molten steel poured from the tundish 11 via the mold 12 is drawn out by the roll group of the continuous casting machine 13, and a slab having a plate thickness of, for example, 50 to 150 mm is produced.

熱間圧延ライン20は、粗圧延機列21と、加熱装置22と、仕上げ圧延機列23と、冷却装置24と、切断機25と、コイラー(例えば、ダウンコイラー)26と、を備えている。 The hot rolling line 20 includes a rough rolling mill row 21, a heating device 22, a finishing rolling mill row 23, a cooling device 24, a cutting machine 25, and a coiler (for example, a down coiler) 26. ..

粗圧延機列21は連続鋳造機13の通板方向下流側に配置され、連続鋳造機13による鋳造後の鋳片を熱間圧延(粗圧延)する。粗圧延機列21には、複数、例えば3段の粗圧延スタンド21A、21B、21Cが設けられている。粗圧延スタンド21A、21B、21Cは、それぞれ、1対のワークロールWRおよび1対のバックアップロールBURを有している。なお、粗圧延機列21における圧延スタンドの数は特に制限されず、任意に設計することができる。 The rough rolling machine row 21 is arranged on the downstream side in the plate-passing direction of the continuous casting machine 13, and hot-rolls (coarse-rolls) the slab after casting by the continuous casting machine 13. The rough rolling machine row 21 is provided with a plurality of, for example, three-stage rough rolling stands 21A, 21B, 21C. The rough rolling stands 21A, 21B, and 21C each have a pair of work rolls WR and a pair of backup rolls BUR. The number of rolling stands in the rough rolling mill row 21 is not particularly limited and can be arbitrarily designed.

加熱装置22は、粗圧延機列21と仕上げ圧延機列23の間に配置され、仕上げ圧延機列23での圧延前に鋳片を加熱する。これは、熱延鋼板製造装置1では、連続鋳造ラインが熱間圧延ラインに直結していることから、通板速度は連続鋳造の速度が律速となる。そのため、バッチ方式の熱間圧延の通板速度よりも遅いため、仕上げ圧延機列23での圧延前に鋳片が通板中に冷却されすぎないように加熱装置22により、鋳片を加熱する。 The heating device 22 is arranged between the rough rolling mill row 21 and the finishing rolling mill row 23, and heats the slab before rolling in the finishing rolling mill row 23. This is because in the hot-rolled steel sheet manufacturing apparatus 1, the continuous casting line is directly connected to the hot rolling line, so that the continuous casting speed is the rate-determining rate for the plate passing speed. Therefore, since it is slower than the plate passing speed of the batch method hot rolling, the slab is heated by the heating device 22 so that the slab is not overcooled in the plate before rolling in the finish rolling mill row 23. ..

なお、加熱装置22の構成は任意に選択することができ、例えば加熱帯、保持炉又は誘導加熱装置等、任意の構成をとることができる。 The configuration of the heating device 22 can be arbitrarily selected, and for example, an arbitrary configuration such as a heating zone, a holding furnace, or an induction heating device can be adopted.

仕上げ圧延機列23は粗圧延機列21の通板方向下流側に配置され、連続鋳造機13による鋳造され、粗圧延後の粗バーを熱間圧延(仕上げ圧延)する。仕上げ圧延機列23には、複数、例えば5段の仕上げ圧延スタンド23A、23B、23C、23D、23Eが設けられている。仕上げ圧延スタンド23A、23B、23C、23D、23Eは、それぞれ、1対のワークロールWRおよび1対のバックアップロールBURを有している。なお、仕上げ圧延機列23における圧延スタンドの数は特に制限されず、任意に設計することができる。 The finish rolling mill row 23 is arranged on the downstream side of the rough rolling mill row 21 in the plate-passing direction, is cast by the continuous casting machine 13, and the rough bar after rough rolling is hot-rolled (finish-rolled). The finish rolling mill row 23 is provided with a plurality of, for example, five-stage finish rolling stands 23A, 23B, 23C, 23D, 23E. The finish rolling stands 23A, 23B, 23C, 23D, 23E each have a pair of work rolls WR and a pair of backup rolls BUR. The number of rolling stands in the finishing rolling mill row 23 is not particularly limited and can be arbitrarily designed.

冷却装置24は、仕上げ圧延機列23の通板方向下流側に配置され、最終段の仕上げ圧延スタンド23Eによる熱間圧延(本実施形態では仕上げ圧延)後にランアウトテーブルを搬送される熱延鋼板を、冷却水を用いて冷却(水冷)する。冷却装置24による冷却後の熱延鋼板は、切断機25により任意の切断長に切断された後、コイラー26によりコイル状に巻き取られる。 The cooling device 24 is arranged on the downstream side in the plate-passing direction of the finish rolling mill row 23, and is a hot-rolled steel sheet that is conveyed to the runout table after hot rolling (finish rolling in this embodiment) by the final stage finish rolling stand 23E. , Cool with cooling water (water cooling). The hot-rolled steel sheet cooled by the cooling device 24 is cut to an arbitrary cutting length by the cutting machine 25, and then wound into a coil by the coiler 26.

なお、熱延鋼板製造装置1における任意の位置、例えば粗圧延機列21や仕上げ圧延機列23の上流側には、発生したスケールを除去するためのデスケーラー(図示せず)が設けられていてもよい。 A descaler (not shown) for removing the generated scale is provided at an arbitrary position in the hot-rolled steel sheet manufacturing apparatus 1, for example, on the upstream side of the rough rolling machine row 21 and the finishing rolling mill row 23. May be good.

本実施形態にかかる熱延鋼板製造装置1は以上のように構成されており、連続鋳造機13、粗圧延機列21、加熱装置22、仕上げ圧延機列23及び冷却装置24は、この順に鋳片、粗バー及び熱延鋼板の搬送経路を形成している。そして、かかる搬送経路の終端に切断機25及びコイラー26が配置され、所定の切断長に切断された熱延鋼板を巻き取って回収する。 The hot-rolled steel sheet manufacturing apparatus 1 according to the present embodiment is configured as described above, and the continuous casting machine 13, the rough rolling machine row 21, the heating device 22, the finishing rolling mill row 23, and the cooling device 24 are cast in this order. It forms a transport path for pieces, rough bars and hot-rolled steel sheets. Then, a cutting machine 25 and a coiler 26 are arranged at the end of the transport path, and the hot-rolled steel sheet cut to a predetermined cutting length is wound up and collected.

タンディッシュ11から鋳型12を介して搬送経路に引き出された鋳片は、搬送経路に沿って搬送され、連続鋳造機13及び粗圧延機列21においては外表面から内部に向かって徐々に冷却され、凝固が進行していく。すなわち、連続鋳造機13及び粗圧延機列21において鋳片は内部温度が外表面温度に比べて高くなっている。そして、鋳片が搬送経路に沿って下流側へ移動するにつれて鋳片内部の凝固が進行し、図1に示すように完全凝固位置C(例えば本実施形態においては粗圧延機列21内)において鋳片の断面視における全面が凝固、固相率が1.0となる。 The slabs drawn from the tundish 11 to the transport path via the mold 12 are transported along the transport path, and are gradually cooled from the outer surface to the inside in the continuous casting machine 13 and the rough rolling mill row 21. , Coagulation progresses. That is, in the continuous casting machine 13 and the rough rolling machine row 21, the internal temperature of the slab is higher than the outer surface temperature. Then, as the slab moves downstream along the transport path, solidification inside the slab progresses, and as shown in FIG. 1, at the complete solidification position C (for example, in the rough rolling mill row 21 in the present embodiment). The entire surface of the slab in cross-sectional view is solidified, and the solid phase ratio is 1.0.

ここで、本実施形態に係る熱延鋼板製造装置1においては、後述するように、鋳片の固相率が0.8〜1.0となる範囲、例えば本実施形態においては粗圧延機列21において、上下のワークロールWRの周速を変える異周速圧延を行う。異周速圧延は、製造方向に並べて配置される3つの粗圧延スタンド21A、21B、21Cの少なくとも1基において行われる。なお、以下の説明においては粗圧延スタンド21A、21B、21Cのうち異周速圧延を行う粗圧延スタンドを「異周速圧延スタンド」、異周速圧延スタンドが備える上下のワークロールをそれぞれ「上ワークロール」、「下ワークロール」という場合がある。 Here, in the hot-rolled steel sheet manufacturing apparatus 1 according to the present embodiment, as will be described later, the solid phase ratio of the slab is in the range of 0.8 to 1.0, for example, in the present embodiment, the rough rolling mill row. At 21, different peripheral speed rolling is performed in which the peripheral speeds of the upper and lower work rolls WR are changed. Different peripheral speed rolling is performed on at least one of the three rough rolling stands 21A, 21B, and 21C arranged side by side in the manufacturing direction. In the following description, of the rough rolling stands 21A, 21B, and 21C, the rough rolling stand that performs different peripheral speed rolling is the "different peripheral speed rolling stand", and the upper and lower work rolls of the different peripheral speed rolling stand are "upper". It may be called "work roll" or "lower work roll".

なお、異周速圧延スタンドの下流側には、図1に示すように異周速圧延により鋳片に生じた反りを吸収するための反り防止ロール27がさらに設けられていてもよい。 As shown in FIG. 1, a warp prevention roll 27 for absorbing the warp generated in the slab by the different peripheral speed rolling may be further provided on the downstream side of the different peripheral speed rolling stand.

<熱延鋼板の製造方法>
次に、熱延鋼板製造装置1を用いて行われる連続鋳造の流れを、前記搬送経路に沿って説明する。
<Manufacturing method of hot-rolled steel sheet>
Next, the flow of continuous casting performed by using the hot-rolled steel sheet manufacturing apparatus 1 will be described along the transfer path.

熱延鋼板製造装置1を用いた連続鋳造では、先ず、目的の化学組成に成分調査された溶鋼が取鍋(図示せず)からタンディッシュ11に注入される。なお、タンディッシュ11は、取鍋から注入される溶鋼のバッファ部としても機能する。 In continuous casting using the hot-rolled steel sheet manufacturing apparatus 1, first, molten steel whose composition has been investigated for the desired chemical composition is injected into the tundish 11 from a ladle (not shown). The tundish 11 also functions as a buffer portion for molten steel injected from the ladle.

タンディッシュ11に貯湯された溶鋼は、次に、図示しない浸漬ノズルを介して鋳型12に注入される。鋳型12に注入された溶鋼は、当該鋳型12との接触及び冷却水の散水によって外殻部分が冷却され、鋳型12の矩形である内側の形状に合わせて凝固シェルが形成される。 The molten steel stored in the tundish 11 is then injected into the mold 12 via a dipping nozzle (not shown). The outer shell of the molten steel injected into the mold 12 is cooled by contact with the mold 12 and watering of cooling water, and a solidified shell is formed in accordance with the rectangular inner shape of the mold 12.

鋳型12において凝固シェルが形成された溶鋼は、鋳型12の直下において連続鋳造機13のサポートロールに外殻部分、すなわち凝固シェルが形成された部分が保持され、鋳片として搬送経路に引き出される。 The molten steel in which the solidified shell is formed in the mold 12 is pulled out to the transport path as a slab by holding the outer shell portion, that is, the portion in which the solidified shell is formed on the support roll of the continuous casting machine 13 directly under the mold 12.

搬送経路に引き出された鋳片は、連続鋳造機13において製造方向に並べて配置されるサポートロールにより、徐々に搬送経路の下流方向へと搬送される。かかる際、搬送される鋳片は外表面側(外殻部分)から冷却され、徐々に内側に向けて凝固が進行し、固相率が上昇していく。 The slabs drawn out to the transport path are gradually transported to the downstream direction of the transport path by the support rolls arranged side by side in the manufacturing direction in the continuous casting machine 13. At this time, the transported slab is cooled from the outer surface side (outer shell portion), solidification gradually progresses inward, and the solid phase ratio increases.

搬送経路に沿って搬送される鋳片は、続いて、粗圧延機列21に搬送され、粗圧延される。本実施形態にかかる熱延鋼板製造装置1の粗圧延機列21においては、鋳片の凝固末期から凝固直後、例えば鋳片の固相率が0.8〜1.0となる範囲に位置する少なくとも1基の粗圧延ロール(異周速圧延スタンド)において異周速圧延を行う。なお、固相率は任意の方法によって求められるが、例えば、凝固組織予測シミュレーションによって、計算で求めても良い。 The slabs transported along the transport path are subsequently transported to the rough rolling mill row 21 for rough rolling. In the rough rolling mill row 21 of the hot-rolled steel sheet manufacturing apparatus 1 according to the present embodiment, it is located in the range from the end of solidification of the slab to immediately after solidification, for example, the solid phase ratio of the slab is 0.8 to 1.0. Different peripheral speed rolling is performed on at least one rough rolling roll (different peripheral speed rolling stand). The solid phase ratio can be obtained by any method, but may be calculated by, for example, a solidification structure prediction simulation.

具体的には、下記(1)式により求まる異周速圧延スタンドにおける異周速率χが0%より大きく、かつ、9%以下となるように上ワークロールの周速Va、及び下ワークロールの周速Vbを決定する。なお、下記(1)式におけるVfは、上ワークロールと下ワークロールのうち高速側のワークロールの周速を示している。すなわち異周速率χとは、高速側のロール周速Vfに対する周速Vaと周速Vbの差分(絶対値)の比率である。 Specifically, the peripheral speed Va of the upper work roll and the lower work roll so that the different peripheral speed ratio χ in the different peripheral speed rolling stand obtained by the following equation (1) is larger than 0% and 9% or less. Determine the peripheral speed Vb. Note that Vf in the following equation (1) indicates the peripheral speed of the work roll on the high speed side of the upper work roll and the lower work roll. That is, the different peripheral speed ratio χ is the ratio (absolute value) of the difference (absolute value) between the peripheral speed Va and the peripheral speed Vb with respect to the roll peripheral speed Vf on the high speed side.

χ=(|Va−Vb|/Vf)×100 ・・・(1) χ = (| Va-Vb | / Vf) × 100 ... (1)

ここで、固相率が0.8未満で異周速圧延を行った場合、すなわち鋳片の内部が充分に凝固していない状態で異周速圧延を行った場合、異周速圧延スタンドによる圧下により鋳片の内部で溶鋼流動が生じ、中心偏析が悪化する。 Here, when different peripheral speed rolling is performed with a solid phase ratio of less than 0.8, that is, when different peripheral speed rolling is performed in a state where the inside of the slab is not sufficiently solidified, the different peripheral speed rolling stand is used. Rolling causes molten steel flow inside the slab, which worsens central segregation.

また、異周速率が9%超で異周速圧延を行った場合、すなわち、上下のワークロールWR間で周速差が大きい場合、鋳片に生じる反りが大きくなり、搬送経路から逸脱、すなわち搬送経路下流側の圧延ロールや反り防止ロール27に鋳片が適切に噛みこまれず、熱延鋼板を製造できなくなる。 Further, when the different peripheral speed rolling is performed at a different peripheral speed ratio of more than 9%, that is, when the peripheral speed difference between the upper and lower work rolls WR is large, the warp generated in the slab becomes large and deviates from the transport path, that is, The slabs are not properly bitten into the rolling roll and the warp prevention roll 27 on the downstream side of the transport path, and the hot-rolled steel sheet cannot be manufactured.

その後、更に粗圧延機列21により鋳片が搬送方向の下流側へと搬送、圧延され、完全凝固位置Cにおいて鋳片(薄スラブ)の断面視における全面の凝固が完了し、粗バーが形成される。 After that, the slab is further conveyed and rolled to the downstream side in the conveying direction by the rough rolling mill row 21, and the entire surface of the slab (thin slab) is solidified in the cross-sectional view at the complete solidification position C, and a coarse bar is formed. Will be done.

形成された粗バーは更に搬送が継続され、次に、加熱装置22に搬送される。粗圧延機列21において圧延されることで冷却された粗バーは、加熱装置22において仕上げ圧延に適する温度、例えば1000〜1200℃に昇温される。 The formed coarse bar is further conveyed, and then is conveyed to the heating device 22. The rough bar cooled by rolling in the rough rolling mill row 21 is heated to a temperature suitable for finish rolling in the heating device 22, for example, 1000 to 1200 ° C.

加熱装置22において加熱された粗バーは、続いて、仕上げ圧延機列23に搬送される。仕上げ圧延機列23においては、粗バーの仕上げ圧延、具体的には、製造厚みである0.7〜3.0mmの板厚まで圧下され、熱延鋼板が形成される。 The coarse bar heated in the heating device 22 is subsequently conveyed to the finish rolling mill row 23. In the finish rolling mill row 23, the rough bar is finished rolled, specifically, the sheet is reduced to a thickness of 0.7 to 3.0 mm, which is the manufacturing thickness, to form a hot-rolled steel sheet.

仕上げ圧延された熱延鋼板は、次に、冷却装置24に搬送される。冷却装置24においては、熱延鋼板は例えば水冷され、これにより所望の組織に制御される。 The finish-rolled hot-rolled steel sheet is then conveyed to the cooling device 24. In the cooling device 24, the hot-rolled steel sheet is, for example, water-cooled, whereby the desired structure is controlled.

組織制御された熱延鋼板は、切断機25により所定の切断長に切断される。その後、コイラー26によって熱延鋼板がコイル状に巻き取られて製品とされることで、一連の熱延鋼板の製造工程が終了する。 The structure-controlled hot-rolled steel sheet is cut to a predetermined cutting length by the cutting machine 25. After that, the hot-rolled steel sheet is wound into a coil by the coiler 26 to obtain a product, and a series of hot-rolled steel sheet manufacturing processes is completed.

本実施形態にかかる熱延鋼板の製造方法によれば、連続鋳造される鋳片に対して異周速圧延を行うことにより、適切に当該鋳片の内部にせん断ひずみを付与できる。そしてこのように、鋳片の内部に付与されるひずみ量が増加するため、適切に中心偏析やポロシティの発生を抑制、すなわち、製造される熱延鋼板の内質を改善できる。 According to the method for producing a hot-rolled steel sheet according to the present embodiment, shear strain can be appropriately applied to the inside of the slab by continuously casting the slab at different peripheral speeds. As described above, since the amount of strain applied to the inside of the slab increases, it is possible to appropriately suppress the occurrence of central segregation and porosity, that is, to improve the internal quality of the hot-rolled steel sheet to be manufactured.

また本実施形態によれば、内質を改善するための異周速圧延は鋳片の固相率が0.8〜1.0の範囲において、すなわち、凝固末期から凝固直後の鋳片に対して施される。換言すれば、鋳片の内部温度が表面温度に対して高い状態で異周速圧延を行うため、より適切に鋳片の内部にせん断ひずみを付与できる。 Further, according to the present embodiment, the different peripheral speed rolling for improving the internal quality is performed in the range of the solid phase ratio of the slab in the range of 0.8 to 1.0, that is, for the slab from the end of solidification to the slab immediately after solidification. Is given. In other words, since the different peripheral speed rolling is performed in a state where the internal temperature of the slab is higher than the surface temperature, shear strain can be more appropriately applied to the inside of the slab.

また本実施形態によれば、異周速圧延を異周速率0%超〜9%以下で行う。これにより、製造される熱延鋼板の内質を改善できるとともに、異周速圧延により鋳片に生じる反りにより熱延鋼板の製造が中断されるのを抑制できる。 Further, according to the present embodiment, different peripheral speed rolling is performed at a different peripheral speed ratio of more than 0% to 9% or less. As a result, the internal quality of the hot-rolled steel sheet to be manufactured can be improved, and the production of the hot-rolled steel sheet can be suppressed from being interrupted due to the warp generated in the slab due to the different peripheral speed rolling.

以上、本発明の実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although the embodiments of the present invention have been described above, the present invention is not limited to such examples. It is clear that a person skilled in the art can come up with various modifications or modifications within the scope of the technical ideas described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.

上述の実施形態にかかる異周速圧延の効果を確認するための実施例について説明するが、本発明は以下の実施例に限定されるものではない。 Examples for confirming the effect of different peripheral speed rolling according to the above-described embodiment will be described, but the present invention is not limited to the following examples.

なお本実施例においては、熱延鋼板製造装置を用いて、圧下前厚み100mm、幅1100mの鋳片を鋳造速度4.8m/minで鋳造し、粗圧延機列における3基の粗圧延スタンドのうち、第1スタンド(上流側)において異周速圧延を行った。なお、粗圧延を施した鋳片は、その下流側に設けられた他の圧延スタンドにおいて熱間まま圧延し、板厚2.5mmtの熱延鋼板に圧延した。 In this embodiment, slabs having a pre-rolling thickness of 100 mm and a width of 1100 m are cast at a casting speed of 4.8 m / min using a hot-rolled steel sheet manufacturing apparatus, and three rough-rolling stands in a row of rough-rolling machines are used. Of these, different peripheral speed rolling was performed at the first stand (upstream side). The rough-rolled slab was rolled hot at another rolling stand provided on the downstream side thereof, and rolled into a hot-rolled steel sheet having a plate thickness of 2.5 mmt.

なお、鋳片(熱延鋼板)は鋼種成分として、C:0.16wt%、Si:0.50wt%、Mn:2.10wt%、P:0.009wt%、S:0.002wt%、Al:0.03wt%を含んでいる。 The slab (hot-rolled steel sheet) contains C: 0.16 wt%, Si: 0.50 wt%, Mn: 2.10 wt%, P: 0.009 wt%, S: 0.002 wt%, Al as steel grade components. : Contains 0.03 wt%.

また、異周速圧延による内質改善効果の確認方法としては、コイラーに巻き取られて得られた熱延鋼板の横断面についてEPMA(Electron Probe Micro Analyzer)測定し、偏析指数を求めた。偏析指数は、Mn元素を対象にEPMAを用いてビーム径を50μmとして線分析を行って、試料のMn濃度分布を厚み方向に測定し、測定範囲でのMn最大濃度を求めた。そして、Mnの最大濃度の値を溶鋼段階の化学分析から求めたMnの初期含有率で割った値を偏析指数とした。すなわち、偏析指数が小さくなることで、熱延鋼板の内質改善効果が得られたということができる。 Further, as a method for confirming the effect of improving the internal quality by different peripheral speed rolling, EPMA (Electron Probe Micro Analyzer) was measured on the cross section of the hot-rolled steel sheet obtained by winding it on a coiler, and the segregation index was obtained. For the segregation index, a line analysis was performed on the Mn element using EPMA with a beam diameter of 50 μm, and the Mn concentration distribution of the sample was measured in the thickness direction to determine the maximum Mn concentration in the measurement range. Then, the value obtained by dividing the value of the maximum concentration of Mn by the initial content of Mn obtained from the chemical analysis at the molten steel stage was used as the segregation index. That is, it can be said that the effect of improving the internal quality of the hot-rolled steel sheet was obtained by reducing the segregation index.

また、得られた熱延鋼板においては、穴拡げ試験をさらに実施した。穴広げ試験は、得られた熱延鋼板から試験用サンプルを切り出し、JIS Z 2256(金属材料の穴拡げ試験方法)に準拠して試験を実施し、穴拡げ限界値(λ[%])を算出した。評価方法としては、孔広げ率λが70%以上を正、それ未満を否とした。 Further, in the obtained hot-rolled steel sheet, a hole expansion test was further carried out. In the hole expansion test, a test sample is cut out from the obtained hot-rolled steel sheet, and the test is performed in accordance with JIS Z 2256 (hole expansion test method for metal materials) to determine the hole expansion limit value (λ [%]). Calculated. As an evaluation method, when the hole expansion ratio λ was 70% or more, it was positive, and when it was less than that, it was negative.

(実施条件1)
実施条件1においては、凝固末期の鋳片内部温度が高い状態で異周速圧延を行う本発明の実施例と、異周速圧延を行わない場合の比較例における偏析指数を比較した。具体的には、実施例においては異周速率5%、比較例においては異周速率0%として圧延を行った。なお実施条件1においては、鋳片の圧下比を1.43、1.66、2.00とそれぞれ変化させた。
(Implementation condition 1)
In Implementation Condition 1, the segregation index was compared between the example of the present invention in which different peripheral speed rolling was performed in a state where the internal temperature of the slab at the end of solidification was high and the comparative example in which different peripheral speed rolling was not performed. Specifically, in the examples, rolling was performed with a different peripheral speed ratio of 5%, and in the comparative example, the different peripheral speed ratio was 0%. In Implementation Condition 1, the reduction ratios of the slabs were changed to 1.43, 1.66, and 2.00, respectively.

(実施結果1)
表1は、実施条件1における実験結果を示す表である。
(Implementation result 1)
Table 1 is a table showing the experimental results under the implementation condition 1.

Figure 2021146372
Figure 2021146372

表1に示すように、例えば圧下比1.43で圧延を行った場合、比較例においては偏析指数が1.31、λが60%であったのに対し、実施例では偏析指数は1.20、λが70%となった。すなわち圧下比が同じであっても、異周速圧延を行うことにより、熱延鋼板の内質が改善された。 As shown in Table 1, for example, when rolling was performed at a rolling reduction ratio of 1.43, the segregation index was 1.31 and λ was 60% in the comparative example, whereas the segregation index was 1. 20 and λ became 70%. That is, even if the reduction ratio was the same, the internal quality of the hot-rolled steel sheet was improved by performing different peripheral speed rolling.

なお、かかる熱延鋼板の内質改善効果は、圧下比が1.43の場合に限られず、表1に示すように圧下比が1.66、2.00の場合であっても、享受することができた。また、圧下比が大きくなるにつれて、より熱延鋼板の内質改善効果が大きくなることが分かった。具体的には、圧下比1.43で異周速圧延を行った場合の偏析指数は1.20、λは70%であったのに対し、例えば圧下比2.00で異周速圧延を行った場合の偏析指数は1.05、λは76%であった。 The effect of improving the internal quality of the hot-rolled steel sheet is not limited to the case where the reduction ratio is 1.43, and is enjoyed even when the reduction ratios are 1.66 and 2.00 as shown in Table 1. I was able to. It was also found that as the reduction ratio increases, the effect of improving the internal quality of the hot-rolled steel sheet increases. Specifically, the segregation index was 1.20 and λ was 70% when rolling at different peripheral speeds was performed at a rolling ratio of 1.43, whereas for example, rolling at different peripheral speeds was performed at a rolling ratio of 2.00. The segregation index was 1.05 and λ was 76%.

すなわち実施条件1の実験結果によれば、熱延鋼板製造装置における鋳片の凝固末期に異周速圧延を行うことにより、熱延鋼板の内質改善効果が得られることがわかった。 That is, according to the experimental results of Implementation Condition 1, it was found that the effect of improving the internal quality of the hot-rolled steel sheet can be obtained by performing different peripheral speed rolling at the end of solidification of the slab in the hot-rolled steel sheet manufacturing apparatus.

(実施条件2)
本実施条件2においては、表1の試験番号1−1の比較例、すなわち鋳片に対して圧下比1.43、異周速率0%で圧延を行う場合を比較例として、異周速率のみを変化させて偏析指数及び穴広げ率λを求めた。具体的には、異周速率を1%、2%、5%、9%、10%として、それぞれ異周速圧延を行った(実施例1〜5)。
(Implementation condition 2)
In this Implementation Condition 2, only the different peripheral speed ratio is taken as a comparative example of Test No. 1-1 in Table 1, that is, the case where rolling is performed with a rolling reduction ratio of 1.43 and a different peripheral speed ratio of 0% with respect to the slab. The segregation index and the hole expansion ratio λ were obtained by changing. Specifically, different peripheral speed rolling was performed with different peripheral speed ratios of 1%, 2%, 5%, 9%, and 10%, respectively (Examples 1 to 5).

(実施結果2)
表2は、実施条件2における実験結果を示す表である。
(Implementation result 2)
Table 2 is a table showing the experimental results under the implementation condition 2.

Figure 2021146372
Figure 2021146372

表2に示すように、異周速率0%で圧延を行った場合においては偏析指数が1.31、穴広げ率が60%であったのに対して、異周速率が大きくなるに伴い、すなわち、圧延スタンドの上ロールと下ロールの周速差が大きくなるに伴い、偏析指数が小さくなり、穴広げ率は大きくなった。具体的には、異周速率1%における偏析指数は1.29、λは62%であるのに対し、異周速率9%における偏析指数は1.20、λは70%となった。これは、異周速率を大きくすることにより、鋳片の内部に付与されるせん断ひずみが増加することで、より適切に熱延鋼板の内質改善効果を得られたものと推測される。 As shown in Table 2, when rolling was performed at a different peripheral speed ratio of 0%, the segregation index was 1.31 and the hole expansion ratio was 60%, whereas as the different peripheral speed ratio increased, the different peripheral speed ratio increased. That is, as the difference in peripheral speed between the upper roll and the lower roll of the rolling stand increased, the segregation index decreased and the hole expansion rate increased. Specifically, the segregation index at a different peripheral speed rate of 1% was 1.29 and λ was 62%, whereas the segregation index at a different peripheral speed rate of 9% was 1.20 and λ was 70%. It is presumed that this is because the shear strain applied to the inside of the slab increased by increasing the different peripheral speed ratio, and thus the effect of improving the internal quality of the hot-rolled steel sheet was obtained more appropriately.

一方、異周速率を10%として鋳片の異周速圧延を行った場合、当該異周速圧延により鋳片に生じた反りにより、適切に圧延を行うことができなかった。具体的には、粗圧延機列において鋳片を適切に搬送することができなかった。 On the other hand, when the slab was rolled at a different peripheral speed with a different peripheral speed ratio of 10%, the slab could not be appropriately rolled due to the warp generated in the slab due to the different peripheral speed rolling. Specifically, the slab could not be properly conveyed in the rough rolling mill row.

すなわち実施条件2の実験結果によれば、鋳片を圧延する際の異周速率を大きくすることにより内質改善効果をより高めることができる反面、異周速率が大きくなりすぎると適切に圧延を行うことができなくなることがわかった。このことから、鋳片の圧延を行う際の異周速率は、少なくとも0%よりも大きく、9%以下であることが好ましい。 That is, according to the experimental results of Implementation Condition 2, the effect of improving the internal quality can be further enhanced by increasing the different peripheral speed ratio when rolling the slab, but on the other hand, if the different peripheral speed ratio becomes too large, rolling is performed appropriately. It turned out that I couldn't do it. From this, the different peripheral speed ratio when rolling the slab is at least greater than 0% and preferably 9% or less.

(実施条件3)
本実施条件3においては、表1の試験番号2の実施例、すなわち鋳片に対して圧下比1.66、異周速率5%で圧延を行う場合に対して、鋳片の固相率のみを変化させて偏析指数を求めた。具体的には、以下の表3に示すように、鋳片の固相率を0.65〜1.00の範囲内で変化させ、それぞれ異周速圧延を行った。なお、参考例として、圧下比1.66、固相率0.9の際に異周速圧延を行わなかった場合における偏析指数は、表1に示すように1,24であった。
(Implementation condition 3)
In this Implementation Condition 3, only the solid phase ratio of the slab is obtained in the example of Test No. 2 in Table 1, that is, when rolling is performed with a rolling reduction ratio of 1.66 and a different peripheral speed ratio of 5% with respect to the slab. Was changed to obtain the segregation index. Specifically, as shown in Table 3 below, the solid phase ratio of the slab was changed within the range of 0.65 to 1.00, and different peripheral speed rolling was performed for each. As a reference example, the segregation index when different peripheral speed rolling was not performed when the rolling ratio was 1.66 and the solid phase ratio was 0.9 was 1,24 as shown in Table 1.

(実施結果3)
表3は、実施条件3における実験結果を示す表である。
(Implementation result 3)
Table 3 is a table showing the experimental results under the execution condition 3.

Figure 2021146372
Figure 2021146372

表3に示すように、鋳片の固相率が0.8〜1.0の範囲において、偏析指数が小さくなり、鋳片の内質改善効果を享受できることがわかった(実施例1〜5)。具体的に偏析指数は、固相率0.8において1.13、固相率0.85以上において1.11となった。これは、凝固末期から凝固直後の鋳片内部にせん断ひずみを付与することにより、鋳片内部の凝固組織が適切に微細化、及び偏析の分散化により拡散が促進されることに起因すると推測される。 As shown in Table 3, it was found that the segregation index became small in the range of the solid phase ratio of the slab in the range of 0.8 to 1.0, and the effect of improving the internal quality of the slab could be enjoyed (Examples 1 to 5). ). Specifically, the segregation index was 1.13 at a solid phase ratio of 0.8 and 1.11 at a solid phase ratio of 0.85 or higher. It is presumed that this is because the solidified structure inside the slab is appropriately miniaturized by applying shear strain to the inside of the slab immediately after solidification from the end of solidification, and diffusion is promoted by the dispersion of segregation. NS.

一方、鋳片の固相率が0.8未満の範囲においては偏析指数の改善は見られず、参考例に対してその偏析指数が悪化した(比較例1〜3)。これは、鋳片の内部が充分に凝固していない状態でせん断ひずみが付与されることにより鋳片の内部で溶鋼流動が生じ、この結果、中心偏析が悪化したものと推測される。 On the other hand, in the range where the solid phase ratio of the slab was less than 0.8, the segregation index did not improve, and the segregation index deteriorated with respect to the reference example (Comparative Examples 1 to 3). It is presumed that this is because the shear strain is applied to the inside of the slab in a state where the inside of the slab is not sufficiently solidified, so that molten steel flows inside the slab, and as a result, the central segregation deteriorates.

すなわち実施条件3の実験結果によれば、熱延鋼板製造装置における鋳片の凝固末期から凝固直後、具体的には鋳片内部の固相率が0.8〜1.0となる範囲で異周速圧延を行うことにより、熱延鋼板の内質改善効果を得られることがわかった。 That is, according to the experimental results of Implementation Condition 3, the solid phase ratio inside the slab is different from the final stage of solidification of the slab in the hot-rolled steel sheet manufacturing apparatus to immediately after solidification, specifically in the range of 0.8 to 1.0. It was found that the effect of improving the internal quality of the hot-rolled steel sheet can be obtained by performing peripheral speed rolling.

(実施条件4)
以上の実施条件1〜3においては粗圧延機列における3基の粗圧延スタンドのうち、第1スタンド(上流側)のみを異周速圧延スタンドとして異周速圧延を行ったが、本実施条件4においては、異周速圧延スタンドの位置及び数をそれぞれ変更した。具体的には、表4に示すように、粗圧延機列における3基の粗圧延スタンドにおいて異周速圧延スタンドの数を1〜3基で変更するとともに、異周速圧延スタンドの位置をそれぞれ変更した。
(Implementation condition 4)
In the above implementation conditions 1 to 3, out of the three rough rolling stands in the rough rolling mill row, only the first stand (upstream side) was used as the different peripheral speed rolling stand for different peripheral speed rolling. In No. 4, the positions and numbers of different peripheral speed rolling stands were changed. Specifically, as shown in Table 4, the number of different peripheral speed rolling stands is changed from 1 to 3 in the three rough rolling stands in the rough rolling mill row, and the positions of the different peripheral speed rolling stands are changed respectively. changed.

なお、本実施条件4においては、圧下前厚み120mm、幅1100mの鋳片を鋳造速度4.8m/minで鋳造し、3基の粗圧延スタンドにおける圧下比を上流側から順に1.5(板厚120mmから80mmへ圧下)、1.6(板厚80mmから50mmへ圧下)、1.67(板厚50mmから30mmへ圧下)とした。また、異周速圧延スタンドにおける異周速率は5%とした。 In the present implementation condition 4, a slab having a thickness of 120 mm and a width of 1100 m before rolling is cast at a casting speed of 4.8 m / min, and the rolling ratio of the three rough rolling stands is 1.5 (plate) in order from the upstream side. The thickness was 120 mm to 80 mm (rolled down), 1.6 (rolled down from 80 mm to 50 mm thick), and 1.67 (rolled down from 50 mm to 30 mm thick). Further, the different peripheral speed ratio in the different peripheral speed rolling stand was set to 5%.

(実施結果4)
表4は、実施条件4における実験結果を示す表である。
(Implementation result 4)
Table 4 is a table showing the experimental results under the implementation condition 4.

Figure 2021146372
Figure 2021146372

表4に示すように、第1スタンドにおいて異周速圧延を行うことで、第2スタンド(中段)及び第3スタンド(下流側)で異周速圧延を行うか否かに関わらず、好適に内質改善効果を享受できることがわかった。一方で、第1スタンドにおいて異周速圧延を行わない場合、第2スタンド及び第3スタンドで異周速圧延を行ったとしても、得られる内質改善効果が小さいことがわかった。具体的には、第1スタンドで異周速圧延を行った場合にはいずれも偏析指数が1.13となったのに対し、第1スタンドにおいて異周速圧延を行わない場合には偏析指数がいずれも1.20以上となった。 As shown in Table 4, by performing different peripheral speed rolling at the first stand, it is preferable regardless of whether or not different peripheral speed rolling is performed at the second stand (middle stage) and the third stand (downstream side). It was found that the effect of improving the internal quality can be enjoyed. On the other hand, it was found that when the different peripheral speed rolling was not performed at the first stand, the effect of improving the internal quality obtained was small even if the different peripheral speed rolling was performed at the second stand and the third stand. Specifically, the segregation index was 1.13 when the different peripheral speed rolling was performed at the first stand, whereas the segregation index was 1.13 when the different peripheral speed rolling was not performed at the first stand. However, all of them were 1.20 or more.

これは、異周速圧延スタンドが下流側に配置されるにつれて、すなわち、搬送経路の下流側に向かうにつれて、異周速圧延を行う際の鋳片の温度が低下することに起因すると推測される。 It is presumed that this is because the temperature of the slab during different peripheral speed rolling decreases as the different peripheral speed rolling stand is arranged on the downstream side, that is, toward the downstream side of the transport path. ..

このことから、熱延鋼板の製造にあたって内質改善効果を享受するために粗圧延機列において異周速圧延を行う場合、異周速圧延スタンドが粗圧延機列のうち少なくとも1基に用いられ、かかる異周速圧延スタンドは搬送経路の上流側に配置されることが望ましい。換言すれば、異周速圧延は鋳片の凝固末期から凝固直後に行われることが望ましい。 For this reason, when different peripheral speed rolling is performed in the rough rolling mill row in order to enjoy the effect of improving the internal quality in the production of hot-rolled steel sheets, the different peripheral speed rolling stand is used for at least one of the rough rolling mill rows. It is desirable that the different peripheral speed rolling stand is arranged on the upstream side of the transport path. In other words, it is desirable that the different peripheral speed rolling is performed from the final stage of solidification of the slab to immediately after solidification.

本発明は、連続鋳造により生産される熱延鋼板の内質を改善する際に有用である。 The present invention is useful in improving the internal quality of hot-rolled steel sheets produced by continuous casting.

1 熱延鋼板製造装置
10 連続鋳造ライン
11 タンディッシュ
12 鋳型
13 連続鋳造機
20 熱間圧延ライン
21 粗圧延機列
21A、21B、21C 粗圧延スタンド
22 加熱装置
23 仕上げ圧延機列
23A、23B、23C、23D、23E 仕上げ圧延スタンド
24 冷却装置
25 切断機
26 コイラー
27 反り防止ロール
BUR バックアップロール
C 完全凝固位置
WR ワークロール
1 Hot-rolled steel sheet manufacturing equipment 10 Continuous casting line 11 Tundish 12 Mold 13 Continuous casting machine 20 Hot rolling line 21 Rough rolling machine row 21A, 21B, 21C Rough rolling stand 22 Heating equipment 23 Finishing rolling mill row 23A, 23B, 23C , 23D, 23E Finishing rolling stand 24 Cooling device 25 Cutting machine 26 Koyler 27 Warp prevention roll BUR Backup roll C Complete solidification position WR Work roll

Claims (8)

連続鋳造ラインと熱間圧延ラインが直結された熱延鋼板製造装置を用いた熱延鋼板の製造方法であって、
前記連続鋳造ラインと前記熱間圧延ラインは、この順に前記熱延鋼板の搬送経路を形成し、
前記熱間圧延ラインにおいて、前記連続鋳造ラインで製造された鋳片の板厚中心の固相率が0.8〜1.0となる範囲に配置される少なくとも1つの圧延スタンドにおいて、上下の圧延ロールに周速差を与える異周速圧延を行うことを特徴とする、熱延鋼板の製造方法。
It is a method of manufacturing a hot-rolled steel sheet using a hot-rolled steel sheet manufacturing device in which a continuous casting line and a hot-rolled line are directly connected.
The continuous casting line and the hot rolling line form a transport path for the hot-rolled steel sheet in this order.
In the hot rolling line, upper and lower rolling is performed in at least one rolling stand arranged in a range in which the solid phase ratio at the center of the plate thickness of the slabs manufactured in the continuous casting line is in the range of 0.8 to 1.0. A method for manufacturing a hot-rolled steel sheet, which comprises performing different peripheral speed rolling that gives a difference in peripheral speed to rolls.
前記異周速圧延は、前記搬送経路における前記熱間圧延ラインの最上流側に設けられる圧延スタンドにおいて行われることを特徴とする、請求項1に記載の熱延鋼板の製造方法。 The method for manufacturing a hot-rolled steel sheet according to claim 1, wherein the different peripheral speed rolling is performed at a rolling stand provided on the most upstream side of the hot rolling line in the transport path. 下記式(1)により求められる異周速率χが、0%よりも大きく9%以下であることを特徴とする、請求項1または2に記載の熱延鋼板の製造方法。
χ=(|Va−Vb|/Vf)×100 ・・・(1)
Va:上側の圧延ロールの周速
Vb:下側の圧延ロールの周速
Vf:Va及びVbのうち、高周速側の圧延ロールの周速
The method for producing a hot-rolled steel sheet according to claim 1 or 2, wherein the different peripheral speed ratio χ obtained by the following formula (1) is larger than 0% and 9% or less.
χ = (| Va-Vb | / Vf) × 100 ... (1)
Va: Peripheral speed of the upper rolling roll Vb: Peripheral speed of the lower rolling roll Vf: Peripheral speed of the rolling roll on the higher peripheral speed side of Va and Vb
前記搬送経路における前記異周速圧延を行う圧延スタンドの下流側において、反り防止ロールにより当該異周速圧延により生じる前記鋳片の反りを防止することを特徴とする、請求項1〜3のいずれか一項に記載の熱延鋼板の製造方法。 3. The method for manufacturing a hot-rolled steel sheet according to item 1. 連続鋳造ラインと熱間圧延ラインが直結された熱延鋼板製造装置であって、
前記連続鋳造ラインと前記熱間圧延ラインは、この順に熱延鋼板の搬送経路を形成し、
前記熱間圧延ラインにおける、前記連続鋳造ラインで製造された鋳片の板厚中心の固相率が0.8〜1.0となる範囲に配置される少なくとも1つの圧延スタンドは、上下の圧延ロールに周速差を与える異周速圧延スタンドである特徴とする、熱延鋼板製造装置。
It is a hot-rolled steel sheet manufacturing equipment in which a continuous casting line and a hot rolling line are directly connected.
The continuous casting line and the hot rolling line form a transfer path for the hot-rolled steel sheet in this order.
In the hot rolling line, at least one rolling stand arranged in a range where the solid phase ratio at the center of the plate thickness of the slab manufactured in the continuous casting line is in the range of 0.8 to 1.0 is rolled up and down. A hot-rolled steel sheet manufacturing device characterized by a different peripheral speed rolling stand that gives a difference in peripheral speed to the rolls.
前記異周速圧延スタンドは、前記搬送経路における前記熱間圧延ラインの最上流側に設けられることを特徴とする、請求項5に記載の熱延鋼板製造装置。 The hot-rolled steel sheet manufacturing apparatus according to claim 5, wherein the different peripheral speed rolling stand is provided on the most upstream side of the hot rolling line in the transport path. 前記異周速圧延スタンドにおける下記式(1)により求められる異周速率χが、0%よりも大きく9%以下であることを特徴とする、請求項5または6に記載の熱延鋼板製造装置。
χ=(|Va−Vb|/Vf)×100 ・・・(1)
Va:上側の圧延ロールの周速
Vb:下側の圧延ロールの周速
Vf:Va及びVbのうち、高周速側の圧延ロールの周速
The hot-rolled steel sheet manufacturing apparatus according to claim 5 or 6, wherein the different peripheral speed ratio χ obtained by the following formula (1) in the different peripheral speed rolling stand is larger than 0% and 9% or less. ..
χ = (| Va-Vb | / Vf) × 100 ... (1)
Va: Peripheral speed of the upper rolling roll Vb: Peripheral speed of the lower rolling roll Vf: Peripheral speed of the rolling roll on the higher peripheral speed side of Va and Vb
前記搬送経路における前記異周速圧延スタンドの下流側において、当該異周速圧延スタンドにより生じる前記鋳片の反りを防止する反り防止ロールがさらに設けられることを特徴とする、請求項5〜7のいずれか一向に記載の熱延鋼板製造装置。
Claims 5 to 7, wherein a warp prevention roll for preventing the warpage of the slab caused by the different peripheral speed rolling stand is further provided on the downstream side of the different peripheral speed rolling stand in the transport path. The hot-rolled steel sheet manufacturing apparatus described in any one direction.
JP2020049006A 2020-03-19 2020-03-19 HOT-ROLLED STEEL SHEET MANUFACTURING METHOD AND HOT-ROLLED STEEL SHEET MANUFACTURING APPARATUS Active JP7460894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020049006A JP7460894B2 (en) 2020-03-19 2020-03-19 HOT-ROLLED STEEL SHEET MANUFACTURING METHOD AND HOT-ROLLED STEEL SHEET MANUFACTURING APPARATUS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020049006A JP7460894B2 (en) 2020-03-19 2020-03-19 HOT-ROLLED STEEL SHEET MANUFACTURING METHOD AND HOT-ROLLED STEEL SHEET MANUFACTURING APPARATUS

Publications (2)

Publication Number Publication Date
JP2021146372A true JP2021146372A (en) 2021-09-27
JP7460894B2 JP7460894B2 (en) 2024-04-03

Family

ID=77850246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020049006A Active JP7460894B2 (en) 2020-03-19 2020-03-19 HOT-ROLLED STEEL SHEET MANUFACTURING METHOD AND HOT-ROLLED STEEL SHEET MANUFACTURING APPARATUS

Country Status (1)

Country Link
JP (1) JP7460894B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012237035A (en) 2011-05-11 2012-12-06 Furukawa-Sky Aluminum Corp HIGHLY FORMABLE Al-Mg-BASED ALLOY PLATE AND METHOD OF MANUFACTURING THE SAME

Also Published As

Publication number Publication date
JP7460894B2 (en) 2024-04-03

Similar Documents

Publication Publication Date Title
RU2493925C2 (en) Method and device for continuous slab forming
JP2013514890A (en) Martensitic stainless steel and method for producing the same
JP7256383B2 (en) Method for manufacturing hot-rolled steel sheet
JPH0220650A (en) Continuous casting rolling method
TW202024356A (en) Thin steel sheet manufacturing apparatus and thin steel sheet manufacturing method
JP2021146372A (en) Method for manufacturing hot-rolled steel sheet and apparatus for manufacturing hot-rolled steel sheet
JP2021524809A (en) Casting and rolling equipment for batch operation and continuous operation
JP5626792B2 (en) Rolling method of high strength steel sheet
KR101223107B1 (en) Apparatus for manufacturing martensitic stainless hot rolled steel strip and method for manufacturing martensitic stainless hot rolled steel strip
JP2798694B2 (en) Manufacturing method of thin cast slab
KR101018178B1 (en) Wire-rod Manufacturing Method
JP2006021246A (en) Equipment for manufacturing high-strength hot-rolled steel sheet
JPH0565263B2 (en)
JP2004237291A (en) Method of manufacturing continuous casting slab and steel material obtained by working the cast slab
KR101442891B1 (en) Apparatus and method for roughing mill
JP2010005638A (en) Method of manufacturing steel for cold forging
RU2736468C1 (en) Method for production of coil stock products from low-alloy steel
WO2017130767A1 (en) Production equipment line for hot-rolled steel strips and production method for hot-rolled steel strip
JP3487234B2 (en) Manufacturing method of high carbon steel slab for seamless steel pipe
JP2019076931A (en) Continuous casting method for slab for seamless steel pipe
JPH08174001A (en) On-line type steel production equipment
JP2006181583A (en) Method for producing continuously cast slab
JP2021146371A (en) Continuous casting method and continuous casting machine
JP5673370B2 (en) Method for cooling hot-rolled steel sheet
JP2006239748A (en) Method for producing magnesium alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240304