JP2021145494A - Diagnostic device, diagnostic method, and program - Google Patents

Diagnostic device, diagnostic method, and program Download PDF

Info

Publication number
JP2021145494A
JP2021145494A JP2020043381A JP2020043381A JP2021145494A JP 2021145494 A JP2021145494 A JP 2021145494A JP 2020043381 A JP2020043381 A JP 2020043381A JP 2020043381 A JP2020043381 A JP 2020043381A JP 2021145494 A JP2021145494 A JP 2021145494A
Authority
JP
Japan
Prior art keywords
value
characteristic value
characteristic
current
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020043381A
Other languages
Japanese (ja)
Other versions
JP7435071B2 (en
Inventor
太郎 石見
Taro Iwami
太郎 石見
賢 大谷
Masaru Otani
賢 大谷
陽子 吉田
Yoko Yoshida
陽子 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2020043381A priority Critical patent/JP7435071B2/en
Publication of JP2021145494A publication Critical patent/JP2021145494A/en
Application granted granted Critical
Publication of JP7435071B2 publication Critical patent/JP7435071B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

To make it possible to simply determine poor connection of wiring for connection between solar cell modules to improve construction quality in a photovoltaic power generation system.SOLUTION: A diagnostic device for performing diagnosis on a power generation state of a solar cell comprises a control unit for executing the steps of: acquiring a current voltage characteristic of the solar cell that is measured with a predetermined number of samples and on changes in a current value shifting due to increase or decrease in a voltage value; on the basis of a first characteristic value of one of a voltage value and a current value for each of sample points at which the current voltage characteristic is measured and a second characteristic value of the other, calculating a tilt of change in the second characteristic value shifting due to increase or decrease in the first characteristic value at the sample point; and performing a diagnosis on whether a power generation state of the solar cell is a normal state or an abnormal state on the basis of a determination result of magnitude comparison between an estimation second characteristic value estimated from a tilt of change with respect to a predetermined first characteristic value and a second characteristic value measured in the current voltage characteristic correspondingly to the predetermined first characteristic value.SELECTED DRAWING: Figure 7

Description

本発明は、太陽電池を用いた太陽光発電システムの施工状態を診断可能な診断装置、診断方法およびプログラムに関する。 The present invention relates to a diagnostic device, a diagnostic method and a program capable of diagnosing the construction state of a photovoltaic power generation system using a solar cell.

太陽光をエネルギー源として直接的に発電する太陽電池を用いた太陽光発電システムでは、太陽電池の電流電圧特性(「I−V特性」ともいう)、または、電圧発電力(P−V特性ともいう)を測定し、当該測定結果に基づいて、架台や屋上等に設けられた当該太陽電池の動作状態を把握することが知られている。例えば、特許文献1では、太陽電池の異常を判定するための基準となる電流電圧特性を簡易に取得し、太陽電池の異常を判定する、とされる技術が開示されている。太陽電池のI−V特性やP−V特性の測定は、一般的にIVカーブトレーサを用いて計測される。 In a photovoltaic power generation system using a solar cell that directly generates electricity using sunlight as an energy source, the current-voltage characteristic (also referred to as "IV characteristic") of the solar cell or the voltage generation power (PV characteristic). It is known that the operating state of the solar cell provided on a gantry, a rooftop, or the like is grasped based on the measurement result. For example, Patent Document 1 discloses a technique for simply acquiring a current-voltage characteristic that serves as a reference for determining an abnormality in a solar cell and determining an abnormality in the solar cell. The IV characteristics and PV characteristics of a solar cell are generally measured using an IV curve tracer.

ここで、太陽光発電システムにおいては、セルと称する発電単位を複数に直並列させてモジュール化した太陽電池モジュールを構成単位として施工が行われる。太陽光発電システムの施工においては、複数の太陽電池モジュールを直列に接続させた構成のストリング、当該ストリングをさらに並列に接続させた構成の太陽電池アレイ(または、単に「アレイ」)が採用される。そして、発電電力の規模に応じて、複数の太陽電池アレイが架台や屋上等に設けられる。 Here, in the solar power generation system, the construction is carried out with a solar cell module as a constituent unit, which is modularized by arranging a plurality of power generation units called cells in series and parallel. In the construction of a photovoltaic power generation system, a string having a configuration in which a plurality of solar cell modules are connected in series, and a solar cell array (or simply "array") in which the strings are further connected in parallel are adopted. .. Then, a plurality of solar cell arrays are provided on a gantry, a rooftop, or the like according to the scale of the generated power.

特開2012−186409号公報Japanese Unexamined Patent Publication No. 2012-186409

上述したように、太陽光発電システムは複数の太陽電池モジュールを含んで構成される。このため、太陽電池モジュール間を接続する配線数は、発電電力の規模大きさに比例して増大することになる。太陽光発電システムの施工現場においては、カーブトレーサで計測されたI−V特性やP−V特性のグラフ形状を見て太陽電池モジュール間の配線状態の正常/非正常を判断している。しかしながら、上記グラフ形状から、陽電池モジュール間の配線状態の正常/非正常を判断するためには、作業者の知識や経験に依存しており、判断品質にばらつきがある。太陽電池モジュール間の接続配線に施工不良(配線忘れ、接続ミス等)が生じた場合には、発電電力量の低下を招くことになり、設計時に意図した発電量が得られない。また、複数の太陽電池アレイを有する場合には、アレイ間の電圧バランスが崩れるため、各アレイを構成する太陽電池モジュールの故障を引き起こす虞がある。 As described above, the photovoltaic power generation system includes a plurality of solar cell modules. Therefore, the number of wires connected between the solar cell modules increases in proportion to the scale of the generated power. At the construction site of the photovoltaic power generation system, the normality / non-normality of the wiring state between the solar cell modules is judged by looking at the graph shape of the IV characteristic and the PV characteristic measured by the curve tracer. However, in order to judge the normality / non-normality of the wiring state between the positive battery modules from the above graph shape, it depends on the knowledge and experience of the operator, and the judgment quality varies. If a construction defect (forgetting wiring, connection error, etc.) occurs in the connection wiring between the solar cell modules, the amount of power generated will decrease, and the amount of power generated at the time of design cannot be obtained. Further, when a plurality of solar cell arrays are provided, the voltage balance between the arrays is lost, which may cause a failure of the solar cell modules constituting each array.

ところで、特許文献1に開示の技術では、太陽電池モジュールの定格から異常判断の基準になる基準IVカーブ特性を求め、当該基準IVカーブの面積と、計測された実測IVカーブの面積との差分から、正常と非正常との切り分けを行っている。このため、各面積の算出や、基準IVカーブの算出が行われるため、算出に係る処理コストが大きい。また、面積による比較のため、面積差が小さい場合には、日照の変化といった環境変化に起因するものなのか、施工ミスによるものなのかが判別できない。 By the way, in the technique disclosed in Patent Document 1, the reference IV curve characteristic that serves as a reference for abnormality judgment is obtained from the rating of the solar cell module, and the difference between the area of the reference IV curve and the measured area of the measured IV curve is used. , Normal and abnormal are separated. Therefore, since each area is calculated and the reference IV curve is calculated, the processing cost related to the calculation is large. In addition, since the comparison is based on the area, if the area difference is small, it cannot be determined whether it is due to an environmental change such as a change in sunshine or a construction error.

本発明は、上記のような問題に鑑みてなされたものであり、その目的は、太陽電池モジュール間を接続する配線の接続不良を簡易に判別可能にし、太陽光発電システムにおける施工品質を向上させる技術を提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is to make it possible to easily identify a poor connection of wiring connecting solar cell modules and improve the construction quality in a photovoltaic power generation system. To provide technology.

上記の課題を解決するための本発明に係る診断装置は、複数の太陽光発電モジュールから構成される太陽電池の発電状態が正常状態であるか非正常状態であるかを診断する診断装置であって、
前記太陽電池について所定のサンプル数で計測された、電圧値の増加または減少に伴って推移する電流値の変化に関する電流電圧特性を取得することと、
前記電流電圧特性が計測されたサンプル点毎の電圧値または電流値の一方の第1特性値および他方の第2特性値に基づいて、前記サンプル点における前記第1特性値の増加または減少に伴って推移する前記第2特性値の変化の傾きを算出することと、
所定の第1特性値に対する前記変化の傾きから推定される推定第2特性値と、前記電流電圧特性において前記所定の第1特性値に対応して計測された第2特性値との大小比較の判定結果に基づいて、前記太陽電池の発電状態が正常状態であるか非正常状態であるかを診断することと、
を実行する制御部を備えることを特徴とする。
The diagnostic device according to the present invention for solving the above problems is a diagnostic device for diagnosing whether the power generation state of a solar cell composed of a plurality of photovoltaic power generation modules is a normal state or an abnormal state. hand,
To acquire the current-voltage characteristics regarding the change in the current value that changes with the increase or decrease of the voltage value measured with a predetermined number of samples for the solar cell.
With the increase or decrease of the first characteristic value at the sample point, the current-voltage characteristic is based on one of the first characteristic values and the other second characteristic value of the voltage value or the current value for each measured sample point. To calculate the slope of the change in the second characteristic value that changes in
A magnitude comparison between the estimated second characteristic value estimated from the slope of the change with respect to the predetermined first characteristic value and the second characteristic value measured corresponding to the predetermined first characteristic value in the current-voltage characteristic. Based on the determination result, diagnosing whether the power generation state of the solar cell is in a normal state or an abnormal state, and
It is characterized by including a control unit that executes the above.

ここで、「第1特性値」が電圧値の場合には「第2特性値」は電流値であり、「第1特性値」が電流値の場合には「第2特性値」は電圧値である。これにより、短絡電流(Isc)から開放電圧(Voc)に到達するまで、第1特性値が電圧値の場合には、電圧値の増加または減少に伴って推移する電流値の変化傾向を示すIVカーブ曲線の形状において、電流値の減少傾向が変化する肩部分g2aとg2bとの間の段差領域g2cの有無を判定することができる。太陽電池モジュール間を接続する配線の接続不良が生じた場合には、発電に係るモジュール数が正常状態と異なるため、当該モジュール数の異なりがIVカーブ曲線上に段差領域として生じることになる。本発明によれば、段差領域の有無に基づいて、施工後の太陽電池30を構成する太陽電池モジュール間の接続配線状態が診断可能になる。また、各計測点における接線の傾きDpに基づいてIVカーブにおける段差領域が判定できるため、実測されたIVカーブの面積および実測IVカーブに基準IVカーブの面積を求めなくともよい。本発明においては、診断に係る演算の処理コストを低減できる。本発明によれば、IVカーブデータの形状に基づいて、太陽電池モジュール間を接続する配線の接続不良が判別可能になり、太陽光発電システムにおける施工品質が向上できる。 Here, when the "first characteristic value" is a voltage value, the "second characteristic value" is a current value, and when the "first characteristic value" is a current value, the "second characteristic value" is a voltage value. Is. As a result, when the first characteristic value is a voltage value from the short-circuit current (Isc) to the open circuit voltage (Voc), the change tendency of the current value that changes with the increase or decrease of the voltage value is shown IV. Curve In the shape of the curve, it is possible to determine the presence or absence of the step region g2c between the shoulder portion g2a and g2b where the decreasing tendency of the current value changes. When the wiring connecting the solar cell modules is poorly connected, the number of modules involved in power generation is different from the normal state, so that the difference in the number of modules occurs as a step region on the IV curve curve. According to the present invention, it is possible to diagnose the connection wiring state between the solar cell modules constituting the solar cell 30 after construction based on the presence or absence of the step region. Further, since the step region in the IV curve can be determined based on the slope Dp of the tangent line at each measurement point, it is not necessary to obtain the area of the measured IV curve and the area of the reference IV curve from the measured IV curve. In the present invention, the processing cost of the calculation related to the diagnosis can be reduced. According to the present invention, it is possible to determine the connection failure of the wiring connecting the solar cell modules based on the shape of the IV curve data, and the construction quality in the photovoltaic power generation system can be improved.

また、本発明において、前記制御部は、前記電流電圧特性が計測されたサンプル点毎の、前記推定第2特性値が前記所定の第1特性値に対応して計測された第2特性値より小さいと判定されたサンプル点数を計数するとともに、前記計数されたサンプル点数の総サンプル数に占める割合が判定基準値以下のときには前記太陽電池の発電状態が正常状態と診断するようにしてもよい。これにより、IVカーブデータ計測時に重畳されたノイズ等の影響が低減できる。本発明によれば、太陽電池モジュール間の接続配線の施工状態の正常/非正常の判定確度を高めることができる。 Further, in the present invention, the control unit uses the second characteristic value whose estimated second characteristic value is measured corresponding to the predetermined first characteristic value for each sample point where the current-voltage characteristic is measured. The number of sample points determined to be small may be counted, and when the ratio of the counted sample points to the total number of samples is equal to or less than the determination reference value, the power generation state of the solar cell may be diagnosed as a normal state. As a result, the influence of superimposed noise and the like during IV curve data measurement can be reduced. According to the present invention, it is possible to increase the accuracy of determining whether the connection wiring between the solar cell modules is normal or not.

また、本発明において、前記制御部は、前記電流電圧特性が計測されたサンプル点毎の、前記推定第2特性値が前記所定の第1特性値に対応して計測された第2特性値より小さいと判定されたサンプル点数を計数するとともに、前記計数されたサンプル点数の総サンプル数に占める割合が判定基準値をこえるときには前記太陽電池の発電状態が非正常状態と診断するようにしてもよい。これにより、IVカーブデータ計測時に重畳されたノイズ等の影響が低減できる。本発明によれば、太陽電池モジュール間の接続配線の施工状態の正常/非正常の判定確度を高めることができる。 Further, in the present invention, the control unit uses the second characteristic value whose estimated second characteristic value is measured corresponding to the predetermined first characteristic value for each sample point where the current-voltage characteristic is measured. The number of sample points determined to be small may be counted, and when the ratio of the counted sample points to the total number of samples exceeds the determination reference value, the power generation state of the solar cell may be diagnosed as an abnormal state. .. As a result, the influence of superimposed noise and the like during IV curve data measurement can be reduced. According to the present invention, it is possible to increase the accuracy of determining whether the connection wiring between the solar cell modules is normal or not.

また、本発明において、前記制御部は、前記電流電圧特性が計測されたサンプル点の中の、第1サンプル点で計測された第2特性値と、前記第1サンプル点の第1特性値より低
位側に隣接するサンプル点で計測された低位側第2特性値との差分が第1閾値未満であり、かつ、前記第2特性値と、前記第1サンプル点の高位側に隣接するサンプル点で計測された高位側第2特性値との差分が第2閾値未満であるときに、前記第1サンプル点を間引きするようにしてもよい。ここで、「低位側」とは、第1特性値が電圧値のときには低電圧側を表し、第1特性値が電流値のときには低電流側をあらわす。「高位側」についても同様である。
Further, in the present invention, the control unit is based on the second characteristic value measured at the first sample point and the first characteristic value of the first sample point among the sample points at which the current-voltage characteristic is measured. The difference between the second characteristic value on the lower side and the second characteristic value on the lower side measured at the sample point adjacent to the lower side is less than the first threshold value, and the second characteristic value and the sample point adjacent to the higher side of the first sample point. When the difference from the second characteristic value on the higher side measured in 1 is less than the second threshold value, the first sample points may be thinned out. Here, the "low-order side" represents the low-voltage side when the first characteristic value is a voltage value, and represents the low-current side when the first characteristic value is a current value. The same applies to the "higher side".

これにより、間引き処理が施された各計測点を処理対象として、太陽光発電システム1を構成する太陽電池30の、太陽電池モジュール間を接続する配線状態の正常/非正常が診断できる。本発明によれば、段差判定に係る実測データについての、電流の計測誤差やノイズの影響による段差誤差検出を低減することが可能になり、太陽電池モジュール間の接続配線の施工状態の正常/非正常の判定制度を高めることができる。 As a result, it is possible to diagnose the normality / non-normality of the wiring state of the solar cells 30 constituting the photovoltaic power generation system 1 that connects the solar cell modules with each measurement point subjected to the thinning process as the processing target. According to the present invention, it is possible to reduce the detection of step error due to the influence of current measurement error and noise in the measured data related to the step determination, and it is possible to reduce the normal / non-normal construction state of the connection wiring between the solar cell modules. The normal judgment system can be enhanced.

また、本発明において、前記制御部は、前記電流電圧特性が計測されたサンプル点の中の、所定の第1特性値に対する前記変化の傾きから推定される推定第2特性値が、前記電流電圧特性において前記所定の第1特性値に対応して計測された第2特性値より小さいと判定された連続するサンプル点群をグループ化するとともに、
前記グループ化されたサンプル点群において低位側のサンプル点で計測された低位第2特性値と高位側のサンプル点で計測された高位第2特性値との差分である差分第2特性値の、前記第1特性値が0値における基準第2特性値に対する割合に基づいて、前記太陽電池の発電状態が正常状態であるか非正常状態であるかを診断するようにしてもよい。ここで、「低位側」とは、第1特性値が電圧値のときには低電圧側を表し、第1特性値が電流値のときには低電流側をあらわす。「高位側」についても同様である。また、「前記第1特性値が0値における基準第2特性値」とは、第1特性値が電圧値のときには「短絡電流値」を表し、第1特性値が電流値のときには「開放電圧値」を表す。
Further, in the present invention, in the control unit, the estimated second characteristic value estimated from the slope of the change with respect to the predetermined first characteristic value in the sample points where the current-voltage characteristic is measured is the current-voltage characteristic. A group of consecutive sample points determined to be smaller than the second characteristic value measured corresponding to the predetermined first characteristic value in terms of characteristics is grouped, and a group of continuous sample points is grouped.
In the grouped sample point group, the difference second characteristic value, which is the difference between the lower second characteristic value measured at the lower sample point and the higher second characteristic value measured at the higher sample point, Based on the ratio of the first characteristic value to the reference second characteristic value at 0 value, it may be diagnosed whether the power generation state of the solar cell is a normal state or an abnormal state. Here, the "low-order side" represents the low-voltage side when the first characteristic value is a voltage value, and represents the low-current side when the first characteristic value is a current value. The same applies to the "higher side". Further, the "reference second characteristic value when the first characteristic value is 0" represents a "short circuit current value" when the first characteristic value is a voltage value, and "open circuit voltage" when the first characteristic value is a current value. Represents "value".

これにより、グループ化された計測点群の電流変化幅を、段差判定を行うための評価対象にできるため、段差のサイズの影響による誤差検出を低減することが可能になる。本発明によれば、段差判定に関する判定精度をさらに高めることが可能になり、太陽光発電システム1を構成する太陽電池30の、太陽電池モジュール間を接続する配線状態の正常/非正常の診断精度を高めることが可能になる。 As a result, the current change width of the grouped measurement point group can be used as an evaluation target for determining the step, so that it is possible to reduce the error detection due to the influence of the size of the step. According to the present invention, it is possible to further improve the determination accuracy regarding the step determination, and the normal / abnormal diagnostic accuracy of the wiring state of the solar cells 30 constituting the photovoltaic power generation system 1 connecting between the solar cell modules. Can be increased.

また、本発明は、複数の太陽光発電モジュールから構成される太陽電池の発電状態が正常状態であるか非正常状態であるかを診断する診断方法であって、
前記太陽電池について所定のサンプル数で計測された、電圧値の増加または減少に伴って推移する電流値の変化に関する電流電圧特性を取得することと、
前記電流電圧特性が計測されたサンプル点毎の電圧値または電流値の一方の第1特性値および他方の第2特性値に基づいて、前記サンプル点における前記第1特性値の増加または減少に伴って推移する第2特性値の変化の傾きを算出することと、
所定の第1特性値に対する前記変化の傾きから推定される推定第2特性値と、前記電流電圧特性において前記所定の第1特性値に対応して計測された第2特性値との大小比較の判定結果に基づいて、前記太陽電池の発電状態が正常状態であるか非正常状態であるかを診断することと、
を含むことを特徴とする。
Further, the present invention is a diagnostic method for diagnosing whether the power generation state of a solar cell composed of a plurality of photovoltaic power generation modules is a normal state or an abnormal state.
To acquire the current-voltage characteristics regarding the change in the current value that changes with the increase or decrease of the voltage value measured with a predetermined number of samples for the solar cell.
With the increase or decrease of the first characteristic value at the sample point, the current-voltage characteristic is based on one of the first characteristic values and the other second characteristic value of the voltage value or the current value for each measured sample point. To calculate the slope of the change in the second characteristic value that changes
A magnitude comparison between the estimated second characteristic value estimated from the slope of the change with respect to the predetermined first characteristic value and the second characteristic value measured corresponding to the predetermined first characteristic value in the current-voltage characteristic. Based on the determination result, diagnosing whether the power generation state of the solar cell is in a normal state or an abnormal state, and
It is characterized by including.

本発明によれば、短絡電流(Isc)から開放電圧(Voc)に到達するまで、第1特性値が電圧値の場合には、電圧値の増加または減少に伴って推移する電流値の変化傾向を示すIVカーブ曲線の形状において、電流値の減少傾向が変化する肩部分g2aとg2bとの間の段差領域g2cの有無を判定することができる。太陽電池モジュール間を接続する配線の接続不良が生じた場合には、発電に係るモジュール数が正常状態と異なるため、
当該モジュール数の異なりがIVカーブ曲線上に段差領域として生じることになる。これにより、段差領域の有無に基づいて、施工後の太陽電池30を構成する太陽電池モジュール間の接続配線状態が診断可能になる。また、各計測点における接線の傾きDpに基づいてIVカーブにおける段差領域が判定できるため、実測されたIVカーブの面積および実測IVカーブに基準IVカーブの面積を求めなくともよい。本発明においては、診断に係る演算の処理コストを低減できる。本発明によれば、IVカーブデータの形状に基づいて、太陽電池モジュール間を接続する配線の接続不良が判別可能になり、太陽光発電システムにおける施工品質が向上できる。
According to the present invention, when the first characteristic value is a voltage value from the short-circuit current (Isc) to the open circuit voltage (Voc), the change tendency of the current value that changes as the voltage value increases or decreases. In the shape of the IV curve curve showing the above, it is possible to determine the presence or absence of the step region g2c between the shoulder portions g2a and g2b where the decreasing tendency of the current value changes. If the wiring that connects the solar cell modules is poorly connected, the number of modules involved in power generation will differ from the normal state.
The difference in the number of modules will occur as a step region on the IV curve. This makes it possible to diagnose the connection wiring state between the solar cell modules constituting the solar cell 30 after construction based on the presence or absence of the stepped region. Further, since the step region in the IV curve can be determined based on the slope Dp of the tangent line at each measurement point, it is not necessary to obtain the area of the measured IV curve and the area of the reference IV curve from the measured IV curve. In the present invention, the processing cost of the calculation related to the diagnosis can be reduced. According to the present invention, it is possible to determine the connection failure of the wiring connecting the solar cell modules based on the shape of the IV curve data, and the construction quality in the photovoltaic power generation system can be improved.

さらに、本発明は、複数の太陽光発電モジュールから構成される太陽電池の発電状態が正常状態であるか非正常状態であるかを診断するコンピュータに実行させるプログラムであって、
前記太陽電池について所定のサンプル数で計測された、電圧値の増加または減少に伴って推移する電流値の変化に関する電流電圧特性を取得することと、
前記電流電圧特性が計測されたサンプル点毎の電圧値または電流値の一方の第1特性値および他方の第2特性値に基づいて、前記サンプル点における前記第1特性値の増加または減少に伴って推移する第2特性値の変化の傾きを算出することと、
所定の第1特性値に対する前記変化の傾きから推定される推定第2特性値と、前記電流電圧特性において前記所定の第1特性値に対応して計測された第2特性値との大小比較の判定結果に基づいて、前記太陽電池の発電状態が正常状態であるか非正常状態であるかを診断することと、
を実行させることを特徴とする。
Further, the present invention is a program to be executed by a computer for diagnosing whether the power generation state of a solar cell composed of a plurality of photovoltaic power generation modules is a normal state or an abnormal state.
To acquire the current-voltage characteristics regarding the change in the current value that changes with the increase or decrease of the voltage value measured with a predetermined number of samples for the solar cell.
With the increase or decrease of the first characteristic value at the sample point, the current-voltage characteristic is based on one of the first characteristic values and the other second characteristic value of the voltage value or the current value for each measured sample point. To calculate the slope of the change in the second characteristic value that changes
A magnitude comparison between the estimated second characteristic value estimated from the slope of the change with respect to the predetermined first characteristic value and the second characteristic value measured corresponding to the predetermined first characteristic value in the current-voltage characteristic. Based on the determination result, diagnosing whether the power generation state of the solar cell is in a normal state or an abnormal state, and
Is characterized by executing.

本発明に係るプログラムによれば、短絡電流(Isc)から開放電圧(Voc)に到達するまで、第1特性値が電圧値の場合には、電圧値の増加または減少に伴って推移する電流値の変化傾向を示すIVカーブ曲線の形状において、電流値の減少傾向が変化する肩部分g2aとg2bとの間の段差領域g2cの有無を判定することができる。太陽電池モジュール間を接続する配線の接続不良が生じた場合には、発電に係るモジュール数が正常状態と異なるため、当該モジュール数の異なりがIVカーブ曲線上に段差領域として生じることになる。これにより、段差領域の有無に基づいて、施工後の太陽電池30を構成する太陽電池モジュール間の接続配線状態が診断可能になる。また、各計測点における接線の傾きDpに基づいてIVカーブにおける段差領域が判定できるため、実測されたIVカーブの面積および実測IVカーブに基準IVカーブの面積を求めなくともよい。本発明においては、診断に係る演算の処理コストを低減できる。本発明に係るプログラムによれば、IVカーブデータの形状に基づいて、太陽電池モジュール間を接続する配線の接続不良が判別可能になり、太陽光発電システムにおける施工品質が向上できる。 According to the program according to the present invention, when the first characteristic value is a voltage value, the current value changes as the voltage value increases or decreases from the short-circuit current (Isc) to the open circuit voltage (Voc). In the shape of the IV curve curve showing the change tendency of, it is possible to determine the presence or absence of the step region g2c between the shoulder portion g2a and g2b where the decrease tendency of the current value changes. When the wiring connecting the solar cell modules is poorly connected, the number of modules involved in power generation is different from the normal state, so that the difference in the number of modules occurs as a step region on the IV curve curve. This makes it possible to diagnose the connection wiring state between the solar cell modules constituting the solar cell 30 after construction based on the presence or absence of the step region. Further, since the step region in the IV curve can be determined based on the slope Dp of the tangent line at each measurement point, it is not necessary to obtain the area of the measured IV curve and the area of the reference IV curve from the measured IV curve. In the present invention, the processing cost of the calculation related to the diagnosis can be reduced. According to the program according to the present invention, it is possible to determine the connection failure of the wiring connecting the solar cell modules based on the shape of the IV curve data, and the construction quality in the photovoltaic power generation system can be improved.

本発明によれば、太陽電池モジュール間を接続する配線の接続不良を判別可能にし、太陽光発電システムにおける施工品質が向上できる。 According to the present invention, it is possible to determine the connection failure of the wiring connecting the solar cell modules, and it is possible to improve the construction quality in the photovoltaic power generation system.

本発明の実施例1に係る太陽光発電システムの概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the solar power generation system which concerns on Example 1 of this invention. 本発明の実施例1における太陽電池モジュールの数量と、I−Vカーブとの関係を説明する図である。It is a figure explaining the relationship between the quantity of the solar cell module in Example 1 of this invention, and an IV curve. 本発明の実施例1における太陽電池モジュールの数量と、I−Vカーブとの関係を説明する図である。It is a figure explaining the relationship between the quantity of the solar cell module in Example 1 of this invention, and an IV curve. 本発明の実施例1における非正常状態におけるI−Vカーブの変化傾向を説明する図である。It is a figure explaining the change tendency of the IV curve in the abnormal state in Example 1 of this invention. 本発明の実施例1における段差領域を有するI−Vカーブの特徴を説明する図である。It is a figure explaining the feature of the IV curve having a step region in Example 1 of this invention. 本発明の実施例1における診断装置のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware composition of the diagnostic apparatus in Example 1 of this invention. 本発明の実施例1における診断装置のより詳細な機能構成の一例を示すブロック図である。It is a block diagram which shows an example of the more detailed functional structure of the diagnostic apparatus in Example 1 of this invention. 本発明の実施例1における各種データの一例を示す図である。It is a figure which shows an example of various data in Example 1 of this invention. 本発明の実施例1における接線の傾きを求める処理を説明する図である。It is a figure explaining the process of obtaining the slope of a tangent line in Example 1 of this invention. 本発明の実施例1における計測点に対する接線の内外判定を説明する図である。It is a figure explaining the inside / outside determination of the tangent line with respect to the measurement point in Example 1 of this invention. 本発明の実施例1における診断処理の一例を示すフローチャートである。It is a flowchart which shows an example of the diagnostic process in Example 1 of this invention. 本発明の実施例2に係る診断装置の機能構成の一例を示すブロック図である。It is a block diagram which shows an example of the functional structure of the diagnostic apparatus which concerns on Example 2 of this invention. 本発明の実施例2における間引き用設定値の一例を示す図である。It is a figure which shows an example of the setting value for thinning in Example 2 of this invention. 本発明の実施例2における間引き処理を説明する図である。It is a figure explaining the thinning-out process in Example 2 of this invention. 本発明の実施例2における診断処理の一例を示すフローチャートである。It is a flowchart which shows an example of the diagnostic process in Example 2 of this invention. 本発明の実施例3に係る診断装置の機能構成の一例を示すブロック図である。It is a block diagram which shows an example of the functional structure of the diagnostic apparatus which concerns on Example 3 of this invention. 本発明の実施例3におけるグルーピング処理を説明する図である。It is a figure explaining the grouping process in Example 3 of this invention. 本発明の実施例3における診断処理の一例を示すフローチャートである。It is a flowchart which shows an example of the diagnostic process in Example 3 of this invention.

〔適用例〕
以下、本発明の適用例について、図面を参照しつつ説明する。
図1は、本発明の適用例に係る診断装置20と連携可能な太陽光発電システム1の機略構成を示すブロック図である。図1には、太陽光発電システム1を構成するパワーコンディショナ(PCS)10と接続される、太陽電池30と、商用電力系統(単に系統ともいう)40と、負荷50とが例示されている。本発明の適用例に係る診断装置20は、パワーコンディショナ(PCS)10と所定の通信回線を介して接続される。
[Application example]
Hereinafter, application examples of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a strategic configuration of a photovoltaic power generation system 1 that can cooperate with the diagnostic device 20 according to an application example of the present invention. FIG. 1 illustrates a solar cell 30, a commercial power system (also simply referred to as a system) 40, and a load 50 connected to a power conditioner (PCS) 10 constituting the photovoltaic power generation system 1. .. The diagnostic device 20 according to the application example of the present invention is connected to the power conditioner (PCS) 10 via a predetermined communication line.

図1に示すように、太陽電池30は、発電単位であるセル33aを複数に直並列させてモジュール化した太陽電池モジュール33を構成単位として施工される。例えば、ストリング32は、1以上の太陽電池モジュール33がバイパスダイオードを介して直列に組合せられて接続された構成であり、太陽電池アレイ31は、ストリング32を並列に組み合わせて接続させた構成である。太陽電池30を構成する各アレイの出力電流は、それぞれブロッキングダイオード15を通じてPCS10に入力される。PCS10は、太陽電池30で発電された直流電力を交流電力に変換するためのユニットである電力変換部10aと、太陽電池30のI−V特性を測定するためのI−Vカーブ計測処理が行われる制御部10bとを備える。なお、PCS10においては、各ブロッキングダイオードを通じて入力された電流の総和を検出するための電流センサ11、電力変換部10aの入力端子間の電圧を検出するための電圧センサ12が設けられている。I−Vカーブ計測処理においては、制御部10bは、電力変換部10aを制御し、動作点電圧(電力変換部10aの入力電圧(DCV))を変化させながら、当該入力電圧(DCV)に対応する入力電流(DCI)を測定する。測定の結果、所定のステップ単位で変化させた入力電圧値および当該入力電圧値に応じて測定された入力電流値の複数の組合せが取得される。制御部10bは、取得された測定結果を太陽電池30のI−V特性を示すデータとして診断装置20に送信する。 As shown in FIG. 1, the solar cell 30 is constructed with the solar cell module 33, which is a module in which a plurality of cells 33a, which are power generation units, are series-paralleled and modularized, as a constituent unit. For example, the string 32 has a configuration in which one or more solar cell modules 33 are combined and connected in series via a bypass diode, and the solar cell array 31 has a configuration in which the strings 32 are combined and connected in parallel. .. The output current of each array constituting the solar cell 30 is input to the PCS 10 through the blocking diode 15. The PCS 10 is subjected to a power conversion unit 10a, which is a unit for converting DC power generated by the solar cell 30, into AC power, and an IV curve measurement process for measuring the IV characteristics of the solar cell 30. It is provided with a control unit 10b. The PCS 10 is provided with a current sensor 11 for detecting the total current input through each blocking diode and a voltage sensor 12 for detecting the voltage between the input terminals of the power conversion unit 10a. In the IV curve measurement process, the control unit 10b controls the power conversion unit 10a and responds to the input voltage (DCV) while changing the operating point voltage (input voltage (DCV) of the power conversion unit 10a). The input current (DCI) to be measured is measured. As a result of the measurement, a plurality of combinations of the input voltage value changed in a predetermined step unit and the input current value measured according to the input voltage value are acquired. The control unit 10b transmits the acquired measurement result to the diagnostic apparatus 20 as data indicating the IV characteristics of the solar cell 30.

図2から図5に示すように、太陽電池30の状態が正常なときには、一般的にI−Vカーブは、短絡電流(Isc)を開始点として、電圧増加に伴って電流値が緩やかに減少し
、太陽電池30の発電出力が最大電力となる最大電力点の最大電力点電流(Impp)および最大電力点電圧(Vmpp)に推移変化する。そして、最大電力点を経過すると、I−Vカーブは、電圧増加に伴って電流値が相対的に急峻に下降変化し、開放電圧(Voc)に到達するように推移する。これに対し、太陽電池30のアレイ31aを構成するモジュール33の数量が正常状態と異なる場合(非正常状態)には、電圧増加に伴うI−Vカーブの緩やかな形状が崩れ、正常状態と異なるモジュール数の発電電力の低下に起因する形状変化が、I−Vカーブ上の新たな肩部分となって生じることになる。
As shown in FIGS. 2 to 5, when the state of the solar cell 30 is normal, the current value of the IV curve generally decreases gradually as the voltage increases, starting from the short-circuit current (Isc). Then, the generated output of the solar cell 30 changes to the maximum power point current (Impp) and the maximum power point voltage (Vmpp) of the maximum power point at which the maximum power is obtained. Then, after the maximum power point has passed, the current value of the IV curve changes relatively steeply as the voltage increases, and changes so as to reach the open circuit voltage (Voc). On the other hand, when the number of modules 33 constituting the array 31a of the solar cell 30 is different from the normal state (non-normal state), the gentle shape of the IV curve with the increase in voltage collapses, which is different from the normal state. The shape change caused by the decrease in the generated power of the number of modules will occur as a new shoulder portion on the IV curve.

本適用例に係る診断装置20は、太陽電池30の施工後にPCS10を介して測定された、当該太陽電池のI−V特性を示すデータに基づいて、段差領域g2cの有無を判定する。具体的には、図5に示すように、計測点毎に接線を求め、当該接線の傾き方向の延長点が短絡電流(Isc)から開放電圧(Voc)へ推移するI−Vカーブと交差するかを判定する。そして、本診断装置20は、施工後の太陽電池30から計測されたI−Vカーブについて段差領域g2cが存在する場合には、太陽電池モジュール間を接続する配線の施工状態は非正常状態と診断する。この結果、IVカーブデータの形状に基づいて、太陽電池モジュール間を接続する配線の接続不良が判別可能になり、太陽光発電システムにおける施工品質が向上できる。なお、太陽電池30のI−V特性を示すデータとして取得された電圧値の推移を用いても、電流値の推移と同様にして評価できることは言うまでもない。 The diagnostic device 20 according to the present application example determines the presence or absence of the step region g2c based on the data showing the IV characteristics of the solar cell measured via the PCS 10 after the construction of the solar cell 30. Specifically, as shown in FIG. 5, a tangent line is obtained for each measurement point, and an extension point in the inclination direction of the tangent line intersects with an IV curve that changes from a short-circuit current (Isc) to an open circuit voltage (Voc). Is determined. Then, the present diagnostic apparatus 20 diagnoses that the construction state of the wiring connecting the solar cell modules is an abnormal state when the step region g2c exists for the IV curve measured from the solar cell 30 after construction. do. As a result, based on the shape of the IV curve data, it becomes possible to determine the connection failure of the wiring connecting the solar cell modules, and the construction quality in the photovoltaic power generation system can be improved. Needless to say, even if the transition of the voltage value acquired as the data indicating the IV characteristic of the solar cell 30 is used, it can be evaluated in the same manner as the transition of the current value.

〔実施例1〕
以下では、本発明の実施例に係る診断装置について、図面を用いて、より詳細に説明する。
[Example 1]
Hereinafter, the diagnostic apparatus according to the embodiment of the present invention will be described in more detail with reference to the drawings.

<システム構成>
図1は、本発明の実施例に係る太陽光発電システムの機略構成を示すブロック図である。本実施例における診断装置20は、太陽光発電システム1を構成するパワーコンディショナ(PCS)10と所定の通信回線を介して接続可能な情報処理装置である。本実施例に係る太陽光発電システム1においては、パワーコンディショナ(以下、「PCS」とも称す)10は、太陽電池30と、商用電力系統(単に系統ともいう)40と、負荷50とに接続される装置である。太陽電池30は、発電単位であるセル33aを複数に直並列させてモジュール化した太陽電池モジュール(以下、単に「モジュール」ともいう)33を構成単位として施工される。太陽光発電システム1においては、複数のモジュール33が組み合わされて使用される。図1に示すように、ストリング32は、1以上の太陽電池モジュール33がバイパスダイオードを介して直列に組合せられて接続された構成であり、太陽電池アレイ31a、31b、31c、31dは、それぞれ、ストリング32を並列に組み合わせて接続させた構成である。図1の太陽電池30は、3個のモジュール33を直列に接続させたストリング32を、さらに3列に並列させて接続させた太陽電池アレイ(以下、単に「アレイ」ともいう)を4段に備えて構成される。以下においては、図1に示す太陽電池30のモジュール構成を説明例として採用するが、本実施形態に係る診断装置20の診断対象は、図1に示すモジュール構成に限定されない。例えば、太陽電池30を構成する一段のアレイが、9個の直列接続されたモジュール33であってもよい。太陽電池30を構成する各アレイの出力電流は、それぞれブロッキングダイオード15を通じてPCS10に入力される。
<System configuration>
FIG. 1 is a block diagram showing a strategic configuration of a photovoltaic power generation system according to an embodiment of the present invention. The diagnostic device 20 in this embodiment is an information processing device that can be connected to the power conditioner (PCS) 10 constituting the photovoltaic power generation system 1 via a predetermined communication line. In the photovoltaic power generation system 1 according to the present embodiment, the power conditioner (hereinafter, also referred to as “PCS”) 10 is connected to the solar cell 30, the commercial power system (also simply referred to as a system) 40, and the load 50. It is a device to be used. The solar cell 30 is constructed with a solar cell module (hereinafter, also simply referred to as “module”) 33, which is a module in which cells 33a, which are power generation units, are series-paralleled in parallel, as a constituent unit. In the photovoltaic power generation system 1, a plurality of modules 33 are used in combination. As shown in FIG. 1, the string 32 has a configuration in which one or more solar cell modules 33 are combined and connected in series via a bypass diode, and the solar cell arrays 31a, 31b, 31c, and 31d are connected, respectively. It is a configuration in which strings 32 are combined and connected in parallel. In the solar cell 30 of FIG. 1, a solar cell array (hereinafter, also simply referred to as “array”) in which strings 32 in which three modules 33 are connected in series are further connected in parallel in three rows is arranged in four stages. Be prepared. In the following, the module configuration of the solar cell 30 shown in FIG. 1 will be adopted as an explanatory example, but the diagnosis target of the diagnostic apparatus 20 according to the present embodiment is not limited to the module configuration shown in FIG. For example, the one-stage array constituting the solar cell 30 may be nine modules 33 connected in series. The output current of each array constituting the solar cell 30 is input to the PCS 10 through the blocking diode 15.

PCS10は、電力変換部10aと、制御部10bとを備える。電力変換部10aは、太陽電池30で発電された直流電力を交流電力に変換するためのユニットであり、太陽電池30によって発電された直流電力を昇圧するDC/DCコンバータと、当該昇圧された電力を商用電力系統40と同期のとれた交流電力に変換するDC/ACコンバータを含み構成される。図示するように、電力変換部10aと各アレイのブロッキングダイオード1
5との間は、各ブロッキングダイオード15を通じて出力される直流電流の総和が電力変換部10aに入力するように接続されている。また、PCS10においては、各ブロッキングダイオードを通じて入力された電流の総和を検出するための電流センサ11、電力変換部10aの入力端子間の電圧を検出するための電圧センサ12が設けられている。なお、PCS10においては、電流センサ11、電圧センサ12以外のセンサも設けられている。
The PCS 10 includes a power conversion unit 10a and a control unit 10b. The power conversion unit 10a is a unit for converting the DC power generated by the solar cell 30 into AC power, and is a DC / DC converter that boosts the DC power generated by the solar cell 30 and the boosted power. Is configured to include a DC / AC converter that converts AC power in synchronization with the commercial power system 40. As shown, the power converter 10a and the blocking diode 1 of each array
5 is connected so that the sum of the direct currents output through each blocking diode 15 is input to the power conversion unit 10a. Further, the PCS 10 is provided with a current sensor 11 for detecting the total current input through each blocking diode and a voltage sensor 12 for detecting the voltage between the input terminals of the power conversion unit 10a. The PCS 10 is also provided with sensors other than the current sensor 11 and the voltage sensor 12.

制御部10bは、プロセッサ(CPU、MPU,DSP等)、ゲートドライバ、診断装置20と通信を行うための通信インタフェース回路等を含んで構成されるユニットである。制御部10bには、電流センサ11と電圧センサ12を含む各種のセンサの出力が入力される。制御部10bでは、各種センサを通じて検出された情報に基づいて、太陽電池30の発電出力が最大となる最大電力(電流×電圧の値)点あるいは最適動作点で電力変換部10aが動作するように最大電力点追従制御(Maximum power point tracking、MPPT)が行われる。また、本実施例では、制御部10bを通じて、太陽電池30のI−V特性を測定するためのI−Vカーブ計測処理が行われる。 The control unit 10b is a unit including a processor (CPU, MPU, DSP, etc.), a gate driver, a communication interface circuit for communicating with the diagnostic device 20, and the like. The output of various sensors including the current sensor 11 and the voltage sensor 12 is input to the control unit 10b. In the control unit 10b, the power conversion unit 10a operates at the maximum power (current x voltage value) point or the optimum operating point at which the power output of the solar cell 30 is maximized, based on the information detected through various sensors. Maximum power point tracking (MPPT) is performed. Further, in this embodiment, the IV curve measurement process for measuring the IV characteristics of the solar cell 30 is performed through the control unit 10b.

I−Vカーブ計測処理においては、制御部10bは、電力変換部10aを制御し、動作点電圧(電力変換部10aの入力電圧(DCV))を変化させながら、当該入力電圧(DCV)に対応する入力電流(DCI)を測定する。測定の結果、所定のステップ単位で変化させた入力電圧値および当該入力電圧値に応じて測定された入力電流値の複数の組合せが取得される。制御部10bは、取得された測定結果を太陽電池30のI−V特性を示すデータとして診断装置20に送信する。 In the IV curve measurement process, the control unit 10b controls the power conversion unit 10a and responds to the input voltage (DCV) while changing the operating point voltage (input voltage (DCV) of the power conversion unit 10a). The input current (DCI) to be measured is measured. As a result of the measurement, a plurality of combinations of the input voltage value changed in a predetermined step unit and the input current value measured according to the input voltage value are acquired. The control unit 10b transmits the acquired measurement result to the diagnostic apparatus 20 as data indicating the IV characteristics of the solar cell 30.

本実施例に係る診断装置20は、太陽光発電システム1の備える太陽電池30について、当該太陽電池を構成するモジュール間の接続配線状態の正常/非正常を診断する機能を有する情報処理装置である。本診断装置においては、制御部10bを通じて測定されたI−V特性を示すデータに基づいて、モジュール間を接続する配線の接続状態が正常状態であるか、非正常状態であるかが診断される。 The diagnostic device 20 according to the present embodiment is an information processing device having a function of diagnosing the normal / abnormal state of the connection wiring between the modules constituting the solar cell with respect to the solar cell 30 included in the photovoltaic power generation system 1. .. In this diagnostic apparatus, it is diagnosed whether the connection state of the wiring connecting the modules is a normal state or an abnormal state based on the data indicating the IV characteristic measured through the control unit 10b. ..

図2および図3は、太陽電池モジュール33の数量と、I−Vカーブとの関係を説明する図である。図2および図3では、図1に示す4段のアレイ31a、31b、31c、31dで構成された太陽電池30において、発電に係るモジュール数を異ならせて計測されたI−V特性データに基づく曲線グラフ(I−Vカーブ)が例示される。なお、以下では、直列に接続されたn個のモジュール33の構成形態を「n直」とも称し、同様にして並列に接続されたm個のモジュール33の構成形態を「m並」とも称する。例えば、図1に示すアレイ31aのモジュール33の構成形態は「3直3並」として表される。図2および図3に例示のI−Vカーブにおいては、縦軸は正規化された電流値を表し、横軸は正規化された電圧値を表す。また、図2および図3において、I−Vカーブと縦軸の交点は、太陽電池30の短絡電流(Isc)を表し、I−Vカーブと横軸の交点は、開放電圧(Voc)を表す。 2 and 3 are diagrams for explaining the relationship between the quantity of the solar cell modules 33 and the IV curve. 2 and 3 are based on IV characteristic data measured with different numbers of modules related to power generation in the solar cell 30 composed of the four-stage arrays 31a, 31b, 31c, and 31d shown in FIG. A curve graph (IV curve) is illustrated. In the following, the configuration form of n modules 33 connected in series is also referred to as "n straight", and the configuration form of m modules 33 connected in parallel in the same manner is also referred to as "m average". For example, the configuration of the module 33 of the array 31a shown in FIG. 1 is represented as "3 straight 3 average". In the IV curves illustrated in FIGS. 2 and 3, the vertical axis represents the normalized current value and the horizontal axis represents the normalized voltage value. Further, in FIGS. 2 and 3, the intersection of the IV curve and the vertical axis represents the short-circuit current (Isc) of the solar cell 30, and the intersection of the IV curve and the horizontal axis represents the open circuit voltage (Voc). ..

図2において、(a)には、アレイ31aを構成するモジュール33の構成形態を3直3並から、1直3並に変えたときに計測されたI−Vカーブが例示される。同様にして、(b)には、アレイ31aのモジュール33の構成形態を3直3並から1直3並に変更した場合のI−Vカーブ、(c)には、アレイ31aのモジュール33の構成形態を3直3並から「3直2並+1直1並」に変更した場合のI−Vカーブが例示される。また、図3(a)には、アレイ31aを構成するモジュール33の構成形態を3直3並から、2直3並に変えたときに計測されたI−Vカーブ、図3(b)には、アレイ31aのモジュール33の構成形態を3直3並から「3直1並+2直1並+1直1並」に変えた場合のI−Vカーブが例示される。図3(c)には、アレイ31aのモジュール33の構成形態を3直
3並から「3直1並+1直2並」に変えた場合のI−Vカーブが例示される。
In FIG. 2, (a) exemplifies the IV curve measured when the configuration form of the module 33 constituting the array 31a is changed from 3 straight 3 rows to 1 straight 3 rows. Similarly, (b) shows the IV curve when the configuration of the module 33 of the array 31a is changed from 3 straight 3 to 1 straight 3, and (c) shows the module 33 of the array 31a. An example is an IV curve when the configuration form is changed from 3 straight 3 average to "3 straight 2 average + 1 straight 1 average". Further, FIG. 3 (a) shows an IV curve measured when the configuration form of the module 33 constituting the array 31a is changed from 3 straight 3 rows to 2 straight 3 rows, as shown in FIG. 3 (b). Is an example of an IV curve when the configuration form of the module 33 of the array 31a is changed from 3 straight 3 average to "3 straight 1 average + 2 linear 1 average + 1 linear 1 average". FIG. 3C exemplifies an IV curve when the configuration of the module 33 of the array 31a is changed from 3 straight 3 average to “3 straight 1 average + 1 linear 2 average”.

太陽光発電システム1において、太陽電池30の状態が正常なときには、一般的にI−Vカーブの形状は滑らかである。すなわち、I−Vカーブは、短絡電流(Isc)を開始点として、電圧増加に伴って電流値が緩やかに減少し、太陽電池30の発電出力が最大電力となる最大電力点の最大電力点電流(Impp)および最大電力点電圧(Vmpp)に推移変化する。そして、最大電力点を経過すると、I−Vカーブは、電圧増加に伴って電流値が相対的に急峻に下降変化し、開放電圧(Voc)に到達するように推移する。I−Vカーブ上において、電圧増加に伴って電流値の減少傾向が相対的に急峻に変化する部分を「肩部分」とも称し、正常状態のI−Vカーブは、一つの肩部分を有するということもできる。 In the photovoltaic power generation system 1, when the state of the solar cell 30 is normal, the shape of the IV curve is generally smooth. That is, in the IV curve, starting from the short-circuit current (Isc), the current value gradually decreases as the voltage increases, and the maximum power point current of the maximum power point at which the power output of the solar cell 30 becomes the maximum power. (Impp) and the maximum power point voltage (Vmpp) change. Then, after the maximum power point has passed, the current value of the IV curve changes relatively steeply as the voltage increases, and changes so as to reach the open circuit voltage (Voc). On the IV curve, the portion where the decreasing tendency of the current value changes relatively sharply with the increase in voltage is also called the "shoulder portion", and the IV curve in the normal state has one shoulder portion. You can also do it.

これに対し、図2および図3に示すように、太陽電池30のアレイ31aを構成するモジュール33の数量が正常状態と異なる場合(非正常状態)には、電圧増加に伴うI−Vカーブの緩やかな形状が崩れることになる。具体的には、正常状態と異なるモジュール数の発電電力の低下に起因する形状変化が、I−Vカーブ上の新たな肩部分となって生じることになる。例えば、正常状態のI−Vカーブでは、肩部分以降の電圧増加に伴う電流値の減少傾向が、緩やかな減少傾向から相対的に急峻な減少傾向に変化し、解放電圧(Voc)に到達する。一方、非正常状態のI−Vカーブでは、肩部分ごとに上記電圧増加に伴う電流値の減少傾向が、「緩やか」から「急峻」に変化する。 On the other hand, as shown in FIGS. 2 and 3, when the number of modules 33 constituting the array 31a of the solar cell 30 is different from the normal state (non-normal state), the IV curve accompanying the voltage increase The gentle shape will collapse. Specifically, the shape change caused by the decrease in the generated power of the number of modules different from the normal state will occur as a new shoulder portion on the IV curve. For example, in the IV curve in the normal state, the decreasing tendency of the current value accompanying the voltage increase after the shoulder portion changes from a gradual decreasing tendency to a relatively steep decreasing tendency, and reaches the release voltage (Voc). .. On the other hand, in the IV curve in the abnormal state, the decreasing tendency of the current value due to the voltage increase changes from "gentle" to "steep" for each shoulder portion.

図4は、非正常状態におけるI−Vカーブの変化傾向を説明する図である。図4において、一点鎖線で示されるグラフg1は、正常状態におけるI−Vカーブの推移変化を表し、実線で示されるグラフg2は、非正常状態におけるI−Vカーブの推移変化を表す。また、縦軸は電流(A)を表し、横軸は電圧(V)を表す。なお、I−Vカーブと縦軸の交点は、太陽電池30の短絡電流(Isc)を表し、I−Vカーブと横軸の交点は、開放電圧(Voc)を表す。 FIG. 4 is a diagram for explaining the change tendency of the IV curve in the abnormal state. In FIG. 4, the graph g1 shown by the alternate long and short dash line represents the transitional change of the IV curve in the normal state, and the graph g2 shown by the solid line represents the transitional change of the IV curve in the abnormal state. The vertical axis represents the current (A), and the horizontal axis represents the voltage (V). The intersection of the IV curve and the vertical axis represents the short-circuit current (Isc) of the solar cell 30, and the intersection of the IV curve and the horizontal axis represents the open circuit voltage (Voc).

図4のグラフg1においては、電圧増加に伴って電流値の減少傾向が変化する領域である肩部分g1aが例示されている。そして、非正常状態のI−Vカーブ(グラフg2)においては、電圧増加に伴って電流値の減少傾向が変化する肩部分が、低電圧側領域(肩部分g2a)と高電圧側領域(肩部分g2b)の2か所に生じることになる。このように、非正常状態のI−Vカーブに生じる肩部分g2aとg2bとの間の推移領域g2cを、本実施形態においては「段差領域g2c」と称する。段差領域g2cにおいては、電圧増加に伴う電流値の減少傾向が、一旦、急峻に変化した後、再び緩やかな減少傾向に移行する。そして、当該減少傾向は、肩部分g2bを過ぎて再び急峻な減少傾向に変化し、解放電圧(Voc)に到達する。 In the graph g1 of FIG. 4, the shoulder portion g1a, which is a region in which the decreasing tendency of the current value changes with the increase in voltage, is exemplified. Then, in the IV curve (graph g2) in the abnormal state, the shoulder portion where the decreasing tendency of the current value changes as the voltage increases is the low voltage side region (shoulder portion g2a) and the high voltage side region (shoulder). It will occur in two places in the part g2b). As described above, the transition region g2c between the shoulder portions g2a and g2b that occurs in the IV curve in the abnormal state is referred to as “step region g2c” in the present embodiment. In the step region g2c, the decreasing tendency of the current value due to the increase in voltage once suddenly changes, and then shifts to a gradual decreasing tendency again. Then, the decreasing tendency changes to a steep decreasing tendency again after passing the shoulder portion g2b, and reaches the release voltage (Voc).

図2および図3で説明したように、施工後の太陽電池30を構成するモジュール33の接続数が正常状態と異なる場合には、I−Vカーブの推移曲線に段差領域g2cが確実に生じることになる。したがって、太陽電池30の施工後に計測されたI−V特性を示すデータに基づいて、段差領域g2cの有無を判定することにより、太陽電池モジュール間を接続する配線の接続不良が判別可能になる。 As described with reference to FIGS. 2 and 3, when the number of connections of the modules 33 constituting the solar cell 30 after construction is different from the normal state, a step region g2c is surely generated in the transition curve of the IV curve. become. Therefore, by determining the presence or absence of the step region g2c based on the data indicating the IV characteristic measured after the construction of the solar cell 30, it is possible to determine the connection failure of the wiring connecting the solar cell modules.

図5は、段差領域を有するI−Vカーブの特徴を説明する図である。図5(a)に示すように、太陽電池30が正常状態の場合のI−Vカーブの形状は、最大電力点を変曲点として、短絡電流(Isc)から開放電圧(Voc)へ推移する凸状曲線である。このため、I−V特性のデータ計測が行われた全区間において、計測点毎に求められる接線は、短絡電流(Isc)から開放電圧(Voc)へ推移するI−Vカーブと交差することはない。一方、図5(b)に示すように、段差領域g2cが存在する場合には、肩部分g2aと
g2bとの間の推移領域で計測点毎に求められる接線の一部が、短絡電流(Isc)から開放電圧(Voc)へ推移するI−Vカーブと交差することになる。
FIG. 5 is a diagram for explaining the characteristics of the IV curve having a stepped region. As shown in FIG. 5A, the shape of the IV curve when the solar cell 30 is in the normal state changes from the short-circuit current (Isc) to the open circuit voltage (Voc) with the maximum power point as the inflection point. It is a convex curve. Therefore, in the entire section where the IV characteristic data is measured, the tangent line obtained for each measurement point may intersect the IV curve that changes from the short-circuit current (Isc) to the open circuit voltage (Voc). No. On the other hand, as shown in FIG. 5B, when the step region g2c exists, a part of the tangent line obtained for each measurement point in the transition region between the shoulder portion g2a and g2b is a short-circuit current (Isc). ) To the open circuit voltage (Voc).

本実施形態に係る診断装置20は、太陽電池30の施工後にPCS10を介して測定された、当該太陽電池のI−V特性を示すデータに基づいて、段差領域g2cの有無を判定する。具体的には、図5で説明したように、計測点毎に接線を求め、当該接線の傾き方向に存在する延長点が短絡電流(Isc)から開放電圧(Voc)へ推移するI−Vカーブと交差するかを判定する。そして、本診断装置20は、施工後の太陽電池30から計測されたI−Vカーブについて段差領域g2cが存在する場合には、太陽電池モジュール間を接続する配線の施工状態は非正常状態と診断する。 The diagnostic device 20 according to the present embodiment determines the presence or absence of the step region g2c based on the data indicating the IV characteristics of the solar cell measured via the PCS 10 after the construction of the solar cell 30. Specifically, as described in FIG. 5, a tangent line is obtained for each measurement point, and an IV curve in which an extension point existing in the inclination direction of the tangent line changes from a short-circuit current (Isc) to an open circuit voltage (Voc). Determine if it intersects with. Then, the present diagnostic apparatus 20 diagnoses that the construction state of the wiring connecting the solar cell modules is an abnormal state when the step region g2c exists for the IV curve measured from the solar cell 30 after construction. do.

<装置構成>
図6は、診断装置20のハードウェア構成の一例を示す図である。図6に示すように、診断装置20は、接続バス26によって相互に接続されたプロセッサ21、主記憶装置22、補助記憶装置23、通信IF24、入出力IF25を構成要素に含むコンピュータである。主記憶装置22および補助記憶装置23は、診断装置20が読み取り可能な記録媒体である。上記の構成要素はそれぞれ複数に設けられてもよいし、一部の構成要素を設けないようにしてもよい。
<Device configuration>
FIG. 6 is a diagram showing an example of the hardware configuration of the diagnostic device 20. As shown in FIG. 6, the diagnostic device 20 is a computer including a processor 21, a main storage device 22, an auxiliary storage device 23, a communication IF 24, and an input / output IF 25 connected to each other by a connection bus 26 as components. The main storage device 22 and the auxiliary storage device 23 are recording media that can be read by the diagnostic device 20. Each of the above components may be provided in a plurality of components, or some components may not be provided.

プロセッサ21は、診断装置20全体の制御を行う中央処理演算装置である。プロセッサ21は、例えば、CPU(Central Processing Unit)やMPU(Micro-Processing Unit)、DSP(Digital Signal Processor)等である。プロセッサ21は、例えば、補助記憶装置23に記憶されたプログラムを主記憶装置22の作業領域に実行可能に展開し、当該プログラムの実行を通じて周辺機器の制御を行うことで所定の目的に合致した機能を提供する。但し、プロセッサ21が提供する一部または全部の機能が、ASIC(Application Specific Integrated Circuit)、GPU(Graphics Processing Unit)等によっ
て提供されてもよい。同様にして、一部または全部の機能が、FPGA(Field-Programmable Gate Array)、数値演算プロセッサ、ベクトルプロセッサ、画像処理プロセッサ等
の専用LSI(large scale integration)、その他のハードウェア回路で実現されても
よい。本実施形態では、診断装置20のプロセッサ21は、「制御部」の一例である。
The processor 21 is a central processing unit that controls the entire diagnostic device 20. The processor 21 is, for example, a CPU (Central Processing Unit), an MPU (Micro-Processing Unit), a DSP (Digital Signal Processor), or the like. The processor 21, for example, deploys a program stored in the auxiliary storage device 23 executably in the work area of the main storage device 22, and controls peripheral devices through the execution of the program to achieve a function that meets a predetermined purpose. I will provide a. However, some or all the functions provided by the processor 21 may be provided by an ASIC (Application Specific Integrated Circuit), a GPU (Graphics Processing Unit), or the like. Similarly, some or all of the functions are realized by a dedicated LSI (large scale integration) such as FPGA (Field-Programmable Gate Array), numerical arithmetic processor, vector processor, image processor, and other hardware circuits. May be good. In this embodiment, the processor 21 of the diagnostic device 20 is an example of a "control unit".

主記憶装置22は、プロセッサ21が実行するプログラム、当該プロセッサが処理するデータ等を記憶する。主記憶装置22は、フラッシュメモリ、RAM(Random Access Memory)やROM(Read Only Memory)を含む。補助記憶装置23は、プロセッサ21等により実行されるプログラムや、動作の設定情報などを記憶する記憶媒体である。補助記憶装置23は、例えば、HDD(Hard-disk Drive)やSSD(Solid State Drive)、EPROM(Erasable Programmable ROM)、フラッシュメモリ、USBメモリ、SD(Secure Digital)メモリカード等を含む。通信IF24は、診断装置20とPCS10といっ
た他の装置とを接続させるための通信インタフェースである。通信IF24は、他の機器との接続方式に応じて適宜の構成を採用できる。入出力IF25は、診断装置20に接続される入力デバイス、出力デバイスとの間でデータの入出力を行うインタフェースである。入出力IF25を通じて、診断結果が診断装置20のLCD等の表示デバイスや、診断装置20に接続されたプリンタ等の出力デバイスに出力される。なお、太陽電池30の、正常/非正常状態に関する診断結果は、通信IF24を通じて接続された他の装置(スマートフォン、データサーバ、PCS等)に通知されてもよい。
The main storage device 22 stores a program executed by the processor 21, data processed by the processor, and the like. The main storage device 22 includes a flash memory, a RAM (Random Access Memory), and a ROM (Read Only Memory). The auxiliary storage device 23 is a storage medium that stores programs executed by the processor 21 and the like, operation setting information, and the like. The auxiliary storage device 23 includes, for example, an HDD (Hard-disk Drive), an SSD (Solid State Drive), an EPROM (Erasable Programmable ROM), a flash memory, a USB memory, an SD (Secure Digital) memory card, and the like. The communication IF 24 is a communication interface for connecting the diagnostic device 20 and another device such as the PCS 10. The communication IF 24 can adopt an appropriate configuration according to the connection method with other devices. The input / output IF25 is an interface for inputting / outputting data to / from an input device and an output device connected to the diagnostic device 20. Through the input / output IF25, the diagnosis result is output to a display device such as an LCD of the diagnostic device 20 or an output device such as a printer connected to the diagnostic device 20. The diagnosis result regarding the normal / abnormal state of the solar cell 30 may be notified to other devices (smartphone, data server, PCS, etc.) connected through the communication IF 24.

<機能構成>
図7は、本実施例に係る診断装置20のより詳細な機能構成の一例を示すブロック図である。本実施例に係る診断装置20は、機能要素として、IVカーブデータ読み込み部110と、段差検出用設定値保持部120と、判定基準保持部130と、交差有無判定部1
40と、段差判定部150と、判定結果表示部160と、判定結果送信部170を備える。本診断装置20は、プロセッサ21が補助記憶装置23等に格納されたソフトウェアプログラムの実行を通じて上記機能要素を提供することで、I−Vカーブと各計測点における接線との交差を求め、段差領域g2cの有無の判定を行う。
<Functional configuration>
FIG. 7 is a block diagram showing an example of a more detailed functional configuration of the diagnostic apparatus 20 according to the present embodiment. The diagnostic device 20 according to the present embodiment has the IV curve data reading unit 110, the step detection set value holding unit 120, the determination standard holding unit 130, and the intersection presence / absence determination unit 1 as functional elements.
40, a step determination unit 150, a determination result display unit 160, and a determination result transmission unit 170 are provided. The diagnostic device 20 obtains the intersection of the IV curve and the tangent line at each measurement point by providing the above functional elements through the execution of the software program stored in the auxiliary storage device 23 or the like by the processor 21, and obtains the step area. The presence or absence of g2c is determined.

先ず、IVカーブデータ読み込み部110は、通信IF24を通じて接続されたPCS10から、所定の場所(架台や屋上等)に設けられた太陽電池30のI−V特性を示すデータ(IVカーブデータ)を取得する。取得されたIVカーブデータは、例えば、日時情報、PCS10を識別する識別番号等と関連付けされて、補助記憶装置23の所定の領域に格納される。図8(a)は、PCS10によって取得された太陽電池30のIVカーブデータの一例を示す図である。図8(a)においては、開放電圧(Voc)から短絡電流(Isc)に至る動作領域において、動作点電圧を変化させて取得されたテーブル形式のIVカーブデータが例示される。図8(a)に示すように、IVカーブデータは、動作点電圧を変化させるサンプリング番号(j)と、当該番号に対応付けされた電圧値(電圧(V_j)[V])、電流値(電流(I_j[A])によって構成される。 First, the IV curve data reading unit 110 acquires data (IV curve data) indicating the IV characteristics of the solar cell 30 provided at a predetermined location (such as a gantry or rooftop) from the PCS 10 connected through the communication IF 24. do. The acquired IV curve data is stored in a predetermined area of the auxiliary storage device 23 in association with, for example, date and time information, an identification number for identifying the PCS 10. FIG. 8A is a diagram showing an example of IV curve data of the solar cell 30 acquired by the PCS 10. In FIG. 8A, table-type IV curve data acquired by changing the operating point voltage in the operating region from the open circuit voltage (Voc) to the short circuit current (Isc) is illustrated. As shown in FIG. 8A, the IV curve data includes a sampling number (j) for changing the operating point voltage, a voltage value (voltage (V_j) [V]) associated with the number, and a current value ( It is composed of an electric current (I_j [A]).

次に、交差有無判定部140においては、PCS10から取得したIVカーブデータの各計測点における接線の傾きが求められる。図9は、交差有無判定部140において提供される接線の傾きを求める処理を説明する図である。本実施形態においては、接線の傾きは、サンプリング番号(j)で低電圧側に隣接する隣接点Aと、高電圧側に隣接する隣接点Cとの電流差(ΔIj)/電圧差(ΔVj)によって求められる。 Next, in the intersection presence / absence determination unit 140, the slope of the tangent line at each measurement point of the IV curve data acquired from the PCS 10 is obtained. FIG. 9 is a diagram illustrating a process of obtaining the inclination of the tangent line provided by the intersection presence / absence determination unit 140. In the present embodiment, the slope of the tangent line is the current difference (ΔIj) / voltage difference (ΔVj) between the adjacent point A adjacent to the low voltage side and the adjacent point C adjacent to the high voltage side at the sampling number (j). Demanded by.

図9に示す計測点A、B、Cは、PCS10から取得されたIVカーブデータにおいて、サンプリング番号で隣接する計測点のデータである。本診断装置20においては、計測点Bの傾きは、以下の式(3)によって、高電圧側に隣接する計測点Cと、低電圧側に隣接する計測点Aの電圧値および電流値の差分によって算出される。
Db=(Ic−Ia)/(Vc−Va) ・・・式(3)
ここで、「Db」は、計測点Bにおける接線の傾きを表し、「Vx」は、計測点Xにおける電圧値を表し、「Ix」は計測点Xにおける電流値を表す。
The measurement points A, B, and C shown in FIG. 9 are the data of the measurement points adjacent to each other by the sampling number in the IV curve data acquired from the PCS10. In the diagnostic apparatus 20, the inclination of the measurement point B is the difference between the voltage value and the current value of the measurement point C adjacent to the high voltage side and the measurement point A adjacent to the low voltage side according to the following equation (3). Calculated by.
Db = (Ic-Ia) / (Vc-Va) ... Equation (3)
Here, "Db" represents the slope of the tangent line at the measurement point B, "Vx" represents the voltage value at the measurement point X, and "Ix" represents the current value at the measurement point X.

式(3)により、計測点Pにおける接線の傾きDpが求められると、交差有無判定部140においては、当該接線の内外判定が行われる。ここで、「内外判定」とは、計測点Pで求められた傾きDpの接線がI−Vカーブと交差し、当該カーブ曲線で区別される領域内に到達するか否かの判定をいう。「内外判定」においては、計測点Pで求められた傾きDpの接線が、I−Vカーブ曲線で区別される領域内に到達するか否かを判定するための設定基準(段差検出用設定値)が用いられる。このような設定基準は、段差検出用設定値保持部120によって保持される。 When the slope Dp of the tangent line at the measurement point P is obtained by the equation (3), the intersection presence / absence determination unit 140 determines the inside / outside of the tangent line. Here, the "inside / outside determination" refers to a determination as to whether or not the tangent line of the slope Dp obtained at the measurement point P intersects the IV curve and reaches the region distinguished by the curve curve. In the "inside / outside determination", a setting standard (set value for step detection) for determining whether or not the tangent line of the slope Dp obtained at the measurement point P reaches within the region distinguished by the IV curve curve. ) Is used. Such a setting reference is held by the step detection set value holding unit 120.

図10は、本実施例における、計測点Pに対する接線の内外判定を説明する図である。図5(b)で説明したように、太陽電池30から取得されたI−Vカーブにおいて、段差領域g2cが存在する場合には、少なくとも低電圧側に形成される肩部分g2aと、高電圧側に形成される肩部分g2bを有することになる。そして、肩部分g2aとg2bとの間の推移領域で計測点毎に求められる接線の一部が、短絡電流(Isc)から開放電圧(Voc)へ推移するI−Vカーブと交差することになる。このため、図10(a)に示すように、低電圧側に形成される肩部分g2aに到達するまでの領域においては、各計測点の接線は、I−Vカーブと交差せず、当該カーブ曲線で区別される領域外となる。また、肩部分g2aとg2bとの間の推移領域では、図10(b)に示すように、計測点毎に求められる接線の一部が、I−Vカーブと交差し、当該カーブ曲線で区別される領域内となる。 FIG. 10 is a diagram for explaining the inside / outside determination of the tangent line with respect to the measurement point P in this embodiment. As described with reference to FIG. 5B, in the IV curve acquired from the solar cell 30, when the step region g2c is present, at least the shoulder portion g2a formed on the low voltage side and the high voltage side are formed. Will have a shoulder portion g2b formed in. Then, a part of the tangent line obtained for each measurement point in the transition region between the shoulder portions g2a and g2b intersects the IV curve transitioning from the short-circuit current (Isc) to the open circuit voltage (Voc). .. Therefore, as shown in FIG. 10A, the tangent line of each measurement point does not intersect the IV curve in the region until the shoulder portion g2a formed on the low voltage side is reached, and the curve is concerned. It is outside the area distinguished by the curve. Further, in the transition region between the shoulder portions g2a and g2b, as shown in FIG. 10B, a part of the tangent line obtained for each measurement point intersects the IV curve and is distinguished by the curve curve. It will be in the area to be.

図10(a)において、図5(b)に示す肩部分g2aに到達するまでの領域における計測点Pでは、当該計測点Pで求められた接線Tが、破線で示されるようにIVカーブと交差することはない。一方、図10(b)において、図5(b)に示す肩部分g2aから肩部分g2bに到達するまでの領域における計測点Pでは、該計測点Pで求められた接線Tは、破線で示されるようにIVカーブと交差し、当該カーブ曲線で区別される領域内となる。本実施例における段差判定においては、各計測点で求められた接線TがIVカーブと交差するか否かを特定するため、計測点Pに対して一定の電圧値をオフセットさせた判定点PThreshにおける実測電流値と、計測点Pの接線Tによる判定点PThreshにおける電流値(接線電流値)との大きさを比較する。そして、実測電流値と接線電流値の比較結果を計測点毎の評価値Jpとして保持する。 In FIG. 10 (a), at the measurement point P in the region until reaching the shoulder portion g2a shown in FIG. 5 (b), the tangent line T obtained at the measurement point P is the IV curve as shown by the broken line. It never intersects. On the other hand, in FIG. 10B, at the measurement point P in the region from the shoulder portion g2a to the shoulder portion g2b shown in FIG. 5B, the tangent line T obtained at the measurement point P is indicated by a broken line. It intersects the IV curve so that it is within the region distinguished by the curve curve. In the step determination in this embodiment, in order to specify whether or not the tangent T obtained at each measurement point intersects the IV curve, the determination point PThresh in which a constant voltage value is offset with respect to the measurement point P The magnitude of the measured current value and the current value (tangent current value) at the determination point PThresh by the tangent line T of the measurement point P are compared. Then, the comparison result of the measured current value and the tangential current value is held as the evaluation value Jp for each measurement point.

図10(a)に示すように、段差判定を行うための一定のオフセット電圧値は、計測点Pに対する電圧距離dとして与えられ、「段差検出用設定値」として段差検出用設定値保持部120に保持される。図8(b)には、テーブル形式で保持される段差検出用設定値が例示される。図8(b)に示すように、段差検出用設定値は計測点Pに対する電圧距離(d)として設定されたオフセット電圧値(図例では「30V」が単位とともに格納される。なお、段差検出用設定値は、太陽光発電システム1の発電量やモジュール数、アレイ数等に応じて任意に設定できる。 As shown in FIG. 10A, a constant offset voltage value for performing the step determination is given as a voltage distance d with respect to the measurement point P, and the step detection set value holding unit 120 is used as the “step detection set value”. Is held in. FIG. 8B exemplifies a step detection setting value held in a table format. As shown in FIG. 8B, the step detection set value is an offset voltage value set as a voltage distance (d) with respect to the measurement point P (“30V” is stored together with the unit in the figure example. The set value can be arbitrarily set according to the amount of power generated by the photovoltaic power generation system 1, the number of modules, the number of arrays, and the like.

図10に戻り、判定点PThreshにおける実測電流値を「IThresh」、実測電圧値を「VThresh」とすると、計測点Pで求められた接線Tによる、判定点PThreshにおける接線電流値(IT@Thresh)は、以下の式(1)で表される。
IT@Thresh=(Dp)×(VThresh)+((Ip)−(Dp)×(Vp))
・・・式(1)
ここで、「IT@Thresh」は計測点Pで接線Tの直線方程式に判定点PThreshの電圧値(実測電圧値:VThresh)を代入して求められる電流値を表し、「Dp」は、式(3)によって求められた計測点Pの接線傾きを表す。判定点PThreshは、計測点Pの電圧値(Vp)に段差検出用設定値(d)を加えた電圧値に最も近いサンプル点を表す。「Vx」および「Ix」は、計測点Xの電圧値および電流値を表す。
Returning to FIG. 10, assuming that the measured current value at the judgment point PThresh is "ITresh" and the measured voltage value is "VThresh", the tangent current value at the judgment point PThresh (IT @ Thresh) is based on the tangent line T obtained at the measurement point P. Is expressed by the following equation (1).
IT @ Thresh = (Dp) x (VThresh) + ((Ip)-(Dp) x (Vp))
... Equation (1)
Here, "IT @ Thresh" represents the current value obtained by substituting the voltage value (measured voltage value: VThresh) of the judgment point PThresh into the linear equation of the tangent line T at the measurement point P, and "Dp" is the equation (Dp). It represents the tangential slope of the measurement point P obtained in 3). The determination point PThresh represents the sample point closest to the voltage value obtained by adding the step detection set value (d) to the voltage value (Vp) of the measurement point P. “Vx” and “Ix” represent the voltage value and the current value of the measurement point X.

式(1)により、計測点Pにおける接線の判定点PThreshにおける接線電流値(IT@Thresh)が求められると、交差有無判定部140においては、以下の式(2)を用いて内外判定(段差内外判定)が行われる。
段差内点:IThresh > IT@Thresh ・・・式(2)
式(2)による判定の結果は、計測点毎の評価値Jpに保持される。例えば、図10(a)に示すように判定点PThreshにおける実測電流値「IThresh」より、計測点Pで求められた接線Tによる接線電流値(IT@Thresh)が大きいときには、段差外を示す値(例えば、「0」)が評価値Jpに保持される。一方、図10(b)に示すように判定点PThreshにおける実測電流値「IThresh」より、計測点Pで求められた接線Tによる接線電流値(IT@Thresh)が小さいときには、段差内であることを示す値(例えば、「1」)が評価値Jpに保持される。交差有無判定部140は、PCS10を通じて取得されたIVカーブデータの全てのデータに対して、式(1)から(3)に示す演算処理を行い、サンプリング番号で指定される計測点毎の評価値Jpを取得する。計測点毎の評価値Jpは、段差判定部150に引き渡される。
When the tangent current value (IT @ Thresh) at the tangent determination point PThresh at the measurement point P is obtained by the equation (1), the intersection presence / absence determination unit 140 uses the following equation (2) to determine the inside / outside (step). Inside / outside judgment) is performed.
Step inside point: ITResh > IT @ Thresh ・ ・ ・ Equation (2)
The result of the determination by the equation (2) is held in the evaluation value Jp for each measurement point. For example, as shown in FIG. 10A, when the tangent current value (IT @ Thresh) due to the tangent line T obtained at the measurement point P is larger than the measured current value “IThresh” at the determination point PThresh, the value indicates the outside of the step. (For example, "0") is held in the evaluation value Jp. On the other hand, as shown in FIG. 10B, when the tangent current value (IT @ Thresh) due to the tangent line T obtained at the measurement point P is smaller than the measured current value "ITresh" at the determination point PThresh, it is within the step. (For example, "1") is held in the evaluation value Jp. The intersection presence / absence determination unit 140 performs the arithmetic processing shown in the equations (1) to (3) on all the IV curve data acquired through the PCS 10, and evaluates each measurement point specified by the sampling number. Get Jp. The evaluation value Jp for each measurement point is delivered to the step determination unit 150.

段差判定部150においては、交差有無判定部140から引き渡された計測点毎の評価値Jpと、判定基準保持部130に保持された段差の有無を判定する判定基準値とに基づいて、取得されたIVカーブデータに段差領域g2cが存在するか否かが判断される。 In the step determination unit 150, the evaluation value Jp for each measurement point handed over from the intersection presence / absence determination unit 140 and the determination reference value for determining the presence / absence of the step held in the determination reference holding unit 130 are acquired. It is determined whether or not the step region g2c exists in the IV curve data.

段差判定部150は、交差有無判定部140から引き渡された計測点毎の評価値Jpか
ら、段差の有無を判断するためのスコア値(J)を、以下の式(4)を用いて算出する。
J=(ΣXp)/L ・・・式(4)
ここで、Pは、1からNまでのサンプリング番号を表し、「Xp」はサンプリング番号で指定される各計測点の評価値Jpを表す。「N」はスコア算出用データのサンプル点数を表す。したがって、「L」=「N」である。段差判定部150は、計測点毎に処理された評価値Jpの総和をサンプル点数で除算し、判定に係るスコア値(J)を算出する。
The step determination unit 150 calculates a score value (J) for determining the presence or absence of a step from the evaluation value Jp for each measurement point handed over from the intersection presence / absence determination unit 140 using the following equation (4). ..
J = (ΣXp) / L ・ ・ ・ Equation (4)
Here, P represents a sampling number from 1 to N, and “Xp” represents an evaluation value Jp of each measurement point specified by the sampling number. "N" represents the sample score of the score calculation data. Therefore, "L" = "N". The step determination unit 150 divides the sum of the evaluation values Jp processed for each measurement point by the number of sample points to calculate the score value (J) related to the determination.

そして、段差判定部150は、式(4)を用いて求められたスコア値(J)と、判定基準保持部130に保持された判定基準値(Thr)との大小比較を行い、取得されたIVカーブデータに段差領域g2cが存在するか否かを判定する。スコア値(J)に対する判定は、以下の式(5)を用いて行われる。なお、判定基準保持部130に保持される判定基準値は、図8(c)に例示される。図8(c)に示すように、判定基準値(Thr)はスコア値に対する判定閾値(図例では、「0.2」)として格納される。また、スコア値を評価するための判定基準値は、太陽光発電システム1の発電量やモジュール数、アレイ数等に応じて任意に設定できる。
J≦Thr ・・・・式(5)
Then, the step determination unit 150 performs a magnitude comparison between the score value (J) obtained using the equation (4) and the determination reference value (Thr) held in the determination reference holding unit 130, and is obtained. It is determined whether or not the step region g2c exists in the IV curve data. The determination for the score value (J) is performed using the following equation (5). The determination reference value held by the determination reference holding unit 130 is illustrated in FIG. 8C. As shown in FIG. 8C, the determination reference value (Thr) is stored as a determination threshold value (“0.2” in the figure) with respect to the score value. Further, the determination reference value for evaluating the score value can be arbitrarily set according to the amount of power generation of the photovoltaic power generation system 1, the number of modules, the number of arrays, and the like.
J ≦ Thr ・ ・ ・ ・ Equation (5)

段差判定部150は、スコア値(J)が判定基準値(Thr)以下のときには、太陽電池30から取得されたIVカーブデータには、段差領域g2cは存在しないと判断する。つまり、太陽電池30を構成する太陽電池モジュール間の接続配線の施工状態は正常状態と判定される。一方、スコア値(J)が判定基準値(Thr)を超えるときには、太陽電池30から取得されたIVカーブデータには、段差領域g2cが存在していると判断される。すなわち、太陽電池30を構成する太陽電池モジュール間の接続配線の施工状態は、接続ミス等が生じた非正常状態と判定される。 When the score value (J) is equal to or less than the determination reference value (Thr), the step determination unit 150 determines that the step region g2c does not exist in the IV curve data acquired from the solar cell 30. That is, the construction state of the connection wiring between the solar cell modules constituting the solar cell 30 is determined to be a normal state. On the other hand, when the score value (J) exceeds the determination reference value (Thr), it is determined that the step region g2c exists in the IV curve data acquired from the solar cell 30. That is, the construction state of the connection wiring between the solar cell modules constituting the solar cell 30 is determined to be an abnormal state in which a connection error or the like has occurred.

図7に戻り、段差判定部150は、スコア値(J)と判定基準値(Thr)に基づいて処理された判定結果を判定結果表示部150および判定結果送信部160に引き渡す。判定結果表示部150は、例えば、診断装置20の備えるLCD等の表示デバイス上に、判定結果を表示させる。診断装置20の表示画面には、例えば、PCS10から取得されたデータに基づくIVカーブとともに、太陽電池モジュール間を接続する配線状態の正常/非正常状態が表示される。また、判定結果送信部160は、診断装置20に接続されたPCS10や、他の装置(スマートフォン、サーバ等)に対して、判定結果を送信する。判定結果は、例えば、太陽光発電システム1を識別する識別情報(PCS10の識別番号)、日時情報とともに、取得されたIVカーブとともに送信される。診断装置20と接続される装置においては、当該太陽光発電システムについての、太陽電池モジュール間を接続する配線状態の正常/非正常に係る診断結果が、PCS10から取得されたデータに基づくIVカーブとともに閲覧することが可能になる。 Returning to FIG. 7, the step determination unit 150 delivers the determination result processed based on the score value (J) and the determination reference value (Thr) to the determination result display unit 150 and the determination result transmission unit 160. The determination result display unit 150 displays the determination result on, for example, a display device such as an LCD included in the diagnostic apparatus 20. On the display screen of the diagnostic apparatus 20, for example, the normal / abnormal state of the wiring state connecting the solar cell modules is displayed together with the IV curve based on the data acquired from the PCS 10. Further, the determination result transmission unit 160 transmits the determination result to the PCS 10 connected to the diagnostic apparatus 20 and other devices (smartphone, server, etc.). The determination result is transmitted together with the acquired IV curve together with, for example, the identification information (identification number of the PCS10) for identifying the photovoltaic power generation system 1 and the date and time information. In the device connected to the diagnostic device 20, the diagnostic results relating to the normal / abnormal wiring state of the photovoltaic power generation system connecting between the solar cell modules are shown together with the IV curve based on the data acquired from the PCS 10. It will be possible to browse.

<処理の流れ>
図11は、本実施例に係る診断装置20で提供される診断処理の一例を示すフローチャートである。図10のフローにおいては、PCS10を通じて取得されたIVカーブデータに基づいて、太陽電池モジュール間を接続する配線状態の正常/非正常状態が診断される。診断装置20は、通信IF24を通じて接続されたPCS10から、実測されたI−V特性を示す電圧値および電流値(IVカーブデータ)を取得する(ステップS101)と、取得したIVカーブデータを補助記憶装置23の所定の領域に記憶し、処理はステップS102に進む。ステップS102においては、取得されたIVカーブデータの各計測点における接線の傾きDpが式(3)を用いて算出されると、処理がステップS103に進む。ステップS103においては、図8、図9、図10を用いて説明したように、式(1)から式(3)を用いて各計測点の接線とIVカーブ曲線の交差の有無が判定される。ステップS103の処理後、処理はステップS104に進む。
<Processing flow>
FIG. 11 is a flowchart showing an example of the diagnostic process provided by the diagnostic apparatus 20 according to the present embodiment. In the flow of FIG. 10, the normal / abnormal state of the wiring state connecting the solar cell modules is diagnosed based on the IV curve data acquired through the PCS10. The diagnostic device 20 acquires a voltage value and a current value (IV curve data) indicating the actually measured IV characteristics from the PCS 10 connected through the communication IF 24 (step S101), and stores the acquired IV curve data as auxiliary storage. The data is stored in a predetermined area of the device 23, and the process proceeds to step S102. In step S102, when the slope Dp of the tangent line at each measurement point of the acquired IV curve data is calculated using the equation (3), the process proceeds to step S103. In step S103, as described with reference to FIGS. 8, 9 and 10, it is determined whether or not the tangent of each measurement point intersects with the IV curve curve using equations (1) to (3). .. After the processing of step S103, the processing proceeds to step S104.

ステップS104では、式(4)を用いて段差判定用のスコア値(J)が算出されると、処理がステップS105に進む。ステップS105では、式(5)を用いて、取得されたIVカーブ曲線上に段差領域が存在するか否かが判定される。例えば、スコア値(J)が判定基準値(Thr)以下のときには、PCS10を通じて取得されたIVカーブデータには、段差領域g2cは存在しないと判断する。つまり、診断対象の太陽光発電システム1の太陽電池30を構成する太陽電池モジュール間の接続配線の施工状態は正常状態と判定される。一方、スコア値(J)が判定基準値(Thr)を超えるときには、PCS10を通じて取得されたIVカーブデータには、段差領域g2cが存在すると判断される。すなわち、診断対象の太陽光発電システム1の太陽電池30を構成する太陽電池モジュール間の接続配線の施工状態は、接続ミス等が生じた非正常状態と判定される。ステップS105の処理後、処理はステップS106に進む。ステップS106では、判定結果が診断装置20の備える表示デバイス等の表示部に表示され、また、通信部である通信IF24を通じて接続された他の装置(PCS10、スマートフォン、サーバ等)に送信される。例えば、診断装置20と接続される装置においては、当該太陽光発電システムについての、太陽電池モジュール間を接続する配線状態の正常/非正常に係る診断結果が、PCS10から取得されたデータに基づくIVカーブとともに閲覧可能になる。ステップS106の処理が終了すると本ルーチンを一旦終了する。 In step S104, when the score value (J) for determining the step is calculated using the equation (4), the process proceeds to step S105. In step S105, it is determined whether or not a step region exists on the acquired IV curve curve using the equation (5). For example, when the score value (J) is equal to or less than the judgment reference value (Thr), it is determined that the step region g2c does not exist in the IV curve data acquired through the PCS10. That is, it is determined that the construction state of the connection wiring between the solar cell modules constituting the solar cell 30 of the photovoltaic power generation system 1 to be diagnosed is a normal state. On the other hand, when the score value (J) exceeds the determination reference value (Thr), it is determined that the step region g2c exists in the IV curve data acquired through the PCS10. That is, the construction state of the connection wiring between the solar cell modules constituting the solar cell 30 of the photovoltaic power generation system 1 to be diagnosed is determined to be an abnormal state in which a connection error or the like has occurred. After the process of step S105, the process proceeds to step S106. In step S106, the determination result is displayed on a display unit such as a display device included in the diagnostic device 20, and is transmitted to another device (PCS10, smartphone, server, etc.) connected through the communication IF24 which is a communication unit. For example, in the device connected to the diagnostic device 20, the diagnostic result relating to the normal / abnormal of the wiring state connecting the solar cell modules for the photovoltaic power generation system is based on the data acquired from the PCS10 IV. It will be viewable along with the curve. When the process of step S106 is completed, this routine is temporarily terminated.

以上、説明したように、本実施例においては、IVカーブデータの形状に基づいて、太陽光発電システム1を構成する太陽電池30の、太陽電池モジュール間を接続する配線状態の正常/非正常が診断できる。具体的には、実測された各計測点から当該計測点における接線Tの傾きDpが求められる。そして、計測点Pに対して一定の電圧値(段差検出用設定値)をオフセットさせた判定点PThreshにおける実測電流値と、当該判定点の実測電圧値に対する接線Tの傾きDpから求められた電流値(接線電流値)とを比較する。判定点PThreshにおける実測電流値「IThresh」より、計測点Pで求められた接線Tによる接線電流値(IT@Thresh)が大きいときには、IVカーブ曲線と交差しないことを示す値(例えば、「0」)を評価値Jpとして保持する。一方、判定点PThreshにおける実測電流値「IThresh」より、計測点Pで求められた接線Tによる接線電流値(IT@Thresh)が小さいときには、IVカーブ曲線と交差することを示す値(例えば、「1」)を評価値Jpとして保持する。そして、IVカーブデータが計測された全区間の計測点に対して保持された評価値Jpの総和に基づいて、段差領域の有無を判断する。 As described above, in this embodiment, the normal / abnormal wiring state of the solar cells 30 constituting the photovoltaic power generation system 1 connecting between the solar cell modules is determined based on the shape of the IV curve data. Can be diagnosed. Specifically, the slope Dp of the tangent line T at the measurement point can be obtained from each measured measurement point. Then, the current obtained from the measured current value at the determination point PThresh in which a constant voltage value (set value for step detection) is offset with respect to the measurement point P and the slope Dp of the tangent T with respect to the measured voltage value at the determination point. Compare with the value (tangential current value). When the tangent current value (IT @ Thresh) due to the tangent line T obtained at the measurement point P is larger than the measured current value "ITresh" at the determination point PThresh, a value indicating that it does not intersect the IV curve curve (for example, "0"). ) Is held as the evaluation value Jp. On the other hand, when the tangent current value (IT @ Thresh) due to the tangent line T obtained at the measurement point P is smaller than the measured current value "IThresh" at the determination point PThresh, a value indicating that it intersects the IV curve curve (for example, "IThresh"). 1 ”) is held as the evaluation value Jp. Then, the presence or absence of the step region is determined based on the sum of the evaluation values Jp held for the measurement points in all the sections where the IV curve data is measured.

本実施例においては、IVカーブデータが計測された全区間の計測点に対して保持された評価値Jpの総和が判定基準以下のときには段差領域は存在しないと判断し、太陽電池30を構成する太陽電池モジュール間の接続配線の施工状態は正常状態と診断する。また、上記評価値Jpの総和が判定基準を超えるときには段差領域は存在していると判断し、太陽電池30を構成する太陽電池モジュール間の接続配線の施工状態は非正常状態と診断する。この結果、本実施形態においては、IVカーブデータの形状に基づいて、太陽電池モジュール間を接続する配線の接続不良が判別可能になり、太陽光発電システムにおける施工品質が向上できる。 In this embodiment, when the sum of the evaluation values Jp held for the measurement points in all the sections where the IV curve data is measured is equal to or less than the judgment standard, it is determined that the step region does not exist, and the solar cell 30 is configured. The construction status of the connection wiring between the solar cell modules is diagnosed as normal. Further, when the sum of the evaluation values Jp exceeds the judgment standard, it is determined that the step region exists, and the construction state of the connection wiring between the solar cell modules constituting the solar cell 30 is diagnosed as an abnormal state. As a result, in the present embodiment, it is possible to determine the connection failure of the wiring connecting the solar cell modules based on the shape of the IV curve data, and the construction quality in the photovoltaic power generation system can be improved.

また、本実施形態においては、各計測点における接線の傾きDpに基づいてIVカーブにおける段差領域が判定できるため、実測されたIVカーブの面積および実測IVカーブに基準IVカーブの面積を求めなくともよい。本実施形態によれば、診断に係る演算の処理コストを低減できる。さらに、本実施形態においては、IVカーブの計測点毎に算出された評価値(Jp)の総和に基づいてスコア値を算出するため、例えば、IVカーブデータ計測時に重畳されたノイズ等の影響が低減できる。本実施形態によれば、太陽電池モジュール間の接続配線の施工状態の正常/非正常の判定確度を高めることができる。 Further, in the present embodiment, since the step region in the IV curve can be determined based on the slope Dp of the tangent line at each measurement point, it is not necessary to obtain the area of the measured IV curve and the area of the reference IV curve from the measured IV curve. good. According to this embodiment, the processing cost of the calculation related to the diagnosis can be reduced. Further, in the present embodiment, since the score value is calculated based on the sum of the evaluation values (Jp) calculated for each measurement point of the IV curve, for example, the influence of noise superimposed during the measurement of the IV curve data is affected. Can be reduced. According to this embodiment, it is possible to increase the accuracy of determining whether the connection wiring between the solar cell modules is normal or not.

〔実施例2〕
図12は、実施例2に係る診断装置20の機能構成の一例を示すブロック図である。実施例2においては、診断装置20は、機能要素として、間引き用設定値保持部210と、データの間引き処理部220とをさらに備える。実施例2に係る診断装置20においては、間引き用設定値保持部210とデータの間引き処理部220の機能により、PCS10を通じて取得されたIVカーブデータに対する間引き処理が行われる。本実施例においては、間引き処理を行うことにより、段差判定に係る実測データについての、電流の計測誤差やノイズの影響による段差誤差検出が低減される。本実施形態によれば、太陽電池モジュール間の接続配線の施工状態の正常/非正常の判定制度を高めることができる。なお、図12において、実施例1と同様の構成については同様の符号を用いて詳細な説明を省略するとともに、実施例1との相違点を主に説明する。
[Example 2]
FIG. 12 is a block diagram showing an example of the functional configuration of the diagnostic apparatus 20 according to the second embodiment. In the second embodiment, the diagnostic device 20 further includes a thinning setting value holding unit 210 and a data thinning processing unit 220 as functional elements. In the diagnostic apparatus 20 according to the second embodiment, thinning processing is performed on the IV curve data acquired through the PCS 10 by the functions of the thinning set value holding unit 210 and the data thinning processing unit 220. In this embodiment, by performing the thinning process, it is possible to reduce the detection of the step error due to the influence of the current measurement error and noise in the actually measured data related to the step determination. According to this embodiment, it is possible to enhance the normal / abnormal determination system of the construction state of the connection wiring between the solar cell modules. In FIG. 12, a detailed description of the same configuration as that of the first embodiment will be omitted by using the same reference numerals, and differences from the first embodiment will be mainly described.

図12において、データの間引き処理部220は、間引き用設定値保持部210に保持された間引き用設定値にしたがって、PCS10を通じて取得されたIVカーブデータに対する間引き処理を実行し、間引き処理後のデータを交差有無判定部140に引き渡す。そして、本実施例の交差有無判定部140では、間引き用設定値にしたがって間引きされたIVカーブデータに基づいて、実施例1で説明した式(1)から式(3)に示す演算処理が行われ、計測点毎の評価値Jpが算出される。 In FIG. 12, the data thinning processing unit 220 executes thinning processing on the IV curve data acquired through the PCS 10 according to the thinning setting value held in the thinning setting value holding unit 210, and the data after the thinning processing. Is handed over to the intersection presence / absence determination unit 140. Then, in the intersection presence / absence determination unit 140 of the present embodiment, the arithmetic processing shown in the equations (1) to (3) described in the first embodiment is performed based on the IV curve data thinned out according to the thinning setting value. Therefore, the evaluation value Jp for each measurement point is calculated.

図13は、間引き用設定値保持部210に保持された間引き用設定値の一例を示す図である。間引き用設定値においては、電流の計測誤差やノイズの影響による変動幅を低減するために設定された電流幅(IThr)が単位とともに格納される。図13においては、電
流幅(IThr)として「0.08A」が設定されている。なお、間引き用設定値は、太陽光発電システム1の発電量やモジュール数、アレイ数等の規模に応じて任意に設定可能である。
FIG. 13 is a diagram showing an example of the thinning set value held in the thinning set value holding unit 210. In the thinning set value, the current width (ITr) set for reducing the fluctuation width due to the influence of current measurement error and noise is stored together with the unit. In FIG. 13, “0.08A” is set as the current width (ITr). The thinning setting value can be arbitrarily set according to the scale of the power generation amount, the number of modules, the number of arrays, etc. of the photovoltaic power generation system 1.

図14は、IVカーブデータに対する間引き処理を説明する図である。図14において、計測点p−1、p、p+1は、注目Index(サンプリング番号)をpとした場合に低電圧側および高電圧側に隣接する計測点である。計測点p−1、p、p+1のそれぞれの実測電流値をIp−1、Ip、Ip+1とする。データの間引き処理部220においては、間引き用設定値として設定された電流幅(IThr)に基づいて、以下の式(6)を用
いて間引き処理を実行する。
|Ip−Ip+1|<IThr 、かつ、|Ip-1−Ip|<IThr ・・・式(6)
すなわち、注目点pに隣接する低電圧側p−1との差分、および、注目点pに隣接する高電圧側p+1との差分電流値が、電流幅(IThr)以上になるように、IVカーブデー
タの間引きが行われる。データの間引き処理部220は、式(6)の条件を満たす計測点が存在しなくなるまで、データ間引きを実行する。
FIG. 14 is a diagram illustrating a thinning process for IV curve data. In FIG. 14, the measurement points p-1, p, and p + 1 are measurement points adjacent to the low voltage side and the high voltage side when the attention index (sampling number) is p. Let the measured current values of the measurement points p-1, p, and p + 1 be Ip-1, Ip, and Ip + 1, respectively. The data thinning processing unit 220 executes the thinning processing using the following equation (6) based on the current width (ITr) set as the thinning set value.
| Ip-Ip + 1 | <IThr, and | Ip-1-Ip | <IThr ... Equation (6)
That is, the IV curve so that the difference between the low voltage side p-1 adjacent to the point of interest p and the difference current value from the high voltage side p + 1 adjacent to the point of interest p are equal to or greater than the current width (IThr). Data is thinned out. The data thinning processing unit 220 executes data thinning until there are no measurement points satisfying the condition of the equation (6).

図15は、本実施例に係る診断装置20で提供される診断処理の一例を示すフローチャートである。図15のフローにおいては、PCS10を通じて取得されたIVカーブデータに基づいて、太陽電池モジュール間を接続する配線状態の正常/非正常状態が診断される。診断装置20は、通信IF24を通じて接続されたPCS10から、実測されたI−V特性を示す電圧値および電流値(IVカーブデータ)を取得する(ステップS101)と、取得したIVカーブデータを補助記憶装置23の所定の領域に記憶し、処理はステップS111に進む。ステップS111においては、間引き用設定値として設定された電流幅(IThr)に基づいて、式(6)に示す計測データ間の間引き処理が実行される。取得
されたIVカーブデータに対して、式(6)の条件を満たす計測点が存在しなくなると、処理はステップS102に進む。ステップS102以降においては、図11に示すステップS102からステップS106と同様の処理が実行される。ステップS106の処理が
終了すると本ルーチンを一旦終了する。
FIG. 15 is a flowchart showing an example of the diagnostic process provided by the diagnostic apparatus 20 according to the present embodiment. In the flow of FIG. 15, the normal / abnormal state of the wiring state connecting the solar cell modules is diagnosed based on the IV curve data acquired through the PCS10. The diagnostic device 20 acquires a voltage value and a current value (IV curve data) indicating the actually measured IV characteristics from the PCS 10 connected through the communication IF 24 (step S101), and stores the acquired IV curve data as auxiliary storage. The data is stored in a predetermined area of the device 23, and the process proceeds to step S111. In step S111, the thinning process of the measurement data represented by the equation (6) is executed based on the current width (ITr) set as the thinning set value. When there is no measurement point satisfying the condition of the equation (6) with respect to the acquired IV curve data, the process proceeds to step S102. In step S102 and subsequent steps, the same processing as in step S106 is executed from step S102 shown in FIG. When the process of step S106 is completed, this routine is temporarily terminated.

以上、説明したように、本実施例においては、間引き用設定値保持部210とデータの間引き処理部220の機能により、PCS10を通じて取得されたIVカーブデータに対する間引き処理が行われる。そして、間引き処理が施されたIVカーブデータの形状を処理対象として、太陽光発電システム1を構成する太陽電池30の、太陽電池モジュール間を接続する配線状態の正常/非正常が診断できる。本実施例においては、間引き処理を行うことにより、間引き用設定値として設定された電流幅(IThr)未満の変化幅を有する
計測点を間引くことが可能になる。この結果、段差判定に係る実測データについての、電流の計測誤差やノイズの影響による段差誤差検出を低減することが可能になり、太陽電池モジュール間の接続配線の施工状態の正常/非正常の判定制度を高めることができる。また、本実施例によれば、実施例1と比較して、間引き処理が施されたIVカーブデータを対象として診断が行われるため、診断に係る演算の処理コストをさらに低減することが可能になる。
As described above, in the present embodiment, the thinning process for the IV curve data acquired through the PCS 10 is performed by the functions of the thinning setting value holding unit 210 and the data thinning processing unit 220. Then, the normal / abnormal state of the wiring connecting between the solar cell modules of the solar cell 30 constituting the photovoltaic power generation system 1 can be diagnosed by using the shape of the IV curve data subjected to the thinning process as the processing target. In this embodiment, by performing the thinning process, it is possible to thin out the measurement points having a change width less than the current width (ITr) set as the thinning set value. As a result, it is possible to reduce the detection of step error due to the influence of current measurement error and noise in the measured data related to the step judgment, and it is possible to judge whether the construction state of the connection wiring between the solar cell modules is normal / abnormal. The system can be enhanced. Further, according to the present embodiment, as compared with the first embodiment, the diagnosis is performed on the IV curve data that has been thinned out, so that the processing cost of the calculation related to the diagnosis can be further reduced. Become.

〔実施例3〕
図16は、実施例3に係る診断装置20の機能構成の一例を示すブロック図である。実施例3においては、診断装置20は、機能要素として、データのグルーピング機能310をさらに備える。実施例3に係る診断装置20においては、実施例2で説明した間引き処理が施されたIVカーブデータを対象として、段差を判定するためのデータのグルーピング処理がさらに行われる。本実施例においては、グルーピング処理を行うことにより、段差のサイズ(電流変動幅)の影響による段差誤検出を低減することが可能になる。本実施形態によれば、段差判定に関する判定精度をさらに高めることが可能になる。なお、図16において、実施例1、実施例2と同様の構成については同様の符号を用いて詳細な説明を省略するとともに、実施例2との相違点を主に説明する。
[Example 3]
FIG. 16 is a block diagram showing an example of the functional configuration of the diagnostic apparatus 20 according to the third embodiment. In the third embodiment, the diagnostic apparatus 20 further includes a data grouping function 310 as a functional element. In the diagnostic apparatus 20 according to the third embodiment, the data grouping process for determining the step is further performed on the IV curve data to which the thinning process described in the second embodiment has been performed. In this embodiment, by performing the grouping process, it is possible to reduce the step detection erroneous detection due to the influence of the step size (current fluctuation width). According to this embodiment, it is possible to further improve the determination accuracy regarding the step determination. In FIG. 16, the same configurations as those in the first and second embodiments will be omitted in detail by using the same reference numerals, and the differences from the second embodiment will be mainly described.

図16において、データのグルーピング機能310は、間引き処理が施されたIVカーブデータに対して交差有無判定が行われた計測点毎の評価値Jpが交差有無判定部140から引き渡される。データのグルーピング機能310は、交差有無判定部140から引き渡された評価値Jpに保持された内外判定結果(段差内:1、段差外:0)に基づいて、グルーピング処理を実行する。グルーピング処理の結果は、グループ毎の電流変化幅を評価する評価値Ygとして、形成されたグループ数を示す情報とともに、段差判定部150に引き渡される。 In FIG. 16, in the data grouping function 310, the evaluation value Jp for each measurement point for which the intersection presence / absence determination is performed on the IV curve data that has been thinned out is delivered from the intersection presence / absence determination unit 140. The data grouping function 310 executes the grouping process based on the inside / outside determination result (inside the step: 1, outside the step: 0) held in the evaluation value Jp handed over from the intersection presence / absence determination unit 140. The result of the grouping process is passed to the step determination unit 150 together with information indicating the number of formed groups as an evaluation value Yg for evaluating the current change width for each group.

図17は、グルーピング処理を説明する図である。図17においては、間引き処理が施された計測点に対して、接線Tの傾きDpに基づいて、段差検出用設定値で設定されたオフセット電圧位置におけるIVカーブ曲線で区分けされた領域内(段差内)、あるいは、領域外(段差外)判定が行われた結果の計測点が例示される。接線Tの傾きDpに基づく内外判定の結果は、評価値Jpに保持される。 FIG. 17 is a diagram illustrating a grouping process. In FIG. 17, the measurement point subjected to the thinning process is within the region (step) divided by the IV curve curve at the offset voltage position set by the set value for step detection based on the slope Dp of the tangent line T. An example is a measurement point as a result of determining (inside) or outside the area (outside the step). The result of the inside / outside determination based on the slope Dp of the tangent line T is held in the evaluation value Jp.

図17に示すように、データのグルーピング機能310においては、評価値Jpに保持された判定値、すなわち、段差内は「1」、段差外は「0」に基づいて、IVカーブデータのグルーピング処理を行う。具体的には、評価値Jpに保持された値が「1」である計測点が2点以上に連続する場合に、一つの段差グループを形成する計測点群としてグループ化する。図17においては、連続する2つの計測点によって段差グループ1が形成され、連続する3つの計測点によって段差グループ2が形成されている。なお、段差グループ1と段差グループ2との間には、段差内と判定された単一の計測点が存在するが、当該計測点は、隣接する低電圧側または高電圧側に段差内と判定された計測点が存在しないためグループ化されない。 As shown in FIG. 17, in the data grouping function 310, the IV curve data grouping process is based on the determination value held in the evaluation value Jp, that is, “1” inside the step and “0” outside the step. I do. Specifically, when two or more measurement points whose value held in the evaluation value Jp is "1" are continuous, they are grouped as a measurement point group forming one step group. In FIG. 17, the step group 1 is formed by two consecutive measurement points, and the step group 2 is formed by three consecutive measurement points. There is a single measurement point determined to be within the step between the step group 1 and the step group 2, but the measurement point is determined to be within the step on the adjacent low voltage side or high voltage side. It is not grouped because there are no measured points.

そして、データのグルーピング機能310においては、グループ化された計測点群の両端(低電圧側計測点および高電圧側計測点)についての電圧値および電流値をそれぞれ記録する。実施例3の診断装置20においては、グループ化された両端の電圧値および電流値が、当該計測点を識別するサンプリング番号に関連付けされて主記憶部22の所定の領域に一時的に記憶される。 Then, in the data grouping function 310, the voltage value and the current value for both ends (low voltage side measurement point and high voltage side measurement point) of the grouped measurement point group are recorded respectively. In the diagnostic apparatus 20 of the third embodiment, the voltage values and current values at both ends of the group are temporarily stored in a predetermined area of the main storage unit 22 in association with the sampling number that identifies the measurement point. ..

図17においては、例えば、段差グループ1を形成する低電圧側の計測点における電圧値(VL1)と電流値(IL1)と、高電圧側の計測点における電圧値(VH1)と電流値(IH1)とが記録される。また、段差グループ2では、当該グループを形成する計測点の中の、低電圧側の計測点についての電圧値(VL2)と電流値(IL2)と、高電圧側の計測点における電圧値(VH2)と電流値(IH2)とが記録される。 In FIG. 17, for example, the voltage value (VL1) and the current value (IL1) at the measurement points on the low voltage side forming the step group 1 and the voltage value (VH1) and the current value (IH1) at the measurement points on the high voltage side. ) And is recorded. Further, in the step group 2, the voltage value (VL2) and the current value (IL2) of the measurement points on the low voltage side among the measurement points forming the group, and the voltage value (VH2) at the measurement points on the high voltage side. ) And the current value (IH2) are recorded.

本実施例に係るデータのグルーピング機能310においては、以下の式7を用いて段差グループ毎の評価値Ygを算出する。
Yg=(IHg)−(ILg) ・・・式(7)
ここで、「g」は、グルーピングされた計測点群を識別するグループ番号を表し、「G」はグループピングされた計測点群の総数(グループ数)を表す。式(7)により、グループ化された各計測点群の電流軸に対する投影値(電流変化幅)が評価値として求められる。
In the data grouping function 310 according to this embodiment, the evaluation value Yg for each step group is calculated using the following equation 7.
Yg = (IHg)-(ILg) ・ ・ ・ Equation (7)
Here, "g" represents a group number for identifying the grouped measurement point groups, and "G" represents the total number (number of groups) of the grouped measurement point groups. From the equation (7), the projected value (current change width) with respect to the current axis of each grouped measurement point group is obtained as an evaluation value.

段差判定部150においては、データのグルーピング機能310から引き渡された、グループ毎の電流変化幅を評価する評価値Yg、グループ数(G)に基づいて、段差判定処理が行われる。具体的には、式(4)における評価値Xpを評価値Ygに置き換え、スコア算出用のデータのサンプル数(L)を短絡電流値(Isc)に置き換えて、総グループ数に対する総和に基づいてスコア値Jが算出される。スコア値の判定は、実施例1と同様に、式(5)を用いて判定される。すなわち、スコア値Jが判定基準値(Thr)以下のときには段差なし(モジュール間配線の接続状態は正常)と判断され、そうでない場合には段差あり(モジュール間配線の接続状態は非正常)と判断される。 In the step determination unit 150, the step determination process is performed based on the evaluation value Yg for evaluating the current change width for each group and the number of groups (G) handed over from the data grouping function 310. Specifically, the evaluation value Xp in the equation (4) is replaced with the evaluation value Yg, the number of samples (L) of the data for score calculation is replaced with the short-circuit current value (Isc), and the sum is based on the total number of groups. The score value J is calculated. The score value is determined by using the equation (5) as in the first embodiment. That is, when the score value J is equal to or less than the judgment reference value (Thr), it is determined that there is no step (the connection state of the inter-module wiring is normal), and if not, there is a step (the connection state of the inter-module wiring is abnormal). Judged.

図18は、本実施例に係る診断装置20で提供される診断処理の一例を示すフローチャートである。図18のフローにおいては、グルーピング処理を用いた段差判定に基づいて、太陽電池モジュール間を接続する配線状態の正常/非正常状態が診断される。ステップS101において、実施例2と同様にして、PCS10から実測されたI−V特性を示す電圧値および電流値(IVカーブデータ)が取得されると、間引き処理が行われ(ステップS111)、処理はステップS102に進む。ステップS102とステップS103では、実施例1と同様の処理が行われ、処理の結果として間引き処理後の各計測点に関する評価値JpがステップS121に引き渡される。 FIG. 18 is a flowchart showing an example of the diagnostic process provided by the diagnostic apparatus 20 according to the present embodiment. In the flow of FIG. 18, the normal / abnormal state of the wiring state connecting the solar cell modules is diagnosed based on the step determination using the grouping process. In step S101, when the voltage value and the current value (IV curve data) indicating the actually measured IV characteristics are acquired from the PCS 10 in the same manner as in the second embodiment, the thinning process is performed (step S111). Proceeds to step S102. In steps S102 and S103, the same processing as in the first embodiment is performed, and as a result of the processing, the evaluation value Jp for each measurement point after the thinning process is delivered to step S121.

ステップS121においては、引き渡された評価値Jpの判定値(「1」または「0」)に基づいて、段差内と判定された計測点についてのグルーピング処理が行われる。図17を用いて説明したように、評価値Jpに保持された値が「1」である計測点が2点以上に連続する場合に、一つの段差グループを形成する計測点群としてグループ化される。そして、グループ化された計測点群の低電圧側計測点と高電圧側計測点に対する電圧値および電流値がグループ毎に抽出される。そして、グループ毎に抽出された低電圧側計測点と高電圧側計測点に対するそれぞれの電流値に基づいて、式(7)を用いて、段差グループ毎の評価値Ygが求められる。ステップS121では、段差グループ毎に求められた評価値Ygおよびグループ数GがステップS104に引き渡されて、処理がステップS104に進む。 In step S121, grouping processing is performed on the measurement points determined to be within the step based on the determined value (“1” or “0”) of the delivered evaluation value Jp. As described with reference to FIG. 17, when two or more measurement points whose value held in the evaluation value Jp is "1" are continuous, they are grouped as a measurement point group forming one step group. NS. Then, the voltage value and the current value for the low voltage side measurement point and the high voltage side measurement point of the grouped measurement point group are extracted for each group. Then, based on the respective current values for the low voltage side measurement point and the high voltage side measurement point extracted for each group, the evaluation value Yg for each step group is obtained using the equation (7). In step S121, the evaluation value Yg and the number of groups G obtained for each step group are passed to step S104, and the process proceeds to step S104.

ステップS104では、ステップS121から引き渡された段差グループ毎の評価値Y
gとグループ数G、および、短絡電流値(Isc)に基づいて段差判定用のスコア値Jが算出される。具体的には、式(4)における評価値Xpを評価値Ygに置き換え、スコア算出用のデータのサンプル数(L)を短絡電流値(Isc)に置き換えて、総グループ数に対する総和に基づいてスコア値Jが算出される。スコア値Jが算出されると処理がステップS105に進む。ステップS105以降においては、図11に示すステップS105からステップS106と同様の処理が実行される。ステップS106の処理が終了すると本ルーチンを一旦終了する。
In step S104, the evaluation value Y for each step group delivered from step S121
The score value J for determining the step is calculated based on g, the number of groups G, and the short-circuit current value (Isc). Specifically, the evaluation value Xp in the equation (4) is replaced with the evaluation value Yg, the number of samples (L) of the data for score calculation is replaced with the short-circuit current value (Isc), and the sum is based on the total number of groups. The score value J is calculated. When the score value J is calculated, the process proceeds to step S105. In step S105 and subsequent steps, the same processing as in steps S105 to S106 shown in FIG. 11 is executed. When the process of step S106 is completed, this routine is temporarily terminated.

以上、説明したように、本実施例においては、データのグルーピング機能310の機能により、評価値Jpに保持された段差内および段差外を示す判定値に基づいて、IVカーブデータに対するグルーピング処理が行われる。そして、所定の条件を満たす計測点(評価値Jpに保持された値が「1」である計測点が連続する)群をグループ化して、当該グループにおける電流変化幅を段差判定を行うための評価対象とする。本実施例においては、グループ化された計測点群の電流変化幅を、段差判定を行うための評価対象にできるため、段差のサイズの影響による誤差検出を低減することが可能になる。本実施形態によれば、段差判定に関する判定精度をさらに高めることが可能になり、太陽光発電システム1を構成する太陽電池30の、太陽電池モジュール間を接続する配線状態の正常/非正常の診断精度を高めることが可能になる。 As described above, in the present embodiment, the function of the data grouping function 310 performs grouping processing on the IV curve data based on the determination values indicating the inside and outside of the step held in the evaluation value Jp. Will be. Then, a group of measurement points satisfying a predetermined condition (measurement points whose value held in the evaluation value Jp is "1" is continuous) is grouped, and the current change width in the group is evaluated for step determination. set to target. In this embodiment, since the current change width of the grouped measurement point group can be used as an evaluation target for determining the step, it is possible to reduce the error detection due to the influence of the size of the step. According to this embodiment, it is possible to further improve the determination accuracy regarding the step determination, and diagnose the normal / abnormal state of the wiring state of the solar cells 30 constituting the photovoltaic power generation system 1 connecting between the solar cell modules. It is possible to improve the accuracy.

なお、実施例1から3においては、IVカーブデータとして取得された電流値の推移に基づいて評価するものとして説明したが、同様にして、IVカーブデータとして取得された電圧値の推移に基づいて評価できることは言うまでもない。 In Examples 1 to 3, the evaluation is performed based on the transition of the current value acquired as the IV curve data, but similarly, based on the transition of the voltage value acquired as the IV curve data. Needless to say, it can be evaluated.

(その他)
上記の実施形態はあくまでも一例であって、本実施の形態の開示はその要旨を逸脱しない範囲内で適宜変更して実施し得る。本開示において説明した処理や手段は、技術的な矛盾が生じない限りにおいて、自由に組合せて実施することができる。
(others)
The above embodiment is merely an example, and the disclosure of the present embodiment may be appropriately modified and implemented without departing from the gist thereof. The processes and means described in the present disclosure can be freely combined and carried out as long as there is no technical contradiction.

また、1つの装置が行うものとして説明した処理が、複数の装置によって分担して実行されてもよい。あるいは、異なる装置が行うものとして説明した処理が、1つの装置によって実行されても構わない。コンピュータシステムにおいて、各機能をどのようなハードウェア構成(サーバ構成)によって実現するかは柔軟に変更可能である。 Further, the processing described as being performed by one device may be shared and executed by a plurality of devices. Alternatively, the processing described as being performed by different devices may be performed by one device. In a computer system, it is possible to flexibly change what kind of hardware configuration (server configuration) is used to realize each function.

《コンピュータが読み取り可能な記録媒体》
情報処理装置その他の機械、装置(以下、コンピュータ等)に上記何れかの機能を実現させるプログラムをコンピュータ等が読み取り可能な記録媒体に記録することができる。そして、コンピュータ等に、この記録媒体のプログラムを読み込ませて実行させることにより、その機能を提供させることができる。
<< Computer-readable recording medium >>
A program that enables an information processing device or other machine or device (hereinafter referred to as a computer or the like) to realize any of the above functions can be recorded on a recording medium that can be read by a computer or the like. Then, the function can be provided by causing a computer or the like to read and execute the program of this recording medium.

ここで、コンピュータ等が読み取り可能な記録媒体とは、データやプログラム等の情報を電気的、磁気的、光学的、機械的、または化学的作用によって蓄積し、コンピュータ等から読み取ることができる記録媒体をいう。このような記録媒体のうちコンピュータ等から取り外し可能なものとしては、例えばフレキシブルディスク、光磁気ディスク、CD−ROM、CD−R/W、DVD、ブルーレイディスク、DAT、8mmテープ、フラッシュメモリなどのメモリカード等がある。また、コンピュータ等に固定された記録媒体としてハードディスクやROM等がある。 Here, a recording medium that can be read by a computer or the like is a recording medium that can store information such as data and programs by electrical, magnetic, optical, mechanical, or chemical action and can be read from the computer or the like. To say. Among such recording media, those that can be removed from a computer or the like include, for example, a memory such as a flexible disk, a magneto-optical disk, a CD-ROM, a CD-R / W, a DVD, a Blu-ray disk, a DAT, an 8 mm tape, or a flash memory. There are cards etc. In addition, there are hard disks, ROMs, and the like as recording media fixed to computers and the like.

なお、以下には本発明の構成要件と実施例の構成とを対比可能とするために、本発明の構成要件を図面の符号付きで記載しておく。
<発明1>
複数の太陽光発電モジュール(33)から構成される太陽電池(30)の発電状態が正常状態であるか非正常状態であるかを診断する診断装置(20)であって、
前記太陽電池(30)について所定のサンプル数で計測された、電圧値の増加または減少に伴って推移する電流値の変化に関する電流電圧特性を取得することと、
前記電流電圧特性が計測されたサンプル点毎の電圧値または電流値の一方の第1特性値および他方の第2特性値に基づいて、前記サンプル点における前記第1特性値の増加または減少に伴って推移する第2特性値の変化の傾きを算出することと、
所定の第1特性値に対する前記変化の傾きから推定される推定第2特性値と、前記電流電圧特性において前記所定の第1特性値に対応して計測された第2特性値との大小比較の判定結果に基づいて、前記太陽電池(30)の発電状態が正常状態であるか非正常状態であるかを診断することと、
を実行する制御部(21)を備えることを特徴とする診断装置(20)。
In addition, in order to make it possible to compare the constituent requirements of the present invention with the configurations of the examples, the constituent requirements of the present invention are described below with reference numerals in the drawings.
<Invention 1>
It is a diagnostic device (20) for diagnosing whether the power generation state of the solar cell (30) composed of a plurality of photovoltaic power generation modules (33) is a normal state or an abnormal state.
Acquiring the current-voltage characteristics of the solar cell (30) with respect to the change in the current value that changes with the increase or decrease of the voltage value, which is measured with a predetermined number of samples.
With the increase or decrease of the first characteristic value at the sample point, the current-voltage characteristic is based on one of the first characteristic values and the other second characteristic value of the voltage value or the current value for each measured sample point. To calculate the slope of the change in the second characteristic value that changes
A magnitude comparison between the estimated second characteristic value estimated from the slope of the change with respect to the predetermined first characteristic value and the second characteristic value measured corresponding to the predetermined first characteristic value in the current-voltage characteristic. Based on the determination result, diagnosing whether the power generation state of the solar cell (30) is in a normal state or an abnormal state, and
A diagnostic device (20) comprising a control unit (21) for executing the above.

1:太陽光発電システム
10:パワーコンディショナ(PCS)
10a:電力変換部
10b:制御部
11:電流センサ
12:電圧センサ
15:ブロッキングダイオード
20:診断装置
21:プロセッサ
22:主記憶装置
23:補助記憶装置
24:通信IF
25:入出力IF
26:接続バス
30:太陽電池
31:太陽電池アレイ
32:ストリング
33:太陽電池モジュール
40:商用電力系統
50:負荷
110:IVカーブデータ読み込み部
120:段差検出用設定値保持部
130:判定基準保持部
140:交差有無判定部
150:段差判定部
160:判定結果表示部
170:判定結果送信部
210:間引き用設定値保持部
220:データの間引き処理部
310:グルーピング機能
1: Solar power generation system 10: Power conditioner (PCS)
10a: Power conversion unit 10b: Control unit 11: Current sensor 12: Voltage sensor 15: Blocking diode 20: Diagnostic device 21: Processor 22: Main storage device 23: Auxiliary storage device 24: Communication IF
25: Input / output IF
26: Connection bus 30: Solar cell 31: Solar cell array 32: String 33: Solar cell module 40: Commercial power system 50: Load 110: IV curve data reading unit 120: Step detection set value holding unit 130: Judgment standard holding Unit 140: Crossing presence / absence determination unit 150: Step determination unit 160: Judgment result display unit 170: Judgment result transmission unit 210: Thinning set value holding unit 220: Data thinning processing unit 310: Grouping function

Claims (7)

複数の太陽光発電モジュールから構成される太陽電池の発電状態が正常状態であるか非正常状態であるかを診断する診断装置であって、
前記太陽電池について所定のサンプル数で計測された、電圧値の増加または減少に伴って推移する電流値の変化に関する電流電圧特性を取得することと、
前記電流電圧特性が計測されたサンプル点毎の電圧値または電流値の一方の第1特性値および他方の第2特性値に基づいて、前記サンプル点における前記第1特性値の増加または減少に伴って推移する前記第2特性値の変化の傾きを算出することと、
所定の第1特性値に対する前記変化の傾きから推定される推定第2特性値と、前記電流電圧特性において前記所定の第1特性値に対応して計測された第2特性値との大小比較の判定結果に基づいて、前記太陽電池の発電状態が正常状態であるか非正常状態であるかを診断することと、
を実行する制御部を備えることを特徴とする診断装置。
It is a diagnostic device that diagnoses whether the power generation state of a solar cell composed of a plurality of photovoltaic power generation modules is a normal state or an abnormal state.
To acquire the current-voltage characteristics regarding the change in the current value that changes with the increase or decrease of the voltage value measured with a predetermined number of samples for the solar cell.
With the increase or decrease of the first characteristic value at the sample point, the current-voltage characteristic is based on one of the first characteristic values and the other second characteristic value of the voltage value or the current value for each measured sample point. To calculate the slope of the change in the second characteristic value that changes in
A magnitude comparison between the estimated second characteristic value estimated from the slope of the change with respect to the predetermined first characteristic value and the second characteristic value measured corresponding to the predetermined first characteristic value in the current-voltage characteristic. Based on the determination result, diagnosing whether the power generation state of the solar cell is in a normal state or an abnormal state, and
A diagnostic device comprising a control unit for executing the above.
前記制御部は、前記電流電圧特性が計測されたサンプル点毎の、前記推定第2特性値が前記所定の第1特性値に対応して計測された第2特性値より小さいと判定されたサンプル点数を計数するとともに、前記計数されたサンプル点数の総サンプル数に占める割合が判定基準値以下のときには前記太陽電池の発電状態が正常状態と診断する、請求項1に記載の診断装置。 The control unit determines that the estimated second characteristic value for each sample point at which the current-voltage characteristic is measured is smaller than the second characteristic value measured corresponding to the predetermined first characteristic value. The diagnostic device according to claim 1, wherein the points are counted and when the ratio of the counted sample points to the total number of samples is equal to or less than the determination reference value, the power generation state of the solar cell is diagnosed as a normal state. 前記制御部は、前記電流電圧特性が計測されたサンプル点毎の、前記推定第2特性値が前記所定の第1特性値に対応して計測された第2特性値より小さいと判定されたサンプル点数を計数するとともに、前記計数されたサンプル点数の総サンプル数に占める割合が判定基準値をこえるときには前記太陽電池の発電状態が非正常状態と診断する、請求項1または2に記載の診断装置。 The control unit determines that the estimated second characteristic value for each sample point at which the current-voltage characteristic is measured is smaller than the second characteristic value measured corresponding to the predetermined first characteristic value. The diagnostic apparatus according to claim 1 or 2, wherein the points are counted and when the ratio of the counted sample points to the total number of samples exceeds the determination reference value, the power generation state of the solar cell is diagnosed as an abnormal state. .. 前記制御部は、
前記電流電圧特性が計測されたサンプル点の中の、第1サンプル点で計測された第2特性値と、前記第1サンプル点の第1特性値より低位側に隣接するサンプル点で計測された低位側第2特性値との差分が第1閾値未満であり、かつ、前記第2特性値と、前記第1サンプル点の高位側に隣接するサンプル点で計測された高位側第2特性値との差分が第2閾値未満であるときに、前記第1サンプル点を間引きする、請求項1から3の何れか一項に記載の診断装置。
The control unit
Among the sample points where the current-voltage characteristics were measured, the second characteristic value measured at the first sample point and the sample points adjacent to the lower side of the first characteristic value of the first sample point were measured. The difference from the second characteristic value on the lower side is less than the first threshold value, and the second characteristic value and the second characteristic value on the higher side measured at the sample points adjacent to the higher side of the first sample point. The diagnostic device according to any one of claims 1 to 3, wherein the first sample points are thinned out when the difference between the two is less than the second threshold value.
前記制御部は、前記電流電圧特性が計測されたサンプル点の中の、所定の第1特性値に対する前記変化の傾きから推定される推定第2特性値が、前記電流電圧特性において前記所定の第1特性値に対応して計測された第2特性値より小さいと判定された連続するサンプル点群をグループ化するとともに、
前記グループ化されたサンプル点群において低位側のサンプル点で計測された低位第2特性値と高位側のサンプル点で計測された高位第2特性値との差分である差分第2特性値の、前記第1特性値が0値における基準第2特性値に対する割合に基づいて、前記太陽電池の発電状態が正常状態であるか非正常状態であるかを診断する、請求項1から4の何れか一項に記載の診断装置。
In the control unit, the estimated second characteristic value estimated from the slope of the change with respect to the predetermined first characteristic value in the sample points where the current-voltage characteristic is measured is the predetermined second characteristic value in the current-voltage characteristic. In addition to grouping consecutive sample point clouds determined to be smaller than the second characteristic value measured corresponding to one characteristic value,
In the grouped sample point group, the difference second characteristic value, which is the difference between the lower second characteristic value measured at the lower sample point and the higher second characteristic value measured at the higher sample point, Any of claims 1 to 4, which diagnoses whether the power generation state of the solar cell is in a normal state or an abnormal state based on the ratio of the first characteristic value to the reference second characteristic value at 0 value. The diagnostic device according to paragraph 1.
複数の太陽光発電モジュールから構成される太陽電池の発電状態が正常状態であるか非正常状態であるかを診断する診断方法であって、
前記太陽電池について所定のサンプル数で計測された、電圧値の増加または減少に伴って推移する電流値の変化に関する電流電圧特性を取得することと、
前記電流電圧特性が計測されたサンプル点毎の電圧値または電流値の一方の第1特性値
および他方の第2特性値に基づいて、前記サンプル点における前記第1特性値の増加または減少に伴って推移する第2特性値の変化の傾きを算出することと、
所定の第1特性値に対する前記変化の傾きから推定される推定第2特性値と、前記電流電圧特性において前記所定の第1特性値に対応して計測された第2特性値との大小比較の判定結果に基づいて、前記太陽電池の発電状態が正常状態であるか非正常状態であるかを診断することと、
を含むことを特徴とする診断方法。
It is a diagnostic method for diagnosing whether the power generation state of a solar cell composed of a plurality of photovoltaic power generation modules is a normal state or an abnormal state.
To acquire the current-voltage characteristics regarding the change in the current value that changes with the increase or decrease of the voltage value measured with a predetermined number of samples for the solar cell.
With the increase or decrease of the first characteristic value at the sample point, the current-voltage characteristic is based on one of the first characteristic values and the other second characteristic value of the voltage value or the current value for each measured sample point. To calculate the slope of the change in the second characteristic value that changes
A magnitude comparison between the estimated second characteristic value estimated from the slope of the change with respect to the predetermined first characteristic value and the second characteristic value measured corresponding to the predetermined first characteristic value in the current-voltage characteristic. Based on the determination result, diagnosing whether the power generation state of the solar cell is in a normal state or an abnormal state, and
A diagnostic method comprising.
複数の太陽光発電モジュールから構成される太陽電池の発電状態が正常状態であるか非正常状態であるかを診断するコンピュータに実行させるプログラムであって、
前記太陽電池について所定のサンプル数で計測された、電圧値の増加または減少に伴って推移する電流値の変化に関する電流電圧特性を取得することと、
前記電流電圧特性が計測されたサンプル点毎の電圧値または電流値の一方の第1特性値および他方の第2特性値に基づいて、前記サンプル点における前記第1特性値の増加または減少に伴って推移する第2特性値の変化の傾きを算出することと、
所定の第1特性値に対する前記変化の傾きから推定される推定第2特性値と、前記電流電圧特性において前記所定の第1特性値に対応して計測された第2特性値との大小比較の判定結果に基づいて、前記太陽電池の発電状態が正常状態であるか非正常状態であるかを診断することと、
を実行させることを特徴とするプログラム。
It is a program to be executed by a computer that diagnoses whether the power generation state of a solar cell composed of multiple photovoltaic power generation modules is normal or abnormal.
To acquire the current-voltage characteristics regarding the change in the current value that changes with the increase or decrease of the voltage value measured with a predetermined number of samples for the solar cell.
With the increase or decrease of the first characteristic value at the sample point, the current-voltage characteristic is based on one of the first characteristic values and the other second characteristic value of the voltage value or the current value for each measured sample point. To calculate the slope of the change in the second characteristic value that changes
A magnitude comparison between the estimated second characteristic value estimated from the slope of the change with respect to the predetermined first characteristic value and the second characteristic value measured corresponding to the predetermined first characteristic value in the current-voltage characteristic. Based on the determination result, diagnosing whether the power generation state of the solar cell is in a normal state or an abnormal state, and
A program characterized by executing.
JP2020043381A 2020-03-12 2020-03-12 Diagnostic equipment, diagnostic methods and programs Active JP7435071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020043381A JP7435071B2 (en) 2020-03-12 2020-03-12 Diagnostic equipment, diagnostic methods and programs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020043381A JP7435071B2 (en) 2020-03-12 2020-03-12 Diagnostic equipment, diagnostic methods and programs

Publications (2)

Publication Number Publication Date
JP2021145494A true JP2021145494A (en) 2021-09-24
JP7435071B2 JP7435071B2 (en) 2024-02-21

Family

ID=77767453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020043381A Active JP7435071B2 (en) 2020-03-12 2020-03-12 Diagnostic equipment, diagnostic methods and programs

Country Status (1)

Country Link
JP (1) JP7435071B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117113036A (en) * 2023-10-20 2023-11-24 中国铁塔股份有限公司吉林省分公司 Photovoltaic equipment analysis method and system based on energy management system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5462821B2 (en) 2011-03-08 2014-04-02 株式会社日立パワーソリューションズ Solar cell abnormality determination device and solar cell abnormality determination method
JP2014038961A (en) 2012-08-17 2014-02-27 Jx Nippon Oil & Energy Corp Conduction failure detection device and conduction failure detection method
TWI486601B (en) 2013-07-31 2015-06-01 Ind Tech Res Inst Method for inspecting defects of solar cells and system thereof
JP6446900B2 (en) 2014-08-06 2019-01-09 オムロン株式会社 Solar power generation system inspection apparatus and solar power generation system inspection method
CN108923748B (en) 2018-07-16 2019-08-06 河海大学常州校区 A kind of diagnosing failure of photovoltaic array method based on IV curved scanning

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117113036A (en) * 2023-10-20 2023-11-24 中国铁塔股份有限公司吉林省分公司 Photovoltaic equipment analysis method and system based on energy management system
CN117113036B (en) * 2023-10-20 2024-01-26 中国铁塔股份有限公司吉林省分公司 Photovoltaic equipment analysis method and system based on energy management system

Also Published As

Publication number Publication date
JP7435071B2 (en) 2024-02-21

Similar Documents

Publication Publication Date Title
CN101292166B (en) Insulation inspecting device and insulation inspecting method
US9506971B2 (en) Failure diagnosis method for photovoltaic power generation system
JP5005814B2 (en) Battery long-term characteristic prediction system and method
JP5160024B2 (en) Battery module
CN109765490B (en) Power battery fault detection method and system based on high-dimensional data diagnosis
JP5116307B2 (en) Integrated circuit device abnormality detection device, method and program
US7552028B2 (en) Recording medium, test apparatus and diagnostic method
CN102455398B (en) Semiconductor circuit, semiconductor device and wiring abnormality diagnostic method
JPWO2016208251A1 (en) Power storage system
US9831827B2 (en) Photovoltaic inspection system and photovoltaic inspection method
JP2010539473A (en) Battery long-term characteristic prediction system and method
JP7452119B2 (en) Diagnostic equipment, diagnostic methods and programs
JP7435071B2 (en) Diagnostic equipment, diagnostic methods and programs
US7676769B2 (en) Adaptive threshold wafer testing device and method thereof
CN111245364B (en) Method for determining a corrected current-voltage characteristic of an electrical system
JP7021571B2 (en) Solar cell array inspection system, power conditioner and solar cell array inspection method
JP6992473B2 (en) Solar cell array inspection system, power conditioner and solar cell array inspection method
JP2007049126A (en) Test method for detecting locality fault on semiconductor wafer and test system using the same
CN116699427B (en) Battery fault diagnosis method and device based on non-redundant measurement topological structure
JP4965280B2 (en) Analog output device
JP6304951B2 (en) Semiconductor device test program, test apparatus, and test method
CN116482560B (en) Battery fault detection method and device, electronic equipment and storage medium
JP2024505895A (en) Battery diagnosis method and battery system applying it
WO2022157840A1 (en) Diagnostic device, diagnostic method, and program
WO2022157841A1 (en) Monitoring server, authentication system, monitoring method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240122

R150 Certificate of patent or registration of utility model

Ref document number: 7435071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150