JP2021145210A - Radio communication device and radio communication method - Google Patents

Radio communication device and radio communication method Download PDF

Info

Publication number
JP2021145210A
JP2021145210A JP2020041768A JP2020041768A JP2021145210A JP 2021145210 A JP2021145210 A JP 2021145210A JP 2020041768 A JP2020041768 A JP 2020041768A JP 2020041768 A JP2020041768 A JP 2020041768A JP 2021145210 A JP2021145210 A JP 2021145210A
Authority
JP
Japan
Prior art keywords
signal
unit
signals
received signal
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020041768A
Other languages
Japanese (ja)
Other versions
JP7415687B2 (en
Inventor
友規 村上
Tomoki Murakami
友規 村上
陸 大宮
Riku Omiya
陸 大宮
健太郎 西森
Kentaro Nishimori
健太郎 西森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Niigata University NUC
Original Assignee
Nippon Telegraph and Telephone Corp
Niigata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Niigata University NUC filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2020041768A priority Critical patent/JP7415687B2/en
Publication of JP2021145210A publication Critical patent/JP2021145210A/en
Application granted granted Critical
Publication of JP7415687B2 publication Critical patent/JP7415687B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

To improve communication quality while suppressing a calculation processing amount to a plurality of reception signals.SOLUTION: A radio communication device comprises: a plurality of antennas each for receiving a transmission signal while changing directivity a plurality of times within one symbol of a modulated transmission signal; a beam forming unit for outputting a reception signal pattern by changing amplitudes and phases of reception signals received by the plurality of antennas; a signal dividing unit for dividing a signal which is outputted by the beam forming unit, into a plurality of signals; an analysis unit which performs analysis for identifying a combination of signals to most improve communication quality in the case where demodulation is performed while reducing the number of signals, from among all the combinations of the plurality of signals divided by the signal dividing unit; a selection unit for selecting a part of the plurality of signals divided by the signal dividing unit on the basis of a result analyzed by the analysis unit; and a demodulation unit which performs MIMO-OFDM demodulation on the signal selected by the selection unit.SELECTED DRAWING: Figure 3

Description

本発明は、無線通信装置及び無線通信方法に関する。 The present invention relates to a wireless communication device and a wireless communication method.

5GHz帯の電波を用いた高速無線アクセスシステムとして、IEEE802.11a規格、11n規格、11ac規格に基づく無線LANがある。11a規格では、直交周波数分割多重(OFDM:Orthogonal Frequency Division Multiplexing)変調方式をベースとして、マルチパスフェージング環境での特性を安定化させて、最大54Mbit/sの伝送速度を実現している。さらに、11n規格では、複数アンテナを用いて同一の無線チャネルで空間分割多重を行うMIMO(Multiple Input Multiple Output)や、20MHzの周波数チャネルを2つ同時に利用して40MHzの周波数チャネルを利用するチャネルボンディング技術を用いて、最大600Mbit/sの伝送速度を実現している。また、11acの規格では、20MHzの周波数チャネルを8つまで同時に利用し最大160MHzの周波数チャネルとして利用するチャネルボンディング技術や、同一の無線チャネルで複数の宛先に対して異なる信号を同時伝送する下り回線のマルチユーザMIMO技術等を利用し、11n規格より高速かつ高効率な無線通信を実現している。 As a high-speed wireless access system using radio waves in the 5 GHz band, there is a wireless LAN based on the IEEE802.11a standard, the 11n standard, and the 11ac standard. In the 11a standard, based on the Orthogonal Frequency Division Multiplexing (OFDM) modulation method, the characteristics in a multipath fading environment are stabilized, and a maximum transmission speed of 54 Mbit / s is realized. Furthermore, in the 11n standard, MIMO (Multiple Input Multiple Output), which performs time division multiplexing on the same wireless channel using multiple antennas, and channel bonding, which uses two 20 MHz frequency channels at the same time and uses a 40 MHz frequency channel. Using technology, we have achieved transmission speeds of up to 600 Mbit / s. In addition, in the 11ac standard, channel bonding technology that uses up to eight 20 MHz frequency channels at the same time and uses them as a maximum 160 MHz frequency channel, and downlinks that simultaneously transmit different signals to multiple destinations on the same wireless channel. By utilizing the multi-user MIMO technology of the above, wireless communication that is faster and more efficient than the 11n standard is realized.

現在では、伝送速度の向上に加えて伝送効率の向上にも焦点を当てたIEEE802.11ax規格の策定も進められている。11axでは、同時伝送による空間的な周波数再利用の促進、OFDM変調方式の効率改善、また、マルチユーザ伝送として、上下回線のOFDMA伝送と上り回線のマルチユーザMIMO伝送が追加される予定である。 Currently, the IEEE802.11ax standard is being formulated with a focus on improving transmission efficiency in addition to improving transmission speed. In 11ax, it is planned to promote spatial frequency reuse by simultaneous transmission, improve the efficiency of OFDM modulation method, and add OFDMA transmission of upper and lower lines and multi-user MIMO transmission of uplink as multi-user transmission.

また、高速伝送を行うために、CMA(Constant Modulus Algorithm)アダプティブアレーを用いて干渉波を抑制する技術が知られている(例えば非特許文献1参照)。 Further, in order to perform high-speed transmission, a technique of suppressing an interference wave by using a CMA (Constant Modulus Algorithm) adaptive array is known (see, for example, Non-Patent Document 1).

西森 健太郎、外2名、“QAM信号に対するCMAアダプティブアレーの動作解析”、電子情報通信学会論文誌 B−II、1996年12月、Vol.J79−B−II No.12、p.984−993Kentaro Nishimori, 2 outsiders, "Analysis of CMA Adaptive Array Behavior for QAM Signals", IEICE Transactions B-II, December 1996, Vol. J79-B-II No. 12, p. 984-993

しかしながら、従来のCMAアダプティブアレーを用いた技術では、全てのアンテナ特性の受信信号ベクトルを用いて処理を行う必要があるため、受信信号の干渉や雑音の大きさによっては、通信品質が劣化してしまうことがある。 However, in the conventional technology using the CMA adaptive array, it is necessary to perform processing using the received signal vectors of all antenna characteristics, so that the communication quality deteriorates depending on the interference of the received signal and the magnitude of noise. It may end up.

また、近年の5Gなどの無線通信システムでは、マッシブMIMO伝送のようにアンテナ数の増大が飛躍的に進んでおり、全てのアンテナの受信信号を一括して処理するためには、計算処理量が多くなり過ぎてしまうことがある。 Further, in recent wireless communication systems such as 5G, the number of antennas is increasing dramatically as in massive MIMO transmission, and the amount of calculation processing is required to process the received signals of all antennas at once. It can be too much.

本発明は、複数の受信信号に対する計算処理量を抑えつつ、通信品質を向上させることができる無線通信装置及び無線通信方法を提供することを目的とする。 An object of the present invention is to provide a wireless communication device and a wireless communication method capable of improving communication quality while suppressing the amount of calculation processing for a plurality of received signals.

本発明の一態様にかかる無線通信装置は、変調された送信信号の1シンボル内で指向性を複数回変化させつつ、前記送信信号を受信する複数のアンテナと、複数の前記アンテナが受信した受信信号の振幅及び位相を変更して受信信号パターンを出力するビーム形成部と、前記受信信号の包絡線の歪成分を最小にするように制御しつつ、前記受信信号の1シンボル内で前記ビーム形成部が前記受信信号の振幅及び位相を複数回変更することによって複数の受信信号パターンを出力するように制御する制御部と、前記ビーム形成部が出力した信号を複数の信号に分割する信号分割部と、前記信号分割部が分割した複数の信号の全ての組合せの中から、信号数を削減させて復調した場合に通信品質が最も高くなる信号の組合せを特定する解析を行う解析部と、前記解析部が解析した結果に基づいて、前記信号分割部が分割した複数の信号の一部を選択する選択部と、前記選択部が選択した信号をMIMO−OFDM復調する復調部とを有することを特徴とする。 The wireless communication device according to one aspect of the present invention includes a plurality of antennas for receiving the transmission signal and reception received by the plurality of antennas while changing the directivity a plurality of times within one symbol of the modulated transmission signal. The beam forming unit that outputs a received signal pattern by changing the amplitude and phase of the signal, and the beam forming within one symbol of the received signal while controlling so as to minimize the distortion component of the envelope of the received signal. A control unit that controls the unit to output a plurality of received signal patterns by changing the amplitude and phase of the received signal a plurality of times, and a signal division unit that divides the signal output by the beam forming unit into a plurality of signals. An analysis unit that performs analysis to identify the combination of signals having the highest communication quality when the number of signals is reduced and demodulated from all the combinations of the plurality of signals divided by the signal division unit. It has a selection unit that selects a part of a plurality of signals divided by the signal division unit based on the result analyzed by the analysis unit, and a demodulation unit that demolishes the signal selected by the selection unit by MIMO-OFDM. It is a feature.

本発明の一態様にかかる無線通信方法は、変調された送信信号の1シンボル内で指向性を複数回変化させつつ、前記送信信号を受信する受信工程と、受信した受信信号の振幅及び位相を変更して受信信号パターンを出力するビーム形成工程と、前記受信信号の包絡線の歪成分を最小にするように制御しつつ、前記受信信号の1シンボル内で前記受信信号の振幅及び位相を複数回変更することによって複数の受信信号パターンを出力するように制御する制御工程と、出力した複数の受信信号パターンを複数の信号に分割する信号分割工程と、分割した複数の信号の全ての組合せの中から、信号数を削減させて復調した場合に通信品質が最も高くなる信号の組合せを特定する解析を行う解析工程と、解析した結果に基づいて、分割した複数の信号の一部を選択する選択工程と、選択した信号をMIMO−OFDM復調する復調工程とを含むことを特徴とする。 In the wireless communication method according to one aspect of the present invention, the reception step of receiving the transmission signal and the amplitude and phase of the received reception signal are changed while changing the directivity a plurality of times within one symbol of the modulated transmission signal. A plurality of amplitudes and phases of the received signal are set within one symbol of the received signal while controlling so as to minimize the distortion component of the envelope of the received signal and the beam forming step of changing and outputting the received signal pattern. A control process that controls to output a plurality of received signal patterns by changing the number of times, a signal dividing process that divides the output multiple received signal patterns into a plurality of signals, and all combinations of the divided plurality of signals. From the analysis process, which identifies the combination of signals with the highest communication quality when the number of signals is reduced and demodulated, and a part of a plurality of divided signals is selected based on the analysis result. It is characterized by including a selection step and a demodulation step of demolishing the selected signal by MIMO-OFDM.

本発明によれば、複数の受信信号に対する計算処理量を抑えつつ、通信品質を向上させることができる。 According to the present invention, it is possible to improve the communication quality while suppressing the amount of calculation processing for a plurality of received signals.

一実施形態にかかる無線通信システムの構成例を示す図である。It is a figure which shows the configuration example of the wireless communication system which concerns on one Embodiment. 無線端末局の構成例を示す図である。It is a figure which shows the configuration example of a wireless terminal station. 一実施形態にかかる無線基地局の構成例を示す図である。It is a figure which shows the configuration example of the radio base station which concerns on one Embodiment. (a)は、ピーク方向が0度の場合の受信信号パターンを示す図である。(b)は、ピーク方向が90度の場合の受信信号パターンを示す図である。(c)は、ピーク方向が180度の場合の受信信号パターンを示す図である。(d)は、ピーク方向が270度の場合の受信信号パターンを示す図である。(A) is a figure which shows the received signal pattern when the peak direction is 0 degree. (B) is a figure which shows the received signal pattern when the peak direction is 90 degrees. (C) is a figure which shows the received signal pattern when the peak direction is 180 degrees. (D) is a figure which shows the received signal pattern when the peak direction is 270 degrees. CMAの動作原理の概要を示す図である。It is a figure which shows the outline of the operation principle of CMA. 一実施形態にかかる無線通信システムにおける上り回線の通信シーケンスの一例を示す図である。It is a figure which shows an example of the communication sequence of the uplink in the wireless communication system which concerns on one Embodiment. 実施形態にかかる無線通信システムが有する無線端末局の第1変形例を示す図である。It is a figure which shows the 1st modification of the wireless terminal station which the wireless communication system which concerns on embodiment have. 実施形態にかかる無線通信システムが有する無線端末局の第2変形例を示す図である。It is a figure which shows the 2nd modification of the wireless terminal station which the wireless communication system which concerns on embodiment have. 比較例の無線基地局の構成例を示す図である。It is a figure which shows the configuration example of the radio base station of the comparative example.

まず、本発明がなされるに至った背景について説明する。図9は、比較例の無線基地局の構成例を示す図である。無線基地局4は、複数のアンテナ40、ビーム形成部41、RF(Radio Frequency)部42、A/D変換部43、制御部44、信号分割部45、及び復調部46を有する。 First, the background leading to the present invention will be described. FIG. 9 is a diagram showing a configuration example of a radio base station of a comparative example. The radio base station 4 has a plurality of antennas 40, a beam forming unit 41, an RF (Radio Frequency) unit 42, an A / D conversion unit 43, a control unit 44, a signal dividing unit 45, and a demodulation unit 46.

なお、図9においては、無線基地局4が受信を行うために要する主な機能ブロックのみを記載しており、一般的に無線基地局に搭載されるそれ以外の機能ブロックについては記載していない。 Note that, in FIG. 9, only the main functional blocks required for the radio base station 4 to perform reception are shown, and other functional blocks generally mounted on the radio base station are not shown. ..

アンテナ40は、例えばMIMO−OFDM信号を受信する。アンテナ40は、ビーム形成部41に接続されており、受信したMIMO−OFDM信号をビーム形成部41に対して出力する。 The antenna 40 receives, for example, a MIMO-OFDM signal. The antenna 40 is connected to the beam forming unit 41, and outputs the received MIMO-OFDM signal to the beam forming unit 41.

ビーム形成部41は、アンテナ40が受信した受信信号に対して、制御部44から入力される制御信号に応じて振幅と位相を変更し、変更した信号(受信信号パターン)を合成して、RF部42に対して出力する。例えば、ビーム形成部41は、制御部44の制御に応じて、受信信号の1シンボル内に複数(例えばP個)の受信信号パターンを出力する。 The beam forming unit 41 changes the amplitude and phase of the received signal received by the antenna 40 according to the control signal input from the control unit 44, synthesizes the changed signal (received signal pattern), and RFs the received signal. Output to unit 42. For example, the beam forming unit 41 outputs a plurality of (for example, P) received signal patterns in one symbol of the received signal according to the control of the control unit 44.

RF部42は、ビーム形成部41から入力されたMIMO−OFDM信号に対し、増幅・周波数変更・フィルタリングなどのアナログ処理を施し、処理した信号をA/D変換部43に対して出力する。つまり、RF部42は、一般的な無線装置のRFフロントエンドの機能が搭載されている。 The RF unit 42 performs analog processing such as amplification, frequency change, and filtering on the MIMO-OFDM signal input from the beam forming unit 41, and outputs the processed signal to the A / D conversion unit 43. That is, the RF unit 42 is equipped with the function of the RF front end of a general wireless device.

A/D変換部43は、RF部42から入力されるアナログ信号をデジタル信号に変更し、信号分割部45に対して出力する。また、A/D変換部43は、サンプリング周期を制御部44に対して通知する。ここでは、A/D変換部43は、受信信号のシンボルレート対してP倍の速度でサンプリングを行う。 The A / D conversion unit 43 changes the analog signal input from the RF unit 42 into a digital signal and outputs the analog signal to the signal division unit 45. Further, the A / D conversion unit 43 notifies the control unit 44 of the sampling cycle. Here, the A / D conversion unit 43 performs sampling at a speed P times that of the symbol rate of the received signal.

制御部44は、無線基地局4を構成する各部を制御する。例えば、制御部44は、アンテナ40が1つのOFDMシンボルの信号を受信する間に、ビーム形成部41が受信信号の振幅と位相を複数回(例えばP回)変更するように制御を行い、ビーム形成部41に複数(例えばP個)の受信信号パターンを生成させる。 The control unit 44 controls each unit constituting the radio base station 4. For example, the control unit 44 controls the beam forming unit 41 to change the amplitude and phase of the received signal a plurality of times (for example, P times) while the antenna 40 receives the signal of one OFDM symbol. The forming unit 41 is made to generate a plurality of (for example, P) received signal patterns.

信号分割部45は、A/D変換部43から入力された信号を、制御部44が制御するアンテナ特性ごとに分割し、復調部46に対して出力する。 The signal division unit 45 divides the signal input from the A / D conversion unit 43 according to the antenna characteristics controlled by the control unit 44, and outputs the signal to the demodulation unit 46.

復調部46は、信号分割部45が分割した信号に対し、無線LANシステム等で規定されるMIMO−OFDMの復調処理を行う。 The demodulation unit 46 performs MIMO-OFDM demodulation processing defined by a wireless LAN system or the like on the signal divided by the signal division unit 45.

つまり、比較例の無線基地局4は、ビーム形成部41が振幅と位相を変更した全ての信号を合成し、復調部46が復調する構成となっている。 That is, the radio base station 4 of the comparative example has a configuration in which the beam forming unit 41 synthesizes all the signals whose amplitude and phase are changed, and the demodulating unit 46 demodulates them.

このとき、無線基地局4は、受信信号の干渉や雑音の大きさによっては、通信品質が劣化してしまうことがある。さらに、近年の5Gなどの無線通信システムでは、マッシブMIMO伝送のようにアンテナ数の増大が飛躍的に進んでおり、全てのアンテナの受信信号を一括して処理するためには、計算処理量が多くなり過ぎてしまうことがある。 At this time, the radio base station 4 may deteriorate in communication quality depending on the interference of the received signal and the magnitude of noise. Furthermore, in recent wireless communication systems such as 5G, the number of antennas has increased dramatically as in massive MIMO transmission, and the amount of calculation processing is required to process the received signals of all antennas at once. It can be too much.

次に、一実施形態にかかる無線通信システムの構成例について説明する。図1は、一実施形態にかかる無線通信システムの構成例を示す図である。図1に示すように、無線通信システムは、例えば、無線通信装置としての無線基地局1と、無線基地局1に対して無線通信可能な範囲であるサービスエリア内に存在するn台の無線端末局2−1〜2−nとを有する。 Next, a configuration example of the wireless communication system according to the embodiment will be described. FIG. 1 is a diagram showing a configuration example of a wireless communication system according to an embodiment. As shown in FIG. 1, the wireless communication system includes, for example, a wireless base station 1 as a wireless communication device and n wireless terminals existing in a service area within a range in which wireless communication is possible with the wireless base station 1. It has stations 2-1 to 2-n.

無線端末局2−1〜2−nは、無線基地局1に対して非同期に上り信号を送信する。以下、無線端末局2−1〜2−nのように複数ある構成のいずれかを特定しない場合には、単に無線端末局2などと略記する。 The radio terminal stations 2-1 to 2-n asynchronously transmit an uplink signal to the radio base station 1. Hereinafter, when any one of a plurality of configurations such as wireless terminal stations 2-1 to 2-n is not specified, it is simply abbreviated as wireless terminal station 2 and the like.

図2は、無線端末局2の構成例を示す図である。図2に示すように、無線端末局2は、例えば変調部20、D/A変換部21、RF部22、及びアンテナ23を有する。なお、図2においては、無線端末局2が送信を行うために要する主な機能ブロックのみを記載しており、一般的に無線端末局に搭載されるそれ以外の機能ブロックについては記載していない。 FIG. 2 is a diagram showing a configuration example of the wireless terminal station 2. As shown in FIG. 2, the radio terminal station 2 has, for example, a modulation unit 20, a D / A conversion unit 21, an RF unit 22, and an antenna 23. Note that, in FIG. 2, only the main functional blocks required for the wireless terminal station 2 to perform transmission are shown, and other functional blocks generally mounted on the wireless terminal station are not shown. ..

変調部20は、例えば無線LANシステム等で規定されるMIMO−OFDMの変調処理を行い、変調した信号をD/A変換部21に対して出力する。 The modulation unit 20 performs MIMO-OFDM modulation processing defined by, for example, a wireless LAN system, and outputs the modulated signal to the D / A conversion unit 21.

D/A変換部21は、変調部20から入力されたデジタル信号をアナログ信号に変更し、RF部22に対して出力する。 The D / A conversion unit 21 changes the digital signal input from the modulation unit 20 into an analog signal and outputs it to the RF unit 22.

RF部22は、D/A変換部21から入力され信号に対して、増幅・周波数変更・フィルタリングなどの処理を行い、処理した送信信号をアンテナ23に対して出力する。つまり、RF部22は、一般的な無線通信装置のRFフロントエンドの機能を備える。 The RF unit 22 performs processing such as amplification, frequency change, and filtering on the signal input from the D / A conversion unit 21, and outputs the processed transmission signal to the antenna 23. That is, the RF unit 22 has the function of the RF front end of a general wireless communication device.

アンテナ23は、RF部22から入力された送信信号を空中に放射する。 The antenna 23 radiates the transmission signal input from the RF unit 22 into the air.

図3は、一実施形態にかかる無線基地局1の構成例を示す図である。無線基地局1は、複数のアンテナ10、ビーム形成部11、RF部12、A/D変換部13、制御部14、信号分割部15、選択部16、解析部17、及び復調部18を有する。 FIG. 3 is a diagram showing a configuration example of the radio base station 1 according to the embodiment. The radio base station 1 has a plurality of antennas 10, a beam forming unit 11, an RF unit 12, an A / D conversion unit 13, a control unit 14, a signal dividing unit 15, a selection unit 16, an analysis unit 17, and a demodulation unit 18. ..

なお、図3においては、無線基地局1が受信を行うために要する主な機能ブロックのみを記載しており、一般的に無線基地局に搭載されるそれ以外の機能ブロックについては記載していない。 Note that, in FIG. 3, only the main functional blocks required for the radio base station 1 to perform reception are shown, and other functional blocks generally mounted on the radio base station are not shown. ..

アンテナ10は、例えばMIMO−OFDM信号を受信する。アンテナ10は、ビーム形成部11に接続されており、受信したMIMO−OFDM信号をビーム形成部11に対して出力する。より具体的には、アンテナ10は、変調された送信信号の1シンボル内で指向性を複数回変化させつつ、送信信号を受信する。 The antenna 10 receives, for example, a MIMO-OFDM signal. The antenna 10 is connected to the beam forming unit 11 and outputs the received MIMO-OFDM signal to the beam forming unit 11. More specifically, the antenna 10 receives the transmission signal while changing the directivity a plurality of times within one symbol of the modulated transmission signal.

ビーム形成部11は、アンテナ10が受信した受信信号に対して、制御部14から入力される制御信号に応じて振幅と位相を変更し、変更した信号(受信信号パターン)を合成して、RF部12に対して出力する。例えば、ビーム形成部11は、制御部14の制御に応じて、受信信号の1シンボル内に複数(例えばP個)の受信信号パターンを出力する。 The beam forming unit 11 changes the amplitude and phase of the received signal received by the antenna 10 according to the control signal input from the control unit 14, synthesizes the changed signal (received signal pattern), and RFs the received signal. Output to unit 12. For example, the beam forming unit 11 outputs a plurality of (for example, P) received signal patterns within one symbol of the received signal according to the control of the control unit 14.

図4は、ビーム形成部11が出力した受信信号パターン(アンテナ特性)の一例を示す図である。図4(a)は、ピーク方向が0度の場合の受信信号パターンを示す図である。図4(b)は、ピーク方向が90度の場合の受信信号パターンを示す図である。図4(c)は、ピーク方向が180度の場合の受信信号パターンを示す図である。図4(d)は、ピーク方向が270度の場合の受信信号パターンを示す図である。 FIG. 4 is a diagram showing an example of a received signal pattern (antenna characteristic) output by the beam forming unit 11. FIG. 4A is a diagram showing a received signal pattern when the peak direction is 0 degrees. FIG. 4B is a diagram showing a received signal pattern when the peak direction is 90 degrees. FIG. 4C is a diagram showing a received signal pattern when the peak direction is 180 degrees. FIG. 4D is a diagram showing a received signal pattern when the peak direction is 270 degrees.

例えば、ビーム形成部11は、図4に示したように90°ずつずれた4方向にメインローブ、サイドローブ及びバックローブが生じるように合成を行う。 For example, the beam forming unit 11 synthesizes so that the main lobe, side lobe, and back lobe are generated in four directions shifted by 90 ° as shown in FIG.

RF部12(図3)は、ビーム形成部11から入力されたMIMO−OFDM信号に対し、増幅・周波数変更・フィルタリングなどのアナログ処理を施し、処理した信号をA/D変換部13に対して出力する。つまり、RF部12は、一般的な無線装置のRFフロントエンドの機能が搭載されている。 The RF unit 12 (FIG. 3) performs analog processing such as amplification, frequency change, and filtering on the MIMO-OFDM signal input from the beam forming unit 11, and transmits the processed signal to the A / D conversion unit 13. Output. That is, the RF unit 12 is equipped with the function of the RF front end of a general wireless device.

A/D変換部13は、RF部12から入力されるアナログ信号をデジタル信号に変更し、信号分割部15に対して出力する。また、A/D変換部13は、サンプリング周期を制御部14に対して通知する。ここでは、A/D変換部13は、受信信号のシンボルレート対してP倍の速度でサンプリングを行う。 The A / D conversion unit 13 changes the analog signal input from the RF unit 12 into a digital signal and outputs the analog signal to the signal division unit 15. Further, the A / D conversion unit 13 notifies the control unit 14 of the sampling cycle. Here, the A / D conversion unit 13 performs sampling at a speed P times that of the symbol rate of the received signal.

制御部14は、無線基地局1を構成する各部を制御する。例えば、制御部14は、アンテナ10が1つのOFDMシンボルの信号を受信する間に、ビーム形成部11が受信信号の振幅と位相を複数回(例えばP回)変更するように制御を行い、ビーム形成部11に複数(例えばP個)の受信信号パターンを生成させる。 The control unit 14 controls each unit constituting the radio base station 1. For example, the control unit 14 controls the beam forming unit 11 to change the amplitude and phase of the received signal a plurality of times (for example, P times) while the antenna 10 receives the signal of one OFDM symbol. The forming unit 11 is made to generate a plurality of (for example, P) received signal patterns.

ここで、制御部14は、受信信号の包絡線の歪成分を最小にするように制御しつつ、受信信号の1シンボル内でビーム形成部11が受信信号の振幅及び位相を複数回変更することによって複数の受信信号パターンを出力するように制御する。 Here, the control unit 14 controls so as to minimize the distortion component of the envelope of the received signal, and the beam forming unit 11 changes the amplitude and phase of the received signal a plurality of times within one symbol of the received signal. Controls to output multiple received signal patterns.

信号分割部15は、A/D変換部13から入力された信号を、制御部14が制御するアンテナ特性ごとに複数の信号に分割し、選択部16に対して出力する。 The signal division unit 15 divides the signal input from the A / D conversion unit 13 into a plurality of signals for each antenna characteristic controlled by the control unit 14, and outputs the signal to the selection unit 16.

選択部16は、信号分割部15から入力されたP個の信号を解析部17に対して出力し、解析部17から入力される指示信号に従って、信号分割部15から入力されたP個の信号の中からQ個(ただし、2≦Q<P)の信号を選択する。そして、選択部16は、選択したQ個の信号を復調部18に対して出力する。 The selection unit 16 outputs the P signals input from the signal division unit 15 to the analysis unit 17, and the P signals input from the signal division unit 15 according to the instruction signal input from the analysis unit 17. Select Q signals (however, 2 ≦ Q <P) from the signals. Then, the selection unit 16 outputs the selected Q signals to the demodulation unit 18.

解析部17は、選択部16から入力されたP個の信号の全ての組合せの中から、信号数をQ個に削減させて復調した場合に、通信品質が最も高くなるQ個の信号の組合せを特定する解析を行う。 The analysis unit 17 combines all the combinations of P signals input from the selection unit 16 with Q signals having the highest communication quality when the number of signals is reduced to Q and demodulated. Perform an analysis to identify.

ここで、通信品質が最も高い信号の組合せとは、スループットが最大となる信号の組合せ、又は、パケットエラーレートが最小となる信号の組合せなどであるとする。 Here, it is assumed that the combination of signals having the highest communication quality is a combination of signals having the maximum throughput, a combination of signals having the minimum packet error rate, and the like.

より具体的には、解析部17は、P個の信号の全ての組合せに対して復調した場合の通信品質を算出し、例えばスループットが最大となるQ個の信号の組合せ、又は、パケットエラーレートが最小となるQ個の信号の組合せを特定し、特定した信号の組合せ結果を指示信号として選択部16へ出力する。 More specifically, the analysis unit 17 calculates the communication quality when demodulating all combinations of P signals, for example, the combination of Q signals having the maximum throughput, or the packet error rate. The combination of Q signals having the minimum value is specified, and the combination result of the specified signals is output to the selection unit 16 as an instruction signal.

復調部18は、選択部16から入力されたQ個の信号に対し、通信データを含む受信信号(シンボル)のCMA処理による干渉波抑圧と、MIMO−OFDMの復調処理を行う。 The demodulation unit 18 performs interference wave suppression by CMA processing of a received signal (symbol) including communication data and demodulation processing of MIMO-OFDM on Q signals input from the selection unit 16.

なお、無線基地局1は、アンテナ特性を受信信号の1シンボル内でP回変化させ、A/D変換部13が受信信号のシンボルレートに対してP倍の速度でA/D変換を行い、複数の異なる伝搬特性を持つP個の仮想ブランチを得る。 The radio base station 1 changes the antenna characteristics P times within one symbol of the received signal, and the A / D conversion unit 13 performs A / D conversion at a speed P times that of the symbol rate of the received signal. Obtain P virtual branches with multiple different propagation characteristics.

従来は、1つのOFDMシンボル内に取得したP個の異なる受信信号をアレーデータとしてMIMO−OFDMの復調処理を行うためには、異なる時間における伝搬チャネルを取得する必要があった。 Conventionally, in order to perform MIMO-OFDM demodulation processing using P different received signals acquired in one OFDM symbol as array data, it is necessary to acquire propagation channels at different times.

これに対し、一実施形態にかかる無線基地局1は、一定包絡線アルゴリズム(CMA)をアレーアンテナのウエイト制御に利用している。CMAでは、送信された信号が一定の包絡線を持つという性質を利用するアレー出力の包絡線の歪成分が最小になるようにウエイトを制御する。 On the other hand, the radio base station 1 according to the embodiment uses a constant envelope algorithm (CMA) for weight control of the array antenna. In CMA, the weight is controlled so that the distortion component of the envelope of the array output, which utilizes the property that the transmitted signal has a constant envelope, is minimized.

図5は、CMAの動作原理の概要を示す図である。CMAは、アレーアンテナの出力信号の包絡線を一定にするようにウエイトを制御することを特徴とする。例えば、CMAにおいては、希望波である第1到来波と、第2到来波とを合成して合成波y(アレーアンテナの出力電圧)を生成し、合成波yと所望の包絡線値σを用いて、下式(1)によって表されるCMAの評価関数による評価が行われる。なお、式(1)におけるE[・]は、期待値を求める操作を表す。 FIG. 5 is a diagram showing an outline of the operating principle of CMA. The CMA is characterized in that the weight is controlled so that the envelope of the output signal of the array antenna is constant. For example, in CMA, the desired first arrival wave and the second arrival wave are combined to generate a composite wave y (output voltage of the array antenna), and the composite wave y and the desired wrapping line value σ are obtained. The evaluation is performed by the evaluation function of CMA represented by the following equation (1). Note that E [・] in the equation (1) represents an operation for obtaining an expected value.

Figure 2021145210
Figure 2021145210

そして、CMAでは、合成波yから第2到来波を抑圧して、第1到来波を抽出する。上式(1)に示すXは、アレーアンテナの受信信号ベクトルになる。 Then, in CMA, the second arrival wave is suppressed from the composite wave y, and the first arrival wave is extracted. X shown in the above equation (1) is the received signal vector of the array antenna.

しかし、無線基地局1においては、アレーアンテナから出力される信号が1系統しかない。よって、無線基地局1は、アレーアンテナの異なるアンテナで得られるXの変わりに、異なるアンテナ特性におけるP個の受信信号からなるベクトルを用いる。 However, in the radio base station 1, there is only one signal output from the array antenna. Therefore, the radio base station 1 uses a vector consisting of P received signals having different antenna characteristics instead of X obtained by different antennas of the array antenna.

CMAは、タイミング同期を必要としないアルゴリズムであるため、タイミングの同期や伝搬チャネルの推定を必要としない。なお、CMAの基本的な特徴は、非特許文献1にも記載されている。 Since CMA is an algorithm that does not require timing synchronization, it does not require timing synchronization or estimation of propagation channels. The basic features of CMA are also described in Non-Patent Document 1.

つまり、制御部14は、受信信号の包絡線の歪成分を最小にするように制御しつつ、受信信号の1シンボル内でビーム形成部11が受信信号の振幅及び位相を複数回変更することによって複数の受信信号パターンを出力するように制御している。 That is, the control unit 14 controls so as to minimize the distortion component of the envelope of the received signal, and the beam forming unit 11 changes the amplitude and phase of the received signal a plurality of times within one symbol of the received signal. It is controlled to output multiple received signal patterns.

図6は、一実施形態にかかる無線通信システムにおける上り回線の通信シーケンスの一例を示す図である。図6に示すように、一実施形態にかかる無線通信システムでは、例えば無線端末局2−1,2−2が非同期に信号を伝送することが想定される。このとき、無線端末局2−1が送信する信号を希望波である上り回線のMIMO−OFDM信号とすると、無線端末局2−2が送信する信号は干渉信号となる。 FIG. 6 is a diagram showing an example of an uplink communication sequence in the wireless communication system according to the embodiment. As shown in FIG. 6, in the wireless communication system according to the embodiment, it is assumed that, for example, wireless terminal stations 2-1 and 2-2 transmit signals asynchronously. At this time, if the signal transmitted by the wireless terminal station 2-1 is an uplink MIMO-OFDM signal that is a desired wave, the signal transmitted by the wireless terminal station 2-2 is an interference signal.

無線基地局1は、受信ポートが1素子であっても1シンボル内でA/D変換部13がオーバーサンプリングによる変換を行うことにより、複数のアンテナ特性の異なるブランチを得ることができ、受信信号のみで干渉除去を実現するCMAを複数のパターンの異なるブランチに適用することにより、タイミング同期やチャネル推定が不要となる。 In the radio base station 1, even if the receiving port is one element, the A / D converter 13 performs conversion by oversampling within one symbol, so that a plurality of branches having different antenna characteristics can be obtained, and the received signal can be received. By applying CMA, which realizes interference elimination only by itself, to different branches of a plurality of patterns, timing synchronization and channel estimation become unnecessary.

次に、無線通信システムの変形例について説明する。図7は、実施形態にかかる無線通信システムが有する無線端末局2の第1変形例(無線端末局2a)を示す図である。 Next, a modified example of the wireless communication system will be described. FIG. 7 is a diagram showing a first modification (wireless terminal station 2a) of the wireless terminal station 2 included in the wireless communication system according to the embodiment.

図7に示すように、無線端末局2aは、パイロット信号生成部24、変調部25、D/A変換部21、RF部22、及びアンテナ23を有する。なお、上述した構成と実質的に同一の構成には同一の符号が付してある。 As shown in FIG. 7, the radio terminal station 2a has a pilot signal generation unit 24, a modulation unit 25, a D / A conversion unit 21, an RF unit 22, and an antenna 23. The same reference numerals are given to substantially the same configurations as those described above.

パイロット信号生成部24は、無線基地局1が信号電力と干渉電力の比を算出するための信号、及び無線基地局1がビットエラーレートを算出するための信号をパイロット信号として生成し、変調部25に対して出力する。 The pilot signal generation unit 24 generates a signal for the radio base station 1 to calculate the ratio of the signal power and the interference power and a signal for the radio base station 1 to calculate the bit error rate as a pilot signal, and is a modulation unit. Output to 25.

ここで、パイロット信号は、0と1を規則的に並べた信号となり、その規則性は無線基地局1にも共有されているものとする。 Here, it is assumed that the pilot signal is a signal in which 0s and 1s are regularly arranged, and the regularity is also shared by the radio base station 1.

変調部25は、パイロット信号生成部24から入力されたパイロット信号を含めてMIMO−OFDMの変調処理を行い、変調した信号をD/A変換部21に対して出力する。 The modulation unit 25 performs the MIMO-OFDM modulation process including the pilot signal input from the pilot signal generation unit 24, and outputs the modulated signal to the D / A conversion unit 21.

無線通信システムの変形例においては、図3に示した解析部17は、パイロット信号を用いて各ビームに対する所望の信号電力と干渉電力を算出し、スループットが最大となるQ個の信号の組合せを特定する。又は、解析部17は、パイロット信号を用いてパケットエラーレートを算出し、パケットエラーレートが最小となるQ個の信号の組合せを特定する。 In a modified example of the wireless communication system, the analysis unit 17 shown in FIG. 3 calculates the desired signal power and interference power for each beam using the pilot signal, and selects a combination of Q signals having the maximum throughput. Identify. Alternatively, the analysis unit 17 calculates the packet error rate using the pilot signal, and specifies the combination of Q signals that minimizes the packet error rate.

つまり、無線通信システムの変形例では、無線基地局1における計算処理の負荷を軽減するように、無線端末局2aがパイロット信号を含む信号を送信する。 That is, in a modified example of the wireless communication system, the wireless terminal station 2a transmits a signal including a pilot signal so as to reduce the load of calculation processing in the wireless base station 1.

また、無線端末局2aは、図8に示した無線端末局2bのように、さらにビーム形成部26が設けられてもよい。ビーム形成部26は、無線端末局2bが送信する信号の例えばスループットを向上させるビームをアンテナ23が形成するように、信号の振幅及び位相を制御する。 Further, the wireless terminal station 2a may be further provided with a beam forming unit 26 as in the wireless terminal station 2b shown in FIG. The beam forming unit 26 controls the amplitude and phase of the signal so that the antenna 23 forms a beam for improving the throughput of the signal transmitted by the wireless terminal station 2b, for example.

このように、一実施形態にかかる無線通信システムは、通信品質が最も高くなるQ個の信号の組合せを無線基地局1が特定し、信号数をP個からQ個に削減させて復調を行うので、複数の受信信号に対する計算処理量を抑えつつ、通信品質を向上させることができる。 As described above, in the wireless communication system according to the embodiment, the wireless base station 1 identifies the combination of Q signals having the highest communication quality, reduces the number of signals from P to Q, and performs demodulation. Therefore, it is possible to improve the communication quality while suppressing the amount of calculation processing for a plurality of received signals.

1・・・無線基地局、2−1〜2−n,2a,2b・・・無線端末局、10・・・アンテナ、11・・・ビーム形成部、12・・・RF部、13・・・A/D変換部、14・・・制御部、15・・・信号分割部、16・・・選択部、17・・・解析部、18・・・復調部、20,25・・・変調部、21・・・D/A変換部、22・・・RF部、23・・・アンテナ、24・・・パイロット信号生成部
1 ... Radio base station, 2-1-2-n, 2a, 2b ... Radio terminal station, 10 ... Antenna, 11 ... Beam forming section, 12 ... RF section, 13 ... A / D conversion unit, 14 ... control unit, 15 ... signal division unit, 16 ... selection unit, 17 ... analysis unit, 18 ... demodulation unit, 20, 25 ... modulation Unit, 21 ... D / A conversion unit, 22 ... RF unit, 23 ... antenna, 24 ... pilot signal generation unit

Claims (4)

変調された送信信号の1シンボル内で指向性を複数回変化させつつ、前記送信信号を受信する複数のアンテナと、
複数の前記アンテナが受信した受信信号の振幅及び位相を変更して受信信号パターンを出力するビーム形成部と、
前記受信信号の包絡線の歪成分を最小にするように制御しつつ、前記受信信号の1シンボル内で前記ビーム形成部が前記受信信号の振幅及び位相を複数回変更することによって複数の受信信号パターンを出力するように制御する制御部と、
前記ビーム形成部が出力した信号を複数の信号に分割する信号分割部と、
前記信号分割部が分割した複数の信号の全ての組合せの中から、信号数を削減させて復調した場合に通信品質が最も高くなる信号の組合せを特定する解析を行う解析部と、
前記解析部が解析した結果に基づいて、前記信号分割部が分割した複数の信号の一部を選択する選択部と、
前記選択部が選択した信号をMIMO−OFDM復調する復調部と
を有することを特徴とする無線通信装置。
A plurality of antennas that receive the transmitted signal while changing the directivity a plurality of times within one symbol of the modulated transmission signal.
A beam forming unit that outputs a received signal pattern by changing the amplitude and phase of the received signal received by the plurality of antennas.
A plurality of received signals are received by the beam forming unit changing the amplitude and phase of the received signal a plurality of times within one symbol of the received signal while controlling so as to minimize the distortion component of the envelope of the received signal. A control unit that controls to output a pattern,
A signal dividing unit that divides the signal output by the beam forming unit into a plurality of signals, and a signal dividing unit.
An analysis unit that performs analysis to identify the combination of signals having the highest communication quality when demodulated by reducing the number of signals from all combinations of a plurality of signals divided by the signal division unit.
A selection unit that selects a part of a plurality of signals divided by the signal division unit based on the result analyzed by the analysis unit, and a selection unit.
A wireless communication device including a demodulation unit that demodulates a signal selected by the selection unit by MIMO-OFDM.
前記解析部は、
前記送信信号の信号電力及び干渉電力の算出結果、又は、前記送信信号のパケットエラーレートの算出結果に基づいて、信号数を削減させて復調した場合に通信品質が最も高くなる信号の組合せを特定する解析を行うこと
を特徴とする請求項1に記載の無線通信装置。
The analysis unit
Based on the calculation result of the signal power and interference power of the transmission signal or the calculation result of the packet error rate of the transmission signal, the combination of signals having the highest communication quality when demodulated by reducing the number of signals is specified. The wireless communication device according to claim 1, wherein the analysis is performed.
変調された送信信号の1シンボル内で指向性を複数回変化させつつ、前記送信信号を受信する受信工程と、
受信した受信信号の振幅及び位相を変更して受信信号パターンを出力するビーム形成工程と、
前記受信信号の包絡線の歪成分を最小にするように制御しつつ、前記受信信号の1シンボル内で前記受信信号の振幅及び位相を複数回変更することによって複数の受信信号パターンを出力するように制御する制御工程と、
出力した複数の受信信号パターンを複数の信号に分割する信号分割工程と、
分割した複数の信号の全ての組合せの中から、信号数を削減させて復調した場合に通信品質が最も高くなる信号の組合せを特定する解析を行う解析工程と、
解析した結果に基づいて、分割した複数の信号の一部を選択する選択工程と、
選択した信号をMIMO−OFDM復調する復調工程と
を含むことを特徴とする無線通信方法。
A receiving process of receiving the transmitted signal while changing the directivity a plurality of times within one symbol of the modulated transmission signal.
A beam forming process that outputs a received signal pattern by changing the amplitude and phase of the received received signal,
A plurality of received signal patterns are output by changing the amplitude and phase of the received signal a plurality of times within one symbol of the received signal while controlling so as to minimize the distortion component of the envelope of the received signal. Control process and
A signal division process that divides a plurality of output received signal patterns into a plurality of signals, and
An analysis process that identifies the combination of signals with the highest communication quality when demodulated by reducing the number of signals from all combinations of a plurality of divided signals.
A selection process that selects a part of multiple divided signals based on the analysis results,
A wireless communication method comprising a demodulation step of demodulating a selected signal in MIMO-OFDM.
前記解析工程は、
前記送信信号の信号電力及び干渉電力の算出結果、又は、前記送信信号のパケットエラーレートの算出結果に基づいて、信号数を削減させて復調した場合に通信品質が最も高くなる信号の組合せを特定する解析を行うこと
を特徴とする請求項3に記載の無線通信方法。
The analysis step is
Based on the calculation result of the signal power and interference power of the transmission signal or the calculation result of the packet error rate of the transmission signal, the combination of signals having the highest communication quality when demodulated by reducing the number of signals is specified. The wireless communication method according to claim 3, wherein the analysis is performed.
JP2020041768A 2020-03-11 2020-03-11 Wireless communication device and wireless communication method Active JP7415687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020041768A JP7415687B2 (en) 2020-03-11 2020-03-11 Wireless communication device and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020041768A JP7415687B2 (en) 2020-03-11 2020-03-11 Wireless communication device and wireless communication method

Publications (2)

Publication Number Publication Date
JP2021145210A true JP2021145210A (en) 2021-09-24
JP7415687B2 JP7415687B2 (en) 2024-01-17

Family

ID=77767219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020041768A Active JP7415687B2 (en) 2020-03-11 2020-03-11 Wireless communication device and wireless communication method

Country Status (1)

Country Link
JP (1) JP7415687B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022260097A1 (en) * 2021-06-11 2022-12-15 国立大学法人東京工業大学 Wireless communication device and wireless communication method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016010057A (en) * 2014-06-25 2016-01-18 日本電信電話株式会社 Receiver and reception method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016010057A (en) * 2014-06-25 2016-01-18 日本電信電話株式会社 Receiver and reception method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
渡部 一聖,西森 健太郎,谷口 諒太郎,村上 友規: "仮想 Massive アレーを用いた伝搬環境制御法の提案", 信学技報 IEICE TECHNICAL REPORT CQ2019-15, JPN6022046856, May 2019 (2019-05-01), JP, pages 23 - 26, ISSN: 0005027412 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022260097A1 (en) * 2021-06-11 2022-12-15 国立大学法人東京工業大学 Wireless communication device and wireless communication method

Also Published As

Publication number Publication date
JP7415687B2 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
CN102244637B (en) Sending apparatus and sending method
JP4199128B2 (en) Signal selection system and method
KR100712070B1 (en) Apparatus for Cordless Transmission of Multi-Carrier Supporting Multi-Antenna System
EP1220506B1 (en) Beam formation circuit and an apparatus and a method of receiving radio frequency signals making use of a smart antenna
US7564910B2 (en) Method and system for communications with reduced complexity receivers
JP3718337B2 (en) Adaptive variable directional antenna
US7843960B2 (en) Multi-carrier radio transmission system, transmission device, and reception device
CN101112061A (en) System and method for selecting data rates to provide uniform bit loading of subcarriers of a multicarrier communication channel
WO2006006826A1 (en) Apparatus and method for beamforming in a multi-antenna system
JP4376805B2 (en) Spatial multiplexing transmission method and transmitter
KR20140092951A (en) Method and apparatus for fast beam-link construction scheme in the mobile communication system
WO2009147958A1 (en) Mobile communication system, mobile communication device, and mobile communication method
JP2000224139A (en) Diversity receiver
US20070188381A1 (en) Receiver, transmission device and receiving method
WO2013080451A1 (en) Wireless reception device and wireless reception method in wireless communication system
JP7415687B2 (en) Wireless communication device and wireless communication method
JP7144808B2 (en) Wireless communication device and wireless communication method
WO2022038689A1 (en) Reception device, reception method, program, and transmission device
JP2015082773A (en) Weight coefficient calculation device, adaptive array reception device, and weight coefficient calculation method
Maruta et al. Blind interference suppression scheme by eigenvector beamspace CMA adaptive array with subcarrier transmission power assignment for spectrum superposing
JP2005354365A (en) Spatial multiplex transmission apparatus
JP2006180339A (en) Transmitting method and transmitting device for spatial multiplex transmission
JP4198452B2 (en) Radio apparatus and antenna directivity control method
KR102182812B1 (en) Method and system for single carrier wideband hybrid beamforming based on limited feedback
JP2001268632A (en) Radio communication system, radio base station, and mobile station

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200313

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200522

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200701

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200819

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200820

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220415

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231002

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231218

R150 Certificate of patent or registration of utility model

Ref document number: 7415687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150