JP2021145108A - Cleaning liquid circulation supply device - Google Patents

Cleaning liquid circulation supply device Download PDF

Info

Publication number
JP2021145108A
JP2021145108A JP2020044475A JP2020044475A JP2021145108A JP 2021145108 A JP2021145108 A JP 2021145108A JP 2020044475 A JP2020044475 A JP 2020044475A JP 2020044475 A JP2020044475 A JP 2020044475A JP 2021145108 A JP2021145108 A JP 2021145108A
Authority
JP
Japan
Prior art keywords
cleaning liquid
ultrapure water
supply device
use point
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020044475A
Other languages
Japanese (ja)
Inventor
祐一 小川
Yuichi Ogawa
祐一 小川
航 杉田
Wataru Sugita
航 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2020044475A priority Critical patent/JP2021145108A/en
Publication of JP2021145108A publication Critical patent/JP2021145108A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

To provide a cleaning liquid circulation supply device in which cleaning liquid returned from a use point and newly supplied ultrapure water are sufficiently mixed and the cleaning liquid having a low fine particle content is supplied to the use point.SOLUTION: A cleaning liquid circulation supply device includes a cleaning liquid tank 1, a feed line 3 that sends the cleaning liquid of the cleaning liquid tank 1 to a use point, addition lines 4, 5, and 6 for adding additives to the feed line 3, a return line 10 that sends unused cleaning liquid from the use point to the cleaning liquid tank 1, an ultrapure water supply line 11 that supplies ultrapure water to the return line 10, and a fine particle removal filter 12 provided on the cleaning liquid tank 1 side of a connection portion of the ultrapure water supply line 11 in the return line 10.SELECTED DRAWING: Figure 1

Description

本発明は、半導体、液晶等の電子デバイス製造工程に洗浄液を循環供給するための洗浄液の循環供給装置に関する。 The present invention relates to a cleaning liquid circulation supply device for circulatingly supplying a cleaning liquid to an electronic device manufacturing process such as a semiconductor or a liquid crystal display.

電子産業分野のウエハ処理に使用される洗浄溶液として、超純水に導電率付与物質や酸化還元電位コントロール物質又はガスを添加した溶液が使用されている(例えば特許文献1)。 As a cleaning solution used for wafer processing in the electronic industry field, a solution obtained by adding a conductivity-imparting substance, a redox potential control substance, or a gas to ultrapure water is used (for example, Patent Document 1).

従来の洗浄液の循環供給装置では、超純水をタンクに導入し、該タンク内の液を循環往ライン(フィードライン)でユースポイントに送水すると共に、この循環往ラインの途中で導電率付与物質や酸化還元電位コントロール物質又はガス等の添加物質を添加する。この添加物質を添加して洗浄液がユースポイントに供給され、その一部が洗浄に使用される。ユースポイントで使用されなかった洗浄液は、循環戻りライン(リターンライン)で前記タンクに返送される。 In the conventional circulation supply device for cleaning liquid, ultrapure water is introduced into a tank, and the liquid in the tank is sent to a use point by a circulation forward line (feed line), and a conductivity-imparting substance is supplied in the middle of this circulation forward line. And an additive substance such as an oxidation-reduction potential control substance or a gas is added. This additive is added to supply the cleaning solution to the point of use, some of which is used for cleaning. The cleaning liquid not used at the use point is returned to the tank at the circulation return line (return line).

特開2005−186067号公報Japanese Unexamined Patent Publication No. 2005-186067

従来の洗浄液の循環供給装置では、上記のタンクからはユースポイントに連続的に洗浄液が送水される。ユースポイントでウエハ洗浄を行わない場合でも洗浄液が循環往ライン及び戻りラインを循環送水される。タンク内の洗浄液は、ユースポイントからの戻り洗浄液と、該タンクに供給される新規超純水とが混合されたものであるので、ユースポイントに送水される洗浄液の水質を一定にするためには、ユースポイントからの戻り洗浄液量と新規超純水量との混合比を適切に制御すると共に、両者を十分に混合する必要がある。 In the conventional circulation supply device for cleaning liquid, the cleaning liquid is continuously sent from the above tank to the use point. Even if the wafer is not cleaned at the point of use, the cleaning liquid is circulated through the circulation forward line and the return line. The cleaning liquid in the tank is a mixture of the return cleaning liquid from the use point and the new ultrapure water supplied to the tank. Therefore, in order to keep the quality of the cleaning liquid sent to the use point constant. It is necessary to appropriately control the mixing ratio of the amount of cleaning liquid returned from the use point and the amount of new ultrapure water, and to mix the two sufficiently.

本発明は、ユースポイントから返送される洗浄液と、新規に供給される超純水とが十分に混合されると共に、微粒子含有率の低い洗浄液がユースポイントに供給される洗浄液の循環供給装置を提供することを目的とする。 The present invention provides a circulation supply device for a cleaning liquid in which the cleaning liquid returned from the use point and the newly supplied ultrapure water are sufficiently mixed and the cleaning liquid having a low fine particle content is supplied to the use point. The purpose is to do.

本発明の洗浄液の循環供給装置は、洗浄液タンクと、該洗浄液タンクの洗浄液をユースポイントに送水するフィードラインと、該フィードラインに添加物質を添加する添加物質添加手段と、該ユースポイントから未使用洗浄液を前記洗浄液タンクに送水するリターンラインと、該リターンラインに超純水を供給する超純水供給ラインと、前記リターンラインのうち、前記超純水供給ラインの接続部分よりも前記洗浄液タンク側に設けられた微粒子除去フィルタとを備えてなる。 The cleaning liquid circulation supply device of the present invention includes a cleaning liquid tank, a feed line for supplying the cleaning liquid of the cleaning liquid tank to a use point, an additive substance adding means for adding an additive substance to the feed line, and unused from the use point. A return line for supplying cleaning liquid to the cleaning liquid tank, an ultrapure water supply line for supplying ultrapure water to the return line, and the cleaning liquid tank side of the return line with respect to the connection portion of the ultrapure water supply line. It is provided with a fine particle removal filter provided in.

本発明の一態様では、前記微粒子除去フィルタは、平均孔径50〜500nmであることを特徴とする。 In one aspect of the present invention, the fine particle removing filter is characterized by having an average pore diameter of 50 to 500 nm.

本発明の一態様では、前記添加物質は、導電率付与物質、酸化還元電位を調整する物質、pHを調整する物質、及びガスの少なくとも1種であることを特徴とする。 In one aspect of the present invention, the additive substance is at least one of a conductivity-imparting substance, a substance that adjusts the redox potential, a substance that adjusts pH, and a gas.

本発明の洗浄液の循環供給装置によると、超純水がリターンラインに供給されるので、ユースポイントから返送される洗浄液と、リターンラインに供給された超純水とが、該リターンライン内をタンクまで流れる間に十分に混合される。 According to the cleaning liquid circulation supply device of the present invention, ultrapure water is supplied to the return line, so that the cleaning liquid returned from the use point and the ultrapure water supplied to the return line tank in the return line. Mix well while flowing to.

また、本発明の洗浄液の循環供給装置では、リターンラインのうち、超純水供給ライン接続部分よりもタンク側に微粒子除去フィルタを配置しているので、微粒子除去フィルタがラインミキサと同様の撹拌混合作用を奏することにより、返送洗浄液と超純水との混合がさらに促進される。 Further, in the cleaning liquid circulation supply device of the present invention, since the fine particle removal filter is arranged on the tank side of the return line from the connection portion of the ultrapure water supply line, the fine particle removal filter is agitated and mixed in the same manner as the line mixer. By acting, the mixing of the return cleaning liquid and the ultrapure water is further promoted.

また、微粒子除去フィルタを設けることにより、洗浄液中の微粒子が除去される。 Further, by providing a fine particle removing filter, fine particles in the cleaning liquid are removed.

実施の形態に係る洗浄液の循環供給装置のフロー図である。It is a flow figure of the circulation supply apparatus of the cleaning liquid which concerns on embodiment. 比較例に係る洗浄液の循環供給装置のフロー図である。It is a flow chart of the circulation supply device of the cleaning liquid which concerns on a comparative example. 比較例に係る洗浄液の循環供給装置のフロー図である。It is a flow chart of the circulation supply device of the cleaning liquid which concerns on a comparative example. 比較例に係る洗浄液の循環供給装置のフロー図である。It is a flow chart of the circulation supply device of the cleaning liquid which concerns on a comparative example.

以下、図面を参照して実施の形態について説明する。図1は第1の実施の形態に係る洗浄液の循環供給装置を示している。この洗浄液の循環供給装置では、洗浄液タンク1内の洗浄液がポンプ2を有するフィードライン3を介してユースポイントに送水され、その途中で導電性付与物質、酸化還元電位コントロール物質又はガスが各々の添加ライン4,5又は6から添加される。図示は省略するが、pH調整物質が添加されてもよい。フィードライン3に導電率計7、ORP計8及びガス濃度計9が設置されている。 Hereinafter, embodiments will be described with reference to the drawings. FIG. 1 shows a cleaning liquid circulation supply device according to the first embodiment. In this cleaning liquid circulation supply device, the cleaning liquid in the cleaning liquid tank 1 is sent to the use point via the feed line 3 having the pump 2, and the conductivity-imparting substance, the redox potential control substance, or the gas is added in the middle of the water supply. It is added from lines 4, 5 or 6. Although not shown, a pH adjusting substance may be added. A conductivity meter 7, an ORP meter 8, and a gas concentration meter 9 are installed on the feed line 3.

ユースポイントで余剰となった未使用の洗浄液は、リターンライン10を介して洗浄液タンク1に返送される。この実施の形態では、このリターンライン10の途中に超純水供給ライン11が接続されている。また、リターンライン10の途中でかつ該超純水供給ライン11の接続部分よりもタンク1側(下流側)に微粒子除去フィルタ12が設置されている。微粒子除去フィルタ12としては平均孔径500nm以下、例えば50〜500nmのフィルタが好適である。 The unused cleaning liquid surplus at the use point is returned to the cleaning liquid tank 1 via the return line 10. In this embodiment, the ultrapure water supply line 11 is connected in the middle of the return line 10. Further, the fine particle removal filter 12 is installed in the middle of the return line 10 and on the tank 1 side (downstream side) of the connection portion of the ultrapure water supply line 11. As the fine particle removing filter 12, a filter having an average pore diameter of 500 nm or less, for example, 50 to 500 nm is suitable.

フィードライン3及び超純水供給ライン11には、流量計13,14が設けられている。 Flow meters 13 and 14 are provided in the feed line 3 and the ultrapure water supply line 11.

導電性付与物質としては、アンモニア、炭酸等が例示される。酸化還元電位を調整する物質としては過酸化水素、オゾン等が例示される。ガスとしては水素、窒素、炭酸ガス、オゾン等が例示される。 Examples of the conductivity-imparting substance include ammonia and carbonic acid. Examples of the substance that adjusts the redox potential include hydrogen peroxide and ozone. Examples of the gas include hydrogen, nitrogen, carbon dioxide gas, ozone and the like.

pHを調整する物質としてはアンモニア、炭酸、塩酸等が例示される。 Examples of the substance for adjusting the pH include ammonia, carbonic acid, hydrochloric acid and the like.

このように構成された洗浄液の循環供給装置においては、超純水が超純水供給ライン11からリターンライン10に供給されるので、ユースポイントから返送される洗浄液と、リターンライン10に供給された超純水とが、該リターンライン10内をタンク1まで流れる間に十分に混合される。また、リターンライン10のうち、超純水供給ライン11の接続部分よりもタンク1側に微粒子除去フィルタ12を配置しているので、洗浄液中の微粒子が除去されると共に、微粒子除去フィルタ12がラインミキサと同様の撹拌混合作用を奏することにより、返送洗浄液と超純水との混合がさらに促進される。 In the cleaning liquid circulation supply device configured in this way, the ultrapure water is supplied from the ultrapure water supply line 11 to the return line 10, so that the cleaning liquid returned from the use point and the return line 10 are supplied. Ultrapure water is sufficiently mixed while flowing through the return line 10 to the tank 1. Further, since the fine particle removing filter 12 is arranged on the tank 1 side of the return line 10 with respect to the connecting portion of the ultrapure water supply line 11, the fine particles in the cleaning liquid are removed and the fine particle removing filter 12 is lined up. By performing the same stirring and mixing action as the mixer, the mixing of the return cleaning liquid and the ultrapure water is further promoted.

[実施例1]
図1に示す洗浄液の循環供給装置において、50L容のタンク1から洗浄液をポンプ2によってフィードライン3に送水し、導電率が30μS/cmとなるようにアンモニア(導電性付与物質)を添加し、50L/minでユースポイントへ送液しウエハを洗浄した。ウエハ洗浄に用いなかった洗浄液をリターンライン10から微粒子除去フィルタ12を通して、タンク1に戻した。ウエハ洗浄で使用し排水した分を超純水供給ライン11からリターンライン10に供給し、洗浄液のマテリアルバランスを保った。微粒子除去フィルタ12としては、平均孔径100nmのポリスルフォンよりなるものを用いた。
[Example 1]
In the cleaning liquid circulation supply device shown in FIG. 1, the cleaning liquid is sent from the tank 1 having a capacity of 50 L to the feed line 3 by the pump 2, and ammonia (conductivity-imparting substance) is added so that the conductivity becomes 30 μS / cm. The liquid was sent to the use point at 50 L / min to wash the wafer. The cleaning liquid not used for wafer cleaning was returned to the tank 1 from the return line 10 through the fine particle removing filter 12. The amount of wastewater used in wafer cleaning was supplied from the ultrapure water supply line 11 to the return line 10 to maintain the material balance of the cleaning liquid. As the fine particle removing filter 12, a filter made of polysulfone having an average pore diameter of 100 nm was used.

5時間、洗浄液の循環供給を継続した後における洗浄液中のパーティクル個数は1個/mL(500nm以上)となり、ユースポイントに送液する洗浄液の導電率のばらつきは±5%であった。なお、この結果を表1に示す。 After continuing the circulation supply of the cleaning liquid for 5 hours, the number of particles in the cleaning liquid was 1 particle / mL (500 nm or more), and the variation in the conductivity of the cleaning liquid sent to the use point was ± 5%. The results are shown in Table 1.

[実施例2]
実施例1において、アンモニアの代りに、酸化還元電位が600mVとなるよう過酸化水素を添加したこと以外は同一条件にて実験を行った。その結果、表1の通り、洗浄液中のパーティクル個数は1個/mL(500nm以上)となり、ユースポイントに送液する洗浄液の導電率のばらつきは±5%であった。
[Example 2]
In Example 1, the experiment was carried out under the same conditions except that hydrogen peroxide was added instead of ammonia so that the redox potential was 600 mV. As a result, as shown in Table 1, the number of particles in the cleaning liquid was 1 particle / mL (500 nm or more), and the variation in the conductivity of the cleaning liquid sent to the use point was ± 5%.

[実施例3]
実施例1において、アンモニアの代りに、水素ガス濃度が1ppmとなるように水素ガスを添加したこと以外は同一条件にて実験を行った。その結果、表1の通り、洗浄液中のパーティクル個数は1個/mL(500nm以上)となり、ユースポイントに送液する洗浄液の導電率のばらつきは±5%であった。
[Example 3]
In Example 1, the experiment was carried out under the same conditions except that hydrogen gas was added so that the hydrogen gas concentration was 1 ppm instead of ammonia. As a result, as shown in Table 1, the number of particles in the cleaning liquid was 1 particle / mL (500 nm or more), and the variation in the conductivity of the cleaning liquid sent to the use point was ± 5%.

[実施例4]
実施例1において、pHが9.0となるようアンモニアを添加したこと以外は同一条件にて実験を行った。その結果、表1の通り、洗浄液中のパーティクル個数は1個/mL(500nm以上)となり、ユースポイントに送液する洗浄液の導電率のばらつきは±5%であった。
[Example 4]
In Example 1, the experiment was carried out under the same conditions except that ammonia was added so that the pH became 9.0. As a result, as shown in Table 1, the number of particles in the cleaning liquid was 1 particle / mL (500 nm or more), and the variation in the conductivity of the cleaning liquid sent to the use point was ± 5%.

[実施例5]
実施例1において、導電率が30μS/cm、酸化還元電位が700mV、水素ガス濃度が1ppm、pHが9.0となるようにアンモニア、過酸化水素及び水素ガスを添加したこと以外は同一条件にて実験を行った。その結果、表1の通り、洗浄液中のパーティクル個数は1個/mL(500nm以上)となり、ユースポイントに送液する洗浄液の導電率のばらつきは±5%であった。
[Example 5]
In Example 1, the conditions were the same except that ammonia, hydrogen peroxide, and hydrogen gas were added so that the conductivity was 30 μS / cm, the redox potential was 700 mV, the hydrogen gas concentration was 1 ppm, and the pH was 9.0. The experiment was conducted. As a result, as shown in Table 1, the number of particles in the cleaning liquid was 1 particle / mL (500 nm or more), and the variation in the conductivity of the cleaning liquid sent to the use point was ± 5%.

[比較例1]
図3に示すように、超純水供給ライン11からの超純水を直接に洗浄液タンク1に供給するように構成した洗浄液の循環供給装置を用いた。図3のその他の構成は図1と同一である。
[Comparative Example 1]
As shown in FIG. 3, a cleaning liquid circulation supply device configured to directly supply ultrapure water from the ultrapure water supply line 11 to the cleaning liquid tank 1 was used. The other configurations of FIG. 3 are the same as those of FIG.

この図3の洗浄液の循環供給装置を用い、導電率が30μS/cmとなるようにアンモニアを添加したこと以外は同一条件にて実験を行った。その結果、表1の通り、洗浄液中のパーティクル個数は8個/mL(500nm以上)となり、ユースポイントに送液する洗浄液の導電率のばらつきは±15%であった。 Using the cleaning liquid circulation supply device shown in FIG. 3, the experiment was conducted under the same conditions except that ammonia was added so that the conductivity was 30 μS / cm. As a result, as shown in Table 1, the number of particles in the cleaning liquid was 8 particles / mL (500 nm or more), and the variation in the conductivity of the cleaning liquid sent to the use point was ± 15%.

[比較例2]
比較例1において、酸化還元電位が600mVとなるよう水素ガスを添加したこと以外は同一条件にて実験を行った。その結果、表1の通り、洗浄液中のパーティクル個数は8個/mL(500nm以上)となり、ユースポイントに送液する洗浄液の導電率のばらつきは±15%であった。
[Comparative Example 2]
In Comparative Example 1, the experiment was carried out under the same conditions except that hydrogen gas was added so that the redox potential was 600 mV. As a result, as shown in Table 1, the number of particles in the cleaning liquid was 8 particles / mL (500 nm or more), and the variation in the conductivity of the cleaning liquid sent to the use point was ± 15%.

[比較例3]
比較例1において、水素ガス濃度が1ppmとなるよう過酸化水素を添加したこと以外は同一条件にて実験を行った。その結果、表1の通り、洗浄液中のパーティクル個数は8個/mL(500nm以上)となり、ユースポイントに送液する洗浄液の導電率のばらつきは±15%であった。
[Comparative Example 3]
In Comparative Example 1, the experiment was carried out under the same conditions except that hydrogen peroxide was added so that the hydrogen gas concentration was 1 ppm. As a result, as shown in Table 1, the number of particles in the cleaning liquid was 8 particles / mL (500 nm or more), and the variation in the conductivity of the cleaning liquid sent to the use point was ± 15%.

[比較例4]
比較例1において、pHが9.0となるようアンモニアを添加したこと以外は同一条件にて実験を行った。その結果、表1の通り、洗浄液中のパーティクル個数は8個/mL(500nm以上)となり、ユースポイントに送液する洗浄液の導電率のばらつきは±15%であった。
[Comparative Example 4]
In Comparative Example 1, the experiment was carried out under the same conditions except that ammonia was added so that the pH became 9.0. As a result, as shown in Table 1, the number of particles in the cleaning liquid was 8 particles / mL (500 nm or more), and the variation in the conductivity of the cleaning liquid sent to the use point was ± 15%.

[比較例5]
比較例1において、導電率が30μS/cm、酸化還元電位が600mV、水素ガス濃度が1ppm、pHが9.0となるようにアンモニア、過酸化水素及び水素ガスを添加したこと以外は同一条件にて実験を行った。その結果、表1の通り、洗浄液中のパーティクル個数は8個/mL(500nm以上)となり、ユースポイントに送液する洗浄液の導電率のばらつきは±15%であった。
[Comparative Example 5]
In Comparative Example 1, the conditions were the same except that ammonia, hydrogen peroxide, and hydrogen gas were added so that the conductivity was 30 μS / cm, the redox potential was 600 mV, the hydrogen gas concentration was 1 ppm, and the pH was 9.0. The experiment was conducted. As a result, as shown in Table 1, the number of particles in the cleaning liquid was 8 particles / mL (500 nm or more), and the variation in the conductivity of the cleaning liquid sent to the use point was ± 15%.

[比較例6]
図2に示される、微粒子除去フィルタ12を省略したこと以外は実施例1(図1)と同一構成の洗浄液の循環供給装置(タンク容積も実施例1と同じく50L)を用いた。導電率が30μS/cmとなるようにアンモニアを添加したこと以外は同一条件にて実験を行った。その結果、表1の通り、洗浄液中のパーティクル個数は15個/mL(500nm以上)となり、ユースポイントに送液する洗浄液の導電率のばらつきは±12%であった。
[Comparative Example 6]
A cleaning liquid circulation supply device (tank volume is also 50 L, which is the same as that of Example 1) having the same configuration as that of Example 1 (FIG. 1) was used except that the fine particle removing filter 12 shown in FIG. 2 was omitted. The experiment was carried out under the same conditions except that ammonia was added so that the conductivity was 30 μS / cm. As a result, as shown in Table 1, the number of particles in the cleaning liquid was 15 particles / mL (500 nm or more), and the variation in the conductivity of the cleaning liquid sent to the use point was ± 12%.

[比較例7]
比較例6において、酸化還元電位が600mVとなるよう過酸化水素を添加したこと以外は同一条件にて実験を行った。その結果、表1の通り、洗浄液中のパーティクル個数は15個/mL(500nm以上)となり、ユースポイントに送液する洗浄液の導電率のばらつきは±12%であった。
[Comparative Example 7]
In Comparative Example 6, the experiment was carried out under the same conditions except that hydrogen peroxide was added so that the redox potential was 600 mV. As a result, as shown in Table 1, the number of particles in the cleaning liquid was 15 particles / mL (500 nm or more), and the variation in the conductivity of the cleaning liquid sent to the use point was ± 12%.

[比較例8]
比較例6において、水素ガス濃度が1ppmとなるよう水素を添加したこと以外は同一条件にて実験を行った。その結果、表1の通り、洗浄液中のパーティクル個数は15個/mL(500nm以上)となり、ユースポイントに送液する洗浄液の導電率のばらつきは±12%であった。
[Comparative Example 8]
In Comparative Example 6, the experiment was carried out under the same conditions except that hydrogen was added so that the hydrogen gas concentration was 1 ppm. As a result, as shown in Table 1, the number of particles in the cleaning liquid was 15 particles / mL (500 nm or more), and the variation in the conductivity of the cleaning liquid sent to the use point was ± 12%.

[比較例9]
比較例6において、pHが9.0となるようアンモニアを添加したこと以外は同一条件にて実験を行った。その結果、表1の通り、洗浄液中のパーティクル個数は15個/mL(500nm以上)となり、ユースポイントに送液する洗浄液の導電率のばらつきは±12%であった。
[Comparative Example 9]
In Comparative Example 6, the experiment was carried out under the same conditions except that ammonia was added so that the pH became 9.0. As a result, as shown in Table 1, the number of particles in the cleaning liquid was 15 particles / mL (500 nm or more), and the variation in the conductivity of the cleaning liquid sent to the use point was ± 12%.

[比較例10]
比較例6において、導電率が30μS/cm、酸化還元電位が600mV、水素ガス濃度が1ppm、pHが9.0となるようにアンモニア、過酸化水素及び水素ガスを添加したこと以外は同一条件にて実験を行った。その結果、表1の通り、洗浄液中のパーティクル個数は15個/mL(500nm以上)となり、ユースポイントに送液する洗浄液の導電率のばらつきは±12%であった。
[Comparative Example 10]
In Comparative Example 6, the conditions were the same except that ammonia, hydrogen peroxide, and hydrogen gas were added so that the conductivity was 30 μS / cm, the redox potential was 600 mV, the hydrogen gas concentration was 1 ppm, and the pH was 9.0. The experiment was conducted. As a result, as shown in Table 1, the number of particles in the cleaning liquid was 15 particles / mL (500 nm or more), and the variation in the conductivity of the cleaning liquid sent to the use point was ± 12%.

[比較例11]
図4に示すように、超純水供給ライン11からの超純水を直接に洗浄液タンク1に供給するように構成した洗浄液の循環供給装置を用いた。図4のその他の構成は図1と同一である。ただし、図4では、タンク1として容積150Lのものを用いた。
[Comparative Example 11]
As shown in FIG. 4, a cleaning liquid circulation supply device configured to directly supply ultrapure water from the ultrapure water supply line 11 to the cleaning liquid tank 1 was used. The other configurations of FIG. 4 are the same as those of FIG. However, in FIG. 4, a tank 1 having a volume of 150 L was used.

この図4の洗浄液の循環供給装置を用い、導電率が30μS/cm、酸化還元電位が600mV、水素ガス濃度が1ppm、pHが9.0となるように、アンモニア、過酸化水素及び水素ガスを添加したこと以外は同一条件にて実験を行った。その結果、表1の通り、洗浄液中のパーティクル個数は8個/mL(500nm以上)となり、ユースポイントに送液する洗浄液の導電率のばらつきは±8%であった。 Using the cleaning liquid circulation supply device shown in FIG. 4, ammonia, hydrogen peroxide, and hydrogen gas were added so that the conductivity was 30 μS / cm, the redox potential was 600 mV, the hydrogen gas concentration was 1 ppm, and the pH was 9.0. The experiment was carried out under the same conditions except that it was added. As a result, as shown in Table 1, the number of particles in the cleaning liquid was 8 particles / mL (500 nm or more), and the variation in the conductivity of the cleaning liquid sent to the use point was ± 8%.

Figure 2021145108
Figure 2021145108

上記実施例及び比較例からも明らかな通り、実施例1〜5によると、導電率のばらつきが少なく、しかも微粒子個数も少ない洗浄液がユースポイントに供給される。 As is clear from the above Examples and Comparative Examples, according to Examples 1 to 5, a cleaning liquid having a small variation in conductivity and a small number of fine particles is supplied to the use point.

比較例1〜5では、微粒子除去フィルタを設けたことにより、洗浄液の微粒子個数は少ないが、導電率のばらつきが大きい。比較例6〜11は、導電率のばらつきが若干少ないが、微粒子個数が多い。比較例11は比較例6〜10に比べて導電率のばらつき及び微粒子個数のいずれも良好であるが、実施例1〜5よりは劣る。また、容量の大きいタンクが必要である。 In Comparative Examples 1 to 5, since the fine particle removing filter was provided, the number of fine particles in the cleaning liquid was small, but the conductivity varied widely. In Comparative Examples 6 to 11, the variation in conductivity is slightly small, but the number of fine particles is large. Comparative Example 11 has better variations in conductivity and the number of fine particles than Comparative Examples 6 to 10, but is inferior to Examples 1 to 5. In addition, a tank with a large capacity is required.

1 タンク
3 フィードライン
10 リターンライン
11 超純水供給ライン
12 微粒子除去フィルタ
1 Tank 3 Feed line 10 Return line 11 Ultrapure water supply line 12 Fine particle removal filter

Claims (3)

洗浄液タンクと、
該洗浄液タンクの洗浄液をユースポイントに送水するフィードラインと、
該フィードラインに添加物質を添加する添加物質添加手段と、
該ユースポイントから未使用洗浄液を前記洗浄液タンクに送水するリターンラインと、
該リターンラインに超純水を供給する超純水供給ラインと、
前記リターンラインのうち、前記超純水供給ラインの接続部分よりも前記洗浄液タンク側に設けられた微粒子除去フィルタと
を備えてなる洗浄液の循環供給装置。
Cleaning liquid tank and
A feed line that feeds the cleaning liquid from the cleaning liquid tank to the point of use, and
Additive addition means for adding an additive to the feed line, and
A return line that sends unused cleaning liquid from the use point to the cleaning liquid tank, and
An ultrapure water supply line that supplies ultrapure water to the return line,
A cleaning liquid circulation supply device including a fine particle removing filter provided on the cleaning liquid tank side of the return line from the connection portion of the ultrapure water supply line.
前記微粒子除去フィルタは、平均孔径50〜500nmであることを特徴とする請求項1の洗浄液の循環供給装置。 The cleaning liquid circulation supply device according to claim 1, wherein the fine particle removing filter has an average pore diameter of 50 to 500 nm. 前記添加物質は、導電率付与物質、酸化還元電位を調整する物質、pHを調整する物質、及びガスの少なくとも1種であることを特徴とする請求項1又は2の洗浄液の循環供給装置。
The cleaning liquid circulation supply device according to claim 1 or 2, wherein the additive substance is at least one of a conductivity-imparting substance, a substance for adjusting an oxidation-reduction potential, a substance for adjusting pH, and a gas.
JP2020044475A 2020-03-13 2020-03-13 Cleaning liquid circulation supply device Pending JP2021145108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020044475A JP2021145108A (en) 2020-03-13 2020-03-13 Cleaning liquid circulation supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020044475A JP2021145108A (en) 2020-03-13 2020-03-13 Cleaning liquid circulation supply device

Publications (1)

Publication Number Publication Date
JP2021145108A true JP2021145108A (en) 2021-09-24

Family

ID=77767191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020044475A Pending JP2021145108A (en) 2020-03-13 2020-03-13 Cleaning liquid circulation supply device

Country Status (1)

Country Link
JP (1) JP2021145108A (en)

Similar Documents

Publication Publication Date Title
JP6734621B2 (en) Ozone water supply method and ozone water supply device
TWI277443B (en) Continuous dissolution apparatus, process for continuous dissolution and apparatus for supplying water in which gas is dissolved
JP2020031159A (en) Electronic component washing water production system and operation method for electronic component washing water production system
JP5020784B2 (en) Ozone water production apparatus and production method
TW201538795A (en) Oxidation of copper in a copper etching solution by the use of oxygen and/or air as an oxidizing agent
JP2021145108A (en) Cleaning liquid circulation supply device
WO2014003007A1 (en) Wastewater treatment method and wastewater treatment device
JP2008080269A (en) Nitrogen-containing wastewater treatment apparatus and method
JP2015157262A (en) Water treatment apparatus, water treatment method, and ultrapure water production system
JP5186429B2 (en) Method and apparatus for denitrification treatment of digested sludge separation liquid
JP2010155754A (en) Apparatus and method of manufacturing ozone water
JP5027000B2 (en) Nitrification processing method and nitrification processing apparatus
KR20070062833A (en) Apparatus for making ozone water
JP6947267B1 (en) Cleaning water supply device for electronic parts / members and cleaning water supply method for electronic parts / members
TW200528400A (en) Method for forwarding ozonated water
JP2005019876A (en) Method of manufacturing semiconductor device, ozone water cleaning system, and ozone water concentration control system
JP7437292B2 (en) Solution processing device and solution processing method
JP2019126758A (en) Liquid treatment apparatus
JP2000262992A (en) Substrate washing method
WO2022196470A1 (en) Functional aqueous solution supply apparatus
JP6702656B2 (en) Granule forming method and granule forming apparatus
JP2013208555A (en) Ozone dissolving device
JPH08157884A (en) Producing of chemical treatment liquid
WO2022070475A1 (en) Cleaning water supply device for electronic components and members, and method for supplying cleaning water for electronic components and members
JP4097778B2 (en) Gas dissolved cleaning water supply piping