JP2021143722A - Electric actuator - Google Patents

Electric actuator Download PDF

Info

Publication number
JP2021143722A
JP2021143722A JP2020042984A JP2020042984A JP2021143722A JP 2021143722 A JP2021143722 A JP 2021143722A JP 2020042984 A JP2020042984 A JP 2020042984A JP 2020042984 A JP2020042984 A JP 2020042984A JP 2021143722 A JP2021143722 A JP 2021143722A
Authority
JP
Japan
Prior art keywords
rotating body
planetary
input
speed reducer
tooth portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020042984A
Other languages
Japanese (ja)
Inventor
慎太朗 石川
Shintaro Ishikawa
慎太朗 石川
久 高木
Hisashi Takagi
久 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2020042984A priority Critical patent/JP2021143722A/en
Priority to PCT/JP2021/005444 priority patent/WO2021182019A1/en
Publication of JP2021143722A publication Critical patent/JP2021143722A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/10Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for axial load mainly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Retarders (AREA)
  • Rolling Contact Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

To support an axial load generated in a speed reducer, and to suppress the outflow of a lubricant from an engaging portion of the speed reducer.SOLUTION: An electric actuator includes a speed reducer 5 which has an electric motor 4 capable of supplying driving force, an input rotator 2 capable of rotating about a rotation axis X, a planetary rotator 22 capable of rotating and revolving about the rotation axis, and an output rotator 3 capable of rotating about the rotation axis X, and in which the planetary rotator 22 engages with the input rotator 2 and the output rotator 3 to change the rotation phase difference of the output rotator 3 with respect to the input rotator 2. In an axial clearance 35 between the input rotator 2 and the planetary rotator 22, a thrust ball bearing 36 is arranged, which supports the planetary rotator 22 with respect to the input rotator 2 in an axial direction.SELECTED DRAWING: Figure 1

Description

本発明は、電動アクチュエータに関する。 The present invention relates to an electric actuator.

外部から駆動力が入力される入力側と、入力された駆動力を出力する出力側とで、回転位相差を変化させることが可能な電動アクチュエータがある。 There is an electric actuator capable of changing the rotational phase difference between an input side in which a driving force is input from the outside and an output side in which the input driving force is output.

この電動アクチュエータとして、例えば、自動車のエンジンの吸気バルブと排気バルブの一方または両方の開閉タイミングを変更する可変バルブタイミング装置に用いられるものが知られている。 As this electric actuator, for example, one used in a variable valve timing device that changes the opening / closing timing of one or both of an intake valve and an exhaust valve of an automobile engine is known.

一般的に、この種の電動アクチュエータは、電動モータと、電動モータによる駆動力を得て回転力を減速して伝達する減速機とを備えている(例えば、特許文献1参照)。 Generally, this type of electric actuator includes an electric motor and a speed reducer that obtains a driving force by the electric motor to reduce and transmit a rotational force (see, for example, Patent Document 1).

電動モータによって減速機が駆動されない時は、入力側部材(例えば、スプロケット)と出力側部材(例えば、カムシャフト)とが同期回転する。 When the speed reducer is not driven by the electric motor, the input side member (for example, sprocket) and the output side member (for example, camshaft) rotate synchronously.

電動モータによって減速機が駆動される時は、減速機によって入力側部材に対する出力側部材の回転位相差が変更され、これによってバルブの開閉タイミングが調整される。 When the speed reducer is driven by the electric motor, the speed reducer changes the rotational phase difference of the output side member with respect to the input side member, thereby adjusting the valve opening / closing timing.

特開2018−194151号公報Japanese Unexamined Patent Publication No. 2018-194151

ところで、特許文献1に記載の電動アクチュエータでは、入力回転体と出力回転体との間に配設された内歯車が偏心回転運動を行うことにより、入力回転体に対する出力回転体の回転位相差を変更する偏心型減速機を採用している。 By the way, in the electric actuator described in Patent Document 1, the internal gear arranged between the input rotating body and the output rotating body performs an eccentric rotating motion to obtain a rotational phase difference of the output rotating body with respect to the input rotating body. An eccentric speed reducer that changes is adopted.

偏心型減速機は、入力回転体および出力回転体の外周に設けられた外歯部と、内歯車の内周に設けられた内歯部との噛み合い構造となっている。 The eccentric speed reducer has a meshing structure between an external tooth portion provided on the outer periphery of the input rotating body and the output rotating body and an internal tooth portion provided on the inner circumference of the internal gear.

外歯部と内歯部との噛み合いによる内歯車の偏心回転運動時、内歯車が軸方向に対して傾くことで内歯車にスキューが発生し、その結果、減速機にアキシャル荷重が発生する。このアキシャル荷重により、内歯車が圧入抜けして減速機の効率が低下する。 During the eccentric rotational movement of the internal gear due to the meshing of the external tooth portion and the internal tooth portion, the internal gear tilts with respect to the axial direction, causing skew in the internal gear, and as a result, an axial load is generated in the speed reducer. Due to this axial load, the internal gear is press-fitted in and out, and the efficiency of the reducer is reduced.

また、内歯車の偏心回転運動を円滑に行うため、電動アクチュエータのハウジング内にグリース等の潤滑剤を封入しているが、偏心回転運動でのポンプ作用により、外歯部と内歯部との噛み合い部(歯面)で潤滑剤が流動し易くなっている。そのため、噛み合い部から潤滑剤が流出して枯渇するおそれがある。 In addition, in order to smoothly perform the eccentric rotational movement of the internal gear, a lubricant such as grease is sealed in the housing of the electric actuator. The lubricant easily flows at the meshing part (tooth surface). Therefore, there is a risk that the lubricant will flow out from the meshing portion and be exhausted.

このように、外歯部と内歯部との噛み合い部で潤滑剤が枯渇すると、潤滑性能を維持することが困難となり、噛み合い部での摺動抵抗が大きくなる。その結果、減速機の効率および耐久性の低下を招来する。 As described above, when the lubricant is depleted at the meshing portion between the external tooth portion and the internal tooth portion, it becomes difficult to maintain the lubricating performance and the sliding resistance at the meshing portion increases. As a result, the efficiency and durability of the reducer are reduced.

そこで、本発明は前述の課題に鑑みて提案されたもので、その目的とするところは、減速機に発生するアキシャル荷重を支持すると共に、減速機の噛み合い部からの潤滑剤の流出を抑制し得る電動アクチュエータを提供することにある。 Therefore, the present invention has been proposed in view of the above-mentioned problems, and an object of the present invention is to support the axial load generated in the speed reducer and suppress the outflow of the lubricant from the meshing portion of the speed reducer. The purpose is to provide an electric actuator to obtain.

本発明に係る電動アクチュエータは、駆動力を供給可能な電動モータと、回転軸を中心として回転可能な入力回転体と、自転可能でかつ回転軸を中心として公転可能な遊星回転体と、回転軸を中心として回転可能な出力回転体とを有し、遊星回転体が入力回転体および出力回転体のそれぞれと噛み合い、入力回転体に対する出力回転体の回転位相差を変更する減速機を備えている。 The electric actuator according to the present invention includes an electric motor capable of supplying a driving force, an input rotating body that can rotate around a rotating shaft, a planetary rotating body that can rotate and revolve around a rotating shaft, and a rotating shaft. It has an output rotating body that can rotate around the center, and is equipped with a speed reducer in which the planetary rotating body meshes with each of the input rotating body and the output rotating body to change the rotational phase difference of the output rotating body with respect to the input rotating body. ..

前述の目的を達成するための技術的手段として、本発明は、入力回転体と遊星回転体間の軸方向隙間に、入力回転体に対して遊星回転体を軸方向で支持するスラスト玉軸受を配設したことを特徴とする。 As a technical means for achieving the above-mentioned object, the present invention provides a thrust ball bearing that axially supports the planetary rotating body with respect to the input rotating body in the axial gap between the input rotating body and the planetary rotating body. It is characterized in that it is arranged.

本発明では、遊星回転体の偏心回転運動時、遊星回転体に発生するアキシャル荷重をスラスト玉軸受で受けることにより、遊星回転体の圧入抜けを防止することができる。また、スラスト玉軸受により、減速機の噛み合い部からの潤滑剤の流出を抑制することができ、減速機の噛み合い部で潤滑剤を保持し易くなる。 In the present invention, it is possible to prevent the planetary rotating body from being press-fitted in and out by receiving the axial load generated in the planetary rotating body by the thrust ball bearing during the eccentric rotational movement of the planetary rotating body. Further, the thrust ball bearing can suppress the outflow of the lubricant from the meshing portion of the speed reducer, and makes it easier to hold the lubricant at the meshing portion of the speed reducer.

このように、減速機の噛み合い部で潤滑剤を保持し易くなることから、潤滑性能を維持することが容易となり、噛み合い部での摺動抵抗を小さくすることができる。 As described above, since the lubricant can be easily held at the meshing portion of the speed reducer, it becomes easy to maintain the lubrication performance, and the sliding resistance at the meshing portion can be reduced.

本発明のスラスト玉軸受は、玉の転走面が形成された軌道輪を入力回転体の端面の環状凹溝に嵌合させ、玉を遊星回転体の端面に当接させた構造が望ましい。 The thrust ball bearing of the present invention preferably has a structure in which a raceway ring on which a rolling surface of a ball is formed is fitted into an annular concave groove on an end surface of an input rotating body, and the ball is brought into contact with the end surface of a planetary rotating body.

このような構造を採用すれば、遊星回転体のスキューにより発生するアキシャル荷重を支持することや、減速機の噛み合い部からの潤滑剤の流出を抑制することを容易に実現できる。 By adopting such a structure, it is possible to easily support the axial load generated by the skew of the planetary rotating body and suppress the outflow of the lubricant from the meshing portion of the speed reducer.

本発明のスラスト玉軸受は、玉を周方向等間隔に保持する保持器が平坦な円板形状あるいは鍔部付き円板形状を有する構造が望ましい。 The thrust ball bearing of the present invention preferably has a structure in which the cage for holding the balls at equal intervals in the circumferential direction has a flat disk shape or a disk shape with a flange.

このような構造を採用すれば、平坦な円板形状あるいは鍔部付き円板形状の保持器により、減速機の噛み合い部からの潤滑剤の流出をより一層抑制することができる。 If such a structure is adopted, the outflow of the lubricant from the meshing portion of the speed reducer can be further suppressed by the flat disk-shaped or flanged disk-shaped cage.

本発明によれば、減速機における遊星回転体の偏心回転運動が行われても、その偏心回転運動により発生するアキシャル荷重をスラスト玉軸受で受けることにより、遊星回転体の圧入抜けを防止することができ、減速機の効率および信頼性の向上が図れる。 According to the present invention, even if the eccentric rotary motion of the planetary rotating body is performed in the speed reducer, the thrust ball bearing receives the axial load generated by the eccentric rotary motion to prevent the planetary rotating body from being press-fitted or removed. This makes it possible to improve the efficiency and reliability of the speed reducer.

また、減速機の噛み合い部からの潤滑剤の流出を抑制することで、噛み合い部で潤滑剤を保持し易くなる。これにより、潤滑性能の維持が容易となり、噛み合い部での摺動抵抗を小さくすることができ、減速機の効率および耐久性の向上が図れる。 Further, by suppressing the outflow of the lubricant from the meshing portion of the speed reducer, it becomes easier to hold the lubricant in the meshing portion. As a result, the lubrication performance can be easily maintained, the sliding resistance at the meshing portion can be reduced, and the efficiency and durability of the speed reducer can be improved.

本発明の実施形態で、電動アクチュエータの全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the electric actuator in embodiment of this invention. 図1のP−P線に沿う断面図である。It is sectional drawing which follows the PP line of FIG. 図1のQ−Q線に沿う断面図である。It is sectional drawing which follows the QQ line of FIG. 図1のスラスト玉軸受を示すA部拡大断面図である。It is an enlarged cross-sectional view of part A which shows the thrust ball bearing of FIG. 図1の電動アクチュエータを示す組立分解斜視図である。It is an assembly disassembled perspective view which shows the electric actuator of FIG. 本発明の他の実施形態で、スラスト玉軸受を示す要部拡大断面図である。FIG. 5 is an enlarged cross-sectional view of a main part showing a thrust ball bearing in another embodiment of the present invention.

本発明に係る電動アクチュエータの実施形態を図面に基づいて詳述する。以下の実施形態では、可変バルブタイミング装置に適用される電動アクチュエータを例示するが、可変バルブタイミング装置以外にも適用可能である。 An embodiment of the electric actuator according to the present invention will be described in detail with reference to the drawings. In the following embodiments, the electric actuator applied to the variable valve timing device is illustrated, but the electric actuator can be applied to other than the variable valve timing device.

図1は電動アクチュエータの全体構成を示す断面図、図2は図1のP−P線に沿う断面図、図3は図1のQ−Q線に沿う断面図である。この実施形態の特徴的な構成を説明する前に電動アクチュエータの全体構成を説明する。 FIG. 1 is a cross-sectional view showing the overall configuration of the electric actuator, FIG. 2 is a cross-sectional view taken along the line PP of FIG. 1, and FIG. 3 is a cross-sectional view taken along the line QQ of FIG. Before explaining the characteristic configuration of this embodiment, the overall configuration of the electric actuator will be described.

この実施形態の電動アクチュエータ1は、図1〜図3に示すように、入力回転体2と、出力回転体3と、電動モータ4と、減速機5と、これらを収容するケーシング6とを主要な構成要素として備えている。 As shown in FIGS. 1 to 3, the electric actuator 1 of this embodiment mainly includes an input rotating body 2, an output rotating body 3, an electric motor 4, a speed reducer 5, and a casing 6 accommodating them. It is provided as a component.

入力回転体2は、外部の駆動源(図示せず)から駆動力が入力されて回転駆動する部材である。入力回転体2は、小径部11と、小径部11よりも大径の大径部12とを一体に有する。 The input rotating body 2 is a member that is rotationally driven by inputting a driving force from an external driving source (not shown). The input rotating body 2 integrally has a small diameter portion 11 and a large diameter portion 12 having a diameter larger than that of the small diameter portion 11.

入力回転体2は、ケーシング6に対してシール付き転がり軸受7によって回転可能に支持されている。シール付き転がり軸受7で、ケーシング6と入力回転体2との間の空間が密封されている。 The input rotating body 2 is rotatably supported by a rolling bearing 7 with a seal with respect to the casing 6. The space between the casing 6 and the input rotating body 2 is sealed by the rolling bearing 7 with a seal.

出力回転体3は、入力回転体2に入力された駆動力を外部へ出力する部材である。出力回転体3は、ボルト8により出力軸としてのシャフト9が一体に回転するように締結される。出力回転体3は、入力回転体2に対して回転軸Xを中心として同軸上に配置されると共に相対回転可能に構成されている。 The output rotating body 3 is a member that outputs the driving force input to the input rotating body 2 to the outside. The output rotating body 3 is fastened by bolts 8 so that the shaft 9 as an output shaft rotates integrally. The output rotating body 3 is arranged coaxially with respect to the input rotating body 2 about the rotation axis X and is configured to be relatively rotatable.

入力回転体2の大径部12の内周には、シール付き転がり軸受10が配置されている。シャフト9は、入力回転体2に対してシール付き転がり軸受10によって回転可能に支持されている。シール付き転がり軸受10で、入力回転体2とシャフト9との間の空間が密封されている。 A rolling bearing 10 with a seal is arranged on the inner circumference of the large diameter portion 12 of the input rotating body 2. The shaft 9 is rotatably supported by a rolling bearing 10 with a seal with respect to the input rotating body 2. The space between the input rotating body 2 and the shaft 9 is sealed by the rolling bearing 10 with a seal.

ケーシング6は、組み立て性の向上を図るため、有底円筒状の本体部13と、本体部13を閉塞する蓋部14とに分割されている。本体部13と蓋部14とは、ボルト等の締結手段(図示せず)を用いて一体化されている。 The casing 6 is divided into a bottomed cylindrical main body 13 and a lid 14 that closes the main body 13 in order to improve assembleability. The main body portion 13 and the lid portion 14 are integrated by using a fastening means (not shown) such as a bolt.

蓋部14には、電動モータ4へ給電するための給電線や、電動モータ4の回転数を検知する回転数検知センサ(図示せず)に接続される信号線を外部へ引き出すための筒状突起15(図5参照)が設けられている。 The lid 14 has a tubular shape for drawing out a power supply line for supplying power to the electric motor 4 and a signal line connected to a rotation number detection sensor (not shown) for detecting the rotation number of the electric motor 4. A protrusion 15 (see FIG. 5) is provided.

ケーシング6の蓋部14と出力回転体3との間の空間は、シール付き転がり軸受16で密封されている。シール付き転がり軸受16によって、出力回転体3は、ケーシング6の蓋部14に対して回転可能に支持されている。 The space between the lid portion 14 of the casing 6 and the output rotating body 3 is sealed by a rolling bearing 16 with a seal. The rolling bearing 16 with a seal rotatably supports the output rotating body 3 with respect to the lid portion 14 of the casing 6.

電動モータ4は、ケーシング6の本体部13に固定されたステータ17と、ステータ17の径方向内側に隙間をもって対向配置されたロータ18とを有するラジアルギャップ型モータである。ステータ17とロータ18との間に作用する励磁力により、ステータ17に対してロータ18が回転軸Xを中心として回転する。 The electric motor 4 is a radial gap type motor having a stator 17 fixed to the main body 13 of the casing 6 and a rotor 18 arranged so as to face each other with a gap inside the stator 17 in the radial direction. The rotor 18 rotates about the rotation axis X with respect to the stator 17 due to the exciting force acting between the stator 17 and the rotor 18.

減速機5の主要部は、入力回転体2の外周に形成された第一外歯部19と、出力回転体3の外周に形成された第二外歯部20と、ロータ18と一体に回転する偏心部材21と、偏心部材21の内周に配置された遊星回転体22と、偏心部材21と遊星回転体22との間に配置された針状ころ軸受23とで構成されたサイクロイド減速機である。 The main part of the speed reducer 5 rotates integrally with the first external tooth portion 19 formed on the outer periphery of the input rotating body 2, the second external tooth portion 20 formed on the outer periphery of the output rotating body 3, and the rotor 18. A cycloid reducer composed of an eccentric member 21, a planetary rotating body 22 arranged on the inner circumference of the eccentric member 21, and a needle-shaped roller bearing 23 arranged between the eccentric member 21 and the planetary rotating body 22. Is.

偏心部材21は、ロータ18の内周に固定された小径筒部24と、小径筒部24よりも大径に形成されてロータ18から軸方向に突出する大径筒部25とを一体に有する。小径筒部24および大径筒部25は、ケーシング6に対して転がり軸受26,27によって回転自在に支持されている。 The eccentric member 21 integrally includes a small-diameter tubular portion 24 fixed to the inner circumference of the rotor 18 and a large-diameter tubular portion 25 formed to have a larger diameter than the small-diameter tubular portion 24 and projecting axially from the rotor 18. .. The small-diameter tubular portion 24 and the large-diameter tubular portion 25 are rotatably supported by rolling bearings 26 and 27 with respect to the casing 6.

偏心部材21の外周面は、回転軸Xと同軸に形成されている。小径筒部24の内周面は、入力回転体2および出力回転体3の各中心軸(回転軸X)に対して偏心するように配置されている。これに対して、大径筒部25の内周面は、入力回転体2および出力回転体3の各中心軸(回転軸X)と同軸上に配置されている。 The outer peripheral surface of the eccentric member 21 is formed coaxially with the rotation axis X. The inner peripheral surface of the small diameter tubular portion 24 is arranged so as to be eccentric with respect to each central axis (rotation axis X) of the input rotating body 2 and the output rotating body 3. On the other hand, the inner peripheral surface of the large-diameter tubular portion 25 is arranged coaxially with each central axis (rotation axis X) of the input rotating body 2 and the output rotating body 3.

遊星回転体22は、小径筒部28と、小径筒部28よりも大径の大径筒部29とを一体に有する。大径筒部29の内周に第一内歯部30が形成され、小径筒部28の内周に第二内歯部31が形成されている。 The planetary rotating body 22 integrally includes a small-diameter tubular portion 28 and a large-diameter tubular portion 29 having a diameter larger than that of the small-diameter tubular portion 28. The first internal tooth portion 30 is formed on the inner circumference of the large-diameter tubular portion 29, and the second internal tooth portion 31 is formed on the inner circumference of the small-diameter tubular portion 28.

第一内歯部30と第二内歯部31は、何れも径方向の断面が曲線(例えばトロコイド系曲線)を描く複数の歯で構成されている。第二内歯部31のピッチ円径は、第一内歯部30のピッチ円径よりも小さい。また、第二内歯部31の歯数は、第一内歯部30の歯数よりも少ない。 Both the first internal tooth portion 30 and the second internal tooth portion 31 are composed of a plurality of teeth having a curved cross section in the radial direction (for example, a trochoidal curve). The pitch circle diameter of the second internal tooth portion 31 is smaller than the pitch circle diameter of the first internal tooth portion 30. Further, the number of teeth of the second internal tooth portion 31 is smaller than the number of teeth of the first internal tooth portion 30.

入力回転体2の外周には、遊星回転体22の第一内歯部30と噛み合うように第一外歯部19が対向して形成されている。また、出力回転体3の外周には、遊星回転体22の第二内歯部31と噛み合うように第二外歯部20が対向して形成されている。 A first external tooth portion 19 is formed on the outer periphery of the input rotating body 2 so as to mesh with the first internal tooth portion 30 of the planetary rotating body 22. Further, a second external tooth portion 20 is formed on the outer periphery of the output rotating body 3 so as to mesh with the second internal tooth portion 31 of the planetary rotating body 22 so as to face each other.

第一外歯部19と第二外歯部20は、何れも径方向の断面が曲線(例えばトロコイド系曲線)を描く複数の歯で構成されている。第二外歯部20のピッチ円径は、第一外歯部19のピッチ円径よりも小さい。また、第二外歯部20の歯数は、第一外歯部19の歯数よりも少ない。 Both the first external tooth portion 19 and the second external tooth portion 20 are composed of a plurality of teeth having a curved cross section in the radial direction (for example, a trochoidal curve). The pitch circle diameter of the second external tooth portion 20 is smaller than the pitch circle diameter of the first external tooth portion 19. Further, the number of teeth of the second external tooth portion 20 is smaller than the number of teeth of the first external tooth portion 19.

第一外歯部19の歯数は、互いに噛み合う第一内歯部30の歯数よりも少なく、好ましくは一つ少ない。同様に、第二外歯部20の歯数も、互いに噛み合う第二内歯部31の歯数よりも少なく、好ましくは一つ少ない。 The number of teeth of the first external tooth portion 19 is less than the number of teeth of the first internal tooth portion 30 that mesh with each other, and is preferably one less. Similarly, the number of teeth of the second external tooth portion 20 is also smaller than the number of teeth of the second internal tooth portion 31 that mesh with each other, preferably one less.

この実施形態では、第一内歯部30の歯数を24個、第二内歯部31の歯数を20個、第一外歯部19の歯数を23個、第二外歯部20の歯数を19個としている。 In this embodiment, the number of teeth of the first internal tooth portion 30 is 24, the number of teeth of the second internal tooth portion 31 is 20, the number of teeth of the first external tooth portion 19 is 23, and the number of teeth of the second external tooth portion 20 is 20. The number of teeth is 19.

遊星回転体22は、大径筒部29と偏心部材21の大径筒部25との間に配置された転がり軸受32と、小径筒部28と偏心部材21の小径筒部24との間に配置された針状ころ軸受23とによって、偏心部材21に対して回転可能に支持されている。 The planetary rotating body 22 is formed between the rolling bearing 32 arranged between the large-diameter tubular portion 29 and the large-diameter tubular portion 25 of the eccentric member 21, and between the small-diameter tubular portion 28 and the small-diameter tubular portion 24 of the eccentric member 21. It is rotatably supported with respect to the eccentric member 21 by the arranged needle roller bearing 23.

このように、転がり軸受32と針状ころ軸受23とによって、遊星回転体22を偏心部材21に対して支持することにより、遊星回転体22の径方向の振れを低減し、遊星回転体22の径方向の振れに伴う動力伝達効率の低下を抑制している。 In this way, the rolling bearing 32 and the needle roller bearing 23 support the planetary rotating body 22 with respect to the eccentric member 21, thereby reducing the radial runout of the planetary rotating body 22 and reducing the radial runout of the planetary rotating body 22. It suppresses the decrease in power transmission efficiency due to radial runout.

また、遊星回転体22は、針状ころ軸受23および転がり軸受32を介して偏心部材21の内周に配置されていることで、入力回転体2および出力回転体3の各中心軸(回転軸X)に対して偏心して配置されている。 Further, the planetary rotating body 22 is arranged on the inner circumference of the eccentric member 21 via the needle roller bearing 23 and the rolling bearing 32, so that the central axes (rotating shafts) of the input rotating body 2 and the output rotating body 3 are provided. It is arranged eccentrically with respect to X).

遊星回転体22が回転軸Xに対して偏心して配置されているため、図2に示すように、第一内歯部30の中心軸Yは、回転軸Xに対して径方向に距離Eだけ偏心している。これにより、第一内歯部30と第一外歯部19とは、周方向一部の領域(図2の左側)で噛み合った状態となり、径方向反対側の領域(図2の右側)で噛み合わない状態となる。 Since the planetary rotating body 22 is arranged eccentrically with respect to the rotation axis X, as shown in FIG. 2, the central axis Y of the first internal tooth portion 30 is only a distance E in the radial direction with respect to the rotation axis X. It is eccentric. As a result, the first internal tooth portion 30 and the first external tooth portion 19 are in a state of being meshed with each other in a partial region in the circumferential direction (left side in FIG. 2), and in a region on the opposite side in the radial direction (right side in FIG. 2). It will not mesh.

また、図3に示すように、第二内歯部31の中心軸Yも、回転軸Xに対して径方向に距離Eだけ偏心している。これにより、第二内歯部31と第二外歯部20とは、周方向一部の領域(図3の右側)で噛み合った状態となり、径方向反対側の領域(図3の左側)で噛み合わない状態となる。 Further, as shown in FIG. 3, the central axis Y of the second internal tooth portion 31 is also eccentric with respect to the rotation axis X by a distance E in the radial direction. As a result, the second internal tooth portion 31 and the second external tooth portion 20 are in a state of being in mesh with each other in a partial region in the circumferential direction (right side in FIG. 3), and in a region on the opposite side in the radial direction (left side in FIG. 3). It will not mesh.

なお、図2および図3では、互いの矢視方向が異なっているため、第一内歯部30と第二内歯部31とのそれぞれの偏心方向が各図において互いに左右逆方向に示されているが、第一内歯部30と第二内歯部31は同じ方向に同じ距離Eだけ偏心している。 In addition, in FIGS. 2 and 3, since the directions of arrow viewing are different from each other, the eccentric directions of the first internal tooth portion 30 and the second internal tooth portion 31 are shown in opposite directions in each drawing. However, the first internal tooth portion 30 and the second internal tooth portion 31 are eccentric in the same direction by the same distance E.

以上のような構造を具備する電動アクチュエータ1の動作例を以下に説明する。 An operation example of the electric actuator 1 having the above structure will be described below.

電動モータ4に通電されず、電動モータ4から減速機5へ駆動力が供給されない状態では、外部からの駆動力によって入力回転体2が回転駆動すると、入力回転体2の回転が遊星回転体22を介して出力回転体3に伝達される。これにより、出力回転体3は入力回転体2と同期して回転する。 In a state where the electric motor 4 is not energized and the driving force is not supplied from the electric motor 4 to the speed reducer 5, when the input rotating body 2 is rotationally driven by an external driving force, the rotation of the input rotating body 2 is rotated by the planetary rotating body 22. Is transmitted to the output rotating body 3 via. As a result, the output rotating body 3 rotates in synchronization with the input rotating body 2.

つまり、入力回転体2と遊星回転体22は、第一外歯部19と第一内歯部30との噛み合い部33でのトルク伝達により、この噛み合い状態を保持したまま一体に回転する。同様に、遊星回転体22と出力回転体3も、第二内歯部31と第二外歯部20の噛み合い位置を保持したまま一体に回転する。そのため、入力回転体2と出力回転体3とは同じ回転位相を保持しながら回転する。 That is, the input rotating body 2 and the planetary rotating body 22 rotate integrally while maintaining this meshing state by torque transmission at the meshing portion 33 between the first external tooth portion 19 and the first internal tooth portion 30. Similarly, the planetary rotating body 22 and the output rotating body 3 also rotate integrally while maintaining the meshing positions of the second internal tooth portion 31 and the second external tooth portion 20. Therefore, the input rotating body 2 and the output rotating body 3 rotate while maintaining the same rotation phase.

これに対して、電動モータ4に通電されて、電動モータ4から減速機5へ駆動力が供給された場合は、ロータ18と偏心部材21とが一体に回転することで、遊星回転体22が入力回転体2および出力回転体3に対して偏心回転運動を行う。 On the other hand, when the electric motor 4 is energized and the driving force is supplied from the electric motor 4 to the speed reducer 5, the rotor 18 and the eccentric member 21 rotate integrally to cause the planetary rotating body 22 to rotate. An eccentric rotation motion is performed on the input rotating body 2 and the output rotating body 3.

すなわち、電動モータ4の作動によりロータ18に結合された偏心部材21が回転軸Xを中心として一体に回転する。偏心部材21の回転に伴う押圧力が針状ころ軸受23および転がり軸受32を介して遊星回転体22に作用する。この押圧力により、第一内歯部30と第一外歯部19との噛み合い部33で周方向の分力が生じるため、遊星回転体22が入力回転体2に対して相対的に偏心回転運動を行う。 That is, the eccentric member 21 coupled to the rotor 18 is integrally rotated around the rotation axis X by the operation of the electric motor 4. The pressing force associated with the rotation of the eccentric member 21 acts on the planetary rotating body 22 via the needle roller bearing 23 and the rolling bearing 32. Due to this pressing force, a component force in the circumferential direction is generated at the meshing portion 33 between the first internal tooth portion 30 and the first external tooth portion 19, so that the planetary rotating body 22 rotates eccentrically with respect to the input rotating body 2. Exercise.

つまり、遊星回転体22が回転軸Xを中心として公転しながら、第一内歯部30および第二内歯部31の中心Yを中心として自転する。この際、遊星回転体22が一回公転するごとに、第一内歯部30と第一外歯部19との噛み合い位置が一歯分ずつ周方向にずれるため、遊星回転体22は減速されつつ回転(自転)する。 That is, while the planetary rotating body 22 revolves around the rotation axis X, it rotates around the center Y of the first internal tooth portion 30 and the second internal tooth portion 31. At this time, each time the planetary rotating body 22 revolves once, the meshing position between the first internal tooth portion 30 and the first external tooth portion 19 shifts in the circumferential direction by one tooth, so that the planetary rotating body 22 is decelerated. While rotating (rotating).

また、この遊星回転体22の偏心回転運動により、遊星回転体22が一回公転するごとに、第二内歯部31と第二外歯部20との噛み合い位置が一歯分ずつ周方向にずれる。これにより、出力回転体3が遊星回転体22に対して減速されつつ回転する。 Further, due to the eccentric rotational movement of the planetary rotating body 22, each time the planetary rotating body 22 revolves once, the meshing position between the second internal tooth portion 31 and the second external tooth portion 20 is moved in the circumferential direction by one tooth. It shifts. As a result, the output rotating body 3 rotates while being decelerated with respect to the planetary rotating body 22.

このように、遊星回転体22を電動モータ4で駆動することにより、入力回転体2から入力される駆動力に電動モータ4からの駆動力が重畳され、出力回転体3の回転が電動モータ4からの駆動力の影響を受ける状態となる。そのため、入力回転体2に対する出力回転体3の相対的な回転位相差を正逆方向で変更することが可能となる。 By driving the planetary rotating body 22 with the electric motor 4 in this way, the driving force from the electric motor 4 is superimposed on the driving force input from the input rotating body 2, and the rotation of the output rotating body 3 is the rotation of the electric motor 4. It will be in a state affected by the driving force from. Therefore, it is possible to change the relative rotation phase difference of the output rotating body 3 with respect to the input rotating body 2 in the forward and reverse directions.

ここで、減速機5による減速比をI、電動モータ4の回転速度をNm、入力回転体2の回転速度をNsとすると、出力回転体3の位相角度差は(Nm−Ns)/Iとなる。また、第一外歯部19の減速比をi1、第二外歯部20の減速比をi2とすると、減速機5による減速比Iは、I=i1×i2/|i1−i2|によって求められる。 Here, assuming that the reduction ratio by the speed reducer 5 is I, the rotation speed of the electric motor 4 is Nm, and the rotation speed of the input rotating body 2 is Ns, the phase angle difference of the output rotating body 3 is (Nm-Ns) / I. Become. Further, assuming that the reduction ratio of the first external tooth portion 19 is i1 and the reduction ratio of the second external tooth portion 20 is i2, the reduction ratio I by the reduction gear 5 is obtained by I = i1 × i2 / | i1-i2 |. To be done.

例えば、第一外歯部19の減速比(i1)が24、第二外歯部20の減速比(i2)が20の場合、上式から減速比は120となる。このように、この実施形態における減速機5では、大きな減速比によって高トルクを得ることが可能となる。 For example, when the reduction ratio (i1) of the first external tooth portion 19 is 24 and the reduction ratio (i2) of the second external tooth portion 20 is 20, the reduction ratio is 120 from the above equation. As described above, in the speed reducer 5 in this embodiment, it is possible to obtain a high torque with a large reduction ratio.

この実施形態における電動アクチュエータ1の全体構成は、前述のとおりであるが、その特徴的な構成について、以下に詳述する。 The overall configuration of the electric actuator 1 in this embodiment is as described above, but the characteristic configuration thereof will be described in detail below.

この実施形態の電動アクチュエータ1では、入力回転体2と出力回転体3との間に配設された遊星回転体22が偏心回転運動を行うことにより、入力回転体2に対する出力回転体3の回転位相差を変更する偏心型減速機5を採用している。 In the electric actuator 1 of this embodiment, the planetary rotating body 22 arranged between the input rotating body 2 and the output rotating body 3 performs an eccentric rotating motion to rotate the output rotating body 3 with respect to the input rotating body 2. An eccentric speed reducer 5 that changes the phase difference is adopted.

偏心型減速機5は、入力回転体2の第一外歯部19と遊星回転体22の第一内歯部30との噛み合い構造、および出力回転体3の第二外歯部20と遊星回転体22の第二内歯部31との噛み合い構造を有する。 The eccentric speed reducer 5 has a meshing structure between the first external tooth portion 19 of the input rotating body 2 and the first internal tooth portion 30 of the planetary rotating body 22, and the second external tooth portion 20 of the output rotating body 3 and the planetary rotation. It has a meshing structure with the second internal tooth portion 31 of the body 22.

この噛み合い構造による遊星回転体22の偏心回転運動時、転がり軸受32のクリアランスで遊星回転体22が軸方向に対して傾くことで遊星回転体22にスキューが発生し、その結果、偏心型減速機5にアキシャル荷重が発生する。 During the eccentric rotational movement of the planetary rotating body 22 due to this meshing structure, the planetary rotating body 22 tilts with respect to the axial direction due to the clearance of the rolling bearing 32, causing skew to occur in the planetary rotating body 22, and as a result, the eccentric speed reducer. An axial load is generated at 5.

また、噛み合い構造による遊星回転体22の偏心回転運動を円滑に行うため、電動アクチュエータ1のハウジング6内にグリース等の潤滑剤(図示せず)をシール付き転がり軸受7,10,16(図1参照)によって封入している。 Further, in order to smoothly perform the eccentric rotational movement of the planetary rotating body 22 due to the meshing structure, a lubricant such as grease (not shown) is put in the housing 6 of the electric actuator 1 and the rolling bearings 7, 10 and 16 with a seal (FIG. 1). See).

遊星回転体22の偏心回転運動では、ポンプ作用により、第一外歯部19と第一内歯部30との噛み合い部33、および第二外歯部20と第二内歯部31との噛み合い部34で潤滑剤が流動し易くなっている。 In the eccentric rotational movement of the planetary rotating body 22, the meshing portion 33 between the first external tooth portion 19 and the first internal tooth portion 30 and the meshing portion between the second external tooth portion 20 and the second internal tooth portion 31 are caused by the pumping action. The lubricant easily flows in the portion 34.

そこで、この実施形態の電動アクチュエータ1では、偏心型減速機5に発生するアキシャル荷重を支持すると共に、偏心型減速機5の噛み合い部33,34からの潤滑剤の流出を抑制する手段を講じている。 Therefore, in the electric actuator 1 of this embodiment, measures are taken to support the axial load generated in the eccentric speed reducer 5 and to suppress the outflow of the lubricant from the meshing portions 33 and 34 of the eccentric speed reducer 5. There is.

この実施形態では、図1および図4に示すように、入力回転体2と遊星回転体22間の軸方向隙間35に、入力回転体2に対して遊星回転体22を軸方向で支持するスラスト玉軸受36を配設している。 In this embodiment, as shown in FIGS. 1 and 4, a thrust that axially supports the planetary rotating body 22 with respect to the input rotating body 2 in the axial gap 35 between the input rotating body 2 and the planetary rotating body 22. The ball bearing 36 is arranged.

スラスト玉軸受36は、遊星回転体22と対向する入力回転体2の端面に環状凹溝37を形成し、玉38の転走面が形成された軌道輪39を環状凹溝37に圧入により嵌合させた構造を具備する。 The thrust ball bearing 36 forms an annular groove 37 on the end surface of the input rotating body 2 facing the planetary rotating body 22, and the raceway ring 39 on which the rolling surface of the ball 38 is formed is press-fitted into the annular groove 37. It has a combined structure.

このスラスト玉軸受36では、遊星回転体22が偏心回転運動を行うため、入力回転体2と対向する遊星回転体22の平坦な端面40に玉38を直接的に当接させている。これにより、遊星回転体22を低フリクションで支持できる構成となっている。 In the thrust ball bearing 36, since the planetary rotating body 22 performs an eccentric rotating motion, the ball 38 is directly brought into contact with the flat end surface 40 of the planetary rotating body 22 facing the input rotating body 2. As a result, the planetary rotating body 22 can be supported with low friction.

スラスト玉軸受36は、平坦な円板形状の保持器41を有する。保持器41は、玉38を収容するポケット44が周方向等間隔に形成されている。複数(例えば10〜12個)の玉38は、遊星回転体22の端面40と軌道輪39との間に配された保持器41により周方向等間隔に保持される。 The thrust ball bearing 36 has a flat disk-shaped cage 41. In the cage 41, pockets 44 for accommodating the balls 38 are formed at equal intervals in the circumferential direction. A plurality of (for example, 10 to 12) balls 38 are held at equal intervals in the circumferential direction by a cage 41 arranged between the end face 40 of the planetary rotating body 22 and the orbital ring 39.

減速機5における遊星回転体22の偏心回転運動時、転がり軸受32のクリアランスで遊星回転体22が軸方向に対して傾くことで遊星回転体22にスキューが発生し、その結果、遊星回転体22に発生するアキシャル荷重をスラスト玉軸受36で支持する。 During the eccentric rotational movement of the planetary rotating body 22 in the speed reducer 5, the planetary rotating body 22 is tilted with respect to the axial direction due to the clearance of the rolling bearing 32, so that the planetary rotating body 22 is skewed, and as a result, the planetary rotating body 22 is skewed. The axial load generated in the above is supported by the thrust ball bearing 36.

このように、アキシャル荷重をスラスト玉軸受36で受けることにより、入力回転体2と遊星回転体22間の軸方向隙間35をなくすことで、遊星回転体22の圧入抜けを防止することができる。その結果、減速機5の効率および信頼性の向上が図れる。 By receiving the axial load by the thrust ball bearing 36 in this way, it is possible to prevent the planetary rotating body 22 from being press-fitted in and out by eliminating the axial gap 35 between the input rotating body 2 and the planetary rotating body 22. As a result, the efficiency and reliability of the speed reducer 5 can be improved.

また、スラスト玉軸受36により、入力回転体2と遊星回転体22間の軸方向隙間35をなくすことで、減速機5における遊星回転体22の偏心回転運動(ポンプ作用)が行われても、減速機5の噛み合い部33,34から減速機5の外部へ潤滑剤が流出することを抑制でき、減速機5の噛み合い部33,34で潤滑剤を保持し易くなる。 Further, even if the eccentric rotational movement (pumping action) of the planetary rotating body 22 in the speed reducer 5 is performed by eliminating the axial gap 35 between the input rotating body 2 and the planetary rotating body 22 by the thrust ball bearing 36, It is possible to prevent the lubricant from flowing out from the meshing portions 33 and 34 of the speed reducer 5 to the outside of the speed reducer 5, and it becomes easier for the meshing portions 33 and 34 of the speed reducer 5 to hold the lubricant.

このように、減速機5の噛み合い部33,34で潤滑剤を保持し易くなることから、潤滑性能を維持することが容易となり、噛み合い部33,34での摺動抵抗を小さくすることができる。その結果、減速機5の効率および耐久性の向上が図れる。 As described above, since it becomes easy to hold the lubricant in the meshing portions 33 and 34 of the speed reducer 5, it becomes easy to maintain the lubrication performance and the sliding resistance in the meshing portions 33 and 34 can be reduced. .. As a result, the efficiency and durability of the speed reducer 5 can be improved.

軌道輪39を入力回転体2の環状凹溝37に嵌合させ、玉38を遊星回転体22の端面40に当接させた構造のスラスト玉軸受36を採用することにより、遊星回転体22のスキューにより発生するアキシャル荷重を支持することや、減速機5の噛み合い部33,34からの潤滑剤の流出を抑制することを容易に実現できる。 By fitting the raceway ring 39 into the annular groove 37 of the input rotating body 2 and adopting the thrust ball bearing 36 having a structure in which the ball 38 is brought into contact with the end surface 40 of the planetary rotating body 22, the planetary rotating body 22 It is possible to easily support the axial load generated by the skew and suppress the outflow of the lubricant from the meshing portions 33 and 34 of the speed reducer 5.

以上の実施形態では、玉38を周方向等間隔に保持する保持器41が平坦な円板形状を有する場合を例示したが、図6に示す保持器42を採用することも可能である。なお、図6において、図4と同一部分には同一参照符号を付して重複説明は省略する。 In the above embodiment, the case where the cage 41 that holds the balls 38 at equal intervals in the circumferential direction has a flat disk shape is illustrated, but the cage 42 shown in FIG. 6 can also be adopted. In FIG. 6, the same parts as those in FIG. 4 are designated by the same reference numerals, and duplicate description will be omitted.

図6に示す実施形態のスラスト玉軸受36では、鍔部付き円板形状の保持器42を例示している。つまり、保持器42は、その外周に軸方向に延びる鍔部43を有する。鍔部43は、入力回転体2と遊星回転体22間の軸方向隙間35を閉塞する。 In the thrust ball bearing 36 of the embodiment shown in FIG. 6, a disk-shaped cage 42 with a flange is illustrated. That is, the cage 42 has a flange portion 43 extending in the axial direction on the outer periphery thereof. The flange portion 43 closes the axial gap 35 between the input rotating body 2 and the planetary rotating body 22.

この鍔部43により、減速機5における遊星回転体22の偏心回転運動(ポンプ作用)が行われても、減速機5の噛み合い部33,34から減速機5の外部へ潤滑剤が流出することを阻止でき、減速機5の噛み合い部33,34で潤滑剤を保持し易くなる。 Even if the eccentric rotational movement (pumping action) of the planetary rotating body 22 in the speed reducer 5 is performed by the flange portion 43, the lubricant flows out from the meshing portions 33 and 34 of the speed reducer 5 to the outside of the speed reducer 5. It becomes easy to hold the lubricant in the meshing portions 33 and 34 of the speed reducer 5.

このように、減速機5の噛み合い部33,34で潤滑剤を保持し易くなることから、潤滑性能を維持することが容易となり、噛み合い部33,34での摺動抵抗を小さくすることができる。その結果、減速機5の効率および耐久性の向上が図れる。 As described above, since it becomes easy to hold the lubricant in the meshing portions 33 and 34 of the speed reducer 5, it becomes easy to maintain the lubrication performance and the sliding resistance in the meshing portions 33 and 34 can be reduced. .. As a result, the efficiency and durability of the speed reducer 5 can be improved.

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。 The present invention is not limited to the above-described embodiments, and it goes without saying that the present invention can be carried out in various forms without departing from the gist of the present invention. Indicated by the scope of the claim and further includes the equal meaning described in the claims, and all modifications within the scope.

1 電動アクチュエータ
2 入力回転体
3 出力回転体
4 電動モータ
5 減速機
22 遊星回転体
35 軸方向隙間
36 スラスト玉軸受
37 環状凹溝
38 玉
39 軌道輪
40 遊星回転体の端面
41,42 保持器
43 鍔部
X 回転軸
1 Electric actuator 2 Input rotating body 3 Output rotating body 4 Electric motor 5 Reducer 22 Planetary rotating body 35 Axial gap 36 Thrust ball bearing 37 Annular groove 38 Ball 39 Orbital wheel 40 End face of planetary rotating body 41, 42 Cage 43 Collar X Rotation axis

Claims (4)

駆動力を供給可能な電動モータと、回転軸を中心として回転可能な入力回転体と、自転可能でかつ前記回転軸を中心として公転可能な遊星回転体と、前記回転軸を中心として回転可能な出力回転体とを有し、前記遊星回転体が入力回転体および出力回転体のそれぞれと噛み合い、入力回転体に対する出力回転体の回転位相差を変更する減速機を備え、
前記入力回転体と前記遊星回転体間の軸方向隙間に、前記入力回転体に対して前記遊星回転体を軸方向で支持するスラスト玉軸受を配設したことを特徴とする電動アクチュエータ。
An electric motor capable of supplying driving force, an input rotating body that can rotate around a rotating shaft, a planetary rotating body that can rotate and revolve around the rotating shaft, and a rotating body that can rotate around the rotating shaft. It has an output rotating body, and the planetary rotating body is provided with a speed reducer that meshes with each of the input rotating body and the output rotating body to change the rotational phase difference of the output rotating body with respect to the input rotating body.
An electric actuator characterized in that a thrust ball bearing that supports the planetary rotating body in the axial direction is arranged in an axial gap between the input rotating body and the planetary rotating body.
前記スラスト玉軸受は、玉の転走面が形成された軌道輪を前記入力回転体の端面の環状凹溝に嵌合させ、前記玉を前記遊星回転体の端面に当接させた構造を有する請求項1に記載の電動アクチュエータ。 The thrust ball bearing has a structure in which a raceway ring on which a rolling surface of a ball is formed is fitted into an annular concave groove on an end surface of the input rotating body, and the ball is brought into contact with the end surface of the planetary rotating body. The electric actuator according to claim 1. 前記スラスト玉軸受は、玉を周方向等間隔に保持する保持器が平坦な円板形状を有する請求項1又は2に記載の電動アクチュエータ。 The electric actuator according to claim 1 or 2, wherein the thrust ball bearing has a flat disk shape as a cage for holding balls at equal intervals in the circumferential direction. 前記スラスト玉軸受は、玉を周方向等間隔に保持する保持器が鍔部付き円板形状を有する請求項1又は2に記載の電動アクチュエータ。 The electric actuator according to claim 1 or 2, wherein the thrust ball bearing has a disc-shaped cage with a flange for holding balls at equal intervals in the circumferential direction.
JP2020042984A 2020-03-12 2020-03-12 Electric actuator Pending JP2021143722A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020042984A JP2021143722A (en) 2020-03-12 2020-03-12 Electric actuator
PCT/JP2021/005444 WO2021182019A1 (en) 2020-03-12 2021-02-15 Electric actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020042984A JP2021143722A (en) 2020-03-12 2020-03-12 Electric actuator

Publications (1)

Publication Number Publication Date
JP2021143722A true JP2021143722A (en) 2021-09-24

Family

ID=77672252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020042984A Pending JP2021143722A (en) 2020-03-12 2020-03-12 Electric actuator

Country Status (2)

Country Link
JP (1) JP2021143722A (en)
WO (1) WO2021182019A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243556A (en) * 2008-03-31 2009-10-22 Ntn Corp Cage for bearing and roller bearing
JP2017083005A (en) * 2015-10-22 2017-05-18 株式会社ジェイテクト Driving device
JP6903490B2 (en) * 2017-05-22 2021-07-14 Ntn株式会社 Electric actuator

Also Published As

Publication number Publication date
WO2021182019A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
JP5709373B2 (en) In-wheel motor drive device
US9490679B2 (en) Wheel driving device
JP5376288B2 (en) Variable valve timing device
JP2015140749A (en) Valve timing adjustment device
KR20100045910A (en) Reduction apparatus
TW201730453A (en) Speed reducer for improving configuration precision and suppressing abrasion and damage of components
JP6102846B2 (en) Valve timing adjustment device
WO2021182019A1 (en) Electric actuator
JP2003042240A (en) Roller built-in motor with speed reducer and speed reducer
WO2019059298A1 (en) Electric actuator
JP2016038086A (en) Wheel driving device
JP2021143720A (en) Electric actuator
JP2010260476A (en) In-wheel motor drive device and motor drive device for vehicles
JP2021143719A (en) Electric actuator
JP2021143721A (en) Electric actuator
JP7240213B2 (en) electric actuator
WO2021182357A1 (en) Electric actuator
JP6734001B2 (en) Valve timing adjustment device
JP2020150716A (en) Electric motor and electric actuator including the same
US11852049B2 (en) Electric actuator
JP2007107717A (en) Power transmission and power output device
JP2012097903A (en) In-wheel motor driving device
JP7175821B2 (en) electric actuator
JP7261621B2 (en) electric actuator
WO2015025827A1 (en) Vehicle wheel drive device