JP2021143103A - Method for producing reduced graphene oxide - Google Patents

Method for producing reduced graphene oxide Download PDF

Info

Publication number
JP2021143103A
JP2021143103A JP2020043564A JP2020043564A JP2021143103A JP 2021143103 A JP2021143103 A JP 2021143103A JP 2020043564 A JP2020043564 A JP 2020043564A JP 2020043564 A JP2020043564 A JP 2020043564A JP 2021143103 A JP2021143103 A JP 2021143103A
Authority
JP
Japan
Prior art keywords
graphene oxide
surface area
specific surface
reduced graphene
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020043564A
Other languages
Japanese (ja)
Inventor
康男 柿原
Yasuo Kakihara
康男 柿原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2020043564A priority Critical patent/JP2021143103A/en
Publication of JP2021143103A publication Critical patent/JP2021143103A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

To provide a method for producing a reduced graphene oxide that has a low content of manganese and a large specific surface area and is suitable as an electrode of an electric double-layer capacitor.SOLUTION: A water dispersion of graphene oxide is prepared, which has a specific surface area of 600 m2/g or more, as calculated by methylene blue adsorption. To the graphene oxide, 10-50 wt.% of ascorbic acid is added, and then hydrazine is added for heating and reduction.

Description

本発明は、還元型酸化グラフェンの製造方法に関し、詳しくは電気二重層キャパシタの電極材料に好適に用いることが出来る還元型酸化グラフェン及びその製造方法に関する。 The present invention relates to a method for producing reduced graphene oxide, and more particularly to a reduced graphene oxide that can be suitably used as an electrode material for an electric double layer capacitor and a method for producing the same.

グラフェンは、グラファイトの層状構造の各層を剥離させたナノ炭素材料であり、電気伝導性、熱伝導性、ガス不透過性、透明性、高比表面席など従来の炭素材料には見られない優れた特性を有しており、各デバイスへの応用検討が盛んに行われている。 Graphene is a nanocarbon material from which each layer of the graphite layered structure is peeled off, and is excellent in electrical conductivity, thermal conductivity, gas impermeableness, transparency, high specific surface seating, etc., which are not found in conventional carbon materials. It has the above characteristics, and its application to each device is being actively studied.

グラフェンを取り出す方法としては大別して2通りある。その1つは、グラファイトから機械的エネルギーにより剥離させる方法であり、例えば、ボールミルのような粉砕機を利用する方法、あるいはグラファイトを溶液中で分散剤の存在下で超音波分散を行い、グラフェンを剥離分散させる方法である。これらの方法では均一に剥離できない問題やボールミルのメディアからの不純物の混入の問題、あるいは余分な分散剤が付着してしまうという問題がある。もうひとつの方法としては、グラファイトを酸化して酸化グラフェンとした後に還元することでグラフェンの特性に近い還元型酸化グラフェンを調製する方法である(特許文献1)。 There are roughly two ways to take out graphene. One of them is a method of peeling graphene from graphite by mechanical energy, for example, a method using a crusher such as a ball mill, or ultrasonic dispersion of graphite in a solution in the presence of a dispersant to obtain graphene. This is a method of exfoliating and dispersing. With these methods, there is a problem that the peeling cannot be performed uniformly, a problem that impurities are mixed in from the media of the ball mill, or a problem that an excess dispersant adheres. Another method is to prepare reduced graphene oxide having characteristics close to those of graphene by oxidizing graphite to form graphene oxide and then reducing it (Patent Document 1).

グラファイトから酸化グラフェンを調製する方法として、グラファイトを酸溶媒中で強力な酸化剤と作用させることで酸化グラフェンを調製した後、分離・精製する方法が知られており、酸に濃硫酸を使用し、強力な酸化剤に過マンガン酸カリウムを用いるHummers法が知られている(非特許文献1)。 As a method for preparing graphene oxide from graphite, a method is known in which graphene oxide is prepared by reacting graphite with a strong oxidizing agent in an acid solvent, and then separated and purified. Concentrated sulfuric acid is used as the acid. , The Hummers method using potassium permanganate as a strong oxidizing agent is known (Non-Patent Document 1).

さらにHummers法に関しては、添加する原料、反応条件など改良が加えられ、改良Hummers法として報告されている(非特許文献2)。 Further, regarding the Hummers method, improvements such as added raw materials and reaction conditions have been added, and it has been reported as an improved Hummers method (Non-Patent Document 2).

上記、Hummers法または改良Hummers法で得られた酸化グラフェンは、熱による還元や光による還元など種々の方法で還元型酸化グラフェンとすることが出来るが、中でも還元剤にヒドラジンやアスコルビン酸を用いた化学還元が多数報告されている(非特許文献3、非特許文献4、非特許文献5)。 The graphene oxide obtained by the Hummers method or the improved Hummers method can be reduced by various methods such as reduction by heat and reduction by light. Among them, hydrazine or ascorbic acid was used as the reducing agent. Many chemical reductions have been reported (Non-Patent Document 3, Non-Patent Document 4, Non-Patent Document 5).

電気二重層キャパシタの電極として従来は活性炭が用いられている。電気二重層キャパシタでは活性炭の表面に電気二重層が形成され、電圧をかけることで正と負の電解質がそれぞれの極において吸着されることで蓄電される。そのため吸着表面が多いほど容量が大きくなるため、活性炭の比表面積が大きいほど良好な電極材料となると言える。 Conventionally, activated carbon has been used as an electrode of an electric double layer capacitor. In an electric double layer capacitor, an electric double layer is formed on the surface of activated carbon, and when a voltage is applied, positive and negative electrolytes are adsorbed at each pole to store electricity. Therefore, the larger the adsorption surface, the larger the capacity, and it can be said that the larger the specific surface area of the activated carbon, the better the electrode material.

蓄電状態である両電極に電圧がかかった状態において、内部に電気化学的に酸化還元が生じる不純物があると、不純物の酸化還元反応を介し、電解質や電解液、活性炭の表面が化学反応を起こし、電気二重層キャパシタの性能が劣化することが懸念される。特に価数の変化する金属は不純物として特に好ましくなく、純度が高い電極材料が好ましい。 When voltage is applied to both electrodes in the electricity storage state, if there are impurities that electrochemically cause redox inside, the surface of the electrolyte, electrolyte, and activated carbon undergoes a chemical reaction through the redox reaction of the impurities. , There is a concern that the performance of the electrolytic double layer capacitor will deteriorate. In particular, a metal having a variable valence is not particularly preferable as an impurity, and an electrode material having high purity is preferable.

特開2015−160766号公報Japanese Unexamined Patent Publication No. 2015-160766

William S. Hummers, et al, Journal of American Chemical Society, 1958, 80, 1339William S. Hummers, et al, Journal of American Chemical Society, 1958, 80, 1339 N. I. Kovtyukhova, et al, Chem. Mater. 11, 771(1999)N. I. Kovtyukhova, et al, Chem. Mater. 11, 771 (1999) Sasha Stankovich, et al, Carbon 45 (2007) 1558-1565Sasha Stankovich, et al, Carbon 45 (2007) 1558-1565 Sungjin Park, et al, Carbon 49 (2011) 3019-3023Sungjin Park, et al, Carbon 49 (2011) 3019-3023 Sina Abdolhosseinzadeh, et al, Scientific Reports, 2015, 5, 10160Sina Abdolhosseinzadeh, et al, Scientific Reports, 2015, 5, 10160 Jiali Zhang, et al, Chem. Commun., 2010, 46, 1112-1114Jiali Zhang, et al, Chem. Commun., 2010, 46, 1112-1114

Hummers法あるいは改良Hummers法では、グラファイトを過マンガン酸カリウムで酸化することで酸化グラフェンを調製した後、遠心分離機により水による希釈と沈降の操作を何度も繰り返して精製を行っている。水による希釈と沈降の回数を重ねるたびに不純物であるマンガン成分が除去されるが、概ねマンガンが1〜3wt%は残存してしまう問題がある。 In the Hummers method or the improved Hummers method, graphene oxide is prepared by oxidizing graphite with potassium permanganate, and then purified by repeating the operation of dilution with water and sedimentation with a centrifuge many times. The manganese component, which is an impurity, is removed each time the dilution with water and the precipitation are repeated, but there is a problem that approximately 1 to 3 wt% of manganese remains.

非特許文献3においては、上述したHummers法あるいは改良Hummers法で調製された酸化グラフェンの分散体に対しヒドラジンによる還元を行うことで高比表面積(466m/g)の還元型酸化グラフェンを得られることが報告されているが、不純物の金属であるマンガンの残存量については言及されていない。非特許文献4においてもヒドラジンでの還元により高比表面積(487m/g)の還元酸化グラフェンが得られているが、同様に不純物金属に関しては言及されていない。 In Non-Patent Document 3, reduced graphene oxide having a high specific surface area (466 m 2 / g) can be obtained by reducing the dispersion of graphene oxide prepared by the above-mentioned Hummers method or the improved Hummers method with hydrazine. However, there is no mention of the residual amount of manganese, which is an impurity metal. In Non-Patent Document 4, reduced graphene having a high specific surface area (487 m 2 / g) is obtained by reduction with hydrazine, but similarly, impurity metal is not mentioned.

非特許文献5においては、調製された酸化グラフェンの精製前の時点でアスコルビン酸を添加し、そのまま還元することで還元型酸化グラフェンのマンガン含有量が低減することを報告している。しかしながら、比表面積についての言及がないため電気二重層キャパシタの電極として好適か否かは不明である。非特許文献6においても還元剤にアスコルビン酸を用いて還元型酸化グラフェンを得ているが比表面積についての言及がなされていない。 Non-Patent Document 5 reports that the manganese content of reduced graphene oxide is reduced by adding ascorbic acid at the time before purification of the prepared graphene oxide and reducing it as it is. However, since there is no mention of the specific surface area, it is unclear whether or not it is suitable as an electrode for an electric double layer capacitor. Non-Patent Document 6 also uses ascorbic acid as a reducing agent to obtain reduced graphene oxide, but does not mention the specific surface area.

本発明者らがHummers法あるいは改良Hummers法で調製された酸化グラフェンに対し、アスコルビン酸を還元剤に用いて還元酸化グラフェンを調製したところ、マンガン含有量は346ppmであったが、比表面積については279.8m/gであり電気二重層キャパシタ用の電極に用いるには改善の余地があった。 When the present inventors prepared a reduced graphene oxide using ascorbic acid as a reducing agent with respect to the graphene oxide prepared by the Hummers method or the improved Hummers method, the manganese content was 346 ppm, but the specific surface area was It was 279.8 m 2 / g, and there was room for improvement in using it as an electrode for an electric double layer capacitor.

上述したように、不純物であるマンガンの含有量が少なく、かつ高比表面積である還元型酸化グラフェンの調製方法については未だ報告されていない状況にある。 As described above, a method for preparing reduced graphene having a low content of manganese as an impurity and a high specific surface area has not yet been reported.

本発明者らは、上記実情に鑑み、有機電解液を用いる電気二重層キャパシタの電極に好適な還元型酸化グラフェンの調製方法について誠意検討した結果、次の知見を得た。 In view of the above circumstances, the present inventors have obtained the following findings as a result of sincere examination of a method for preparing reduced graphene oxide suitable for an electrode of an electric double layer capacitor using an organic electrolytic solution.

すなわち、高比表面積であり不純物であるマンガンの含有量の少ない還元型酸化グラフェンを得るためには、原料として高比表面積を有している酸化グラフェンを調製し、酸性条件下においても還元力のあるアスコルビン酸により残存するマンガンを易水溶性の2価に還元した状態を保持した状態でヒドラジンにより還元し、水洗することが必要である。 That is, in order to obtain reduced graphene oxide having a high specific surface area and a low content of manganese, which is an impurity, graphene oxide having a high specific surface area is prepared as a raw material, and the reducing power is high even under acidic conditions. It is necessary to reduce the manganese remaining with a certain ascorbic acid with hydrazine while maintaining the state of being reduced to an easily water-soluble divalent state, and wash with water.

本発明は、上記の知見に基づき完成されたものであり、その要旨は、メチレンブルー吸着法により算出した比表面積が600m/g以上である酸化グラフェンの水分散体を調製し、酸化グラフェンに対し10〜50wt%のアスコルビン酸を添加した後、ヒドラジンを加えて加熱還元することを特徴とする還元型酸化グラフェンの製造方法に存する。 The present invention has been completed based on the above findings, and the gist thereof is to prepare an aqueous dispersion of graphene oxide having a specific surface area of 600 m 2 / g or more calculated by the methylene blue adsorption method, and to the graphene oxide. A method for producing reduced graphene oxide, which comprises adding 10 to 50 wt% of ascorbic acid and then adding hydrazine to reduce heat.

本発明によれば、有機電解液を用いる電気二重層キャパシタの電極に好適な、不純物のマンガンを低減しかつ比表面積の大きい還元型酸化グラフェンが得ることが出来る。 According to the present invention, it is possible to obtain a reduced graphene oxide having a large specific surface area and reduced manganese impurities, which is suitable for an electrode of an electric double layer capacitor using an organic electrolytic solution.

先ず、酸化グラフェンの分散体を調製する。調製方法としては、特許文献1に記載の方法の他、Hummers法(非特許文献1)あるいは改良Hummers法(非特許文献2)などを採用することが出来る。 First, a dispersion of graphene oxide is prepared. As the preparation method, in addition to the method described in Patent Document 1, the Hummers method (Non-Patent Document 1) or the improved Hummers method (Non-Patent Document 2) can be adopted.

すなわち、原料のグラファイトを濃硫酸中に分散させた後、冷却しながら過マンガン酸カリウムを少しずつ添加することでグラファイトを酸化する。その後、純水を加えることで酸化反応を停止させ、続いて過酸化水素水を気泡が出なくなるまで添加する。次に遠心分離機を用いて酸化グラフェンの精製を行う。精製は純水による洗浄と遠心分離機による沈降を繰り返すことで行う。 That is, graphite is oxidized by dispersing the raw material graphite in concentrated sulfuric acid and then adding potassium permanganate little by little while cooling. Then, pure water is added to stop the oxidation reaction, and then hydrogen peroxide solution is added until no bubbles are generated. Next, graphene oxide is purified using a centrifuge. Purification is performed by repeating washing with pure water and sedimentation with a centrifuge.

酸化反応は、反応時の温度、時間、過マンガン酸カリウムの添加量などの条件によって変化する。酸化が進むほど酸化グラフェン中の酸素官能基が増加し、個々の酸化グラフェンシートが剥離し易くなる。剥離が進むことで酸化グラフェンの比表面積が増加する。比表面積が大きく剥離が進んでいる酸化グラフェンを用いることで還元後に比表面積の大きな還元型酸化グラフェンを得る事が出来る。比表面積が小さく剥離が進んでいない酸化グラフェンからは比表面積が大きな還元型酸化グラフェンを得る事は難しい。 The oxidation reaction changes depending on conditions such as the temperature and time of the reaction and the amount of potassium permanganate added. As the oxidation progresses, the oxygen functional groups in the graphene oxide increase, and the individual graphene oxide sheets are easily peeled off. As the exfoliation progresses, the specific surface area of graphene oxide increases. By using graphene oxide having a large specific surface area and exfoliation, it is possible to obtain reduced graphene oxide having a large specific surface area after reduction. It is difficult to obtain reduced graphene oxide having a large specific surface area from graphene oxide having a small specific surface area and not being exfoliated.

上述したように酸化グラフェンの比表面積の値が重要であるが、本発明では酸化グラフェンの比表面積の値をメチレンブルー吸着法によって測定する。メチレンブルー吸着法による酸化グラフェンの比表面積は「Pedo Montes-Navajas, et. al, Langmuir, 2013, 29, 13443-13448」を参考に算出することが出来る。 As described above, the value of the specific surface area of graphene oxide is important, but in the present invention, the value of the specific surface area of graphene oxide is measured by the methylene blue adsorption method. The specific surface area of graphene oxide by the methylene blue adsorption method can be calculated with reference to "Pedo Montes-Navajas, et. Al, Langmuir, 2013, 29, 13443-13448".

すなわち、濃度が既知のメチレンブルー水溶液に酸化グラフェンを投入した後、一定時間攪拌することで酸化グラフェンにメチレンブルーを吸着させる。その後メチレンブルーの吸着量を紫外・可視分光光度計を用いて測定し、酸化グラフェン1gに対するメチレンブルーの吸着量を算出する。次に吸着したメチレンブルー1mgに対し表面積を2.54mとして計算することで酸化グラフェンの比表面積(m/g)を算出することが出来る。 That is, after adding graphene oxide to an aqueous solution of methylene blue having a known concentration, methylene blue is adsorbed on graphene oxide by stirring for a certain period of time. After that, the amount of methylene blue adsorbed is measured using an ultraviolet / visible spectrophotometer, and the amount of methylene blue adsorbed on 1 g of graphene oxide is calculated. Next, the specific surface area (m 2 / g) of graphene oxide can be calculated by calculating the surface area as 2.54 m 2 with respect to 1 mg of adsorbed methylene blue.

本発明の目的とする還元型酸化グラフェンを得るためには、上述した測定法で測定した酸化グラフェンの比表面積が600m/g以上であることが重要であり、好ましくは700m/g以上である。上記比表面積の上限は、特に制限されないが、通常は850m/gである。 In order to obtain reduced graphene oxide, which is the object of the present invention, it is important that the specific surface area of graphene oxide measured by the above-mentioned measuring method is 600 m 2 / g or more, preferably 700 m 2 / g or more. be. The upper limit of the specific surface area is not particularly limited, but is usually 850 m 2 / g.

次に、精製した酸化グラフェンの水分散体に調製する。濃度は,通常0.1wt%〜1wt%、好ましくは0.1wt%〜0.5wt%、さらに好ましくは0.2wt%〜0.4wt%である。0.1wt%より薄い濃度では生産性が悪く好ましくない。1wt%より濃度が濃いと比表面積が低下する傾向があるため好ましくはない。 Next, it is prepared into an aqueous dispersion of purified graphene oxide. The concentration is usually 0.1 wt% to 1 wt%, preferably 0.1 wt% to 0.5 wt%, and more preferably 0.2 wt% to 0.4 wt%. If the concentration is less than 0.1 wt%, the productivity is poor and it is not preferable. If the concentration is higher than 1 wt%, the specific surface area tends to decrease, which is not preferable.

次に、調製した酸化グラフェンの水分散体に対して酸化グラフェンの分散処理を行う。分散処理には超音波洗浄機、超音波分散機、ホモミキサー、ホモディスパーなどを使うことが出来る。 Next, the prepared aqueous dispersion of graphene oxide is subjected to a dispersion treatment of graphene oxide. An ultrasonic cleaner, an ultrasonic disperser, a homomixer, a homodisper, or the like can be used for the dispersion treatment.

次に、酸化グラフェンの水分散体にアスコルビン酸を添加して溶解する。アスコルビン酸の立体異性体であるイソアスコルビン酸を使用してもよい。アスコルビン酸および/またはイソアスコルビン酸の添加量は酸化グラフェンに対して、10wt%〜50wt%であり、好ましくは10wt%〜30wt%である。添加量が50wt%より多いと還元酸化グラフェンの比表面積が小さくなってしまい好ましくない。添加量が10wt%より少ないと残存するマンガン量が増加してしまい好ましくない。 Next, ascorbic acid is added to the aqueous dispersion of graphene oxide to dissolve it. Isoascorbic acid, which is a stereoisomer of ascorbic acid, may be used. The amount of ascorbic acid and / or ascorbic acid added is 10 wt% to 50 wt%, preferably 10 wt% to 30 wt% with respect to graphene oxide. If the amount added is more than 50 wt%, the specific surface area of reduced graphene oxide becomes small, which is not preferable. If the amount added is less than 10 wt%, the amount of manganese remaining increases, which is not preferable.

次に、ヒドラジンを加えて加熱還元する。通常、ヒドラジン・一水和物が用いられ、その使用量は、生成する還元酸化グラフェンの比表面積が最大になるように適切な量が選択されるが、酸化グラフェン1gに対し,通常0.5〜1.5mL、好ましくは1〜1.5mLである。加熱温度は通常80〜100℃である。加熱還流後に生成した還元型酸化グラフェンは通常のろ過および純水で水洗した後に乾燥させる。 Next, hydrazine is added and reduced by heating. Usually, hydrazine / monohydrate is used, and the amount used is usually selected to be an appropriate amount so as to maximize the specific surface area of the reduced graphene produced, but it is usually 0.5 per 1 g of graphene oxide. ~ 1.5 mL, preferably 1-1.5 mL. The heating temperature is usually 80 to 100 ° C. The reduced graphene oxide produced after heating under reflux is subjected to normal filtration, washing with pure water, and then dried.

本発明に係る製造方法によって得られた還元型酸化グラフェンは、マンガン含有量が500ppm以下である。マンガンの含有量が500ppmを超える場合は、電気二重層キャパシタの電極として用いた場合に、長期に使用すると静電容量の低下や内部インピーダンスの増加が見られ好ましくない。 The reduced graphene oxide obtained by the production method according to the present invention has a manganese content of 500 ppm or less. When the manganese content exceeds 500 ppm, when it is used as an electrode of an electric double layer capacitor, a decrease in capacitance and an increase in internal impedance are observed when used for a long period of time, which is not preferable.

本発明に係る製造方法によって得られる還元型酸化グラフェンは、BET比表面積は400m/g以上である。BET比表面積が400m/g未満の場合は、電気二重層キャパシタの電極に用いた場合に十分な静電容量が得られず好ましくない。 The reduced graphene oxide obtained by the production method according to the present invention has a BET specific surface area of 400 m 2 / g or more. When the BET specific surface area is less than 400 m 2 / g, sufficient capacitance cannot be obtained when used as an electrode of an electric double layer capacitor, which is not preferable.

本発明に係る製造方法によって得られる還元型酸化グラフェンは、比表面積が大きく、マンガンの含有量が低減されているので、有機電解液を用いる電気二重層キャパシタの電極に好適である。そのほか、導電助材などの用途に展開することも期待できる。 The reduced graphene oxide obtained by the production method according to the present invention has a large specific surface area and a reduced manganese content, and is therefore suitable for an electrode of an electric double layer capacitor using an organic electrolytic solution. In addition, it can be expected to be applied to applications such as conductive auxiliary materials.

以下、本発明を具体的な実施例により更に詳細に説明するが,本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to specific examples, but the present invention is not limited to the following examples as long as the gist of the present invention is not exceeded.

乾燥して得られた還元型酸化グラフェンの粉末のマンガンの含有量は、誘導結合プラズマ発光分光分析装置「ICAP6500DuO(サーモフィッシャーサイエンス社製)で測定した。また、比表面積は、比表面積測定装置「マルチソープ16(カンタクローム社製)を用いてBET法により測定した。 The manganese content of the powder of reduced graphene oxide obtained by drying was measured by an inductively coupled plasma emission spectrophotometer "ICAP6500DuO (manufactured by Thermo Fisher Scientific Co., Ltd.). The specific surface area was measured by the specific surface area measuring device". It was measured by the BET method using Multisoap 16 (manufactured by Kantachrome).

実施例1:
(酸化グラフェンの調製)
メカニカルスターラーで撹拌しながら、3gのグラファイト(Bay Carbon社製 SP−1)を90mLの濃硫酸に加え、氷冷した。その後、6gの過マンガン酸カリウムを加え、35℃で2時間撹拌した。再び氷冷し、90mLの水を加え、気泡が出なくなるまで30%過酸化水素水を加え、室温で30分撹拌した。純水を用いて遠心分離を繰り返し,生成物から余分な硫酸やマンガンを除去し、酸化グラフェンを調製した。
Example 1:
(Preparation of graphene oxide)
While stirring with a mechanical stirrer, 3 g of graphite (SP-1 manufactured by Bay Carbon) was added to 90 mL of concentrated sulfuric acid, and the mixture was ice-cooled. Then, 6 g of potassium permanganate was added, and the mixture was stirred at 35 ° C. for 2 hours. It was ice-cooled again, 90 mL of water was added, 30% hydrogen peroxide solution was added until no bubbles appeared, and the mixture was stirred at room temperature for 30 minutes. Centrifugation was repeated using pure water to remove excess sulfuric acid and manganese from the product to prepare graphene oxide.

(メチレンブルー吸着法による比表面積の算出)
得られた酸化グラフェンの一部を取り出し、凍結乾燥を行った。凍結乾燥後の酸化グラフェン2.5mgを、事前に調製したメチレンブルー水溶液(100μmol/L)50mLに投入し、超音波洗浄機内で30分散させた。その後、0.2μmのメンブレンフィルターで分散液をろ過し、得られたろ液を用いて紫外・可視分光光度計で測定を行った。
(Calculation of specific surface area by methylene blue adsorption method)
A part of the obtained graphene oxide was taken out and freeze-dried. 2.5 mg of graphene oxide after freeze-drying was put into 50 mL of a pre-prepared methylene blue aqueous solution (100 μmol / L), and 30 were dispersed in an ultrasonic cleaner. Then, the dispersion was filtered through a 0.2 μm membrane filter, and the obtained filtrate was used for measurement with an ultraviolet-visible spectrophotometer.

メチレンブルーの610nmの吸収ピーク強度の減少率から1gあたりの酸化グラフェンのメチレンブルー吸着量を計算した。次に、酸化グラフェン1gに吸着したメチレンブルーの1mgあたり表面積2.54mとして、酸化グラフェンの比表面積を計算し、比表面積763.8m/gと算出した。 The amount of methylene blue adsorbed by graphene oxide per gram was calculated from the rate of decrease in the absorption peak intensity of methylene blue at 610 nm. Next, the specific surface area of graphene oxide was calculated with the surface area of 2.54 m 2 per 1 mg of methylene blue adsorbed on 1 g of graphene oxide, and the specific surface area was calculated to be 763.8 m 2 / g.

上記の酸化グラフェンを用いて0.25wt%水分散溶液(1kg)を調製した。次に、アスコルビン酸を酸化グラフェンに対して10wt%添加した後、超音波分散機を用いて30分間分散処理を行った。2Lのセパラブルフラスコに分散溶液を移し、ヒドラジン・一水和物を2.5mL添加し、メカニカルスターラーを用いて撹拌しながら90℃で2時間加熱還流を行った。得られた還元型酸化グラフェンを吸引ろ過と水洗を行い、凍結乾燥により乾燥し還元型酸化グラフェンを得た。得られた還元型酸化グラフェンについて含有マンガンの量を測定したところ、322ppmであった。BET比表面積は423.3m/gであった。 A 0.25 wt% aqueous dispersion solution (1 kg) was prepared using the above graphene oxide. Next, 10 wt% of ascorbic acid was added to graphene oxide, and then dispersion treatment was performed for 30 minutes using an ultrasonic disperser. The dispersion solution was transferred to a 2 L separable flask, 2.5 mL of hydrazine / monohydrate was added, and the mixture was heated under reflux at 90 ° C. for 2 hours with stirring using a mechanical stirrer. The obtained reduced graphene oxide was suction-filtered and washed with water, and dried by freeze-drying to obtain reduced graphene oxide. The amount of manganese contained in the obtained reduced graphene oxide was measured and found to be 322 ppm. The BET specific surface area was 423.3 m 2 / g.

実施例2:
実施例1において酸化条件を変更して、メチレンブルー吸着法による比表面積が753.3m/gである酸化グラフェンの0.3wt%の水分散溶液(1kg)を調製し、次いで、前記水分散液にアスコルビン酸を酸化グラフェンに対し30wt%添加し、ヒドラジン・一水和物を3mL添加した以外は、実施例1と同様の操作により還元型酸化グラフェンを得た。得られた還元型酸化グラフェンについて含有マンガンの量を測定したところ、356ppmであった。BET比表面積は433.5m/gであった。
Example 2:
In Example 1, the oxidation conditions were changed to prepare a 0.3 wt% aqueous dispersion solution (1 kg) of graphene oxide having a specific surface area of 753.3 m 2 / g by the methylene blue adsorption method, and then the aqueous dispersion was prepared. Ascorbic acid was added to graphene oxide in an amount of 30 wt%, and 3 mL of hydrazine / monohydrate was added to obtain reduced graphene oxide in the same manner as in Example 1. The amount of manganese contained in the obtained reduced graphene oxide was measured and found to be 356 ppm. The BET specific surface area was 433.5 m 2 / g.

実施例3:
実施例1において酸化条件を変更して、メチレンブルー吸着法による比表面積が780.2m/gである酸化グラフェンの0.35wt%の水分散溶液(1kg)を調製し、次いで、アスコルビン酸を酸化グラフェンに対し20wt%添加し、ヒドラジン・一水和物を3.5mL添加した以外は、実施例1と同様の操作により還元型酸化グラフェンを得た。得られた還元型酸化グラフェンについて含有マンガンの量を測定したところ、249ppmであった。BET比表面積は401.2m/gであった。
Example 3:
In Example 1, the oxidation conditions were changed to prepare a 0.35 wt% aqueous dispersion solution (1 kg) of graphene oxide having a specific surface area of 780.2 m 2 / g by the methylene blue adsorption method, and then the ascorbic acid was oxidized. Reduced graphene oxide was obtained by the same operation as in Example 1 except that 20 wt% was added to graphene and 3.5 mL of hydrazine / monohydrate was added. The amount of manganese contained in the obtained reduced graphene oxide was measured and found to be 249 ppm. The BET specific surface area was 401.2 m 2 / g.

実施例4:
実施例1において酸化条件を変更して、メチレンブルー吸着法による比表面積が780.2m/gである酸化グラフェンの0.1wt%の水分散溶液(1kg)を調製し、次いで、アスコルビン酸を酸化グラフェンに対し10wt%添加し、ヒドラジン・一水和物を1mL添加した以外は、実施例1と同様の操作により還元型酸化グラフェンを得た。得られた還元型酸化グラフェンについて含有マンガンの量を測定したところ、250ppmであった。BET比表面積は432.2m/gであった。
Example 4:
In Example 1, the oxidation conditions were changed to prepare a 0.1 wt% aqueous dispersion solution (1 kg) of graphene oxide having a specific surface area of 780.2 m 2 / g by the methylene blue adsorption method, and then ascorbic acid was oxidized. Reduced graphene oxide was obtained by the same operation as in Example 1 except that 10 wt% was added to graphene and 1 mL of hydrazine / monohydrate was added. The amount of manganese contained in the obtained reduced graphene oxide was measured and found to be 250 ppm. The BET specific surface area was 432.2 m 2 / g.

比較例1:
実施例1で調製した酸化グラフェン(比表面積763.8m/g)を用いて0.3wt%水分散溶液(1kg)を調製した。次に、アスコルビン酸を酸化グラフェンに対して500wt%添加した後、超音波分散機を用いて30分間分散処理を行った。2Lのセパラブルフラスコに分散溶液を移し、ヒドラジン・一水和物を添加せず、メカニカルスターラーを用いて撹拌しながら90℃で2時間加熱還流を行った。得られた還元型酸化グラフェンを吸引ろ過と水洗を行い、凍結乾燥により乾燥し還元型酸化グラフェンを得た。得られた還元型酸化グラフェンについて含有マンガンの量を測定したところ、346ppmであった。BET比表面積は279.8m/gであった。
Comparative Example 1:
A 0.3 wt% aqueous dispersion solution (1 kg) was prepared using graphene oxide (specific surface area 763.8 m 2 / g) prepared in Example 1. Next, 500 wt% of ascorbic acid was added to graphene oxide, and then dispersion treatment was performed for 30 minutes using an ultrasonic disperser. The dispersion solution was transferred to a 2 L separable flask, and the mixture was heated under reflux at 90 ° C. for 2 hours with stirring using a mechanical stirrer without adding hydrazine / monohydrate. The obtained reduced graphene oxide was suction-filtered and washed with water, and dried by freeze-drying to obtain reduced graphene oxide. The amount of manganese contained in the obtained reduced graphene oxide was measured and found to be 346 ppm. The BET specific surface area was 279.8 m 2 / g.

比較例2:
メチレンブルー吸着法による比表面積が763.8m/gである酸化グラフェンの0.3wt%の水分散溶液(1kg)を調製し、アスコルビン酸を添加せず、ヒドラジン・一水和物を3mL添加した以外は、比較例1と同様の操作により還元型酸化グラフェンを得た。得られた還元型酸化グラフェンについて含有マンガンの量を測定したところ、9823ppmであった。BET比表面積は499.8m/gであった。
Comparative Example 2:
An aqueous dispersion solution (1 kg) of 0.3 wt% of graphene oxide having a specific surface area of 763.8 m 2 / g by the methylene blue adsorption method was prepared, and 3 mL of hydrazine / monohydrate was added without adding ascorbic acid. Reduced graphene oxide was obtained by the same operation as in Comparative Example 1 except for the above. The amount of manganese contained in the obtained reduced graphene oxide was measured and found to be 9823 ppm. The BET specific surface area was 499.8 m 2 / g.

比較例3:
メチレンブルー吸着法による比表面積が350.2m/gである酸化グラフェンの0.5wt%の水分散溶液(1kg)を調製し、アスコルビン酸を酸化グラフェンに対し10wt%添加し、ヒドラジン・一水和物を5mL添加した以外は、比較例1と同様の操作により還元型酸化グラフェンを得た。得られた還元型酸化グラフェンについて含有マンガンの量を測定したところ、430ppmであった。BET比表面積は276.5m/gであった。
Comparative Example 3:
An aqueous dispersion solution (1 kg) of 0.5 wt% of graphene oxide having a specific surface area of 350.2 m 2 / g by the methylene blue adsorption method was prepared, 10 wt% of ascorbic acid was added to graphene oxide, and hydrazine / monohydrate was added. Reduced graphene oxide was obtained by the same operation as in Comparative Example 1 except that 5 mL of the product was added. The amount of manganese contained in the obtained reduced graphene oxide was measured and found to be 430 ppm. The BET specific surface area was 276.5 m 2 / g.

比較例4:
メチレンブルー吸着法による比表面積が780.2m/gである酸化グラフェンの0.3wt%の水分散溶液(1kg)を調製し、アスコルビン酸をせず、ヒドラジン・一水和物を3mL添加した以外は、比較例1と同様の操作により還元型酸化グラフェンを得た。得られた還元型酸化グラフェンについて含有マンガンの量を測定したところ、4423ppmであった。BET比表面積は478.5m/gであった。
Comparative Example 4:
An aqueous dispersion solution (1 kg) of 0.3 wt% of graphene oxide having a specific surface area of 780.2 m 2 / g by the methylene blue adsorption method was prepared, and 3 mL of hydrazine / monohydrate was added without ascorbic acid. Obtained reduced graphene oxide by the same operation as in Comparative Example 1. The amount of manganese contained in the obtained reduced graphene oxide was measured and found to be 4423 ppm. The BET specific surface area was 478.5 m 2 / g.

以下の表1に前記の実施例および比較例の結果を示す。 Table 1 below shows the results of the above-mentioned Examples and Comparative Examples.

Figure 2021143103
Figure 2021143103

Claims (2)

メチレンブルー吸着法により算出した比表面積が600m/g以上である酸化グラフェンの水分散体を調製し、酸化グラフェンに対し10〜50wt%のアスコルビン酸を添加した後、ヒドラジンを加えて加熱還元することを特徴とする還元型酸化グラフェンの製造方法。 Prepare an aqueous dispersion of graphene oxide having a specific surface area of 600 m 2 / g or more calculated by the methylene blue adsorption method, add 10 to 50 wt% ascorbic acid to graphene oxide, and then add hydrazine to reduce heat. A method for producing reduced graphene oxide. 得られる還元型酸化グラフェンのマンガン含有量が500ppm以下であり、BET比表面積が400m/g以上である請求項1に記載の還元型酸化グラフェンの製造方法。

The method for producing reduced graphene according to claim 1, wherein the obtained reduced graphene oxide has a manganese content of 500 ppm or less and a BET specific surface area of 400 m 2 / g or more.

JP2020043564A 2020-03-12 2020-03-12 Method for producing reduced graphene oxide Pending JP2021143103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020043564A JP2021143103A (en) 2020-03-12 2020-03-12 Method for producing reduced graphene oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020043564A JP2021143103A (en) 2020-03-12 2020-03-12 Method for producing reduced graphene oxide

Publications (1)

Publication Number Publication Date
JP2021143103A true JP2021143103A (en) 2021-09-24

Family

ID=77767007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020043564A Pending JP2021143103A (en) 2020-03-12 2020-03-12 Method for producing reduced graphene oxide

Country Status (1)

Country Link
JP (1) JP2021143103A (en)

Similar Documents

Publication Publication Date Title
JP6618905B2 (en) Production of graphene oxide
Li et al. MoS 2 quantum dot decorated RGO: a designed electrocatalyst with high active site density for the hydrogen evolution reaction
Dao et al. Graphene prepared by thermal reduction–exfoliation of graphite oxide: Effect of raw graphite particle size on the properties of graphite oxide and graphene
Kumar et al. Hydrothermal synthesis of a uniformly dispersed hybrid graphene–TiO 2 nanostructure for optical and enhanced electrochemical applications
Zhang et al. Effect of physical and chemical structures of graphene oxide on water permeation in graphene oxide membranes
Hussin et al. Photocatalytic synthesis of reduced graphene oxide-zinc oxide: effects of light intensity and exposure time
KR20190022669A (en) Production of large-scale carbon-based oxides and reduced carbon-based oxides
KR20130141357A (en) Porous carbon material and method of producing the same, and electric double- layer capacitor using the porous carbon material
de Lima et al. Oxidized/reduced graphene nanoribbons facilitate charge transfer to the Fe (CN) 6 3−/Fe (CN) 6 4− redox couple and towards oxygen reduction
EP3375755A1 (en) Method for producing graphite oxide
US9695516B2 (en) Graphite oxide and graphene preparation method
KR20160076182A (en) Method of manufacturing for graphene/carbon nanotube composite membrane
TW201420500A (en) Method for preparing graphene oxide
JP2020045266A (en) Graphene oxide dispersion and method for preparing the same
JP2017171523A (en) Method for producing reduced graphite oxide
WO2017060434A1 (en) Method of fabricating a self-supporting expanded 2d material and expanded materials
EP3572375B1 (en) Graphite-like microcrystal carbon nanomaterial, preparation method therefor and use thereof
Chasanah et al. Study of green reductant effects of highly reduced graphene oxide production and their characteristics
KR20130117388A (en) Preparation method of graphite oxide and graphene nanosheet
JP2021143103A (en) Method for producing reduced graphene oxide
CN105858648B (en) A kind of preparation method of graphene
JP7457307B2 (en) Method for manufacturing thin plate-like graphite structure, exfoliated graphite and method for manufacturing same
KR101604792B1 (en) Nano composite, method for preparing the same, and supercapacitor
Gadipelli et al. Structure‐guided Capacitance Relationships in Oxidized Graphene Porous Materials Based Supercapacitors
CA3034414A1 (en) Interconnected reduced graphene oxide

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20211210