JP2021142655A - Metal resin joined body and device - Google Patents

Metal resin joined body and device Download PDF

Info

Publication number
JP2021142655A
JP2021142655A JP2020040983A JP2020040983A JP2021142655A JP 2021142655 A JP2021142655 A JP 2021142655A JP 2020040983 A JP2020040983 A JP 2020040983A JP 2020040983 A JP2020040983 A JP 2020040983A JP 2021142655 A JP2021142655 A JP 2021142655A
Authority
JP
Japan
Prior art keywords
resin
metal
metal member
joined
bent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020040983A
Other languages
Japanese (ja)
Inventor
英二 奥村
Eiji Okumura
英二 奥村
章 中込
Akira Nakagome
章 中込
徳雄 川中
Tokuo Kawanaka
徳雄 川中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2020040983A priority Critical patent/JP2021142655A/en
Publication of JP2021142655A publication Critical patent/JP2021142655A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

To provide a metal resin joined body capable of suppressing buckling of a resin member and deformation of a metal member in a bent part.SOLUTION: A metal resin joined body has straight line parts having a linear sectional shape, and a bent part having a bent or warped sectional shape arranged in contact with both of the two straight line parts. The straight line part is formed of one of a metal member and a resin member, and the bent part is formed of a laminate in which the metal member and the resin member are joined.SELECTED DRAWING: Figure 2

Description

本開示は、金属樹脂接合体および装置に関する。 The present disclosure relates to metal resin joints and devices.

軽量であるという樹脂の特性を活かして、金属製の部材を樹脂製の部材に置き換える方法が検討されている。このとき、剛性に優れるという金属部材も活かすため、金属部材と樹脂部材とを複合化して用いることも望まれている。 Taking advantage of the property of resin that it is lightweight, a method of replacing a metal member with a resin member is being studied. At this time, in order to utilize the metal member having excellent rigidity, it is also desired to use the metal member and the resin member in combination.

たとえば、特許文献1には、金属部材の曲げ加工部にテーパー状の貫通孔を形成し、上記貫通孔の内部から上記テーパー状の狭窄部を介して金属部材のいずれかの面に及ぶように樹脂部材を配置した構造が記載されている。特許文献1によれば、上記構造は、上記テーパー状の貫通孔に樹脂部材が引っ掛った抜け止め構造となっているため、樹脂部材が金属部材から外れにくいとされている。 For example, in Patent Document 1, a tapered through hole is formed in a bent portion of a metal member so as to extend from the inside of the through hole to any surface of the metal member through the tapered narrowed portion. The structure in which the resin member is arranged is described. According to Patent Document 1, since the structure has a retaining structure in which the resin member is caught in the tapered through hole, the resin member is hard to come off from the metal member.

特開2015−142971号公報JP 2015-142971

上述したように、金属部材および樹脂部材には、それぞれ一長一短があるため、適用される箇所に求められる特性に応じて使い分けられることが望ましい。 As described above, since each of the metal member and the resin member has advantages and disadvantages, it is desirable to use them properly according to the characteristics required for the place where they are applied.

しかし使用時に応力がかかるような折れ曲がり部では、樹脂部材は座屈しやすく、また、金属部材は変形しやすいという問題があり、いずれを用いても、求められる性能が十分に満たされるとは言い難かった。 However, there is a problem that the resin member is easily buckled and the metal member is easily deformed in the bent part where stress is applied during use, and it is difficult to say that the required performance is sufficiently satisfied by using any of them. rice field.

本開示の目的は、折れ曲がり部における剛性をより高めた金属樹脂接合体、および当該金属樹脂接合体を有する装置を提供することにある。 An object of the present disclosure is to provide a metal resin joint having higher rigidity at a bent portion, and an apparatus having the metal resin joint.

一態様に係る金属樹脂接合体は、断面形状が直線状である直線部と、2つの前記直線部を接続する位置に配置された、断面形状が屈折または屈曲している折れ曲がり部と、を有する。前記直線部は、金属部材および樹脂部材の一方の部材により形成されており、前記折れ曲がり部は、金属部材と樹脂部材が接合した積層体により形成されている。 The metal-resin joint according to one aspect has a straight portion having a linear cross-sectional shape and a bent portion having a bent or bent cross-sectional shape arranged at a position connecting the two straight portions. .. The straight portion is formed of one of a metal member and a resin member, and the bent portion is formed of a laminated body in which a metal member and a resin member are joined.

また、一態様に係る装置は、前記金属樹脂接合体と、原動機と、を有する。 Further, the device according to one aspect includes the metal-resin bonded body and a prime mover.

本開示によれば、折れ曲がり部における剛性をより高めた金属樹脂接合体、および当該金属樹脂接合体を有する装置が提供される。 According to the present disclosure, there is provided a metal resin joint having higher rigidity at a bent portion, and an apparatus having the metal resin joint.

図1は、第一の実施形態に関する金属樹脂接合体である、フライホイールハウジングの構成を示す模式的な斜視図である。FIG. 1 is a schematic perspective view showing a configuration of a flywheel housing, which is a metal resin joint according to the first embodiment. 図2は、図1に示すフライホイールハウジングの、図1中の一点鎖線A−Aに沿った断面図である。FIG. 2 is a cross-sectional view of the flywheel housing shown in FIG. 1 along the alternate long and short dash line AA in FIG. 図3は、第二の実施形態に関する金属樹脂接合体である、ブラケットの構成を示す模式的な斜視図である。FIG. 3 is a schematic perspective view showing the configuration of a bracket, which is a metal resin joint according to the second embodiment. 図4は、図3に示すブラケットの、図3中の一点鎖線B−Bに沿った断面図である。FIG. 4 is a cross-sectional view of the bracket shown in FIG. 3 along the alternate long and short dash line BB in FIG. 図5Aは、実施例における片持ち梁曲げ試験の様子を示す模式図であり、図5Bは、実施例における圧縮曲げ試験の様子を示す模式図である。FIG. 5A is a schematic view showing a state of a cantilever bending test in an example, and FIG. 5B is a schematic view showing a state of a compression bending test in an example.

以下、本開示の複数の実施形態について、図面を参照して詳細に説明する。なお、以下に説明する実施形態は一例であり、本発明はこれらの実施形態により限定されるものではない。 Hereinafter, a plurality of embodiments of the present disclosure will be described in detail with reference to the drawings. The embodiments described below are examples, and the present invention is not limited to these embodiments.

[第一の実施形態]
図1は、第一の実施形態に関する金属樹脂接合体である、フライホイールハウジング100の構成を示す模式的な斜視図である。
[First Embodiment]
FIG. 1 is a schematic perspective view showing a configuration of a flywheel housing 100, which is a metal resin joint according to the first embodiment.

フライホイールハウジング100は、車両において、内燃機関であるエンジンとクラッチユニットとを接続する位置に、クランクシャフトに取り付けられたフライホイールの周囲を覆うように配置される。フライホイールハウジング100は、従来は鋼やアルミニウムなどの金属により形成されているが、本実施形態では、炭素繊維やガラス繊維などの強化繊維で強化された、繊維強化樹脂(FRP)と、金属と、の接合体である。フライホイールハウジング100を部分的に樹脂製とすることで、車両の軽量化およびそれに伴う燃費の向上や最大積載量の増大などが期待される。また、フライホイールハウジング100を部分的に樹脂製とすることで、振動時の制音性を高めることも期待される。 The flywheel housing 100 is arranged so as to cover the periphery of the flywheel attached to the crankshaft at a position where the engine, which is an internal combustion engine, and the clutch unit are connected in the vehicle. Conventionally, the flywheel housing 100 is made of a metal such as steel or aluminum, but in the present embodiment, a fiber reinforced plastic (FRP) reinforced with reinforcing fibers such as carbon fiber and glass fiber and a metal are used. , Is a composite of. By partially making the flywheel housing 100 made of resin, it is expected that the weight of the vehicle will be reduced, the fuel consumption will be improved, and the maximum load capacity will be increased. Further, it is expected that the flywheel housing 100 is partially made of resin to improve the sound control property at the time of vibration.

フライホイールハウジング100は、フライホイール(不図示)を収容するハウジング部110と、エンジン(不図示)への接続部であるフランジ部120と、クラッチユニット(不図示)への接続部であるフランジ部130と、を有する。そして、フランジ部120に設けられた複数の貫通孔122のそれぞれに締結用部材である金属製のボルトを挿入されてエンジンに組み付けられ、フランジ部130に設けられた複数の貫通孔132のそれぞれに締結用部材であるボルトを挿入されてクラッチユニットに組み付けられる。 The flywheel housing 100 includes a housing portion 110 that houses a flywheel (not shown), a flange portion 120 that is a connection portion to an engine (not shown), and a flange portion that is a connection portion to a clutch unit (not shown). It has 130 and. Then, a metal bolt as a fastening member is inserted into each of the plurality of through holes 122 provided in the flange portion 120 and assembled to the engine, and each of the plurality of through holes 132 provided in the flange portion 130 is assembled. A bolt, which is a fastening member, is inserted and assembled to the clutch unit.

図2は、図1に示すフライホイールハウジング100の、図1中の一点鎖線A−Aに沿った断面図である。図2に示すように、フライホイールハウジング100は、いずれも厚みが略一定の板状部材である複数の金属部材210、220、230、240および250と、厚みが略一定の板状部材である樹脂部材260と、が接合されてなる。 FIG. 2 is a cross-sectional view of the flywheel housing 100 shown in FIG. 1 along the alternate long and short dash line AA in FIG. As shown in FIG. 2, the flywheel housing 100 is a plurality of metal members 210, 220, 230, 240 and 250, each of which is a plate-shaped member having a substantially constant thickness, and is a plate-shaped member having a substantially constant thickness. The resin member 260 is joined to the resin member 260.

具体的には、フライホイールハウジング100は、フランジ部120が、樹脂部材260の両面に金属部材210および220がそれぞれ接合された構造となっており、フランジ部130が、樹脂部材の両面に金属部材230および240がそれぞれ接合された構造となっている。 Specifically, the flywheel housing 100 has a structure in which the flange portion 120 has metal members 210 and 220 joined to both sides of the resin member 260, and the flange portion 130 has metal members on both sides of the resin member. The structure is such that 230 and 240 are joined, respectively.

金属部材210および220は、フランジ部120からハウジング部110への接続部である第一屈折部140において、ハウジング部110の壁面が延びる方向へと曲げ加工されている。そして、上記曲げ加工の内側となる、金属部材210の内側表面210aに接合された樹脂部材260は、第一屈折部140において、金属部材210に沿って屈折した板状となって、金属部材210の内側表面210aに接合している。また、上記曲げ加工の外側となる、金属部材220の内側表面220aに接合された樹脂部材260は、第一屈折部140において、金属部材220に沿って屈折した板状となって、金属部材220の内側表面220aに接合している。 The metal members 210 and 220 are bent in the direction in which the wall surface of the housing portion 110 extends in the first refracting portion 140, which is a connection portion from the flange portion 120 to the housing portion 110. Then, the resin member 260 joined to the inner surface 210a of the metal member 210, which is the inside of the bending process, becomes a plate-like refracted along the metal member 210 in the first refracting portion 140, and the metal member 210 It is joined to the inner surface 210a of. Further, the resin member 260 joined to the inner surface 220a of the metal member 220, which is the outer side of the bending process, becomes a plate-like refracted along the metal member 220 in the first refracting portion 140, and the metal member 220. It is joined to the inner surface 220a of.

同様に、金属部材230および240は、フランジ部130からハウジング部110への接続部である第二屈折部150において、ハウジング部110の壁面が延びる方向へと曲げ加工されている。そして、上記曲げ加工の内側となる、金属部材230の内側表面230aに接合された樹脂部材260は、第二屈折部150において、金属部材230に沿って屈折した板状となって、金属部材230の内側表面230aに接合している。また、上記曲げ加工の外側となる、金属部材240の内側表面240aに接合された樹脂部材260は、第二屈折部150において、金属部材240に沿って屈折した板状となって、金属部材240の内側表面240aに接合している。 Similarly, the metal members 230 and 240 are bent in the direction in which the wall surface of the housing portion 110 extends in the second refracting portion 150 which is the connection portion from the flange portion 130 to the housing portion 110. Then, the resin member 260 joined to the inner surface 230a of the metal member 230, which is the inside of the bending process, becomes a plate-like refracted along the metal member 230 in the second refracting portion 150, and becomes a metal member 230. It is joined to the inner surface 230a of. Further, the resin member 260 joined to the inner surface 240a of the metal member 240, which is the outer side of the bending process, becomes a plate shape bent along the metal member 240 in the second refracting portion 150, and becomes a metal member 240. It is joined to the inner surface 240a of.

また、フライホイールハウジング100は、ハウジング部110が、断面形状が直線状である第一直線部170および第二直線部180を有し、第一直線部170と第二直線部180とは、断面形状が屈折している第三屈折部160によって接続されている。第一直線部170および第二直線部180は、樹脂部材260によって構成されており、第三屈折部160は、屈折の外側となる、樹脂部材260の外側表面に、板状であり、かつ第三屈折部の曲げ形状に曲げ加工された金属部材250が接合された構造となっている。 Further, in the flywheel housing 100, the housing portion 110 has a first straight portion 170 and a second straight portion 180 having a linear cross-sectional shape, and the first straight portion 170 and the second straight portion 180 have a cross-sectional shape. It is connected by a refracting third refracting portion 160. The first straight line portion 170 and the second straight line portion 180 are composed of a resin member 260, and the third refraction portion 160 is plate-shaped and third on the outer surface of the resin member 260, which is outside the refraction. The structure is such that the metal member 250 bent into the bent shape of the refracted portion is joined.

金属部材210の、樹脂部材260が接合された内側表面210a、および金属部材220の、樹脂部材260が接合された内側表面220aは、いずれも粗面化処理されており、これにより、金属部材210および220のそれぞれと樹脂部材260とは、アンカー効果によって強固に接合されている。 The inner surface 210a of the metal member 210 to which the resin member 260 is joined and the inner surface 220a of the metal member 220 to which the resin member 260 is joined are both roughened, whereby the metal member 210 is roughened. Each of the 220 and 220 and the resin member 260 are firmly joined by the anchor effect.

同様に、金属部材230の、樹脂部材260が接合された内側表面230a、および金属部材240の、樹脂部材260が接合された内側表面240aは、いずれも粗面化処理されており、これにより、金属部材230および240のそれぞれと樹脂部材260とは、アンカー効果によって強固に接合されている。 Similarly, the inner surface 230a of the metal member 230 to which the resin member 260 is joined and the inner surface 240a of the metal member 240 to which the resin member 260 is joined are both roughened. Each of the metal members 230 and 240 and the resin member 260 are firmly joined by the anchor effect.

同様に、金属部材250の、樹脂部材260が接合された内側表面250aは、粗面化処理されており、これにより、金属部材250と樹脂部材260とは、アンカー効果によって強固に接合されている。 Similarly, the inner surface 250a of the metal member 250 to which the resin member 260 is joined is roughened, whereby the metal member 250 and the resin member 260 are firmly joined by the anchor effect. ..

なお、上記粗面化処理は、レーザー加工、ショットピーニングおよびショットブラストなどの機械的加工、ならびに化学的なエッチングなどの公知の方法で行えばよい。 The roughening treatment may be performed by a known method such as laser processing, mechanical processing such as shot peening and shot blasting, and chemical etching.

フライホイールハウジングは、エンジンから振動が伝達されて、絶え間なく振動している。本発明者らの知見によると、フライホイールハウジングが樹脂部材のみから構成されていると、上記振動によって、薄肉状となっている樹脂部材には、特にハウジング部110におけるそれぞれの第一屈折部140、第二屈折部150および第三屈折部160への応力集中により、座屈が生じやすい。一方で、フライホイールハウジングが金属部材のみから構成されても、それぞれの第一屈折部140、第二屈折部150および第三屈折部160への応力集中により、それぞれの屈折部で金属部材が変形してしまいやすい。 The flywheel housing is constantly vibrating as vibration is transmitted from the engine. According to the findings of the present inventors, when the flywheel housing is composed of only the resin member, the resin member having a thin wall shape due to the vibration is particularly affected by the first refracting portion 140 in the housing portion 110. , The stress concentration on the second refracting portion 150 and the third refracting portion 160 tends to cause buckling. On the other hand, even if the flywheel housing is composed of only metal members, the metal members are deformed at each of the refracting portions due to stress concentration on the first refracting portion 140, the second refracting portion 150, and the third refracting portion 160. It's easy to do.

これに対し、本実施形態では、フライホイールハウジング100を、より剛性の高い金属と樹脂との接合体とすることで、上記座屈を抑制している。また、このとき、第一屈折部140、第二屈折部150および第三屈折部160を、いずれも厚みが略一定の板状部材である金属部材と樹脂部材とが接合してなる積層体とすることで、屈折部の断面積を大きくすることによる応力の分散と、屈折部を金属と樹脂との接合体とすることによる曲げ方向および圧縮方向の双方への剛性の向上(実施例参照)と、により屈折部における変形を抑制している。 On the other hand, in the present embodiment, the buckling is suppressed by using the flywheel housing 100 as a joint body of a metal and a resin having higher rigidity. Further, at this time, the first refracting portion 140, the second refracting portion 150, and the third refracting portion 160 are formed by joining a metal member and a resin member, all of which are plate-shaped members having a substantially constant thickness. By doing so, stress is dispersed by increasing the cross-sectional area of the refracting part, and rigidity is improved in both the bending direction and the compression direction by making the refracting part a junction of metal and resin (see Examples). And, the deformation in the refracting part is suppressed.

また、樹脂部材260は、フランジ部120からハウジング部110を介してフランジ部130までが同一の樹脂部材により一体的に形成されている。これにより、フランジ部120、ハウジング部110およびフランジ部130の一体性が保たれている。 Further, the resin member 260 is integrally formed of the same resin member from the flange portion 120 to the flange portion 130 via the housing portion 110. As a result, the integralness of the flange portion 120, the housing portion 110, and the flange portion 130 is maintained.

なお、本実施形態において、フランジ部120および130では、樹脂部材260の両側の表面に樹脂部材が接合されている。これにより、他の部材(エンジンカバー、オイルパンおよびクラッチユニット)に強固に締結されて、様々な方向へのより強い応力が振動時に印加されるフランジ部120および130における金属部材の変形がより効果的に抑制されている。 In the present embodiment, in the flange portions 120 and 130, the resin members are joined to the surfaces on both sides of the resin member 260. This makes it more effective to deform the metal members at the flanges 120 and 130, which are firmly fastened to other members (engine cover, oil pan and clutch unit) and where stronger stress in various directions is applied during vibration. Is suppressed.

金属部材210、220、230、240および250、ならびに樹脂部材260の厚みは特に限定されないが、たとえば1mm以上とすることができ、3mm以上とすることが好ましい。また、これらの金属部材と樹脂部材とは、略同一の厚みとすることができる。 The thicknesses of the metal members 210, 220, 230, 240 and 250, and the resin member 260 are not particularly limited, but may be, for example, 1 mm or more, preferably 3 mm or more. Further, these metal members and resin members can have substantially the same thickness.

[第二の実施形態]
図3は、第二の実施形態に関する金属樹脂接合体である、ブラケット300の構成を示す模式的な斜視図である。
[Second Embodiment]
FIG. 3 is a schematic perspective view showing the configuration of the bracket 300, which is the metal resin joint according to the second embodiment.

ブラケット300は、第一の相手部材に締結される第一締結部320と、第二の相手部材に締結される第二締結部330と、第一締結部320と第二締結部330が所定の距離を空けた位置に配置されるように、これらを接続する本体部310と、を有する。 In the bracket 300, a first fastening portion 320 to be fastened to the first mating member, a second fastening portion 330 to be fastened to the second mating member, and a first fastening portion 320 and a second fastening portion 330 are predetermined. It has a main body 310 that connects them so that they are arranged at a distance.

第一締結部320には、ボルトなどの締結用部材が挿入される貫通孔322が形成されており、第二締結部330には、ボルトなどの締結用部材が挿入される貫通孔332が形成されている。ブラケット300は、これらの貫通孔322および332に締結用部材を挿入してそれぞれの相手部材にブラケット300を締結することにより、第一の相手部材と第二の相手部材とを連結させることができる。 The first fastening portion 320 is formed with a through hole 322 into which a fastening member such as a bolt is inserted, and the second fastening portion 330 is formed with a through hole 332 into which a fastening member such as a bolt is inserted. Has been done. The bracket 300 can connect the first mating member and the second mating member by inserting a fastening member into these through holes 322 and 332 and fastening the bracket 300 to each mating member. ..

なお、本体部310には、軽量化のための複数の抜穴312が形成されている。 The main body 310 is formed with a plurality of holes 312 for weight reduction.

図4は、図3に示すブラケット300の、図3中の一点鎖線B−Bに沿った断面図である。図4に示すように、ブラケット300は、いずれも厚みが略一定の板状部材である金属部材410と、いずれも厚みが略一定の板状部材である複数の樹脂部材450、460および470と、が接合されてなる。 FIG. 4 is a cross-sectional view of the bracket 300 shown in FIG. 3 along the alternate long and short dash line BB in FIG. As shown in FIG. 4, the bracket 300 includes a metal member 410, which is a plate-shaped member having a substantially constant thickness, and a plurality of resin members 450, 460, and 470, each of which is a plate-shaped member having a substantially constant thickness. , Are joined together.

金属部材410は、第一締結部320から本体部310への接続部である第一屈折部340において、本体部310の壁面が延びる方向へと曲げ加工されている。そして、上記曲げ加工の外側となる、金属部材410の外側表面410aに接合された樹脂部材450は、第一屈折部340において、金属部材410に沿って屈折した板状となって、金属部材410の外側表面410aに接合している。 The metal member 410 is bent in the direction in which the wall surface of the main body 310 extends in the first refraction portion 340, which is a connection portion from the first fastening portion 320 to the main body 310. Then, the resin member 450 joined to the outer surface 410a of the metal member 410, which is the outside of the bending process, becomes a plate-like refracted along the metal member 410 at the first refracting portion 340, and the metal member 410. It is joined to the outer surface 410a of.

また、金属部材410は、第二締結部330から本体部310への接続部である第二屈折部350において、本体部310の壁面が延びる方向へと曲げ加工されている。そして、上記曲げ加工の外側となる、金属部材410の外側表面410bに接合された樹脂部材470は、第二屈折部350において、金属部材410に沿って屈折した板状となって、金属部材410の外側表面410bに接合している。 Further, the metal member 410 is bent in the direction in which the wall surface of the main body 310 extends in the second refracting portion 350, which is a connection portion from the second fastening portion 330 to the main body 310. Then, the resin member 470 joined to the outer surface 410b of the metal member 410, which is the outer side of the bending process, becomes a plate shape bent along the metal member 410 in the second refracting portion 350, and becomes a metal member 410. It is joined to the outer surface 410b of.

また、金属部材410は、本体部310に第三屈折部360が設けられるように、曲げ加工されている。言い換えると、ブラケット300は、本体部310が、断面形状が直線状である第一直線部370および第二直線部380を有し、第一直線部370と第二直線部380とは、断面形状が屈折している第三屈折部360によって接続されている。第一直線部370および第二直線部380は、金属部材410によって構成されており、第三屈折部360は、屈折の外側となる、金属部材410の外側表面410cに、樹脂部材460が接合された構造となっている。 Further, the metal member 410 is bent so that the main body portion 310 is provided with the third refracting portion 360. In other words, the bracket 300 has a main body portion 310 having a first straight portion 370 and a second straight portion 380 having a linear cross-sectional shape, and the first straight portion 370 and the second straight portion 380 have a refracted cross-sectional shape. It is connected by a third refracting section 360. The first straight line portion 370 and the second straight line portion 380 are composed of a metal member 410, and the third refraction portion 360 has a resin member 460 bonded to the outer surface 410c of the metal member 410, which is outside the refraction. It has a structure.

金属部材410の、樹脂部材450が接合された外側表面410a、樹脂部材470が接合された外側表面410b、および樹脂部材460が接合された外側表面410cは、いずれも粗面化処理されており、これにより、金属部材410と樹脂部材450、460および470のそれぞれとは、アンカー効果によって強固に接合されている。 The outer surface 410a to which the resin member 450 is joined, the outer surface 410b to which the resin member 470 is joined, and the outer surface 410c to which the resin member 460 is joined of the metal member 410 are all roughened. As a result, the metal member 410 and the resin members 450, 460, and 470 are firmly joined by the anchor effect.

本実施形態においても、上記粗面化処理は、レーザー加工、ショットピーニングおよびショットブラストなどの機械的加工、ならびに化学的なエッチングなどの公知の方法で行えばよい。 Also in the present embodiment, the roughening treatment may be performed by a known method such as laser processing, mechanical processing such as shot peening and shot blasting, and chemical etching.

また、本実施形態においても、それぞれの屈折部において金属部材410の外側表面に接合された樹脂部材450、460および470が、屈折部の断面積を大きくすることによる応力の分散と、屈折部を金属と樹脂との接合体とすることによる曲げ方向および圧縮方向の双方への剛性の向上(実施例参照)と、により、屈折部における金属部材の変形を抑制している。 Further, also in the present embodiment, the resin members 450, 460 and 470 bonded to the outer surface of the metal member 410 in each of the refracting portions disperse the stress by increasing the cross-sectional area of the refracting portion and disperse the refracting portion. Deformation of the metal member in the refracting portion is suppressed by improving the rigidity in both the bending direction and the compression direction (see Examples) by forming the joint body of the metal and the resin.

金属部材410、ならびに樹脂部材450、460および470の厚みは特に限定されないが、たとえば1mm以上とすることができ、3mm以上とすることが好ましい。 The thickness of the metal member 410 and the resin members 450, 460 and 470 is not particularly limited, but can be, for example, 1 mm or more, preferably 3 mm or more.

なお、上述の実施形態はそれぞれ本発明の一例を示すものであり、本発明は上述の実施形態に限定されるものではなく、本発明の思想の範囲内において、他の種々多様な実施形態も可能であることは言うまでもない。 It should be noted that each of the above-described embodiments shows an example of the present invention, and the present invention is not limited to the above-mentioned embodiments, and various other embodiments are also included within the scope of the idea of the present invention. It goes without saying that it is possible.

たとえば、上述の各実施形態では、フライホイールハウジングおよびブラケットについて説明したが、本開示は、ブレーキドラム、プロペラシャフトとドライブシャフトとのジョイント部、トランスミッションケース、モーターハウジング、エンジンカバー、ヘッドカバー、およびオイルパンなどの、その他様々な部材に適用することが可能である。特に、原動機などの振動を発生する機構を備えた装置、たとえば車両、船舶および航空機などでは、軽量化のために金属部材を樹脂部材に置き換えることへの要求が高く、一方で原動機の振動により樹脂部材の座屈や折れ曲がり部における金属部材の変形が生じやすい。そのため、振動を発生する機構を備えたこれらの装置において、本開示の締結構造体により折れ曲がり部における樹脂部材の座屈や金属部材の変形を抑制することで、より長期間にわたる各部材の使用、および部分的な樹脂部材への置き換えによる軽量化の達成がより容易になることが期待される。 For example, although the flywheel housings and brackets have been described in each of the above embodiments, the present disclosure discloses brake drums, propeller shaft and drive shaft joints, transmission cases, motor housings, engine covers, head covers, and oil pans. It can be applied to various other members such as. In particular, in devices equipped with a mechanism for generating vibration such as a prime mover, for example, a vehicle, a ship, an aircraft, etc., there is a high demand for replacing a metal member with a resin member in order to reduce the weight, while resin due to the vibration of the prime mover. The metal member is likely to be deformed at the buckling or bending portion of the member. Therefore, in these devices provided with a mechanism for generating vibration, the fastening structure of the present disclosure suppresses buckling of the resin member and deformation of the metal member at the bent portion, so that each member can be used for a longer period of time. And it is expected that it will be easier to achieve weight reduction by replacing it with a partial resin member.

また、金属部材または樹脂部材の折れ曲がり部を補強する樹脂部材または金属部材は、折れ曲がり部の外側に接合されてもよいし、内側に接合されてもよいし、内側および外側の両方に接合されてもよい。 Further, the resin member or the metal member that reinforces the bent portion of the metal member or the resin member may be joined to the outside of the bent portion, may be joined to the inside, or may be joined to both the inside and the outside. May be good.

また、上述の各実施形態では、第1直線部と第2直線部との間に、部材が屈折した折れ曲がり部を有する例を説明したが、2つの直線部が同一直線上に配置されなければよく、たとえば曲線状に屈曲した折れ曲がり部によって2つの直線部が接続されていてもよい。 Further, in each of the above-described embodiments, an example in which the member has a bent portion in which the member is bent is described between the first straight line portion and the second straight portion, but the two straight portions must be arranged on the same straight line. Often, for example, two straight portions may be connected by a bent portion that is bent in a curved shape.

また、上述の各実施形態では、樹脂部材が繊維強化樹脂である例を説明したが、樹脂部材は樹脂を主成分とする部材であればよく、他の素材からなる部材であってもよい。 Further, in each of the above-described embodiments, the example in which the resin member is a fiber reinforced resin has been described, but the resin member may be a member containing resin as a main component and may be a member made of another material.

以下、本開示の金属樹脂接合体により、折れ曲がり部における剛性がより高まることを、実施例により更に具体的に説明するが、本発明の範囲は実施例の記載に限定されない。 Hereinafter, it will be described more specifically by way of examples that the metal-resin joint of the present disclosure enhances the rigidity at the bent portion, but the scope of the present invention is not limited to the description of the examples.

1.試験片の作製
幅20mm、長さ60mm、厚さ1.2mmであり、長さ方向の半分地点で、曲げ角度10°または30°の曲げ加工がされている、冷間圧延鋼板(SPCC)製の金属部材を用意した。この金属部材の一方の表面(曲げ加工部の内側表面)のうち全面を化学的なエッチングにより粗面化して金型の内部に配置し、エッチングした表面に30%のガラスファイバーを含むポリアミド6(PA6−GF30)の成形体を接触させて熱プレスして、金属部材のエッチングされた表面の全面に、厚さ3.0mmの樹脂部材が接合した金属樹脂接合体を作製して、試験片1とした。
1. 1. Preparation of test piece Made of cold-rolled steel sheet (SPCC), which has a width of 20 mm, a length of 60 mm, and a thickness of 1.2 mm, and is bent at a bending angle of 10 ° or 30 ° at a half point in the length direction. The metal member of was prepared. The entire surface of one surface of the metal member (inner surface of the bent portion) is roughened by chemical etching and placed inside the mold, and the etched surface contains 30% glass fiber. Polyamide 6 ( The molded body of PA6-GF30) is brought into contact with each other and hot-pressed to prepare a metal-resin bonded body in which a resin member having a thickness of 3.0 mm is bonded to the entire surface of the etched surface of the metal member, and the test piece 1 And said.

金属部材をステンレス(SUS304)または表面に接合用の有機皮膜を形成した亜鉛めっき鋼板に変更し、樹脂部材を炭素繊維強化熱可塑性樹脂(CFRTP、樹脂種はポリアミド6)または50%のガラスファイバーを含むポリアミド66(PA66−GF50)として、試験片2〜試験片18とした。 Change the metal member to stainless steel (SUS304) or a zinc-plated steel plate with an organic film for bonding on the surface, and change the resin member to carbon fiber reinforced thermoplastic resin (CFRTP, resin type is polyamide 6) or 50% glass fiber. As the polyamide 66 (PA66-GF50) contained, test pieces 2 to 18 were used.

ただし、亜鉛めっき鋼板は、有機皮膜層により樹脂部材と接合するため、化学的なエッチングによる粗面化は行わなかった。 However, since the galvanized steel sheet is bonded to the resin member by the organic film layer, the surface was not roughened by chemical etching.

また、CFRTPは、幅20mm、長さ50mm、厚さ2.5mmとし、PA66−GF50は、幅10mm、長さ50mm、厚さ3.0mmとし、いずれも、金属部材の長さ方向への一方の端部と樹脂部材の長さ方向への一方の端部とが一致するように、接合させた。 Further, CFRTP has a width of 20 mm, a length of 50 mm, and a thickness of 2.5 mm, and PA66-GF50 has a width of 10 mm, a length of 50 mm, and a thickness of 3.0 mm, all of which are one in the length direction of the metal member. The ends of the resin member and one end of the resin member in the length direction were joined so as to coincide with each other.

2.曲げ強度の評価
2−1.片持ち梁曲げ試験
試験片の一方の直線部を治具に配置して保持し、他方の直線部のうち曲げ加工部から13mmとなる位置に先端部が5mmRの圧子を接触させ、2mm/minの速度で曲げ方向に押圧して、印加した応力に対するひずみ量を測定し、応力−ひずみ曲線を求めた。図5Aに、試験の様子を示す。曲げ角度10°の曲げ加工をした金属部材510の片面に樹脂部材550が接合された試験片を、治具610に配置し、曲げ方向(図中矢印方向)に圧子620で押圧した。
2. Evaluation of bending strength 2-1. Cantilever bending test One straight part of the test piece is placed and held on a jig, and an indenter with a tip of 5 mmR is brought into contact with a position 13 mm from the bent part of the other straight part, and 2 mm / min. The amount of strain with respect to the applied stress was measured by pressing in the bending direction at the speed of, and the stress-strain curve was obtained. FIG. 5A shows the state of the test. A test piece in which a resin member 550 was bonded to one side of a metal member 510 bent at a bending angle of 10 ° was placed on a jig 610 and pressed by an indenter 620 in the bending direction (arrow direction in the figure).

上記試験により得られた応力−ひずみ曲線から、各試験片の0.2%耐力(単位:MPa)を求めた。 From the stress-strain curve obtained by the above test, the 0.2% proof stress (unit: MPa) of each test piece was determined.

樹脂部材を接合しなかった金属部材、および金属部材には接合させずに同様の形状に加工した樹脂部材、についても、同様に0.2%耐力を求めた。そして、樹脂部材単体または金属部材単体の0.2%耐力に対する各試験片の0.2%耐力の増加率を求め、補強効果とした。 Similarly, 0.2% proof stress was obtained for the metal member to which the resin member was not joined and the resin member processed into the same shape without being joined to the metal member. Then, the rate of increase in the 0.2% proof stress of each test piece with respect to the 0.2% proof stress of the resin member alone or the metal member alone was determined and used as the reinforcing effect.

表1に、試験片1〜試験片7(曲げ角度10°)の0.2%耐力および補強効果、ならびに参考として曲げ角度を10°とした各金属部材および樹脂部材の0.2%耐力を示す。 Table 1 shows the 0.2% proof stress and reinforcing effect of test pieces 1 to 7 (bending angle 10 °), and the 0.2% proof stress of each metal member and resin member with a bending angle of 10 ° for reference. show.

Figure 2021142655
Figure 2021142655

表2に、試験片8〜試験片12(曲げ角度30°)の0.2%耐力および補強効果、ならびに参考として曲げ角度を30°とした各各金属部材および樹脂部材の0.2%耐力を示す。なお、PA66−GF50単体は、曲げ加工時に曲げ点に亀裂が発生したため、試験を行えなかった。 Table 2 shows the 0.2% proof stress and reinforcing effect of the test pieces 8 to 12 (bending angle 30 °), and the 0.2% proof stress of each metal member and resin member having a bending angle of 30 ° for reference. Is shown. The PA66-GF50 alone could not be tested because cracks occurred at the bending points during bending.

Figure 2021142655
Figure 2021142655

2−2.圧縮曲げ試験
試験片の一方の直線部をチャックで把持し、他方の直線部の端部に平板状の圧子を接触させ、2mm/minの速度で曲げ加工部に向かう方向に押圧して、印加した応力に対するひずみ量を測定し、応力−ひずみ曲線を求めた。図5Bに、試験の様子を示す。曲げ角度10°の曲げ加工をした金属部材510の片面に樹脂部材550が接合された試験片を、チャック630で把持し、曲げ加工部に向かう方向(図中矢印方向)に圧子640で押圧した。
2-2. Compression bending test Grasp one straight part of the test piece with a chuck, bring a flat plate indenter into contact with the end of the other straight part, and press it in the direction toward the bending part at a speed of 2 mm / min to apply. The amount of strain with respect to the stress was measured, and the stress-strain curve was obtained. FIG. 5B shows the state of the test. A test piece in which a resin member 550 was bonded to one side of a metal member 510 bent at a bending angle of 10 ° was grasped by a chuck 630 and pressed by an indenter 640 in the direction toward the bent portion (arrow direction in the figure). ..

上記試験により得られた応力−ひずみ曲線から、0.2%耐力(単位:MPa)を求めた。 From the stress-strain curve obtained by the above test, 0.2% proof stress (unit: MPa) was determined.

樹脂部材を接合しなかった金属部材、および金属部材には接合させずに同様の形状に加工した樹脂部材、についても、同様に0.2%耐力を求めた。そして、樹脂部材単体の0.2%耐力に対する各試験片の0.2%耐力の増加率を求め、補強効果とした。 Similarly, 0.2% proof stress was obtained for the metal member to which the resin member was not joined and the resin member processed into the same shape without being joined to the metal member. Then, the rate of increase in the 0.2% proof stress of each test piece with respect to the 0.2% proof stress of the resin member alone was obtained and used as the reinforcing effect.

表3に、試験片13〜試験片18(曲げ角度30°)の0.2%耐力および補強効果、ならびに参考として曲げ角度を30°とした各各金属部材および樹脂部材の0.2%耐力を示す。なお、PA66−GF50単体は、曲げ加工時に曲げ点に亀裂が発生したため、試験を行えなかった。また、試験片1〜試験片7(曲げ角度10°)は、曲げ点に応力をかけることができなかったため、試験できなかった。 Table 3 shows the 0.2% proof stress and reinforcing effect of the test pieces 13 to 18 (bending angle 30 °), and the 0.2% proof stress of each metal member and resin member having a bending angle of 30 ° for reference. Is shown. The PA66-GF50 alone could not be tested because cracks occurred at the bending points during bending. Further, the test pieces 1 to 7 (bending angle of 10 °) could not be tested because stress could not be applied to the bending point.

Figure 2021142655
Figure 2021142655

表1〜表3から明らかなように、曲げ加工部を金属樹脂接合体とすると、金属単体および樹脂単体と比べて、曲げ方向および圧縮方向への強度が高まっていた。 As is clear from Tables 1 to 3, when the bent portion is a metal-resin bonded body, the strength in the bending direction and the compression direction is higher than that of the metal alone and the resin alone.

本開示によれば、屈折部や屈曲部などの折れ曲がり部を有する構造体の、樹脂部材の座屈や上記折れ曲がり部における金属部材の変形を抑制することができる。そのため、本開示には、車両、船舶および航空機における金属部材の樹脂部材への置き換えを促進し、これらのさらなる軽量化への貢献が期待される。 According to the present disclosure, it is possible to suppress buckling of a resin member and deformation of a metal member at the bent portion of a structure having a bent portion such as a bent portion or a bent portion. Therefore, the present disclosure is expected to promote the replacement of metal members with resin members in vehicles, ships and aircraft, and contribute to further weight reduction of these.

100 フライホイールハウジング
110 ハウジング部
120、130 フランジ部
122、132 貫通孔
140 第一屈折部
150 第二屈折部
160 第三屈折部
170 第一直線部
180 第二直線部
210 金属部材
210a 内側表面
220 金属部材
220a 内側表面
230 金属部材
230a 内側表面
240 金属部材
240a 内側表面
250 金属部材
250a 内側表面
260 樹脂部材
300 ブラケット
310 本体部
312 抜穴
320 第一締結部
322 貫通孔
330 第二締結部
332 貫通孔
410 金属部材
410a、410b、410c 外側表面
450、460、470 樹脂部材
510 金属部材
550 樹脂部材
610 治具
620 圧子
630 チャック
640 圧子
100 Flywheel housing 110 Housing part 120, 130 Flange part 122, 132 Through hole 140 First bending part 150 Second bending part 160 Third bending part 170 First straight part 180 Second straight part 210 Metal member 210a Inner surface 220 Metal member 220a Inner surface 230 Metal member 230a Inner surface 240 Metal member 240a Inner surface 250 Metal member 250a Inner surface 260 Resin member 300 Bracket 310 Main body 312 Hole 320 First fastening 322 Through hole 330 Second fastening 332 Through hole 410 Metal Members 410a, 410b, 410c Outer surface 450, 460, 470 Resin member 510 Metal member 550 Resin member 610 Jig 620 Indenter 630 Chuck 640 Indenter

Claims (10)

断面形状が直線状である直線部と、
2つの前記直線部を接続する位置に配置された、断面形状が屈折または屈曲している折れ曲がり部と、
を有し、
前記直線部は、金属部材および樹脂部材の一方の部材により形成されており、
前記折れ曲がり部は、金属部材と樹脂部材が接合した積層体により形成されている、
金属樹脂接合体。
A straight part with a straight cross section and
A bent portion having a bent or bent cross-sectional shape, which is arranged at a position connecting the two straight portions, and a bent portion.
Have,
The straight portion is formed of one of a metal member and a resin member.
The bent portion is formed of a laminated body in which a metal member and a resin member are joined.
Metal resin joint.
前記折れ曲がり部は、樹脂部材の外側に金属部材が接合された積層体により形成されている、請求項1に記載の金属樹脂接合体。 The metal-resin bonded body according to claim 1, wherein the bent portion is formed of a laminated body in which a metal member is bonded to the outside of the resin member. 前記2つの直線部は樹脂部材により形成されている、請求項1または2に記載の金属樹脂接合体。 The metal-resin joint according to claim 1 or 2, wherein the two straight portions are formed of a resin member. 前記2つの前記直線部を形成する樹脂部材と、前記折れ曲がり部において前記金属部材に接合された樹脂部材と、は一体的に形成された同一の樹脂部材である、請求項3に記載の金属樹脂接合体。 The metal resin according to claim 3, wherein the resin member forming the two straight portions and the resin member joined to the metal member at the bent portion are the same resin members integrally formed. Joined body. 前記折れ曲がり部は、金属部材の外側に樹脂部材が接合された積層体により形成されている、請求項1〜4のいずれか1項に記載の金属樹脂接合体。 The metal-resin bonded body according to any one of claims 1 to 4, wherein the bent portion is formed of a laminated body in which a resin member is bonded to the outside of the metal member. 前記2つの直線部は金属部材により形成されている、請求項1に記載の金属樹脂接合体。 The metal-resin joint according to claim 1, wherein the two straight portions are formed of a metal member. 前記折れ曲がり部における前記金属部材は、厚みが略一定の板状部材である、請求項1〜6のいずれか1項に記載の金属樹脂接合体。 The metal-resin bonded body according to any one of claims 1 to 6, wherein the metal member at the bent portion is a plate-shaped member having a substantially constant thickness. 前記折れ曲がり部における前記樹脂部材は、厚みが略一定の板状部材である、請求項1〜7のいずれか1項に記載の金属樹脂接合体。 The metal-resin bonded body according to any one of claims 1 to 7, wherein the resin member at the bent portion is a plate-shaped member having a substantially constant thickness. 前記折れ曲がり部において前記樹脂部材と接する前記金属部材の表面は、粗面化処理されている、請求項1〜8のいずれか1項に記載の金属樹脂接合体。 The metal-resin joint according to any one of claims 1 to 8, wherein the surface of the metal member in contact with the resin member at the bent portion is roughened. 請求項1〜9のいずれか1項に記載の金属樹脂接合体と、
原動機と、
を有する装置。
The metal-resin bonded body according to any one of claims 1 to 9,
The prime mover and
A device having.
JP2020040983A 2020-03-10 2020-03-10 Metal resin joined body and device Pending JP2021142655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020040983A JP2021142655A (en) 2020-03-10 2020-03-10 Metal resin joined body and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020040983A JP2021142655A (en) 2020-03-10 2020-03-10 Metal resin joined body and device

Publications (1)

Publication Number Publication Date
JP2021142655A true JP2021142655A (en) 2021-09-24

Family

ID=77765627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020040983A Pending JP2021142655A (en) 2020-03-10 2020-03-10 Metal resin joined body and device

Country Status (1)

Country Link
JP (1) JP2021142655A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002283526A (en) * 2001-03-27 2002-10-03 Nitto Denko Corp Adhesive sheet for reinforcing heat curing thin steel sheet
JP2006058414A (en) * 2004-08-18 2006-03-02 Casio Comput Co Ltd Case structure
CN206533409U (en) * 2017-02-17 2017-09-29 东莞市进通电子有限公司 The phone housing that a kind of glass is combined with plastic material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002283526A (en) * 2001-03-27 2002-10-03 Nitto Denko Corp Adhesive sheet for reinforcing heat curing thin steel sheet
JP2006058414A (en) * 2004-08-18 2006-03-02 Casio Comput Co Ltd Case structure
CN206533409U (en) * 2017-02-17 2017-09-29 东莞市进通电子有限公司 The phone housing that a kind of glass is combined with plastic material

Similar Documents

Publication Publication Date Title
US7905159B2 (en) Torsional vibration damper
JPH06341488A (en) Vibration damping structural body
US8701624B2 (en) Vibration damped article
CN113874202B (en) Collision energy absorbing member for automobile and method for manufacturing same
JP5273084B2 (en) Electric compressor
US20170234419A1 (en) Torsional vibration dampers
US10655724B2 (en) Asymmetric spoke design for torsional vibration dampers
JP2021142655A (en) Metal resin joined body and device
US8053057B2 (en) Material with improved adhesion surface
Croccolo et al. Experimental analysis of static and fatigue strength properties in press-fitted and adhesively bonded steel–aluminium components
JP6212577B2 (en) CONNECTING SHAFT AND MANUFACTURING METHOD FOR CONNECTING SHAFT
CN106662198B (en) Torsional vibration damper with double-elastic-body component
CN115867466A (en) Automobile impact energy absorbing member and method for manufacturing the same
US8156916B2 (en) Oil sump for use in internal combustion engines and transmissions
KR101764727B1 (en) Bearing device and half bearing used for the same
US11428271B2 (en) Rotational driving force transmission mechanism
JPH0389028A (en) Intermediate member combined in oriving joint transferring torque
JP2014133446A (en) High intensity suspension parts for vehicle, and method for manufacturing the same
JP2021089011A (en) Fastened member and fastening structure and device
US9080541B2 (en) Guide pin for a starting element
KR101457469B1 (en) Structure for jointing composite material and metal member
US5654604A (en) Vibration motor having improved adhesive layer between electromechanical conversion element and elastic body
JP6947074B2 (en) Manufacturing method of composite member
CN107709803B (en) Crankshaft of reciprocating engine
JP2774613B2 (en) Ultrasonic motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230808