JP2021141723A - Power generation device - Google Patents

Power generation device Download PDF

Info

Publication number
JP2021141723A
JP2021141723A JP2020038042A JP2020038042A JP2021141723A JP 2021141723 A JP2021141723 A JP 2021141723A JP 2020038042 A JP2020038042 A JP 2020038042A JP 2020038042 A JP2020038042 A JP 2020038042A JP 2021141723 A JP2021141723 A JP 2021141723A
Authority
JP
Japan
Prior art keywords
magnetic
magnetostrictive element
power generation
generation device
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020038042A
Other languages
Japanese (ja)
Inventor
学 五閑
Manabu Gokan
学 五閑
淳也 田中
Junya Tanaka
淳也 田中
佳子 高橋
Yoshiko Takahashi
佳子 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2020038042A priority Critical patent/JP2021141723A/en
Publication of JP2021141723A publication Critical patent/JP2021141723A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a vibration power generation device capable of generating power with high efficiency as compared with the prior arts.SOLUTION: A power generation device comprises: a nonmagnetic yoke which has rigidity and elasticity, is constituted of a nonmagnetic material which is long in a first direction, includes a support part in the substantial center thereof, and is vibrated by an external force applied to the support part with both ends across the support part defined as free ends; a magnetostrictive element which is constituted of a magnetostrictive material which is long in the first direction, and fixed near a center of one face among faces of the nonmagnetic yoke bent by the vibration, and receives a stress from the nonmagnetic yoke; a coil wound around the magnetostrictive element in the first direction; two magnets respectively disposed in the vicinity of both the ends of the magnetostrictive element, the two magnets being configured to apply magnetic fields to the magnetostrictive element while being disposed in such a manner that an S pole of one of the two magnets is closer to the magnetostrictive element than an N pole and an N pole of the other magnet is closer to the magnetostrictive element than an S pole; and a magnetic yoke which connects the two magnets in such a manner that a magnetic flux passes between the magnetic poles of the two magnets farther from the magnetostrictive element.SELECTED DRAWING: Figure 1

Description

本発明は発電装置に関し、特に、磁歪材料を用いて振動から電力を発生する発電装置に関する。 The present invention relates to a power generation device, and more particularly to a power generation device that generates electric power from vibration using a magnetostrictive material.

近年、産業分野、防犯・防災分野、社会インフラ分野、医療・福祉分野等の多くの分野において、モノのインターネット(Internet of Things、以下IoTと呼ぶ)の利用シーンが多く想定されている。IoTにおいて、人と機械、又は機械と機械は、センサによって取得された温度、湿度、加速度、又は画像などの情報を、インターネットなどの通信網を介して送受信する。その際に重要となるコンポーネントは、センサ、電源、及び無線通信から構成される無線センサモジュールである。 In recent years, many usage scenes of the Internet of Things (Internet of Things, hereinafter referred to as IoT) are expected in many fields such as industrial fields, crime prevention / disaster prevention fields, social infrastructure fields, medical / welfare fields, and the like. In IoT, a person and a machine, or a machine and a machine, transmit and receive information such as temperature, humidity, acceleration, or an image acquired by a sensor via a communication network such as the Internet. An important component at that time is a wireless sensor module composed of a sensor, a power supply, and wireless communication.

現在、無線センサモジュールの電源には、例えば使い切りの1次電池、又は充電が可能な2次電池等の電池が多く使用されている。1次電池を用いる場合には、電池の交換が必要となる。また、2次電池を用いる場合には充電が必要となり、充電のための配線及び作業等が必要となる。 Currently, many batteries such as a single-use primary battery or a rechargeable secondary battery are used as the power source for the wireless sensor module. When using a primary battery, it is necessary to replace the battery. Further, when a secondary battery is used, charging is required, and wiring and work for charging are required.

このように、無線センサモジュールの電源として電池を使用する場合は、モジュールの定期的な手動メンテナンスが必要となる。しかしながら、無線センサモジュールが壁の中等に埋め込まれる場合、又は機械の狭い隙間に設置される場合等、無線センサモジュールの設置場所によっては、電池の交換、充電等は困難若しくは不可能であり得る。 As described above, when a battery is used as a power source for the wireless sensor module, regular manual maintenance of the module is required. However, depending on the installation location of the wireless sensor module, such as when the wireless sensor module is embedded in a wall or when it is installed in a narrow gap of a machine, it may be difficult or impossible to replace or charge the battery.

ここで、設置場所の環境で発生しているエネルギー、例えば、モーター、エンジン若しくは橋梁等から発生する振動エネルギー、プラントの排熱若しくは人体の体温等からの熱エネルギー、又は、太陽、照明等の環境光からの光エネルギー等から電力を発生させることができれば、無線センサモジュールはエネルギー的に自立し、手動のメンテナンスを行うことなく長期間使用可能となる。また、外部との配線を必要としないことから、既に設置された機械、鉄道、又は橋梁などのインフラ設備に後から追加することが容易に可能である。 Here, the energy generated in the environment of the installation site, for example, the vibration energy generated from the motor, engine, bridge, etc., the heat energy from the exhaust heat of the plant, the body temperature of the human body, etc., or the environment such as the sun, lighting, etc. If electric power can be generated from light energy from light or the like, the wireless sensor module becomes energetically self-sustaining and can be used for a long period of time without manual maintenance. In addition, since it does not require wiring to the outside, it can be easily added to the already installed infrastructure equipment such as machines, railways, or bridges.

このような環境で発生するエネルギーを利用する発電には、振動発電、熱発電、光発電等が挙げられる。これらの中でも振動発電は、振動、衝撃、移動等から電気エネルギーを取り出す極めて汎用性の高い発電方式である。 Examples of power generation using energy generated in such an environment include vibration power generation, thermal power generation, and photovoltaic power generation. Among these, vibration power generation is an extremely versatile power generation method that extracts electrical energy from vibration, impact, movement, and the like.

振動発電には、圧電方式、静電誘導方式、電磁誘導方式、磁歪方式等の方式がある。これらの内で圧電素子(ピエゾ素子)を使用した圧電方式は、素子の脆弱性により機械的な耐久性が低い。また、電磁誘導方式の発電部には可動部があるため、小型化が困難である。一方で、鉄系の磁歪材料を用いた磁歪方式は、材料の高い延性のため素子の加工性に優れ、無線センサモジュールへの適用に有用である。 Vibration power generation includes a piezoelectric method, an electrostatic induction method, an electromagnetic induction method, a magnetostrictive method, and the like. Among these, the piezoelectric method using a piezoelectric element (piezo element) has low mechanical durability due to the fragility of the element. In addition, since the electromagnetic induction type power generation unit has a moving part, it is difficult to reduce the size. On the other hand, the magnetostrictive method using an iron-based magnetostrictive material is excellent in workability of the element due to the high ductility of the material, and is useful for application to a wireless sensor module.

この磁歪方式の振動発電では、磁界中に配置された磁歪素子に応力を加えると、逆磁歪効果により、磁歪素子内を通過する磁束が変化する。この磁歪素子の周囲にコイルを配置することで、電磁誘導によりこの磁束の変化を電気エネルギーに変換することができる。 In this magnetostrictive vibration power generation, when stress is applied to a magnetostrictive element arranged in a magnetic field, the magnetic flux passing through the magnetostrictive element changes due to the magnetostrictive effect. By arranging a coil around the magnetostrictive element, this change in magnetic flux can be converted into electrical energy by electromagnetic induction.

特許文献1は、日常的に広く発生している環境振動現象から効率的に電力を取り出すために、広い周波数帯域にて大きな発電量を得ることのできる発電装置およびこれを備えた電子機器を提供する。 Patent Document 1 provides a power generation device capable of obtaining a large amount of power generation in a wide frequency band and an electronic device provided with the power generation device in order to efficiently extract power from an environmental vibration phenomenon that occurs widely on a daily basis. do.

図7は、特許文献1に係る発電装置100の構成例を示す図である。図7に示すように、発電装置100は、ヨーク112,122に接続された錘113,123と、振動源101に固定されたフレーム111と、磁歪素子114,124と、磁歪素子114,124に巻回された磁気コイル115.125と、一方が支柱130に固定され、他方が錘113,123に接続された磁性部材で構成されたヨーク112,122と、ヨーク112,122と磁歪素子114,124に接続されたバイアス磁界用永久磁石116,117,126,127と、フレーム111に固定された支柱130と、磁気コイル115,125に接続された電源回路と、により構成される第1及び第2の振動電力変換装置と、振動源101と、から成る。 FIG. 7 is a diagram showing a configuration example of the power generation device 100 according to Patent Document 1. As shown in FIG. 7, the power generation device 100 includes weights 113 and 123 connected to the yokes 112 and 122, frames 111 fixed to the vibration source 101, magnetostrictive elements 114 and 124, and magnetostrictive elements 114 and 124. The wound magnetic coil 115.125, the yokes 112 and 122, one of which is fixed to the support column 130 and the other of which is connected to the weights 113 and 123, and the yokes 112 and 122 and the magnetostrictive element 114, The first and first are composed of the permanent magnets 116, 117, 126, 127 for the bias magnetic field connected to 124, the support columns 130 fixed to the frame 111, and the power supply circuit connected to the magnetic coils 115, 125. It is composed of the vibration power conversion device of No. 2 and the vibration source 101.

図7において、振動源101が振動すると、その振動はフレーム111を介して支柱130に伝播する。この支柱130の振動は、錘113、ヨーク112、磁歪素子114、磁気コイル115、及び永久磁石116,117で構成された共振部に伝わり、共振部が共振する。共振によりヨーク112が湾曲すると、ヨーク112に固定された磁歪素子114は圧縮/引っ張り力を受けて伸縮する。これにより磁歪素子114は、逆磁歪効果により磁歪素子114内を通過する磁束を変化させる。磁気コイル115は電磁誘導により、この磁束の変化から誘導起電力を生じる(図の支柱よりも右側においても同様)。 In FIG. 7, when the vibration source 101 vibrates, the vibration propagates to the support column 130 via the frame 111. The vibration of the support column 130 is transmitted to the resonance portion composed of the weight 113, the yoke 112, the magnetostrictive element 114, the magnetic coil 115, and the permanent magnets 116 and 117, and the resonance portion resonates. When the yoke 112 is curved due to resonance, the magnetostrictive element 114 fixed to the yoke 112 expands and contracts by receiving a compression / tensile force. As a result, the magnetostrictive element 114 changes the magnetic flux passing through the magnetostrictive element 114 due to the magnetostrictive effect. The magnetic coil 115 generates an induced electromotive force from this change in magnetic flux by electromagnetic induction (the same applies to the right side of the column in the figure).

ここで、錘113,123は互いに異なる質量を有するように構成され、図左側と図右側では共振部の共振周波数が異なる。従って、振動源101の振動のより広い周波数帯域に対して発電を行うことができる。 Here, the weights 113 and 123 are configured to have different masses, and the resonance frequencies of the resonance portions are different on the left side and the right side of the figure. Therefore, power can be generated in a wider frequency band of the vibration of the vibration source 101.

特開第2016−5332号明細書JP-A-2016-5332

しかしながら、特許文献1において、発電装置100は片持ち梁構造を有する。従って、磁歪素子114のうち、支柱130に近い点ほど、強い応力(圧縮力・引っ張り力)を受ける。即ち、磁歪素子114に加わる応力は一様に分布しておらず、支柱130から遠い点は支柱130に近い点よりも発電効率が低い。 However, in Patent Document 1, the power generation device 100 has a cantilever structure. Therefore, of the magnetostrictive elements 114, the closer to the support column 130, the stronger the stress (compressive force / tensile force) is received. That is, the stress applied to the magnetostrictive element 114 is not uniformly distributed, and the point far from the support column 130 has lower power generation efficiency than the point near the support column 130.

また、特許文献1の発電装置100は、2つの振動電力変換装置から出力される電力の周波数及び位相が同一とはならないため、それらを合成して1つの出力とする際に損失が生じ、発電装置全体の発電効率が低下してしまう。これはたとえ2つの振動電力変換装置が同じ寸法の構成を有していたとしても、磁歪素子114,124の個体差により同様に生じてしまう現象である。 Further, in the power generation device 100 of Patent Document 1, since the frequencies and phases of the powers output from the two vibration power conversion devices are not the same, a loss occurs when they are combined into one output, and power generation occurs. The power generation efficiency of the entire device will decrease. This is a phenomenon that occurs similarly due to individual differences between the magnetostrictive elements 114 and 124, even if the two vibration power converters have the same dimensional configuration.

本発明は、これらの問題点を解決し、従来技術に比較して高効率な発電を行うことができる発電装置を提供する。 The present invention solves these problems and provides a power generation device capable of generating power with higher efficiency as compared with the prior art.

本発明に係る発電装置は、
剛性及び弾性を有し、第1の方向に長い非磁性材料で構成され、その実質的中心に支持部を有し、支持部を挟んだ両端を自由端として支持部に加わる外力により振動する非磁性ヨークと、
第1の方向に長い磁歪材料で構成され、振動により湾曲する非磁性ヨークの面のうちの1面の中心付近に固定され、非磁性ヨークから応力を受ける磁歪素子と、
磁歪素子の第1の方向の周囲に巻かれたコイルと、
磁歪素子の両端の近傍にそれぞれ配置された2つの磁石であって、2つの磁石のうちの一方はS極がN極よりも磁歪素子に近く、他方はN極がS極よりも磁歪素子に近くなるように配置され、磁歪素子に磁界を印加する、2つの磁石と、
2つの磁石の磁歪素子から遠い磁極同士の間を磁束が通過するように接続する、磁性ヨークと、
を備える。
The power generation device according to the present invention
It is made of a non-magnetic material that has rigidity and elasticity and is long in the first direction, has a support portion in its substantial center, and vibrates due to an external force applied to the support portion with both ends sandwiching the support portion as free ends. With magnetic yoke
A magnetostrictive element composed of a magnetostrictive material long in the first direction, fixed near the center of one of the surfaces of the non-magnetic yoke curved by vibration, and receiving stress from the non-magnetic yoke.
A coil wound around the magnetostrictive element in the first direction,
Two magnets arranged near both ends of the magnetostrictive element. One of the two magnets has the S pole closer to the magnetostrictive element than the N pole, and the other has the N pole closer to the magnetostrictive element than the S pole. Two magnets that are arranged close to each other and apply a magnetic field to the magnetostrictive element,
A magnetic yoke that connects magnetic fluxes between magnetic poles far from the magnetostrictive elements of two magnets,
To be equipped.

本発明に係る発電装置によれば、従来技術に比較して高効率な発電を行うことができる。 According to the power generation device according to the present invention, it is possible to generate power with higher efficiency as compared with the prior art.

実施の形態1における発電装置1の構成例を示す断面図Sectional drawing which shows the structural example of the power generation apparatus 1 in Embodiment 1. 発電装置1における閉磁路を示す断面図Cross-sectional view showing a closed magnetic path in the power generation device 1. 図1の発電装置1において、振動源20が下方向に動く時の外観例を示す断面図A cross-sectional view showing an example of the appearance of the power generation device 1 of FIG. 1 when the vibration source 20 moves downward. 図1の発電装置1において、振動源20が上方向に動く時の外観例を示す断面図A cross-sectional view showing an example of the appearance of the power generation device 1 of FIG. 1 when the vibration source 20 moves upward. 図1の磁歪素子10において、上方向動作時の応力分布を示す図The figure which shows the stress distribution at the time of the upward operation in the magnetostrictive element 10 of FIG. 図1の非磁性ヨーク11を磁性材料で構成した場合に、振動源20が下方向に動く時の外観例を示す断面図A cross-sectional view showing an example of appearance when the vibration source 20 moves downward when the non-magnetic yoke 11 of FIG. 1 is made of a magnetic material. 図1の非磁性ヨーク11を磁性材料で構成した場合に、振動源20が上方向に動く時の外観例を示す断面図A cross-sectional view showing an example of appearance when the vibration source 20 moves upward when the non-magnetic yoke 11 of FIG. 1 is made of a magnetic material. 実施の形態2における発電装置2の構成例を示す断面図Sectional drawing which shows the structural example of the power generation apparatus 2 in Embodiment 2. 特許文献1に係る発電装置の構成例を示す断面図Cross-sectional view showing a configuration example of a power generation device according to Patent Document 1.

本開示の第1の態様に係る発電装置は、
剛性及び弾性を有し、第1の方向に長い非磁性材料で構成され、その実質的中心に支持部を有し、支持部を挟んだ両端を自由端として支持部に加わる外力により振動する非磁性ヨークと、
第1の方向に長い磁歪材料で構成され、振動により湾曲する非磁性ヨークの面のうちの1面の中心付近に固定され、非磁性ヨークから応力を受ける磁歪素子と、
磁歪素子の第1の方向の周囲に巻かれたコイルと、
磁歪素子の両端の近傍にそれぞれ配置された2つの磁石であって、2つの磁石のうちの一方はS極がN極よりも磁歪素子に近く、他方はN極がS極よりも磁歪素子に近くなるように配置され、磁歪素子に磁界を印加する、2つの磁石と、
2つの磁石の磁歪素子から遠い磁極同士の間を磁束が通過するように接続する、磁性ヨークと、
を備える。
The power generation device according to the first aspect of the present disclosure is
It is made of a non-magnetic material that has rigidity and elasticity and is long in the first direction, has a support portion in its substantial center, and vibrates due to an external force applied to the support portion with both ends sandwiching the support portion as free ends. With magnetic yoke
A magnetostrictive element composed of a magnetostrictive material long in the first direction, fixed near the center of one of the surfaces of the non-magnetic yoke curved by vibration, and receiving stress from the non-magnetic yoke.
A coil wound around the magnetostrictive element in the first direction,
Two magnets arranged near both ends of the magnetostrictive element. One of the two magnets has the S pole closer to the magnetostrictive element than the N pole, and the other has the N pole closer to the magnetostrictive element than the S pole. Two magnets that are arranged close to each other and apply a magnetic field to the magnetostrictive element,
A magnetic yoke that connects magnetic fluxes between magnetic poles far from the magnetostrictive elements of two magnets,
To be equipped.

本開示の第2の態様に係る発電装置は、上記第1の態様において、コイルが複数のコイルから構成されてもよい。 In the power generation device according to the second aspect of the present disclosure, the coil may be composed of a plurality of coils in the first aspect.

本開示の第3の態様に係る発電装置は、上記第1又は第2の態様において、非磁性ヨークの自由端の近傍に錘をさらに備えてもよい。 The power generation device according to the third aspect of the present disclosure may further include a weight in the vicinity of the free end of the non-magnetic yoke in the first or second aspect.

本開示の第4の態様に係る発電装置は、上記第1から第3の態様のうちいずれか1つにおいて、磁性ヨークが外部の振動源に接続され、支持部に外力を伝達してもよい。 In the power generation device according to the fourth aspect of the present disclosure, in any one of the first to third aspects, the magnetic yoke may be connected to an external vibration source and an external force may be transmitted to the support portion. ..

本開示の第5の態様に係る発電装置は、
剛性及び弾性を有する磁性材料で構成された第1の磁性ヨークであって、第1の方向に長く、一端を自由端として外力により振動する第1の磁性振動部と、第1の方向に垂直な第2の方向に長く、第1の磁性振動部の自由端でない側の端部にその端部を接続された第1の磁性支持部と、第1の方向に長く、第1の磁性支持部の両端のうちの第1の磁性振動部と接続されていない端部に接続された、第1の磁性基底部とを含む、第1の磁性ヨークと、
剛性及び弾性を有する磁性材料で構成された第2の磁性ヨークであって、第1の方向に長く、一端を自由端として外力により振動する第2の磁性振動部と、第2の方向に長く、第2の磁性振動部の自由端でない側の端部にその端部を接続された第2の磁性支持部と、第1の方向に長く、第2の磁性支持部の両端のうちの第2の磁性振動部と接続されていない側の端部に接続された、第2の磁性基底部とを含む、第2の磁性ヨークと、
剛性を有する非磁性材料で構成され、第2の方向に長く、第1及び第2の磁性支持部の間に挟まれて固定された、非磁性支持体と、
第1及び第2の磁性振動部の上に、非磁性支持体の上を中心に第1の方向に延在する磁歪材料で構成され、第1及び第2の磁性振動部、並びに非磁性支持体に固定された、磁歪素子と、
磁歪素子の第1及び第2の磁性振動部に固定された端部の近傍にそれぞれ配置された第1及び第2の磁石であって、一方はS極がN極よりも磁歪素子に近く配置され、他方はN極がS極よりも磁歪素子に近く配置された、第1及び第2の磁石と、
磁歪素子に第1の方向の周囲に巻かれたコイルと、
を備える。
The power generation device according to the fifth aspect of the present disclosure is
A first magnetic yoke made of a magnetic material having rigidity and elasticity, which is long in the first direction and is perpendicular to the first magnetic vibrating portion that vibrates by an external force with one end as a free end. A first magnetic support portion that is long in the second direction and whose end is connected to an end portion of the first magnetic vibrating portion that is not a free end, and a first magnetic support portion that is long in the first direction and has a first magnetic support. A first magnetic yoke, including a first magnetic base, connected to an end that is not connected to the first magnetic vibrating portion at both ends of the portion.
A second magnetic yoke made of a magnetic material having rigidity and elasticity, which is long in the first direction, has a second magnetic vibrating portion that vibrates by an external force with one end as a free end, and is long in the second direction. , A second magnetic support portion whose end is connected to an end portion of the second magnetic vibrating portion on the non-free end side, and a second of both ends of the second magnetic support portion which is long in the first direction. A second magnetic yoke, including a second magnetic base, connected to a side end that is not connected to the magnetic vibrating portion of 2.
A non-magnetic support made of a rigid non-magnetic material, long in the second direction, sandwiched and fixed between the first and second magnetic supports, and a non-magnetic support.
It is composed of a magnetostrictive material extending in the first direction centering on the non-magnetic support on the first and second magnetic vibrating parts, and the first and second magnetic vibrating parts and the non-magnetic support. A magnetostrictive element fixed to the body,
The first and second magnets are arranged near the ends fixed to the first and second magnetostrictive parts of the magnetostrictive element, respectively, and one of the S poles is arranged closer to the magnetostrictive element than the N pole. On the other hand, the first and second magnets in which the north pole is arranged closer to the magnetostrictive element than the south pole, and
A coil wound around the magnetostrictive element in the first direction,
To be equipped.

本開示の第6の態様に係る発電装置は、上記第5の態様において、
第1の磁石の磁歪素子から遠い側の端部が第1の磁性基底部に接続され、第2の磁石の磁歪素子から遠い側の端部が第2の磁性基底部に接続されていてもよい。
The power generation device according to the sixth aspect of the present disclosure is the fifth aspect described above.
Even if the end of the first magnet far from the magnetostrictive element is connected to the first magnetic base and the end of the second magnet far from the magnetostrictive element is connected to the second magnetic base. good.

本開示の第7の態様に係る発電装置は、上記第5又は第6の態様において、コイルが複数のコイルから構成されていてもよい。 In the power generation device according to the seventh aspect of the present disclosure, the coil may be composed of a plurality of coils in the fifth or sixth aspect.

本開示の第8の態様に係る発電装置は、上記第5から第7の態様のうちいずれか1つにおいて、第1及び第2の磁性振動部の自由端のそれぞれ近傍に、第1及び第2の錘をさらに備えてもよい。 The power generation device according to the eighth aspect of the present disclosure is the first and first in any one of the fifth to seventh aspects, in the vicinity of the free ends of the first and second magnetic vibration portions, respectively. Two weights may be further provided.

本開示の第9の態様に係る発電装置は、上記第5から第8の態様のうちいずれか1つにおいて、第1の磁性支持部、第2の磁性支持部、及び非磁性支持体のうちの少なくとも1つが外部の振動源に接続され、第1及び第2の磁性振動部に外力を伝達してもよい。 The power generation device according to the ninth aspect of the present disclosure has the first magnetic support portion, the second magnetic support portion, and the non-magnetic support portion in any one of the fifth to eighth aspects. At least one of the above may be connected to an external vibration source and transmit an external force to the first and second magnetic vibration parts.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、図面において、実質的に同一の部材については同一の符号を付している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, substantially the same members are designated by the same reference numerals.

[実施の形態1]
図1は、実施の形態1における発電装置1の構成例を示す図である。図1において、発電装置1は、非磁性ヨーク11と、錘14,15と、磁歪素子10と、コイル12,13と、磁石18,19と、磁石18,19と、磁性ヨーク17とを備える。
[Embodiment 1]
FIG. 1 is a diagram showing a configuration example of the power generation device 1 according to the first embodiment. In FIG. 1, the power generation device 1 includes a non-magnetic yoke 11, weights 14 and 15, a magnetostrictive element 10, coils 12 and 13, magnets 18 and 19, magnets 18 and 19, and a magnetic yoke 17. ..

図1において、非磁性ヨーク11は、図のx軸方向に長くz軸方向に薄い板状部と、その中央付近に固定された図のz軸方向に長くx軸方向に薄い板状部を組み合わせたT字形の形状を有する。2つの板状部のうち前者を振動部21、後者を支持部16と呼ぶ。非磁性ヨーク11は剛性及び弾性を有する材料で構成され、支持部16を介して伝えられた外力によりz軸方向に振動する。錘14,15は振動部21の両端の近傍にそれぞれ固定され、振動部21の振動を長く持続させる。 In FIG. 1, the non-magnetic yoke 11 has a plate-shaped portion that is long in the x-axis direction in the figure and thin in the z-axis direction, and a plate-shaped portion that is fixed near the center of the non-magnetic yoke 11 in the z-axis direction and thin in the x-axis direction. It has a combined T-shape. Of the two plate-shaped portions, the former is referred to as a vibrating portion 21 and the latter is referred to as a support portion 16. The non-magnetic yoke 11 is made of a material having rigidity and elasticity, and vibrates in the z-axis direction by an external force transmitted through the support portion 16. The weights 14 and 15 are fixed in the vicinity of both ends of the vibrating portion 21, respectively, and the vibration of the vibrating portion 21 is sustained for a long time.

なお、本実施の形態において「固定」という場合、2つの構成要素をエポキシ系接着剤により接着した状態を指すが、固定手段は接着剤に限定されず、例えばボルト等により機械的に固定されてもよい。ただし、固定手段を磁性材料で構成すると磁束が漏れて発電効率が低下する可能性があるため、固定手段には非磁性材料を用いるのが好ましい。 In the present embodiment, the term "fixing" refers to a state in which two components are bonded with an epoxy adhesive, but the fixing means is not limited to the adhesive, and is mechanically fixed by, for example, a bolt or the like. May be good. However, if the fixing means is made of a magnetic material, magnetic flux may leak and the power generation efficiency may decrease. Therefore, it is preferable to use a non-magnetic material for the fixing means.

磁歪素子10は、x軸方向に長くz軸方向に薄い磁歪材料で構成され、非磁性ヨーク11の上面(z軸正方向の面)に固定されている。以下、図面と対応させて、z軸の正方向を「上」、負方向を「下」、x軸の正方向を「右」、負方向を「左」と呼ぶことがある(「縦」、「横」についても同様)。 The magnetostrictive element 10 is made of a magnetostrictive material that is long in the x-axis direction and thin in the z-axis direction, and is fixed to the upper surface (the surface in the positive direction of the z-axis) of the non-magnetic yoke 11. Hereinafter, in correspondence with the drawing, the positive direction of the z-axis may be referred to as "up", the negative direction may be referred to as "down", the positive direction of the x-axis may be referred to as "right", and the negative direction may be referred to as "left" ("vertical"). , The same applies to "horizontal").

コイル12,13は、磁歪素子10に、x軸方向の周囲に巻かれ、支持部16の右側にコイル12が配置され、支持部16の左側にコイル13が配置されている。コイル12,13は、磁歪素子10を通過する磁束の変化により誘導起電力を生じる。磁性ヨーク17は、x軸方向に長い磁性材料で構成され、非磁性ヨーク11の支持部16に固定されている。磁性ヨーク17は振動源20にも固定されており、振動源20からの外力は磁性ヨーク17及び非磁性ヨーク11の支持部16を介して振動部21に伝わる。磁石18,19は、磁性ヨーク17の両端の近傍に固定される。磁石18は支持部16よりも右側に、N極がS極よりも磁歪素子10の右端に近くなるように配置される。磁石19は支持部16よりも左側に、S極がN極よりも磁歪素子10の左端に近くなるように配置される。 The coils 12 and 13 are wound around the magnetostrictive element 10 in the x-axis direction, the coil 12 is arranged on the right side of the support portion 16, and the coil 13 is arranged on the left side of the support portion 16. The coils 12 and 13 generate an induced electromotive force due to a change in the magnetic flux passing through the magnetostrictive element 10. The magnetic yoke 17 is made of a magnetic material long in the x-axis direction and is fixed to the support portion 16 of the non-magnetic yoke 11. The magnetic yoke 17 is also fixed to the vibration source 20, and the external force from the vibration source 20 is transmitted to the vibration portion 21 via the support portion 16 of the magnetic yoke 17 and the non-magnetic yoke 11. The magnets 18 and 19 are fixed in the vicinity of both ends of the magnetic yoke 17. The magnet 18 is arranged on the right side of the support portion 16 so that the north pole is closer to the right end of the magnetostrictive element 10 than the south pole. The magnet 19 is arranged on the left side of the support portion 16 so that the S pole is closer to the left end of the magnetostrictive element 10 than the N pole.

図2は、図1の発電装置1における閉磁路を示す断面図である。ただし、図2では図の簡単のため、コイル12,13を省略している。 FIG. 2 is a cross-sectional view showing a closed magnetic path in the power generation device 1 of FIG. However, in FIG. 2, the coils 12 and 13 are omitted for the sake of simplicity.

図2に示すように、上述の構成において、磁歪素子10、磁石19、磁性ヨーク17、及び磁石18は閉磁路を形成する。即ち、磁石18のN極から出た磁束は、磁歪素子10を通って磁石19のS極に入り、磁石19のN極から出た磁束は、磁性ヨーク17を通って磁石18のS極に入る。これにより、発電装置1の他の部分及び発電装置1の外部に漏れる磁束が低減され、磁歪素子10に安定した磁界が印加される。 As shown in FIG. 2, in the above configuration, the magnetostrictive element 10, the magnet 19, the magnetic yoke 17, and the magnet 18 form a closed magnetic path. That is, the magnetic flux emitted from the north pole of the magnet 18 enters the south pole of the magnet 19 through the magnetostrictive element 10, and the magnetic flux emitted from the north pole of the magnet 19 passes through the magnetic yoke 17 to the south pole of the magnet 18. come in. As a result, the magnetic flux leaking to the other parts of the power generation device 1 and the outside of the power generation device 1 is reduced, and a stable magnetic field is applied to the magnetostrictive element 10.

図1に戻って、振動源20は発電装置1の外部に接続されており、外部の物理的な動きを外力として発電装置1の磁性ヨーク17及び支持部16に伝える。この外力により非磁性ヨーク11の振動部21が振動すると、振動部21が湾曲するため、振動部21の上面に固定された磁歪素子10は振動部21からの圧縮力又は引っ張り力を受ける。磁歪素子10が圧縮力又は引っ張り力を受けると、逆磁歪効果により磁歪素子10を通過する磁束が変化し、この磁束の変化によりコイル12,13に誘導起電力が生じる。 Returning to FIG. 1, the vibration source 20 is connected to the outside of the power generation device 1, and transmits the external physical movement to the magnetic yoke 17 and the support portion 16 of the power generation device 1 as an external force. When the vibrating portion 21 of the non-magnetic yoke 11 vibrates due to this external force, the vibrating portion 21 is curved, so that the magnetostrictive element 10 fixed to the upper surface of the vibrating portion 21 receives a compressive force or a tensile force from the vibrating portion 21. When the magnetostrictive element 10 receives a compressive force or a tensile force, the magnetic flux passing through the magnetostrictive element 10 changes due to the magnetostrictive effect, and an induced electromotive force is generated in the coils 12 and 13 due to the change in the magnetic flux.

以上の発電装置1の構成要素についての詳細を以下説明する。 Details of the above components of the power generation device 1 will be described below.

<磁歪素子10>
磁歪素子10は、図のx軸方向に長い形状を有する磁性材料で構成され、非磁性ヨーク11に固定されている。磁性材料の種類は特に限定されるものではないが、外力を受けて伸長/収縮するため、延性を有する材料で構成されるのが望ましい。例えば鉄ガリウム系合金、鉄コバルト系合金等を用いることができる。
<Magnetorstrictive element 10>
The magnetostrictive element 10 is made of a magnetic material having a long shape in the x-axis direction in the figure, and is fixed to the non-magnetic yoke 11. The type of magnetic material is not particularly limited, but it is desirable to use a material having ductility because it expands / contracts by receiving an external force. For example, an iron-gallium-based alloy, an iron-cobalt-based alloy, or the like can be used.

本実施の形態においては、磁歪素子10の形状は、幅16mm、厚み1mm、長さ30mmの直方体の形状である。しかしながら、磁歪素子10の形状はこれには限定されず、y軸・z軸方向の寸法がコイル12,13の内径よりも小さく、x軸方向の寸法がコイル12,13よりも長い、例えば直方体、立方体、円柱、多角柱等の形状であってもよい。 In the present embodiment, the shape of the magnetostrictive element 10 is a rectangular parallelepiped having a width of 16 mm, a thickness of 1 mm, and a length of 30 mm. However, the shape of the magnetostrictive element 10 is not limited to this, and the dimensions in the y-axis and z-axis directions are smaller than the inner diameters of the coils 12 and 13, and the dimensions in the x-axis direction are longer than the coils 12 and 13, for example, a rectangular parallelepiped. , Cube, cylinder, polygonal pillar, etc. may be used.

<コイル12,13>
コイル12,13は、磁歪素子10の周囲に空間を設けて巻かれており、磁歪素子10内を通過する磁束の変化により誘導起電力を生じる。コイル12,13の材質は特に限定されるものではないが、例えば銅線、又はアルミ線等であればよい。また、コイル12,13の巻き数等を調整することで、生じる電圧の大きさを調整することができる。
<Coil 12, 13>
The coils 12 and 13 are wound with a space around the magnetostrictive element 10, and an induced electromotive force is generated by a change in the magnetic flux passing through the magnetostrictive element 10. The materials of the coils 12 and 13 are not particularly limited, but may be, for example, copper wire or aluminum wire. Further, the magnitude of the generated voltage can be adjusted by adjusting the number of turns of the coils 12 and 13.

なお、本実施の形態において発電装置1は2つのコイル12,13を備えるが、3個以上のコイルを備えてもよいし、コイル12,13を一体化させた1つのコイルのみを備えてもよい。 In the present embodiment, the power generation device 1 includes two coils 12 and 13, but may include three or more coils, or may include only one coil in which the coils 12 and 13 are integrated. good.

<磁石18,19>
磁石18,19は、対向する非磁性ヨーク11との間に空間を設けて、磁性ヨーク17に固定されて配置される。本実施の形態においては、磁石18はN極が上面となり、磁石19はS極が上面となるように配置されている。これにより、磁石18,19、磁性ヨーク17、磁歪素子10が閉磁路を形成する。即ち、磁石18のN極から出た磁束は、磁歪素子10を通って磁石19のS極に入り、磁石19のN極から出た磁束は、磁性ヨーク17を通って磁石18のS極に入る。
<Magnets 18, 19>
The magnets 18 and 19 are fixedly arranged on the magnetic yoke 17 with a space provided between the magnets 18 and 19 and the non-magnetic yoke 11 facing each other. In the present embodiment, the magnet 18 is arranged so that the north pole is on the upper surface and the magnet 19 is arranged so that the south pole is on the upper surface. As a result, the magnets 18 and 19, the magnetic yoke 17, and the magnetostrictive element 10 form a closed magnetic path. That is, the magnetic flux emitted from the north pole of the magnet 18 enters the south pole of the magnet 19 through the magnetostrictive element 10, and the magnetic flux emitted from the north pole of the magnet 19 passes through the magnetic yoke 17 to the south pole of the magnet 18. come in.

ここで、磁石18,19は、上述の閉磁路が形成されるように配置されればよく、従って、両磁極の関係が逆であってもよい。即ち、磁石18の上面がS極であり、磁石19の上面がN極であってもよい。その場合、閉磁路内の磁束の向きは逆となり、磁石19のN極から出た磁束は、磁歪素子10を通って磁石18のS極に入り、磁石18のN極から出た磁束は、磁性ヨーク17を通って磁石19のS極に入る。 Here, the magnets 18 and 19 may be arranged so as to form the above-mentioned closed magnetic path, and therefore the relationship between the two magnetic poles may be reversed. That is, the upper surface of the magnet 18 may be the south pole, and the upper surface of the magnet 19 may be the north pole. In that case, the directions of the magnetic fluxes in the closed magnetic path are opposite, the magnetic flux emitted from the north pole of the magnet 19 enters the south pole of the magnet 18 through the magnetic strain element 10, and the magnetic flux emitted from the north pole of the magnet 18 is It passes through the magnetic yoke 17 and enters the S pole of the magnet 19.

本実施の形態においては、磁石18,19の材質はネオジウム磁石であるが、磁石18,19はこれに限定されず、例えばフェライト磁石、コバルト磁石等であってもよい。 In the present embodiment, the materials of the magnets 18 and 19 are neodymium magnets, but the magnets 18 and 19 are not limited to this, and may be, for example, a ferrite magnet, a cobalt magnet, or the like.

<非磁性ヨーク11>
非磁性ヨーク11は、弾性及び剛性を有する非磁性材料又は低透磁率の材料で構成され、中央に支持部を持つT字型の形状を有する。非磁性ヨーク11を非磁性材料で構成する理由については後述する。
<Non-magnetic yoke 11>
The non-magnetic yoke 11 is made of a non-magnetic material having elasticity and rigidity or a material having low magnetic permeability, and has a T-shape having a support portion in the center. The reason why the non-magnetic yoke 11 is made of a non-magnetic material will be described later.

なお、非磁性ヨーク11は、本実施の形態ではT字型の形状を有するが、振動部21は平面に限定されず、例えばV字型若しくは逆V字型に折れ曲がった形状、又はU字型若しくは逆U字型に湾曲した形状等であってもよい。 The non-magnetic yoke 11 has a T-shape in the present embodiment, but the vibrating portion 21 is not limited to a flat surface, and is, for example, a V-shape, an inverted V-shape, or a U-shape. Alternatively, the shape may be curved in an inverted U shape.

<磁性ヨーク17>
磁性ヨーク17は、高透磁率の磁性材料で構成され、板状の形状を有し、振動源20に固定されている。
<Magnetic yoke 17>
The magnetic yoke 17 is made of a magnetic material having a high magnetic permeability, has a plate-like shape, and is fixed to the vibration source 20.

<錘14,15>
錘14,15は、非磁性材料又は透磁率の低い材料で構成される。錘14,15は、非磁性ヨーク11の振動部21の両自由端にそれぞれ固定される。錘14,15は、本実施の形態では円板形の錘を複数重ねた形状を有するが、振動を持続させるために十分な質量を有していればどのような形状を有してもよい。例えば直方体、又は半球等であってもよい。
<Weights 14, 15>
The weights 14 and 15 are made of a non-magnetic material or a material having a low magnetic permeability. The weights 14 and 15 are fixed to both free ends of the vibrating portion 21 of the non-magnetic yoke 11. In the present embodiment, the weights 14 and 15 have a shape in which a plurality of disk-shaped weights are stacked, but the weights 14 and 15 may have any shape as long as they have a sufficient mass to sustain vibration. .. For example, it may be a rectangular parallelepiped, a hemisphere, or the like.

以上のように構成された発電装置1について、その詳細な動作を説明する。 The detailed operation of the power generation device 1 configured as described above will be described.

図3Aは、図1の発電装置1において、振動源20が下方向に動いた時の動作例を示す断面図である。図3Bは振動源20が上方向に動いた時の動作例を示す図である。 FIG. 3A is a cross-sectional view showing an operation example when the vibration source 20 moves downward in the power generation device 1 of FIG. FIG. 3B is a diagram showing an operation example when the vibration source 20 moves upward.

図3Aにおいて、振動源20が下方向に動くと、その外力は磁性ヨーク17及び非磁性ヨーク11の支持部16を介して磁性ヨーク11の振動部21に伝わる。錘14,15は、振動部21と比較して大きい質量を持つため、慣性により下方向への移動が遅れる。その結果、磁性ヨーク11の振動部21は、図3Aに示すようにU字型に湾曲する。ここで、磁歪素子10は振動部21の上面に固定されているため、U字型に湾曲した振動部21から圧縮力を受ける。 In FIG. 3A, when the vibration source 20 moves downward, its external force is transmitted to the vibrating portion 21 of the magnetic yoke 11 via the magnetic yoke 17 and the support portion 16 of the non-magnetic yoke 11. Since the weights 14 and 15 have a larger mass than the vibrating portion 21, the downward movement is delayed due to inertia. As a result, the vibrating portion 21 of the magnetic yoke 11 is curved in a U shape as shown in FIG. 3A. Here, since the magnetostrictive element 10 is fixed to the upper surface of the vibrating portion 21, it receives a compressive force from the vibrating portion 21 curved in a U shape.

磁歪素子10は圧縮力を受けると、内部を通る磁束の磁束密度を高くする方向に変化させる。この磁束の変化により、図示されないコイル12,13に誘導起電力が生じることで発電が達成される。なお、図3Aの白抜きの矢印は振動源20の物理的動作の方向を指し、細い矢印は、磁歪素子10により生じる磁束の変化の方向を指す(図3Bも同様)。 When the magnetostrictive element 10 receives a compressive force, it changes the magnetic flux density of the magnetic flux passing through the inside in a direction of increasing the magnetic flux density. Due to this change in magnetic flux, an induced electromotive force is generated in the coils 12 and 13 (not shown), so that power generation is achieved. The white arrow in FIG. 3A indicates the direction of the physical operation of the vibration source 20, and the thin arrow indicates the direction of the change in the magnetic flux generated by the magnetostrictive element 10 (the same applies to FIG. 3B).

逆に、図3Bに示すように振動源20が下方向に動くと、磁性ヨーク11の振動部21は逆U字型に湾曲し、磁歪素子10は引っ張り力を受ける。磁歪素子10は引っ張り力を受けると、内部を通る磁束の磁束密度を低くする方向に変化させる。この磁束の変化により、コイル12,13に誘導起電力が生じることで発電が達成される。 On the contrary, when the vibration source 20 moves downward as shown in FIG. 3B, the vibrating portion 21 of the magnetic yoke 11 is curved in an inverted U shape, and the magnetostrictive element 10 receives a tensile force. When the magnetostrictive element 10 receives a tensile force, the magnetostrictive element 10 changes in a direction of lowering the magnetic flux density of the magnetic flux passing through the inside. Due to this change in magnetic flux, induced electromotive force is generated in the coils 12 and 13, and power generation is achieved.

外力を受けた振動部21は、振動部21の弾性及び錘14,15の質量等に基づく共振周波数で共振し、U字型及び逆U字型の湾曲を交互に繰り返す。これによりコイル12,13には交流の電圧が生じる。 The vibrating unit 21 that receives the external force resonates at a resonance frequency based on the elasticity of the vibrating unit 21 and the masses of the weights 14 and 15, and alternately repeats U-shaped and inverted U-shaped bending. As a result, an AC voltage is generated in the coils 12 and 13.

図4は、図1の磁歪素子10において、上方向動作時の応力分布を示す上面図である。図4は、振動源20を、加速度0.05G、及び周波数5Hzで振動させた場合の応力分布を示している。 FIG. 4 is a top view showing the stress distribution during upward operation of the magnetostrictive element 10 of FIG. FIG. 4 shows a stress distribution when the vibration source 20 is vibrated at an acceleration of 0.05 G and a frequency of 5 Hz.

磁歪素子10は、てこの原理により、中央の支持部16に近い位置ほど大きい応力を受ける。磁歪素子10は、非磁性ヨーク11の振動部21の中央にまたがって両側に配置されているため、従来技術に係る片持ち梁構造の振動部を有する発電装置(例えば図7(特許文献1)の発電装置100)における磁歪素子と比較して、振動部の支点(支持部16、支柱130)から最も遠い位置の、当該支点からの距離が小さい。上述の通り、磁歪素子は、振動部の支点に近い位置ほど受ける応力が大きくなり、生じる磁束の変化も大きくなる。従って、図4に示すように、磁歪素子10には、従来技術と比較してより一様分布に近くかつより大きい応力が加わるため、発電装置の発電効率も大きくなる。 According to the principle of the lever, the magnetostrictive element 10 receives a larger stress at a position closer to the central support portion 16. Since the magnetostrictive elements 10 are arranged on both sides across the center of the vibrating portion 21 of the non-magnetic yoke 11, a power generation device having a vibrating portion having a cantilever structure according to the prior art (for example, FIG. 7 (Patent Document 1)). The distance from the fulcrum at the position farthest from the fulcrum (support portion 16, column 130) of the vibrating portion is smaller than that of the magnetostrictive element in the power generation device 100). As described above, the magnetostrictive element receives a larger stress at a position closer to the fulcrum of the vibrating portion, and the generated magnetic flux change also becomes larger. Therefore, as shown in FIG. 4, since the magnetostrictive element 10 is subjected to a stress closer to a uniform distribution and larger than that of the prior art, the power generation efficiency of the power generation device is also increased.

さらに、発電装置1に含まれる閉磁路は、磁石18,19、磁歪素子10、磁性ヨーク17を含む1つの閉磁路のみであるため、2つのコイル12,13に誘導起電力を発生させる磁束は実質的に同一である。従って、2つのコイル12,13からの起電力の位相は一致し、それらを合成する際に損失が生じることもない。 Further, since the closed magnetic path included in the power generation device 1 is only one closed magnetic path including the magnets 18 and 19, the magnetostrictive element 10 and the magnetic yoke 17, the magnetic flux that generates the induced electromotive force in the two coils 12 and 13 is It is substantially the same. Therefore, the phases of the electromotive forces from the two coils 12 and 13 match, and no loss occurs when they are combined.

ここで仮に、非磁性ヨーク11の代わりに、同じ形状を有する磁性材料で構成した場合を考える。図5A及び図5Bは、図1の非磁性ヨーク11を磁性材料で構成した場合の、上下方向の動作時の磁束を示す断面図であり、図3A及び図3Bとそれぞれ対応する。 Here, suppose that instead of the non-magnetic yoke 11, a magnetic material having the same shape is used. 5A and 5B are cross-sectional views showing the magnetic flux during operation in the vertical direction when the non-magnetic yoke 11 of FIG. 1 is made of a magnetic material, and correspond to FIGS. 3A and 3B, respectively.

この構成において振動源20が上方向に動作した時、図5Aに示す2つの閉磁路が形成される。図5Aに示すように、2つの閉磁路は当該ヨークの支持部16において、互いに逆方向の向きを有して重なる。2つの磁束が打ち消し合う方向に閉磁路が形成されてしまう(図5Bに関しても同様)。従って、非磁性ヨーク11は非磁性材料又は透磁率の低い材料で構成するのが好ましい。 In this configuration, when the vibration source 20 operates upward, the two closed magnetic paths shown in FIG. 5A are formed. As shown in FIG. 5A, the two closed magnetic paths overlap each other in the support portion 16 of the yoke in opposite directions. A closed magnetic path is formed in the direction in which the two magnetic fluxes cancel each other out (the same applies to FIG. 5B). Therefore, the non-magnetic yoke 11 is preferably made of a non-magnetic material or a material having a low magnetic permeability.

以上のように、磁歪素子10は、従来技術に係る発電装置における片持ち梁構造の振動部に固定された磁歪素子と比較して、より一様分布に近くかつより大きい応力を受けるため、磁歪素子10が生じさせる磁束の変化も大きくなる。また、複数のコイル12,13に発生する誘導起電力の間に位相差が生じないため、これらを合成する際の損失が低減される。これにより、磁歪素子10の発電効率が向上する。 As described above, the magnetostrictive element 10 is closer to a uniform distribution and receives a larger stress than the magnetostrictive element fixed to the vibrating portion of the cantilever structure in the power generation device according to the prior art. The change in magnetic flux generated by the element 10 also becomes large. Further, since there is no phase difference between the induced electromotive forces generated in the plurality of coils 12 and 13, the loss when synthesizing them is reduced. As a result, the power generation efficiency of the magnetostrictive element 10 is improved.

[実施の形態2]
図6は、実施の形態における発電装置2の構成例を示す断面図である。図6において、発電装置2は、図1の発電装置1と比較して、以下の点で異なる。即ち、非磁性ヨーク11及び磁性ヨーク17の代わりに、磁性ヨーク31,32及び非磁性支持体33を有する。
[Embodiment 2]
FIG. 6 is a cross-sectional view showing a configuration example of the power generation device 2 according to the embodiment. In FIG. 6, the power generation device 2 differs from the power generation device 1 in FIG. 1 in the following points. That is, instead of the non-magnetic yoke 11 and the magnetic yoke 17, the magnetic yokes 31 and 32 and the non-magnetic support 33 are provided.

図6において、磁性ヨーク31,32は、例えば長方形の板を3枚組み合わせたコ字型の形状を有する磁性材料でそれぞれ構成される。これらの3枚の板の部分のうち、図の下側の部分を基底部313,323と呼び、中央の部分を支持部312,322と呼び、上側の部分を振動部311,321と呼ぶ。非磁性支持体33は、図1の支持部16と同様に、z軸方向に長い板状の非磁性材料で構成され、支持部312及び支持部322の間に挟まれて固定されている。 In FIG. 6, the magnetic yokes 31 and 32 are each made of, for example, a magnetic material having a U-shape in which three rectangular plates are combined. Of these three plate portions, the lower portion in the figure is referred to as a base portion 313, 323, the central portion is referred to as a support portion 312, 322, and the upper portion is referred to as a vibrating portion 311, 321. Similar to the support portion 16 in FIG. 1, the non-magnetic support 33 is made of a plate-shaped non-magnetic material long in the z-axis direction, and is sandwiched and fixed between the support portion 312 and the support portion 322.

基底部313,323は、それらの一端がそれぞれ支持部312,322の下端に接続され、非磁性支持体33の下端に接するように振動源20にそれぞれ固定される。 One ends of the base portions 313 and 323 are connected to the lower ends of the support portions 321 and 322, respectively, and are fixed to the vibration source 20 so as to be in contact with the lower ends of the non-magnetic support 33.

支持部312,322は、上述の通り、非磁性支持体33を挟むようにそれぞれ非磁性支持体33に固定される。これにより互いに固定された支持部312,322及び非磁性支持体33の組は、支持部36を構成する。支持部36は、図1の支持部16が振動部21に外力を伝達するのと同様に、振動源20からの外力を振動部に伝達する。 As described above, the support portions 312 and 322 are fixed to the non-magnetic support 33 so as to sandwich the non-magnetic support 33. The set of the support portions 312 and 322 fixed to each other and the non-magnetic support 33 constitutes the support portion 36. The support portion 36 transmits the external force from the vibration source 20 to the vibrating portion in the same manner that the support portion 16 in FIG. 1 transmits the external force to the vibrating portion 21.

振動部311,321は、それらの一端がそれぞれ支持部312,322の上端に接続され、非磁性支持体33の上端に接するように固定される。振動部311,321の両端のうち、支持部312,322に固定されていない他端は自由端であり、それらの近傍には図1の振動部と同様に錘14,15が固定されている。互いに一端を固定された振動部311,321の組は外力によって振動し、図1の振動部21と同様に磁歪素子10に応力を加える。 The vibrating portions 311, 321 are fixed so that one ends thereof are connected to the upper ends of the support portions 312 and 322, respectively, and are in contact with the upper ends of the non-magnetic support 33. Of both ends of the vibrating portions 311, 321, the other ends that are not fixed to the supporting portions 312 and 322 are free ends, and weights 14 and 15 are fixed in the vicinity thereof as in the vibrating portion of FIG. .. The set of vibrating portions 311, 321 fixed to each other at one end vibrates by an external force, and stress is applied to the magnetostrictive element 10 in the same manner as the vibrating portion 21 of FIG.

以上のように構成された発電装置2では、非磁性ヨーク11を磁性材料で構成した場合について図5A及び図5Bを参照して上述したように、2つの閉磁路が形成される。ここで、支持部36は、中央に非磁性材料で構成された非磁性支持体33を挟んで構成されている。従って、2つの閉磁路は、磁性ヨーク31及び磁石18で形成される閉磁路と、磁性ヨーク32及び磁石19で構成される閉磁路とである。即ち、2つの閉磁路が互いに重なることはなく、磁束が互いに打ち消し合うこともないため、図1の発電装置1と同様の効果が得られる。 In the power generation device 2 configured as described above, two closed magnetic paths are formed as described above with reference to FIGS. 5A and 5B when the non-magnetic yoke 11 is made of a magnetic material. Here, the support portion 36 is configured with a non-magnetic support 33 made of a non-magnetic material sandwiched in the center. Therefore, the two closed magnetic paths are a closed magnetic path formed by the magnetic yoke 31 and the magnet 18, and a closed magnetic path composed of the magnetic yoke 32 and the magnet 19. That is, since the two closed magnetic paths do not overlap each other and the magnetic fluxes do not cancel each other out, the same effect as that of the power generation device 1 of FIG. 1 can be obtained.

ただし、磁性材料で構成された振動部311,321が磁石18,19に引きつけられることによる物理的特性の変化、又は、振動部311,321のうちの閉磁路を形成していない自由端側の部分に磁束が漏れることによる磁気的特性の変化等については注意せねばならない。また、本実施の形態では、磁性ヨーク31,32は、3枚の板状の磁性材料を組み合わせて一体化させた磁性ヨーク31,32として構成しているが、これらは一体化されていなくともよい。即ち、磁性ヨーク31,32のかわりに、板状の磁性材料で構成された磁性振動部、磁性支持部及び磁性基底部を、端部が適切に固定された個別の要素として構成してもよい。 However, the change in physical characteristics due to the vibrating portions 311, 321 made of magnetic material being attracted to the magnets 18 and 19, or the free end side of the vibrating portions 311, 321 that does not form a closed magnetic path. Attention must be paid to changes in magnetic characteristics due to leakage of magnetic flux to the portion. Further, in the present embodiment, the magnetic yokes 31 and 32 are configured as magnetic yokes 31 and 32 in which three plate-shaped magnetic materials are combined and integrated, but these are not integrated. good. That is, instead of the magnetic yokes 31 and 32, a magnetic vibrating portion, a magnetic support portion, and a magnetic base portion made of a plate-shaped magnetic material may be configured as individual elements having appropriately fixed ends. ..

さらに、磁性ヨーク31の支持部及び基底部は、必ずしもそれぞれ非磁性支持体33及び振動源20に固定されている必要はなく、磁性ヨーク31の振動部から磁石18にわたって間を磁束が通過するように接続する限りどのような形状のものであってもよい。例えば、磁性ヨーク31の振動部の左端及び磁石18の下端の間を直線的に接続する磁性材料等であってよい(磁性ヨーク32及び磁石19に関しても同様)。ただし、振動の対称性を担保するために、磁性ヨーク31,32の構成は実質的に同一であることが好ましい。 Further, the support portion and the base portion of the magnetic yoke 31 do not necessarily have to be fixed to the non-magnetic support 33 and the vibration source 20, respectively, so that the magnetic flux passes between the vibrating portion of the magnetic yoke 31 and the magnet 18. It may have any shape as long as it is connected to. For example, it may be a magnetic material or the like that linearly connects the left end of the vibrating portion of the magnetic yoke 31 and the lower end of the magnet 18 (the same applies to the magnetic yoke 32 and the magnet 19). However, in order to ensure the symmetry of vibration, it is preferable that the configurations of the magnetic yokes 31 and 32 are substantially the same.

以上のように、磁歪素子10は、従来技術に係る発電装置における片持ち梁構造の振動部に固定された磁歪素子と比較して、より一様分布に近くかつより大きい応力を受けるため、磁歪素子10が生じさせる磁束の変化も大きくなる。また、複数のコイル12,13に発生する誘導起電力の間に位相差が生じないため、これらを合成する際の損失が低減される。これにより、磁歪素子10の発電効率が向上する。 As described above, the magnetostrictive element 10 is closer to a uniform distribution and receives a larger stress than the magnetostrictive element fixed to the vibrating portion of the cantilever structure in the power generation device according to the prior art. The change in magnetic flux generated by the element 10 also becomes large. Further, since there is no phase difference between the induced electromotive forces generated in the plurality of coils 12 and 13, the loss when synthesizing them is reduced. As a result, the power generation efficiency of the magnetostrictive element 10 is improved.

本発明に係る発電装置は、発電効率を向上させることが可能である。産業分野、防犯・防災分野、社会インフラ分野、医療・福祉分野等の様々な分野における多くの利用シーンが想定されているIoTにおいて、その重要なコンポーネントである無線センサモジュールへの本発明の発電装置の適用が特に有用である。 The power generation device according to the present invention can improve the power generation efficiency. The power generation device of the present invention for the wireless sensor module, which is an important component of IoT, which is expected to be used in many fields such as industrial fields, crime prevention / disaster prevention fields, social infrastructure fields, medical / welfare fields, etc. The application of is particularly useful.

1 発電装置
6 振動方向
10 磁歪素子
11 非磁性ヨーク
12,13 コイル
14,15 錘
16 支持部
17 磁性ヨーク
18,19 磁石
20 振動体
21 振動部
31,32 磁性ヨーク
311,321 振動部
312,322 支持部
313,323 基底部
33 非磁性支持体
1 Power generator 6 Magnetostrictive element 11 Magnetostrictive element 11 Non-magnetic yoke 12, 13 Coil 14, 15 Weight 16 Support 17 Magnetic yoke 18, 19 Magnet 20 Vibrating body 21 Vibrating unit 31, 32 Magnetic yoke 311, 321 Vibrating unit 312, 322 Supports 313,323 Base 33 Non-magnetic support

Claims (9)

剛性及び弾性を有し、第1の方向に長い非磁性材料で構成され、その実質的中心に支持部を有し、前記支持部を挟んだ両端を自由端として前記支持部に加わる外力により振動する非磁性ヨークと、
前記第1の方向に長い磁歪材料で構成され、振動により湾曲する前記非磁性ヨークの面のうちの1面の中心付近に固定され、前記非磁性ヨークから応力を受ける磁歪素子と、
前記磁歪素子の前記第1の方向の周囲に巻かれたコイルと、
前記磁歪素子の両端の近傍にそれぞれ配置された2つの磁石であって、2つの磁石のうちの一方はS極がN極よりも前記磁歪素子に近く、他方はN極がS極よりも前記磁歪素子に近くなるように配置され、前記磁歪素子に磁界を印加する、2つの磁石と、
前記2つの磁石の前記磁歪素子から遠い磁極同士の間を磁束が通過するように接続する、磁性ヨークと、
を備える、発電装置。
It is made of a non-magnetic material that has rigidity and elasticity and is long in the first direction, has a support portion in its substantial center, and vibrates due to an external force applied to the support portion with both ends sandwiching the support portion as free ends. With a non-magnetic yoke
A magnetostrictive element composed of a magnetostrictive material long in the first direction, fixed near the center of one of the surfaces of the non-magnetic yoke curved by vibration, and receiving stress from the non-magnetic yoke.
A coil wound around the magnetostrictive element in the first direction,
Two magnets arranged in the vicinity of both ends of the magnetostrictive element, one of the two magnets having an S pole closer to the magnetostrictive element than the N pole, and the other having an N pole closer to the S pole than the S pole. Two magnets that are arranged close to the magnetostrictive element and apply a magnetic field to the magnetostrictive element,
A magnetic yoke that connects the two magnets so that magnetic flux passes between the magnetic poles far from the magnetostrictive element.
A power generator equipped with.
前記コイルは、複数のコイルから構成される、請求項1に記載の発電装置。 The power generation device according to claim 1, wherein the coil is composed of a plurality of coils. 前記非磁性ヨークの自由端の近傍に錘をさらに備える、請求項1又は2に記載の発電装置。 The power generation device according to claim 1 or 2, further comprising a weight in the vicinity of the free end of the non-magnetic yoke. 前記磁性ヨークは外部の振動源に接続され、前記支持部に前記外力を伝達する、請求項1から3のうちいずれか1つに記載の発電装置。 The power generation device according to any one of claims 1 to 3, wherein the magnetic yoke is connected to an external vibration source and transmits the external force to the support portion. 剛性及び弾性を有する磁性材料で構成された第1の磁性ヨークであって、第1の方向に長く、一端を自由端として外力により振動する第1の磁性振動部と、前記第1の方向に垂直な第2の方向に長く、前記第1の磁性振動部の前記自由端でない側の端部にその端部を接続された第1の磁性支持部と、前記第1の方向に長く、前記第1の磁性支持部の両端のうちの前記第1の磁性振動部と接続されていない端部に接続された、第1の磁性基底部とを含む、第1の磁性ヨークと、
剛性及び弾性を有する磁性材料で構成された第2の磁性ヨークであって、前記第1の方向に長く、一端を自由端として外力により振動する第2の磁性振動部と、前記第2の方向に長く、前記第2の磁性振動部の前記自由端でない側の端部にその端部を接続された第2の磁性支持部と、前記第1の方向に長く、前記第2の磁性支持部の両端のうちの前記第2の磁性振動部と接続されていない側の端部に接続された、第2の磁性基底部とを含む、第2の磁性ヨークと、
剛性を有する非磁性材料で構成され、前記第2の方向に長く、前記第1及び第2の磁性支持部の間に挟まれて固定された、非磁性支持体と、
前記第1及び第2の磁性振動部の上に、前記非磁性支持体の上を中心に前記第1の方向に延在する磁歪材料で構成され、前記第1及び第2の磁性振動部、並びに前記非磁性支持体に固定された、磁歪素子と、
前記磁歪素子の前記第1及び第2の磁性振動部に固定された端部の近傍にそれぞれ配置された第1及び第2の磁石であって、一方はS極がN極よりも前記磁歪素子に近く配置され、他方はN極がS極よりも前記磁歪素子に近く配置された、第1及び第2の磁石と、
前記磁歪素子に前記第1の方向の周囲に巻かれたコイルと、
を備える、発電装置。
A first magnetic yoke made of a magnetic material having rigidity and elasticity, which is long in the first direction and vibrates by an external force with one end as a free end, and a first magnetic vibrating portion in the first direction. The first magnetic support portion, which is long in the vertical second direction and whose end is connected to the end of the first magnetic vibrating portion on the non-free end side, and the first magnetic support portion, which is long in the first direction, said. A first magnetic yoke including a first magnetic base portion connected to an end portion of both ends of the first magnetic support portion that is not connected to the first magnetic vibrating portion.
A second magnetic yoke made of a magnetic material having rigidity and elasticity, which is long in the first direction and vibrates by an external force with one end as a free end, and the second direction. A second magnetic support portion whose end is connected to an end portion of the second magnetic vibrating portion on the non-free end side, and a second magnetic support portion which is long in the first direction and is long in the first direction. A second magnetic yoke, including a second magnetic base, which is connected to the end of both ends that is not connected to the second magnetic vibrating portion.
A non-magnetic support made of a rigid non-magnetic material, long in the second direction, sandwiched and fixed between the first and second magnetic supports, and a non-magnetic support.
The first and second magnetic vibrating portions, which are composed of a magnetostrictive material extending in the first direction centering on the non-magnetic support on the first and second magnetic vibrating portions, And the magnetostrictive element fixed to the non-magnetic support,
The first and second magnets arranged in the vicinity of the ends fixed to the first and second magnetic vibrating portions of the magnetostrictive element, one of which has an S pole rather than an N pole. The first and second magnets, the other of which is located closer to the magnetostrictive element, with the north pole closer to the magnetostrictive element than the south pole.
A coil wound around the magnetostrictive element in the first direction,
A power generator equipped with.
前記第1の磁石の前記磁歪素子から遠い側の端部は、前記第1の磁性基底部に接続され、前記第2の磁石の前記磁歪素子から遠い側の端部は、前記第2の磁性基底部に接続されている、
請求項5に記載の発電装置。
The end of the first magnet far from the magnetostrictive element is connected to the first magnetic base, and the end of the second magnet far from the magnetostrictive element is the second magnetic. Connected to the base,
The power generation device according to claim 5.
前記コイルは、複数のコイルから構成される、請求項5又は6に記載の発電装置。 The power generation device according to claim 5 or 6, wherein the coil is composed of a plurality of coils. 前記第1及び第2の磁性振動部の自由端のそれぞれ近傍に、第1及び第2の錘をさらに備える、請求項5から7のうちいずれか1つに記載の発電装置。 The power generation device according to any one of claims 5 to 7, further comprising first and second weights in the vicinity of the free ends of the first and second magnetic vibration portions, respectively. 前記第1の磁性支持部、前記第2の磁性支持部、及び前記非磁性支持体のうちの少なくとも1つは外部の振動源に接続され、前記第1及び第2の磁性振動部に外力を伝達する、請求項5から8のうちいずれか1つに記載の発電装置。 At least one of the first magnetic support, the second magnetic support, and the non-magnetic support is connected to an external vibration source, and an external force is applied to the first and second magnetic vibration parts. The power generation device according to any one of claims 5 to 8 to be transmitted.
JP2020038042A 2020-03-05 2020-03-05 Power generation device Pending JP2021141723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020038042A JP2021141723A (en) 2020-03-05 2020-03-05 Power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020038042A JP2021141723A (en) 2020-03-05 2020-03-05 Power generation device

Publications (1)

Publication Number Publication Date
JP2021141723A true JP2021141723A (en) 2021-09-16

Family

ID=77669229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020038042A Pending JP2021141723A (en) 2020-03-05 2020-03-05 Power generation device

Country Status (1)

Country Link
JP (1) JP2021141723A (en)

Similar Documents

Publication Publication Date Title
EP2573931B1 (en) Power generation element and power generation apparatus provided with power generation element
Naifar et al. Survey of electromagnetic and magnetoelectric vibration energy harvesters for low frequency excitation
US20140333156A1 (en) Electric power generation device
Beeby et al. Experimental comparison of macro and micro scale electromagnetic vibration powered generators
KR101301695B1 (en) Energy harvester
EP2693615B1 (en) Vibration-based electric power generator
EP1932230A1 (en) Generator for converting mechanical vibrational energy into electrical energy
KR101746857B1 (en) Hybrid generator using vibration
JP2011217431A (en) Vibration generator using blade spring and blade spring for vibration generators
KR101065025B1 (en) Generator using vibration
KR101172706B1 (en) Energy Harvester and Portable Electronic Device
KR20170023384A (en) Broadband electromagnetic vibration energy harvester
JP2021141723A (en) Power generation device
JP2018182941A (en) Vibration power generator
CN111490703A (en) Electromagnetic composite vibration energy collector
CN113890300A (en) Wide range vibration energy harvester based on asymmetric-biplane springs
JP2020078175A (en) Power generation device
KR20170059386A (en) Vibration energy harvesting device and operating method thereof
Han et al. MEMS energy harvester utilizing a multi-pole magnet and a high-aspect-ratio array coil for low frequency vibrations
JP2021129479A (en) Power generator
JP2021191198A (en) Power generating device
JP2016005332A (en) Power generator and electronic apparatus including the same
JP2020065417A (en) Power generation device
JP2019088112A (en) Power generator
CN108631537A (en) Free end magnetic circuit adjusts cantilever beam energy gathering apparatus