JP2021139919A - Objective lens, optical system, and microscope - Google Patents

Objective lens, optical system, and microscope Download PDF

Info

Publication number
JP2021139919A
JP2021139919A JP2018100127A JP2018100127A JP2021139919A JP 2021139919 A JP2021139919 A JP 2021139919A JP 2018100127 A JP2018100127 A JP 2018100127A JP 2018100127 A JP2018100127 A JP 2018100127A JP 2021139919 A JP2021139919 A JP 2021139919A
Authority
JP
Japan
Prior art keywords
lens
junction
refractive power
objective lens
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018100127A
Other languages
Japanese (ja)
Inventor
実保 松本
Saneyasu Matsumoto
実保 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2018100127A priority Critical patent/JP2021139919A/en
Priority to PCT/JP2019/003605 priority patent/WO2019225063A1/en
Publication of JP2021139919A publication Critical patent/JP2021139919A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements

Abstract

To provide a microscope objective lens which has an image plane that is flat over an entire field of view, and is well corrected for axial chromatic aberration and for magnification chromatic aberration over the entire field of view.SOLUTION: A microscope objective lens OL provided herein comprises a first lens group G1 having positive refractive power and a second lens group G2 having negative refractive power, the first lens group G1 having a diffraction optical element DOE, and the second lens group G2 consisting of a first cemented lens CL21 obtained by cementing a positive lens L21 and a negative lens L22 with a concave surface on the image side together, and a second cemented lens CL22 obtained by cementing a negative lens L23 with a concave surface on the object side and a positive lens L24 together. The microscope objective lens OL satisfies the following conditional expressions: 65.0<νd1, 0.0045<θgd1+(0.002076×νd1)-1.36467, where νd1 represents an Abbe number based on a d-line of the negative lens L23 and θgd1 represents a partial dispersion ratio of the negative lens L23.SELECTED DRAWING: Figure 1

Description

本発明は、対物レンズ、光学系および顕微鏡に関する。 The present invention relates to objective lenses, optical systems and microscopes.

顕微鏡の対物レンズは、平坦な像面を有して、軸上色収差が良好に補正されていることが必要とされる。これを解決するために、回折光学素子を用いた対物レンズが種々提案されている(例えば、特許文献1を参照)。しかしながら、このような対物レンズでは、視野全体にわたる倍率色収差の補正が十分ではなかった。 The objective lens of the microscope is required to have a flat image plane and to be well corrected for axial chromatic aberration. In order to solve this problem, various objective lenses using diffractive optical elements have been proposed (see, for example, Patent Document 1). However, with such an objective lens, the correction of chromatic aberration of magnification over the entire field of view has not been sufficient.

特開平6−331898号公報Japanese Unexamined Patent Publication No. 6-331898

第1の態様に係る対物レンズは、物体側から順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群とを備え、前記第1レンズ群は、第1回折素子要素と第2回折素子要素とを含んで構成される回折光学素子を有し、前記回折光学素子は、前記第1回折素子要素と前記第2回折素子要素との接合面に形成された、回折格子溝を構成する回折光学面を有し、前記第2レンズ群は、物体側から順に並んだ、物体側に凸面を向けた正レンズおよび像側に凹面を向けた負レンズを接合してなる第1接合レンズと、物体側に凹面を向けた負レンズおよび像側に凸面を向けた正レンズを接合してなる第2接合レンズとからなり、以下の条件式を満足する。
65.0<νd1
0.0045<θgd1+(0.002076×νd1)−1.36467
但し、νd1:前記第2接合レンズを構成する前記負レンズのd線を基準とするアッベ数
θgd1:前記第2接合レンズを構成する前記負レンズの部分分散比であり、前記負レンズのg線に対する屈折率をng1とし、前記負レンズのd線に対する屈折率をnd1とし、前記負レンズのF線に対する屈折率をnF1とし、前記負レンズのC線に対する屈折率をnC1としたとき、次式で定義される
θgd1=(ng1−nd1)/(nF1−nC1)
The objective lens according to the first aspect includes a first lens group having a positive refractive force and a second lens group having a negative refractive force arranged in order from the object side, and the first lens group includes the first lens group. It has a diffractive optical element including a first diffractive element element and a second diffractive element element, and the diffractive optical element is formed on a junction surface between the first diffractive element element and the second diffractive element element. The second lens group includes a positive lens having a convex surface facing the object side and a negative lens having a concave surface facing the image side, which are arranged in order from the object side. It is composed of a first junction lens formed by joining, a negative lens having a concave surface facing the object side, and a second junction lens formed by joining a positive lens having a convex surface facing the image side, and satisfies the following conditional expression.
65.0 <νd1
0.0045 <θgd1 + (0.002076 × νd1) -1.36467
However, νd1: the abbe number θgd1: the partial dispersion ratio of the negative lens constituting the second junction lens based on the d line of the negative lens constituting the second junction lens, and the g line of the negative lens. When the refractive index of the negative lens with respect to the d line is nd1, the refractive index of the negative lens with respect to the F line is nF1, and the refractive index of the negative lens with respect to the C line is nC1, the following equation is obtained. Θgd1 = (ng1-nd1) / (nF1-nC1) defined by

第2の態様に係る光学系は、第1の態様に係る対物レンズと、結像レンズとを備える。 The optical system according to the second aspect includes an objective lens according to the first aspect and an imaging lens.

第3の態様に係る顕微鏡は、第1の態様に係る対物レンズを備える。 The microscope according to the third aspect includes an objective lens according to the first aspect.

第1実施例に係る顕微鏡対物レンズの構成を示す断面図である。It is sectional drawing which shows the structure of the microscope objective lens which concerns on 1st Example. 第1実施例に係る顕微鏡対物レンズの諸収差図である。It is a figure of various aberrations of the microscope objective lens which concerns on 1st Example. 第2実施例に係る顕微鏡対物レンズの構成を示す断面図である。It is sectional drawing which shows the structure of the microscope objective lens which concerns on 2nd Example. 第2実施例に係る顕微鏡対物レンズの諸収差図である。It is a figure of various aberrations of the microscope objective lens which concerns on 2nd Example. 結像レンズの構成を示す断面図である。It is sectional drawing which shows the structure of the imaging lens. 顕微鏡対物レンズを備えた顕微鏡の要部概略図である。It is a schematic diagram of the main part of a microscope provided with a microscope objective lens.

以下、本実施形態の対物レンズ、顕微鏡、および顕微鏡に用いられる光学系について図を参照して説明する。本実施形態では、視野全体にわたり平坦な像面を有して、軸上色収
差が良好に補正されるとともに、視野全体にわたる倍率色収差が良好に補正された顕微鏡対物レンズについて説明する。
Hereinafter, the objective lens, the microscope, and the optical system used in the microscope of the present embodiment will be described with reference to the drawings. In the present embodiment, a microscope objective lens having a flat image plane over the entire field of view, in which axial chromatic aberration is satisfactorily corrected and chromatic aberration of magnification in the entire field of view is satisfactorily corrected will be described.

本実施形態に係る顕微鏡対物レンズOLの一例として、図1に示す顕微鏡対物レンズOL(1)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2とを備えて構成される。本実施形態に係る顕微鏡対物レンズOLは、図3に示す顕微鏡対物レンズOL(2)でも良い。なお、図3に示す顕微鏡対物レンズOL(2)の各レンズは、図1に示す顕微鏡対物レンズOL(1)と同様に構成される。 As an example of the microscope objective lens OL according to the present embodiment, the microscope objective lens OL (1) shown in FIG. 1 has a first lens group G1 having a positive refractive power arranged in order from the object side and a negative refractive power. It is configured to include a second lens group G2 having the above. The microscope objective lens OL according to the present embodiment may be the microscope objective lens OL (2) shown in FIG. Each lens of the microscope objective lens OL (2) shown in FIG. 3 is configured in the same manner as the microscope objective lens OL (1) shown in FIG.

第1レンズ群G1は、物体Obから出た発散光束を集光して収斂光束にするレンズ群である。第1レンズ群G1は、異なる種類の光学材料からなる2つの回折素子要素を接合して形成された回折光学素子DOEを有して構成される。2つの回折素子要素の接合面には、回折格子溝を構成する回折光学面Dmが形成される。このように、第1レンズ群G1では、色収差を補正するため、第1レンズ群G1を構成する光学要素のいずれかの面に、回折光学面Dmが形成されている。なお、図1および図3において、物体Obは光軸上の物点を示す。 The first lens group G1 is a lens group that condenses the divergent light flux emitted from the object Ob into a convergent light flux. The first lens group G1 includes a diffraction optical element DOE formed by joining two diffraction element elements made of different types of optical materials. A diffraction optical surface Dm forming a diffraction grating groove is formed on the junction surface of the two diffraction element elements. As described above, in the first lens group G1, in order to correct the chromatic aberration, a diffractive optical surface Dm is formed on any surface of the optical elements constituting the first lens group G1. In addition, in FIG. 1 and FIG. 3, the object Ob indicates an object point on the optical axis.

回折光学素子DOEは、いわゆる密着複層型回折光学素子であり、g線からC線を含む広い波長域において回折効率を高くすることができる。従って、本実施形態に係る顕微鏡対物レンズOLは、広い波長域において利用することが可能になる。なお、回折効率は、透過型の回折光学素子DOEにおいて1次回折光を利用する場合、回折光学素子DOEへの入射光の強度I0と、一次回折光の強度I1との割合η(すなわち、η=I1/I0×100[%])を示す。回折光学素子DOEを構成する回折素子要素の光学材料として、樹脂材料を用いるようにしてもよい。例えば、紫外線硬化型樹脂(光硬化型の樹脂材料)を用いた樹脂成形により、回折素子要素の光学材料として光学ガラスを用いる場合よりも容易に、回折光学面Dmを形成することができる。 The diffractive optical element DOE is a so-called close contact multi-layer diffractive optical element, and can increase the diffraction efficiency in a wide wavelength range including g-line to C-line. Therefore, the microscope objective lens OL according to the present embodiment can be used in a wide wavelength range. When the primary diffracted light is used in the transmission type diffractive optical element DOE, the diffraction efficiency is the ratio η (that is, η =) of the intensity I0 of the incident light to the diffractive optical element DOE and the intensity I1 of the primary diffracted light. I1 / I0 × 100 [%]) is shown. A resin material may be used as the optical material of the diffraction element element constituting the diffraction optical element DOE. For example, by resin molding using an ultraviolet curable resin (photocurable resin material), the diffraction optical surface Dm can be formed more easily than when optical glass is used as the optical material of the diffraction element element.

回折光学面Dmには、1mmあたり数本から数百本の細かい溝状またはスリット状の格子構造が同心円状に形成される。回折光学面Dmは、回折光学面Dmに入射した入射光が格子ピッチ(回折格子溝の間隔)と入射光の波長とによって定まる方向へ回折する、という性質を有している。通常の屈折型レンズの屈折力は、波長が短くなるほど波長の変化に対して大きく変化する特性を有している。これに対し、上述のような回折光学面Dmを含む回折光学素子DOEの屈折力は、波長の変化に対して線形的に変化する特性を有している。そこで、波長の変化に対する屈折力の変化が線形的になるように組み合わせた複数の屈折型レンズと、回折光学素子DOEとを組み合わせることで、大きな色消し効果が得られるため、色収差を良好に補正することが可能になる。 On the diffractive optical surface Dm, several to several hundred fine groove-like or slit-like lattice structures per 1 mm are concentrically formed. The diffractive optical surface Dm has a property that the incident light incident on the diffractive optical surface Dm is diffracted in a direction determined by the lattice pitch (interval between the diffraction grating grooves) and the wavelength of the incident light. The refractive power of a normal refracting lens has a characteristic that it changes greatly with a change in wavelength as the wavelength becomes shorter. On the other hand, the refractive power of the diffractive optical element DOE including the diffractive optical surface Dm as described above has a characteristic of linearly changing with a change in wavelength. Therefore, by combining a plurality of refracting lenses that are combined so that the change in refractive power with respect to a change in wavelength becomes linear, and the diffractive optical element DOE, a large achromatic effect can be obtained, so that chromatic aberration is satisfactorily corrected. It becomes possible to do.

第2レンズ群G2は、第1レンズ群G1で収束させた収束光を平行光にするレンズ群である。第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた正レンズL21および像側に凹面を向けた負レンズL22を接合してなる第1接合レンズCL21と、物体側に凹面を向けた負レンズL23および像側に凸面を向けた正レンズL24を接合してなる第2接合レンズCL22とから構成される。第1接合レンズCL21を構成する負レンズL22の凹面と、第2接合レンズCL22を構成する負レンズL23の凹面とが対向して配置される。第1接合レンズCL21および第2接合レンズCL22は、ペッツバール和を補正するため、いわゆるガウスタイプの構成となっている。このような構成により、ペッツバール和を減少させつつ、軸上色収差と倍率色収差とをバランスよく補正することができる。 The second lens group G2 is a lens group that converts the converged light converged by the first lens group G1 into parallel light. The second lens group G2 includes a first junction lens CL21 formed by joining a positive lens L21 having a convex surface facing the object side and a negative lens L22 having a concave surface facing the image side, which are arranged in order from the object side, and the object side. It is composed of a negative lens L23 with a concave surface and a second junction lens CL22 formed by bonding a positive lens L24 with a convex surface toward the image side. The concave surface of the negative lens L22 constituting the first junction lens CL21 and the concave surface of the negative lens L23 constituting the second junction lens CL22 are arranged so as to face each other. The first junction lens CL21 and the second junction lens CL22 have a so-called Gauss type configuration in order to correct the Petzval sum. With such a configuration, it is possible to correct axial chromatic aberration and lateral chromatic aberration in a well-balanced manner while reducing the Petzval sum.

上記構成の下、本実施形態に係る顕微鏡対物レンズOLは、次の条件式(1)〜(2)
を満足する。
Under the above configuration, the microscope objective lens OL according to the present embodiment has the following conditional expressions (1) to (2).
To be satisfied.

65.0<νd1 ・・・(1)
0.0045<θgd1+(0.002076×νd1)−1.36467
・・・(2)
但し、νd1:第2接合レンズCL22を構成する負レンズL23のd線(波長λ=587.6nm)を基準とするアッベ数
θgd1:第2接合レンズCL22を構成する負レンズL23の部分分散比であり、負レンズL23のg線(波長λ=435.8nm)に対する屈折率をng1とし、負レンズ
L23のd線に対する屈折率をnd1とし、負レンズL23のF線(波長λ=486.1nm)
に対する屈折率をnF1とし、負レンズL23のC線(波長λ=656.3nm)に対する屈折
率をnC1としたとき、次式で定義される
θgd1=(ng1−nd1)/(nF1−nC1)
65.0 <νd1 ・ ・ ・ (1)
0.0045 <θgd1 + (0.002076 × νd1) -1.36467
... (2)
However, νd1: Abbe number based on the d line (wavelength λ = 587.6 nm) of the negative lens L23 constituting the second junction lens CL22 θgd1: Partial dispersion ratio of the negative lens L23 constituting the second junction lens CL22. The refractive index of the negative lens L23 with respect to the g line (wavelength λ = 435.8 nm) is ng1, the refractive index of the negative lens L23 with respect to the d line is nd1, and the F line of the negative lens L23 (wavelength λ = 486.1 nm).
When the refractive index for the negative lens L23 is nF1 and the refractive index for the C line (wavelength λ = 656.3 nm) of the negative lens L23 is nC1, θgd1 = (ng1-nd1) / (nF1-nC1) defined by the following equation.

条件式(1)は、第2レンズ群G2における物体側に凹面を向けた負レンズL23の硝材の適切なアッベ数を規定する条件式である。条件式(1)の対応値が下限値を下回ると、分散が大きくなるため、軸上色収差と倍率色収差を同時に良好に補正することが困難になる。本実施形態の効果を確実にするために、条件式(1)の下限値を好ましくは70.0とし、より好ましくは80.0としてもよい。また、負レンズL23の硝材の生成が困難とならないように、条件式(1)の上限値を好ましくは96.0未満としてもよい。 The conditional expression (1) is a conditional expression that defines an appropriate Abbe number of the glass material of the negative lens L23 with the concave surface facing the object side in the second lens group G2. When the corresponding value of the conditional expression (1) is less than the lower limit value, the variance becomes large, and it becomes difficult to satisfactorily correct the axial chromatic aberration and the chromatic aberration of magnification at the same time. In order to ensure the effect of the present embodiment, the lower limit of the conditional expression (1) may be preferably 70.0, more preferably 80.0. Further, the upper limit value of the conditional expression (1) may be preferably less than 96.0 so as not to make it difficult to generate the glass material of the negative lens L23.

条件式(2)は、第2レンズ群G2における物体側に凹面を向けた負レンズL23の硝材の異常分散性を規定する条件式である。条件式(2)の右辺は、縦軸を部分分散比θgd(θgd=(ng−nd)/(nF−nC))とし、横軸を(d線を基準とする)アッベ数νdとした図において、負レンズL23の硝材に対応する座標点(θgd1,νd1)と、ガラス「NSL7」および「PBM2」(ともに株式会社オハラ製造の硝種名)に対応する2つの座標点を通る直線との縦軸方向の差を示す。なお、ガラス「NSL7」の部分分散比をθgd2とし、ガラス「NSL7」のアッベ数をνd2としたとき、θgd2=1.2391、νd2=60.49である。ガラス「PBM2」の部分分散比をθgd3とし、ガラス「PBM2」のアッベ数をνd3としたとき、θgd3=1.2894、νd3=36.26である。 The conditional expression (2) is a conditional expression that defines the abnormal dispersibility of the glass material of the negative lens L23 with the concave surface facing the object side in the second lens group G2. On the right side of the conditional equation (2), the vertical axis is the partial dispersion ratio θgd (θgd = (ng-nd) / (nF-nC)), and the horizontal axis is the Abbe number νd (based on the d line). In the vertical direction, the coordinate points (θgd1, νd1) corresponding to the glass material of the negative lens L23 and the straight line passing through the two coordinate points corresponding to the glasses “NSL7” and “PBM2” (both are glass type names manufactured by O'Hara Co., Ltd.). The difference in the axial direction is shown. When the partial dispersion ratio of the glass “NSL7” is θgd2 and the Abbe number of the glass “NSL7” is νd2, θgd2 = 1.2391 and νd2 = 60.49. When the partial dispersion ratio of the glass “PBM2” is θgd3 and the Abbe number of the glass “PBM2” is νd3, then θgd3 = 1.2894 and νd3 = 36.26.

条件式(2)の対応値が下限値を下回ると、異常分散性が弱くなるため、g線の倍率色収差が増大する。本実施形態の効果を確実にするために、条件式(2)の下限値を好ましくは0.0062とし、より好ましくは0.0202としてもよい。また、負レンズL23の硝材の生成が困難とならないように、条件式(2)の上限値を好ましくは0.0700未満としてもよい。 When the corresponding value of the conditional expression (2) is less than the lower limit value, the anomalous dispersibility is weakened, so that the chromatic aberration of magnification of the g-line increases. In order to ensure the effect of the present embodiment, the lower limit of the conditional expression (2) may be preferably 0.0062, more preferably 0.0202. Further, the upper limit of the conditional expression (2) may be preferably less than 0.0700 so as not to make it difficult to generate the glass material of the negative lens L23.

本実施形態の顕微鏡対物レンズOLは、次の条件式(3)を満足してもよい。 The microscope objective lens OL of the present embodiment may satisfy the following conditional expression (3).

100<fDOE/f<500 ・・・(3)
但し、fDOE:回折光学素子DOEの焦点距離
f:顕微鏡対物レンズOLの焦点距離
100 <fDOE / f <500 ... (3)
However, fDOE: focal length of the diffractive optical element DOE f: focal length of the microscope objective lens OL

条件式(3)は、顕微鏡対物レンズOLの焦点距離に対する、回折光学素子DOEの焦点距離の比を規定する条件式である。本実施形態において、回折光学素子DOEの焦点距離は、回折光学素子DOEにおける回折光学面Dmの焦点距離を示すものとする。条件式(3)の対応値が下限値を下回ると、回折光学素子DOEの格子ピッチ(回折格子溝の間隔)が小さくなり、設計次数以外の回折光が発生してフレアとなるため、好ましくない。本実施形態の効果を確実にするために、条件式(3)の下限値を好ましくは200として
もよい。
The conditional expression (3) is a conditional expression that defines the ratio of the focal length of the diffractive optical element DOE to the focal length of the microscope objective lens OL. In the present embodiment, the focal length of the diffractive optical element DOE indicates the focal length of the diffractive optical surface Dm in the diffractive optical element DOE. If the corresponding value of the conditional expression (3) is less than the lower limit value, the lattice pitch (interval of the diffraction grating grooves) of the diffraction optical element DOE becomes small, and diffracted light other than the design order is generated to cause flare, which is not preferable. .. In order to ensure the effect of this embodiment, the lower limit of the conditional expression (3) may be preferably 200.

条件式(3)の対応値が上限値を上回ると、回折光学素子DOEによる軸上色収差の補正効果が小さくなり、軸上色収差の補正が不十分になる。本実施形態の効果を確実にするために、条件式(3)の上限値を好ましくは400としてもよい。 When the corresponding value of the conditional expression (3) exceeds the upper limit value, the effect of correcting the axial chromatic aberration by the diffractive optical element DOE becomes small, and the correction of the axial chromatic aberration becomes insufficient. In order to ensure the effect of the present embodiment, the upper limit value of the conditional expression (3) may be preferably 400.

本実施形態の顕微鏡対物レンズOLは、次の条件式(4)を満足してもよい。
0°<θmax<40° ・・・(4)
但し、θmax:物体中心からの光線のうち開口数が最大となる光線が回折光学面Dmに入射する際の入射角の最大値
The microscope objective lens OL of the present embodiment may satisfy the following conditional expression (4).
0 ° <θmax <40 ° ・ ・ ・ (4)
However, θmax: the maximum value of the incident angle when the light ray having the maximum numerical aperture among the light rays from the center of the object is incident on the diffractive optical surface Dm.

条件式(4)は、回折光学面Dmに入射する光線の(光軸Axを基準とする)最大入射角を規定する条件式である。条件式(4)の対応値が上限値を上回ると、回折光学面Dmに入射する光線の最大入射角が大きすぎるため、回折光学素子DOEの回折効率が低下し、設計次数以外の回折光が発生してフレアとなるため、好ましくない。本実施形態の効果を確実にするために、条件式(4)の上限値を好ましくは30°としてもよい。 The conditional expression (4) is a conditional expression that defines the maximum incident angle (based on the optical axis Ax) of the light beam incident on the diffractive optical surface Dm. If the corresponding value of the conditional expression (4) exceeds the upper limit value, the maximum incident angle of the light beam incident on the diffractive optical surface Dm is too large, so that the diffraction efficiency of the diffractive optical element DOE is lowered and the diffracted light other than the design order is generated. It is not preferable because it occurs and causes flare. In order to ensure the effect of this embodiment, the upper limit of the conditional expression (4) may be preferably 30 °.

回折光学素子DOEが平行平面板を含む場合、回折光学面Dmに入射する光線の最大入射角が0°に近いと、この平行平面板とカバーガラス等の光透過平行平面板Cvでの2面反射によるフレアが発生する。そこで、2面反射によるフレアを抑えるために、条件式(4)の下限値を好ましくは3°としてもよい。 When the diffractive optical element DOE includes a parallel flat plate, if the maximum incident angle of the light beam incident on the diffractive optical surface Dm is close to 0 °, the parallel flat plate and the light transmitting parallel flat plate Cv such as the cover glass have two surfaces. Flare occurs due to reflection. Therefore, in order to suppress flare due to two-sided reflection, the lower limit value of the conditional expression (4) may be preferably set to 3 °.

本実施形態の顕微鏡対物レンズOLにおいて、光束の径は、軸上物点から射出される光束の場合には開口数が最大となる光線で決定され、軸外物点から射出される光束の場合には最も外側の光線で決定される。ここで、軸外物点から射出される光束のうち、最も光軸Axから離れる側に射出される光線は、軸上物点からの最大開口数の光線と第1レンズ群G1内の適宜のレンズ面(例えば、図1における負レンズL2の像側のレンズ面)との交点で制限される。軸外物点から射出される光束のうち、上述した最も光軸Axから離れる側と(光軸Axを基準として)反対側に射出される光線は、軸上物点からの最大開口数の光線と第2レンズ群G2内の適宜のレンズ面(例えば、図1における負レンズL23の物体側のレンズ面)との交点で制限される。このようにして最も外側の光線が決まる(軸外物点から射出される)光束において、最大物体高の軸外物点から射出された光束の中心を通る光線を主光線Prと定義する。 In the microscope objective lens OL of the present embodiment, the diameter of the light beam is determined by the light beam having the maximum numerical aperture in the case of the light beam emitted from the on-axis object point, and in the case of the light beam emitted from the off-axis object point. Is determined by the outermost ray. Here, among the light rays emitted from the off-axis object point, the light rays emitted to the side farthest from the optical axis Ax are the light rays having the maximum numerical aperture from the on-axis object point and an appropriate light ray in the first lens group G1. It is limited by the intersection with the lens surface (for example, the lens surface on the image side of the negative lens L2 in FIG. 1). Of the light rays emitted from the off-axis object point, the light ray emitted on the side opposite to the side farthest from the optical axis Ax (based on the optical axis Ax) is the light ray having the maximum numerical aperture from the on-axis object point. It is limited by the intersection of and an appropriate lens surface in the second lens group G2 (for example, the lens surface on the object side of the negative lens L23 in FIG. 1). In the luminous flux in which the outermost ray is determined (emitted from the off-axis object point) in this way, the ray passing through the center of the luminous flux emitted from the off-axis object point at the maximum object height is defined as the main ray Pr.

上記のように主光線Prを定義した場合、回折光学素子DOEは、主光線Prが光軸Axと交わる位置よりも物体側に配置されるようにしてもよい。これにより、軸上色収差を効果的に補正することができる。さらに、回折光学素子DOEは、第1レンズ群G1を通過する光束における径が最も大きくなる部分よりも物体側に配置されるようにしてもよい。これにより、軸上色収差をより効果的に補正することができる。 When the main ray Pr is defined as described above, the diffractive optical element DOE may be arranged on the object side of the position where the main ray Pr intersects the optical axis Ax. As a result, axial chromatic aberration can be effectively corrected. Further, the diffractive optical element DOE may be arranged on the object side of the portion having the largest diameter in the light flux passing through the first lens group G1. Thereby, the axial chromatic aberration can be corrected more effectively.

なお、第1レンズ群G1において回折光学素子DOEのみで色収差の補正を行う場合、回折光学素子DOEの最小の格子ピッチ(回折格子溝の間隔)が小さくなりすぎると、回折光学素子DOEの製造が困難になる。そこで、色収差の補正を分担するため、第1レンズ群G1は、複数の接合レンズを有して構成されてもよい。この場合、第1レンズ群G1を構成する複数の接合レンズのうち少なくとも1つが、回折光学素子DOEよりも像側に配置される。またこの場合、第1レンズ群G1を構成する複数の接合レンズのうち、最も像側に配置された接合レンズが負の屈折力を有し、他の接合レンズが正の屈折力を有してもよい。第1レンズ群G1を構成する複数の接合レンズのうちの1つが、回折光学素子DOEを含んで構成されて、正の屈折力を有するようにしてもよい。 When the chromatic aberration is corrected only by the diffractive optical element DOE in the first lens group G1, if the minimum lattice pitch (distance of the diffraction grating groove) of the diffractive optical element DOE becomes too small, the diffractive optical element DOE is manufactured. It becomes difficult. Therefore, in order to share the correction of chromatic aberration, the first lens group G1 may be configured to have a plurality of bonded lenses. In this case, at least one of the plurality of junction lenses constituting the first lens group G1 is arranged on the image side of the diffractive optical element DOE. Further, in this case, among the plurality of bonded lenses constituting the first lens group G1, the bonded lens arranged on the image side has a negative refractive power, and the other bonded lens has a positive refractive power. May be good. One of the plurality of junction lenses constituting the first lens group G1 may be configured to include a diffractive optical element DOE so as to have a positive refractive power.

例えば、図1に示す第1レンズ群G1は、物体側から順に並んだ、正の屈折力を有する第1接合レンズCL11と、物体側に凹面を向けたメニスカス形状の正レンズL3と、正の屈折力を有する第2接合レンズCL12と、正の屈折力を有する第3接合レンズCL13と、正の屈折力を有する第4接合レンズCL14と、負の屈折力を有する第5接合レンズCL15と、を有し、第3接合レンズCL13が、回折光学素子DOEを含んで構成されている。また例えば、図3に示す第1レンズ群G1は、物体側から順に並んだ、正の屈折力を有する第1接合レンズCL11と、物体側に凹面を向けたメニスカス形状の正レンズL3と、正の屈折力を有する第2接合レンズCL12と、正の屈折力を有する第3接合レンズCL13と、正の屈折力を有する第4接合レンズCL14と、負の屈折力を有する第5接合レンズCL15と、を有し、第4接合レンズCL14が、回折光学素子DOEを含んで構成されている。 For example, the first lens group G1 shown in FIG. 1 includes a first junction lens CL11 having a positive refractive power arranged in order from the object side, a meniscus-shaped positive lens L3 with a concave surface facing the object side, and positive lenses. A second junction lens CL12 having a refractive power, a third junction lens CL13 having a positive refractive power, a fourth junction lens CL14 having a positive refractive power, and a fifth junction lens CL15 having a negative refractive power. The third junction lens CL13 includes a diffraction optical element DOE. Further, for example, the first lens group G1 shown in FIG. 3 includes a first junction lens CL11 having a positive refractive power arranged in order from the object side, and a meniscus-shaped positive lens L3 having a concave surface facing the object side. The second junction lens CL12 having a positive refractive power, the third junction lens CL13 having a positive refractive power, the fourth junction lens CL14 having a positive refractive power, and the fifth junction lens CL15 having a negative refractive power. The fourth junction lens CL14 includes a diffraction optical element DOE.

本実施形態の顕微鏡は、上述した構成の顕微鏡対物レンズOLを備えて構成される。その具体例として、本実施形態に係る顕微鏡対物レンズOLを備えた顕微鏡(液浸顕微鏡)を図6に基づいて説明する。この顕微鏡100は、スタンド101と、スタンド101のベース部102に取り付けられたステージ111と、スタンド101のアーム部103に取り付けられた鏡筒121と、鏡筒121に連結された撮像部131とを有して構成される。ステージ111上には、スライドガラスBとカバーガラス等の光透過平行平面板Cv(図6においては付番を省略する)の間に保持された不図示の観察物体(生物試料等)が載置される。ステージ111の下側には、透過照明装置116を構成するコンデンサレンズ117が取り付けられる。なお、スタンド101のベース部102には、ステージ111の他、上述の透過照明装置116と、透過照明用光源118等が取り付けられる。 The microscope of the present embodiment is configured to include the microscope objective lens OL having the above-described configuration. As a specific example thereof, a microscope (immersion microscope) provided with the microscope objective lens OL according to the present embodiment will be described with reference to FIG. The microscope 100 includes a stand 101, a stage 111 attached to the base 102 of the stand 101, a lens barrel 121 attached to the arm 103 of the stand 101, and an imaging unit 131 connected to the lens barrel 121. Consists of having. An observation object (biological sample, etc.) (not shown) held between the slide glass B and a light-transmitting parallel flat plate Cv (numbering is omitted in FIG. 6) such as a cover glass is placed on the stage 111. Will be done. A condenser lens 117 constituting the transmission illumination device 116 is attached to the lower side of the stage 111. In addition to the stage 111, the above-mentioned transmission illumination device 116, a transmission illumination light source 118, and the like are attached to the base portion 102 of the stand 101.

鏡筒121の下方に設けられたレボルバ126に、対物レンズ122が取り付けられる。対物レンズ122の先端部と光透過平行平面板Cvとの間に、浸液が満たされるようになっている。鏡筒121の下方に取り付けられる対物レンズ122として、本実施形態に係る顕微鏡対物レンズOLが用いられる。鏡筒121には、結像レンズ123と、プリズム124が設けられる。鏡筒121に設けられる結像レンズ123として、後述の結像レンズILが用いられる。なお、鏡筒121には、落射蛍光装置127と、落射蛍光用光源128と、接眼レンズ129等が取り付けられる。撮像部131には、撮像素子132が設けられる。 The objective lens 122 is attached to the revolver 126 provided below the lens barrel 121. Immersion is filled between the tip of the objective lens 122 and the light-transmitting parallel flat plate Cv. As the objective lens 122 attached below the lens barrel 121, the microscope objective lens OL according to the present embodiment is used. The lens barrel 121 is provided with an imaging lens 123 and a prism 124. As the imaging lens 123 provided on the lens barrel 121, the imaging lens IL described later is used. The epi-fluorescence device 127, the epi-fluorescence light source 128, the eyepiece 129, and the like are attached to the lens barrel 121. The image pickup unit 131 is provided with an image pickup element 132.

このような顕微鏡100において、観察物体からの光は、光透過平行平面板Cvおよび浸液と、対物レンズ122と、結像レンズ123およびプリズム124を透過して、撮像素子132へ到達する。結像レンズ123により、観察物体の像が撮像素子132の撮像面上に結像され、撮像素子132が観察物体の像を撮像する。撮像素子132により撮像取得された観察物体の画像は、外部のコンピュータPCを介してモニターMTに表示される。外部のコンピュータPCは、撮像素子132により撮像取得された観察物体の画像データに対して種々の画像処理を行うことができる。このような構成によれば、上記実施形態に係る顕微鏡対物レンズOLを搭載することにより、視野全体にわたり平坦な像面を有して、軸上色収差が良好に補正されるとともに、視野全体にわたる倍率色収差が良好に補正された顕微鏡を得ることが可能になる。なお、顕微鏡100は、正立顕微鏡であってもよく、倒立顕微鏡であってもよい。 In such a microscope 100, the light from the observation object passes through the light transmitting parallel plane plate Cv and the immersion liquid, the objective lens 122, the imaging lens 123, and the prism 124, and reaches the imaging element 132. The image pickup lens 123 forms an image of the observation object on the image pickup surface of the image pickup element 132, and the image pickup element 132 takes an image of the observation object. The image of the observation object captured and acquired by the image pickup device 132 is displayed on the monitor MT via an external computer PC. The external computer PC can perform various image processing on the image data of the observation object imaged and acquired by the image sensor 132. According to such a configuration, by mounting the microscope objective lens OL according to the above embodiment, a flat image plane is provided over the entire field of view, axial chromatic aberration is satisfactorily corrected, and a magnification over the entire field of view is obtained. It becomes possible to obtain a microscope in which chromatic aberration is well corrected. The microscope 100 may be an upright microscope or an inverted microscope.

なお、対物レンズ122は、無限遠補正型のレンズである。顕微鏡100において、対物レンズ122は、観察物体の像を結像させる結像レンズ123と組み合わせた有限遠補正光学系の態様で使用される。上述したように、対物レンズ122として、本実施形態に係る顕微鏡対物レンズOLが用いられることで、視野全体にわたり平坦な像面を有して、軸上色収差が良好に補正されるとともに、視野全体にわたる倍率色収差が良好に補正された光学系を得ることが可能になる。 The objective lens 122 is an infinity correction type lens. In the microscope 100, the objective lens 122 is used in the form of a finite distance correction optical system combined with an imaging lens 123 that forms an image of an observation object. As described above, by using the microscope objective lens OL according to the present embodiment as the objective lens 122, the image plane has a flat image over the entire field of view, axial chromatic aberration is satisfactorily corrected, and the entire field of view is corrected. It is possible to obtain an optical system in which the chromatic aberration of magnification is well corrected.

以下、本実施形態の実施例に係る顕微鏡対物レンズOLを図面に基づいて説明する。各実施例に係る顕微鏡対物レンズOLは、カバーガラス等の光透過平行平面板Cvの下に物体(観察物体)Obを配置し、先端部と光透過平行平面板Cvとの間を浸液(例えば、シリコーンオイル等)で満した状態でこの物体(観察物体)Obを観察する液浸顕微鏡用の対物レンズである。各実施例において、使用する浸液(オイル)のd線(波長λ=587.56nm)に対する屈折率をnd4とし、d線を基準とするアッベ数をνd4としたとき、nd4=1.515、νd4=41.4であるものとする。 Hereinafter, the microscope objective lens OL according to the embodiment of the present embodiment will be described with reference to the drawings. In the microscope objective lens OL according to each embodiment, an object (observation object) Ob is arranged under a light transmitting parallel flat plate Cv such as a cover glass, and a liquid is immersed between the tip portion and the light transmitting parallel flat plate Cv. For example, it is an objective lens for a immersion microscope that observes this object (observation object) Ob in a state of being filled with silicone oil or the like. In each embodiment, when the refractive index of the immersion liquid (oil) to be used with respect to the d-line (wavelength λ = 587.56 nm) is nd4 and the Abbe number based on the d-line is νd4, nd4 = 1.515, νd4. = 41.4.

図1、図3は、第1〜第2実施例に係る顕微鏡対物レンズOL{OL(1)〜OL(2)}の構成を示す断面図である。これら図1、図3において、各レンズ群を符号Gと数字(もしくはアルファベット)の組み合わせにより、各レンズを符号Lと数字(もしくはアルファベット)の組み合わせにより、それぞれ表している。この場合において、符号、数字の種類および数が大きくなって煩雑化するのを防止するため、実施例毎にそれぞれ独立して符号と数字の組み合わせを用いてレンズ等を表している。このため、実施例間で同一の符号と数字の組み合わせが用いられていても、同一の構成であることを意味するものでは無い。 1 and 3 are cross-sectional views showing the configuration of the microscope objective lenses OL {OL (1) to OL (2)} according to the first to second embodiments. In FIGS. 1 and 3, each lens group is represented by a combination of reference numerals G and a number (or alphabet), and each lens is represented by a combination of reference numerals L and a number (or alphabet). In this case, in order to prevent the types and numbers of the symbols and numbers from becoming large and complicated, the lenses and the like are represented by independently using combinations of the symbols and numbers for each embodiment. Therefore, even if the same combination of reference numerals and numbers is used between the examples, it does not mean that they have the same configuration.

以下に表1〜表2を示すが、この内、表1は第1実施例、表2は第2実施例における各諸元データを示す表である。各実施例では収差特性の算出対象として、d線(波長λ=587.6nm)、g線(波長λ=435.8nm)、C線(波長λ=656.3nm)、F線(波長λ=486.1nm)を選んでいる。 Tables 1 and 2 are shown below. Among them, Table 1 is a table showing each specification data in the first embodiment, and Table 2 is a table showing each specification data in the second embodiment. In each embodiment, the d-line (wavelength λ = 587.6 nm), g-line (wavelength λ = 435.8 nm), C-line (wavelength λ = 656.3 nm), and F-line (wavelength λ = 486.1 nm) are calculated as the aberration characteristics. Is selected.

[全体諸元]の表において、fは顕微鏡対物レンズOLのd線(波長λ=587.6nm)で
の焦点距離を示し、NAは開口数を示し、βは倍率を示す。D0は、作動距離(ワーキングディスタンス)であり、カバーガラス等の光透過平行平面板Cvの厚さの分を除いた、物体Obから顕微鏡対物レンズOLにおける最も物体側のレンズ面(後述の第1面)までの光軸上の距離を示す。
In the [Overall Specifications] table, f indicates the focal length of the microscope objective lens OL at the d line (wavelength λ = 587.6 nm), NA indicates the numerical aperture, and β indicates the magnification. D0 is the working distance, and is the lens surface closest to the object in the microscope objective lens OL from the object Ob, excluding the thickness of the light-transmitting parallel flat plate Cv such as the cover glass (first described later). Indicates the distance on the optical axis to the surface).

[レンズデータ]の表において、面番号は物体側からのレンズ面の順序を示し、Rは各面番号に対応する曲率半径(物体側に凸のレンズ面の場合を正の値としている)、Dは各面番号に対応する光軸上のレンズ厚もしくは空気間隔、ndは各面番号に対応する光学材料のd線(波長λ=587.6nm)に対する屈折率、νdは各面番号に対応する光学材料のd
線を基準とするアッベ数を、それぞれ示す。曲率半径の「∞」は平面又は開口を示す。また、空気の屈折率nd=1.00000の記載は省略している。光学面が回折光学面である場合
には面番号に*印を付して、曲率半径Rの欄に近軸曲率半径を示している。
In the [Lens Data] table, the surface numbers indicate the order of the lens surfaces from the object side, and R is the radius of curvature corresponding to each surface number (the case of a lens surface convex to the object side is a positive value). D is the lens thickness or air spacing on the optical axis corresponding to each surface number, nd is the refractive index of the optical material corresponding to each surface number with respect to the d line (wavelength λ = 587.6 nm), and νd corresponds to each surface number. Optical material d
The Abbe number with respect to the line is shown respectively. The radius of curvature "∞" indicates a plane or an opening. Further, the description of the refractive index nd of air = 1.00000 is omitted. When the optical surface is a diffractive optical surface, the surface number is marked with *, and the near-axis radius of curvature is indicated in the column of radius of curvature R.

[回折光学面データ]において示す回折光学面Dmの位相形状Φ(h)は、次式(A)によって表わされる。 The phase shape Φ (h) of the diffractive optical surface Dm shown in [Diffractive optical surface data] is represented by the following equation (A).

Φ(h)=(2π/λ)×(C2×h2+C4×h4+C6×h6+C8×h8) …(A)
但し、h:光軸に対して垂直な方向の高さ
λ:波長
Ci:位相係数(i=2,4,6,8)
Φ (h) = (2π / λ) × (C2 × h 2 + C4 × h 4 + C6 × h 6 + C8 × h 8 )… (A)
However, h: height in the direction perpendicular to the optical axis λ: wavelength Ci: phase coefficient (i = 2, 4, 6, 8)

[回折光学面データ]の表には、[レンズデータ]に示した回折光学面について、式(A)における2次の位相係数C2、4次の位相係数C4、6次の位相係数C6、8次の位相
係数C8を示す。[回折光学面データ]において、「E-n」は「×10-n」を示す。例え
ば、1.234E-05=1.234×10-5である。
In the table of [Diffractive optical surface data], regarding the diffractive optical surface shown in [Lens data], the second-order phase coefficient C2 in the formula (A), the fourth-order phase coefficient C4, and the sixth-order phase coefficient C6, 8 The following phase coefficient C8 is shown. In [diffraction optical surface data], "E-n" indicates " x10 -n ". For example, 1.234E-05 = 1.234 × 10 -5 .

回折光学面Dmは、異なる種類の光学材料からなる2つの回折素子要素の接合面に形成される。[樹脂屈折率データ]の表には、これら2つの回折素子要素に用いられる光学材料として、相対的に高屈折率(低分散)の樹脂材料と低屈折率(高分散)の樹脂材料の屈折率を示す。[樹脂屈折率データ]の表において、nCはC線(波長λ=656.3nm)に対
する屈折率を示し、ndはd線(波長λ=587.6nm)に対する屈折率を示し、nFはF線
(波長λ=486.1nm)に対する屈折率を示し、ngはg線(波長λ=435.8nm)に対する屈折率を示す。また、各樹脂材料は紫外線硬化型樹脂であり、[樹脂屈折率データ]の表には紫外線硬化後の屈折率を示す。
The diffraction optical surface Dm is formed on the junction surface of two diffraction element elements made of different types of optical materials. In the table of [Resin Refractive Index Data], the refraction of a resin material having a relatively high refractive index (low dispersion) and a resin material having a relatively low refractive index (high dispersion) as optical materials used for these two diffraction element elements. Shows the rate. In the [Resin Refractive Index Data] table, nC indicates the refractive index for the C line (wavelength λ = 656.3 nm), nd indicates the refractive index for the d line (wavelength λ = 587.6 nm), and nF indicates the F line (wavelength λ = 587.6 nm). λ = 486.1 nm), and ng indicates the refractive index for the g-line (wavelength λ = 435.8 nm). Further, each resin material is an ultraviolet curable resin, and the table of [Resin Refractive Index Data] shows the refractive index after ultraviolet curing.

[条件式対応値]の表には、上記の条件式(1)〜(4)に対応する値を示す。[参考値]の表には、第2レンズ群G2における第2接合レンズCL22を構成する負レンズL23の部分分散比θgd1の値を示す。 The table of [Conditional expression corresponding values] shows the values corresponding to the above conditional expressions (1) to (4). The [Reference Value] table shows the value of the partial dispersion ratio θgd1 of the negative lens L23 constituting the second junction lens CL22 in the second lens group G2.

なお、高屈折率(低分散)の樹脂材料と低屈折率(高分散)の樹脂材料を用いた密着複層型回折光学素子の製造方法は、例えば、欧州特許公開第1830204号公報や、欧州特許公開第1830205号公報に記載されている。また、各樹脂材料は、350nm付近の波長の光線での内部透過率が0.5以上であることが望ましい。 Examples of a method for manufacturing a close-contact multi-layer diffractive optical element using a resin material having a high refractive index (low dispersion) and a resin material having a low refractive index (high dispersion) are described in European Patent Publication No. 1830204 and Europe. It is described in Japanese Patent Publication No. 1830205. Further, it is desirable that each resin material has an internal transmittance of 0.5 or more in a light beam having a wavelength near 350 nm.

以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。 Hereinafter, in all the specification values, "mm" is generally used for the focal length f, the radius of curvature R, the plane spacing D, other lengths, etc., unless otherwise specified, but the optical system is expanded proportionally. Alternatively, it is not limited to this because the same optical performance can be obtained even if the proportional reduction is performed.

ここまでの表の説明は全ての実施例において共通であり、以下での重複する説明は省略する。 The description of the table so far is common to all the examples, and the duplicate description below is omitted.

(第1実施例)
第1実施例について、図1〜図2および表1を用いて説明する。図1は、本実施形態の第1実施例に係る顕微鏡対物レンズの構成を示す断面図である。第1実施例に係る顕微鏡対物レンズOL(1)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2とから構成される。
(First Example)
The first embodiment will be described with reference to FIGS. 1 to 2 and Table 1. FIG. 1 is a cross-sectional view showing a configuration of a microscope objective lens according to a first embodiment of the present embodiment. The microscope objective lens OL (1) according to the first embodiment is composed of a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power arranged in order from the object side. NS.

第1レンズ群G1は、物体側から順に並んだ、物体側に平面を向けた平凸形状の正レンズL1および物体側に曲率の強い凹面を向けたメニスカス形状の負レンズL2を接合してなる第1接合レンズCL11と、物体側に凹面を向けたメニスカス形状の正レンズL3と、両凹形状の負レンズL4および両凸形状の正レンズL5を接合してなる第2接合レンズCL12と、第1および第2の樹脂層(回折素子要素)Da,Dbを介して平行平面板L6と像側に凹面を向けた平凹形状の負レンズL7とが接合された回折光学素子DOEに、両凸形状の正レンズL8を接合してなる第3接合レンズCL13と、物体側に凸面を向けたメニスカス形状の負レンズL9および両凸形状の正レンズL10を接合してなる第4接合レンズCL14と、両凸形状の正レンズL11および両凹形状の負レンズL12を接合してなる第5接合レンズCL15とから構成される。第1〜第4接合レンズCL11〜CL14はそれぞれ、全体として正の屈折力を有する。第5接合レンズCL15は、全体として負の屈折力を有する。 The first lens group G1 is formed by joining a plano-convex positive lens L1 having a plane facing the object side and a meniscus-shaped negative lens L2 having a concave surface having a strong curvature facing the object side, which are arranged in order from the object side. The first junction lens CL11, the meniscus-shaped positive lens L3 with the concave surface facing the object side, the second junction lens CL12 formed by joining the biconcave negative lens L4 and the biconvex positive lens L5, and the second Bi-convex to the diffraction optical element DOE in which the parallel flat plate L6 and the plano-concave negative lens L7 with the concave surface facing the image side are joined via the first and second resin layers (diffraction element elements) Da and Db. A third junction lens CL13 formed by joining a positive lens L8 having a shape, a fourth junction lens CL14 formed by joining a meniscus-shaped negative lens L9 having a convex surface facing the object side, and a biconvex positive lens L10. It is composed of a fifth junction lens CL15 formed by bonding a biconvex positive lens L11 and a biconcave negative lens L12. The first to fourth junction lenses CL11 to CL14 each have a positive refractive power as a whole. The fifth junction lens CL15 has a negative refractive power as a whole.

第1の樹脂層Daは、相対的に高屈折率(低分散)の樹脂材料を用いて形成され、第2の樹脂層Dbは、相対的に低屈折率(高分散)の樹脂材料を用いて形成される。第1の樹脂層Daと第2の樹脂層Dbとの接合面に回折格子溝を構成する回折光学面Dmが形成されて、第1の樹脂層Daと第2の樹脂層Dbとが接合される。第1レンズ群G1の物体側にはカバーガラス等の光透過平行平面板Cvが配置されており、第1レンズ群G1の最も
物体側に配置された正レンズL1と光透過平行平面板Cvとの間は浸液で満たされている。
The first resin layer Da is formed using a resin material having a relatively high refractive index (low dispersion), and the second resin layer Db uses a resin material having a relatively low refractive index (high dispersion). Is formed. A diffraction optical surface Dm forming a diffraction grating groove is formed on the bonding surface between the first resin layer Da and the second resin layer Db, and the first resin layer Da and the second resin layer Db are bonded to each other. NS. A light transmitting parallel plane plate Cv such as a cover glass is arranged on the object side of the first lens group G1, and the positive lens L1 and the light transmitting parallel plane plate Cv arranged on the most object side of the first lens group G1 The space is filled with immersion liquid.

第2レンズ群G2は、物体側から順に並んだ、両凸形状の正レンズL21および像側に曲率の強い凹面を向けた両凹形状の負レンズL22を接合してなる第1接合レンズCL21と、物体側に曲率の強い凹面を向けたメニスカス形状の負レンズL23および像側に凸面を向けたメニスカス形状の正レンズL24を接合してなる第2接合レンズCL22とから構成される。第1接合レンズCL21は、全体として負の屈折力を有する。第2接合レンズCL22は、全体として正の屈折力を有する。 The second lens group G2 is a first junction lens CL21 formed by joining a biconvex positive lens L21 arranged in order from the object side and a biconcave negative lens L22 with a concave surface having a strong curvature facing the image side. It is composed of a meniscus-shaped negative lens L23 having a concave surface with a strong curvature facing the object side and a second junction lens CL22 formed by joining a meniscus-shaped positive lens L24 having a convex surface facing the image side. The first junction lens CL21 has a negative refractive power as a whole. The second junction lens CL22 has a positive refractive power as a whole.

以下の表1に、第1実施例に係る顕微鏡対物レンズの諸元の値を掲げる。 Table 1 below lists the values of the specifications of the microscope objective lens according to the first embodiment.

(表1)
[全体諸元]
f=5.02
NA=1.3
D0=0.28
β=40倍
[レンズデータ]
面番号 R D nd νd
1 ∞ 0.6 1.518229 58.90
2 -1.101 3.3 1.882997 40.77
3 -3.673 0.1
4 -9.662 3.8 1.729157 54.68
5 -6.883 0.1
6 -380.000 1.0 1.613397 44.27
7 16.703 6.0 1.651597 58.55
8 -20.056 0.1
9 ∞ 1.4 1.516330 64.14
10 ∞ 0.1 1.557100 49.74
11* ∞ 0.1 1.527800 33.41
12 ∞ 1.0 1.772500 49.61
13 18.495 7.6 1.438750 94.95
14 -15.616 0.1
15 120.000 1.0 1.804000 46.57
16 23.463 6.2 1.438750 94.95
17 -18.850 0.1
18 12.130 6.1 1.438750 94.95
19 -27.101 1.0 1.816000 46.62
20 18.174 0.1
21 9.479 5.6 1.592399 68.37
22 -50.368 4.4 1.672999 38.15
23 5.121 4.6
24 -5.200 6.1 1.497820 82.57
25 -537.425 3.6 1.834807 42.71
26 -13.193 150.0
[回折光学面データ]
第11面
C2=-3.80E-04
C4=2.27E-06
C6=-2.41E-08
C8=8.68E-11
[樹脂屈折率データ]
nC nd nF ng
低屈折率 1.523300 1.527800 1.539100 1.549100
高屈折率 1.553800 1.557100 1.565000 1.571300
[条件式対応値]
条件式(1) νd1=82.57
条件式(2) θgd1+(0.002076×νd1)−1.36467
=0.0401
条件式(3) fDOE/f=262
条件式(4) θmax=3.4°
[参考値]
θdg1=1.2334
(Table 1)
[Overall specifications]
f = 5.02
NA = 1.3
D0 = 0.28
β = 40x [lens data]
Surface number RD nd νd
1 ∞ 0.6 1.518229 58.90
2 -1.101 3.3 1.882997 40.77
3 -3.673 0.1
4-9.662 3.8 1.729157 54.68
5 -6.883 0.1
6 -380.000 1.0 1.613397 44.27
7 16.703 6.0 1.651597 58.55
8 -20.056 0.1
9 ∞ 1.4 1.516330 64.14
10 ∞ 0.1 1.557100 49.74
11 * ∞ 0.1 1.527800 33.41
12 ∞ 1.0 1.772500 49.61
13 18.495 7.6 1.438750 94.95
14 -15.616 0.1
15 120.000 1.0 1.804000 46.57
16 23.463 6.2 1.438750 94.95
17 -18.850 0.1
18 12.130 6.1 1.438750 94.95
19 -27.101 1.0 1.816000 46.62
20 18.174 0.1
21 9.479 5.6 1.592399 68.37
22 -50.368 4.4 1.672999 38.15
23 5.121 4.6
24 -5.200 6.1 1.497820 82.57
25 -537.425 3.6 1.834807 42.71
26 -13.193 150.0
[Diffraction optical surface data]
11th surface C2 = -3.80E-04
C4 = 2.27E-06
C6 = -2.41E-08
C8 = 8.68E-11
[Resin refractive index data]
nC nd nF ng
Low refractive index 1.523300 1.527800 1.539100 1.549100
High refractive index 1.553800 1.557100 1.565000 1.571300
[Conditional expression correspondence value]
Conditional expression (1) νd1 = 82.57
Conditional expression (2) θgd1 + (0.002076 × νd1) -1.36467
= 0.0401
Conditional expression (3) fDOE / f = 262
Conditional expression (4) θmax = 3.4 °
[Reference value]
θdg1 = 1.2334

図2は、第1実施例に係る顕微鏡対物レンズの諸収差(球面収差、非点収差、ディストーション、倍率色収差、およびコマ収差)を示す図である。この図においては、顕微鏡対物レンズに上述の結像レンズ123(結像レンズIL)およびプリズム124を組み合わせた状態での諸収差を示す。図2の各収差図において、NAは開口数、Yは像高を示し、dはd線(波長λ=587.6nm)、gはg線(波長λ=435.8nm)、CはC線(波長λ=656.3nm)、FはF線(波長λ=486.1nm)に対する諸収差をそれぞれ示す。球面収差図において、縦軸は入射瞳半径の最大値を1として規格化して示した値を示し、横軸は各光線における収差の値[mm]を示す。非点収差図においては、実線は各波長に対するメリジオナル像面を示し、破線は各波長に対するサジタル像面を示す。また、非点収差図において、縦軸は像高[mm]を示し、横軸は収差の値[mm]を示す。歪曲収差図(ディストーション)において、縦軸は像高[mm]を示し、横軸は収差の割合を百分率(%値)で示す。倍率色収差図において、縦軸は像高[mm]を示し、横軸は収差の値[mm]を示す。コマ収差図は、像高Yが12.5mmのとき、10.6mmのとき、9.0mmのとき、6.2mmのとき、および0mmのときの収差の値[mm]を示す。なお、以下に示す各実施例の収差図においても、本実施例と同様の符号を用い、重複する説明は省略する。 FIG. 2 is a diagram showing various aberrations (spherical aberration, astigmatism, distortion, chromatic aberration of magnification, and coma) of the microscope objective lens according to the first embodiment. In this figure, various aberrations in a state where the above-mentioned imaging lens 123 (imaging lens IL) and prism 124 are combined with the microscope objective lens are shown. In each aberration diagram of FIG. 2, NA indicates numerical aperture, Y indicates image height, d is d line (wavelength λ = 587.6 nm), g is g line (wavelength λ = 435.8 nm), and C is C line (wavelength). λ = 656.3 nm) and F indicate various aberrations with respect to the F line (wavelength λ = 486.1 nm), respectively. In the spherical aberration diagram, the vertical axis shows the standardized value with the maximum value of the entrance pupil radius as 1, and the horizontal axis shows the aberration value [mm] in each light ray. In the astigmatism diagram, the solid line shows the meridional image plane for each wavelength, and the broken line shows the sagittal image plane for each wavelength. Further, in the astigmatism diagram, the vertical axis represents the image height [mm] and the horizontal axis represents the aberration value [mm]. In the distortion diagram (distortion), the vertical axis shows the image height [mm], and the horizontal axis shows the ratio of the aberration as a percentage (% value). In the chromatic aberration of magnification diagram, the vertical axis represents the image height [mm], and the horizontal axis represents the aberration value [mm]. The coma aberration diagram shows the aberration value [mm] when the image height Y is 12.5 mm, 10.6 mm, 9.0 mm, 6.2 mm, and 0 mm. In the aberration diagrams of each of the following examples, the same reference numerals as those of the present embodiment will be used, and duplicate description will be omitted.

各収差図より、第1実施例に係る顕微鏡対物レンズは、C線〜g線の領域において諸収差が良好に補正され、優れた結像性能を有していることがわかる。 From each aberration diagram, it can be seen that the microscope objective lens according to the first embodiment has various aberrations satisfactorily corrected in the region of C line to g line and has excellent imaging performance.

(第2実施例)
第2実施例について、図3〜図4および表2を用いて説明する。図3は、本実施形態の第2実施例に係る顕微鏡対物レンズの構成を示す断面図である。第2実施例に係る顕微鏡対物レンズOL(2)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2とから構成される。
(Second Example)
The second embodiment will be described with reference to FIGS. 3 to 4 and Table 2. FIG. 3 is a cross-sectional view showing the configuration of the microscope objective lens according to the second embodiment of the present embodiment. The microscope objective lens OL (2) according to the second embodiment is composed of a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power arranged in order from the object side. NS.

第1レンズ群G1は、物体側から順に並んだ、物体側に平面を向けた平凸形状の正レンズL1および物体側に曲率の強い凹面を向けたメニスカス形状の負レンズL2を接合してなる第1接合レンズCL11と、物体側に凹面を向けたメニスカス形状の正レンズL3と、両凹形状の負レンズL4および両凸形状の正レンズL5を接合してなる第2接合レンズCL12と、物体側に凸面を向けたメニスカス形状の負レンズL6および両凸形状の正レンズL7を接合してなる第3接合レンズCL13と、第1および第2の樹脂層(回折素子要素)Da,Dbを介して物体側に凸面を向けたメニスカス形状の負レンズL8と両凸形状の正レンズL9とが接合されて回折光学素子DOEを構成する第4接合レンズCL14と、両凸形状の正レンズL10および両凹形状の負レンズL11を接合してなる第5接合レンズCL15とから構成される。第1〜第4接合レンズCL11〜CL14はそれぞれ
、全体として正の屈折力を有する。第5接合レンズCL15は、全体として負の屈折力を有する。
The first lens group G1 is formed by joining a plano-convex positive lens L1 having a plane facing the object side and a meniscus-shaped negative lens L2 having a concave surface having a strong curvature facing the object side, which are arranged in order from the object side. The first junction lens CL11, the meniscus-shaped positive lens L3 with the concave surface facing the object side, the second junction lens CL12 formed by joining the biconcave negative lens L4 and the biconvex positive lens L5, and the object. Through a third junction lens CL13 formed by bonding a meniscus-shaped negative lens L6 with a convex surface facing side and a biconvex positive lens L7, and first and second resin layers (diffraction element elements) Da and Db. The fourth junction lens CL14, which is formed by joining a meniscus-shaped negative lens L8 with a convex surface facing the object side and a biconvex positive lens L9 to form a diffractive optical element DOE, a biconvex positive lens L10, and both. It is composed of a fifth junction lens CL15 formed by bonding a concave negative lens L11. The first to fourth junction lenses CL11 to CL14 each have a positive refractive power as a whole. The fifth junction lens CL15 has a negative refractive power as a whole.

第1の樹脂層Daは、相対的に低屈折率(高分散)の樹脂材料を用いて形成され、第2の樹脂層Dbは、相対的に高屈折率(低分散)の樹脂材料を用いて形成される。第1の樹脂層Daと第2の樹脂層Dbとの接合面に回折格子溝を構成する回折光学面Dmが形成されて、第1の樹脂層Daと第2の樹脂層Dbとが接合される。第1レンズ群G1の物体側にはカバーガラス等の光透過平行平面板Cvが配置されており、第1レンズ群G1の最も物体側に配置された正レンズL1と光透過平行平面板Cvとの間は浸液で満たされている。 The first resin layer Da is formed using a resin material having a relatively low refractive index (high dispersion), and the second resin layer Db uses a resin material having a relatively high refractive index (low dispersion). Is formed. A diffraction optical surface Dm forming a diffraction grating groove is formed on the bonding surface between the first resin layer Da and the second resin layer Db, and the first resin layer Da and the second resin layer Db are bonded to each other. NS. A light transmitting parallel plane plate Cv such as a cover glass is arranged on the object side of the first lens group G1, and the positive lens L1 and the light transmitting parallel plane plate Cv arranged on the most object side of the first lens group G1 The space is filled with immersion liquid.

第2レンズ群G2は、物体側から順に並んだ、両凸形状の正レンズL21および像側に曲率の強い凹面を向けた両凹形状の負レンズL22を接合してなる第1接合レンズCL21と、物体側に曲率の強い凹面を向けたメニスカス形状の負レンズL23および像側に凸面を向けたメニスカス形状の正レンズL24を接合してなる第2接合レンズCL22とから構成される。第1接合レンズCL21は、全体として負の屈折力を有する。第2接合レンズCL22は、全体として正の屈折力を有する。 The second lens group G2 is a first junction lens CL21 formed by joining a biconvex positive lens L21 arranged in order from the object side and a biconcave negative lens L22 with a concave surface having a strong curvature facing the image side. It is composed of a meniscus-shaped negative lens L23 having a concave surface with a strong curvature facing the object side and a second junction lens CL22 formed by joining a meniscus-shaped positive lens L24 having a convex surface facing the image side. The first junction lens CL21 has a negative refractive power as a whole. The second junction lens CL22 has a positive refractive power as a whole.

以下の表2に、第2実施例に係る顕微鏡対物レンズの諸元の値を掲げる。 Table 2 below lists the values of the specifications of the microscope objective lens according to the second embodiment.

(表2)
[全体諸元]
f=5.02
NA=1.3
D0=0.28
β=40倍
[レンズデータ]
面番号 R D nd νd
1 ∞ 0.6 1.518230 58.90
2 -1.101 3.6 1.882997 40.77
3 -3.908 0.1
4 -9.887 4.0 1.729157 54.68
5 -7.086 0.1
6 -380.000 1.0 1.613397 44.27
7 16.219 6.1 1.651597 58.55
8 -23.570 0.1
9 108.856 1.0 1.772500 49.61
10 18.112 7.7 1.438750 94.95
11 -16.406 0.1
12 120.000 1.0 1.804000 46.57
13 23.744 0.2 1.527800 33.41
14* 23.744 0.2 1.557100 49.74
15 23.744 6.1 1.438750 94.95
16 -19.785 0.1
17 12.327 6.1 1.438750 94.95
18 -24.942 1.0 1.816000 46.62
19 16.896 0.1
20 9.904 4.7 1.592399 68.37
21 -52.389 6.2 1.672999 38.15
22 5.402 5.5
23 -5.200 4.7 1.497820 82.57
24 -45.132 3.6 1.834807 42.71
25 -11.231 150.0
[回折光学面データ]
第14面
C2=-2.61E-04
C4=7.03E-07
C6=-7.81E-09
C8=0.00E+00
[樹脂屈折率データ]
nC nd nF ng
低屈折率 1.523300 1.527800 1.539100 1.549100
高屈折率 1.553800 1.557100 1.565000 1.571300
[条件式対応値]
条件式(1) νd1=82.57
条件式(2) θgd1+(0.002076×νd1)−1.36467
=0.0401
条件式(3) fDOE/f=381
条件式(4) θmax=26.4°
[参考値]
θdg1=1.2334
(Table 2)
[Overall specifications]
f = 5.02
NA = 1.3
D0 = 0.28
β = 40x [lens data]
Surface number RD nd νd
1 ∞ 0.6 1.518230 58.90
2 -1.101 3.6 1.882997 40.77
3 -3.908 0.1
4 -9.887 4.0 1.729157 54.68
5 -7.086 0.1
6 -380.000 1.0 1.613397 44.27
7 16.219 6.1 1.651597 58.55
8 -23.570 0.1
9 108.856 1.0 1.772500 49.61
10 18.112 7.7 1.438750 94.95
11 -16.406 0.1
12 120.000 1.0 1.804000 46.57
13 23.744 0.2 1.527800 33.41
14 * 23.744 0.2 1.557100 49.74
15 23.744 6.1 1.438750 94.95
16 -19.785 0.1
17 12.327 6.1 1.438750 94.95
18 -24.942 1.0 1.816000 46.62
19 16.896 0.1
20 9.904 4.7 1.592399 68.37
21 -52.389 6.2 1.672999 38.15
22 5.402 5.5
23 -5.200 4.7 1.497820 82.57
24-45.132 3.6 1.834807 42.71
25 -11.231 150.0
[Diffraction optical surface data]
Surface 14 C2 = -2.61E-04
C4 = 7.03E-07
C6 = -7.81E-09
C8 = 0.00E + 00
[Resin refractive index data]
nC nd nF ng
Low refractive index 1.523300 1.527800 1.539100 1.549100
High refractive index 1.553800 1.557100 1.565000 1.571300
[Conditional expression correspondence value]
Conditional expression (1) νd1 = 82.57
Conditional expression (2) θgd1 + (0.002076 × νd1) -1.36467
= 0.0401
Conditional expression (3) fDOE / f = 381
Conditional expression (4) θmax = 26.4 °
[Reference value]
θdg1 = 1.2334

図4は、第2実施例に係る顕微鏡対物レンズの諸収差図である。各収差図より、第2実施例に係る顕微鏡対物レンズは、C線〜g線の領域において諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 4 is an aberration diagram of the microscope objective lens according to the second embodiment. From each aberration diagram, it can be seen that the microscope objective lens according to the second embodiment has various aberrations satisfactorily corrected in the C-line to g-line region and has excellent imaging performance.

各実施例に係る顕微鏡対物レンズは、無限遠補正型のレンズであるため、物体の像を結像させる結像レンズと組み合わせて使用される。そこで、顕微鏡対物レンズと組み合わせて使用される結像レンズの一例について、図5および表3を用いて説明する。図5は、各実施例に係る顕微鏡対物レンズと組み合わせて使用される結像レンズの構成を示す断面図である。各実施例に係る顕微鏡対物レンズの諸収差図は、この結像レンズと組み合わせて使用したときのものである。図5に示す結像レンズILは、物体側から順に並んだ、両凸形状の正レンズL31および両凹形状の負レンズL32を接合してなる第1接合レンズCL31と、両凸形状の正レンズL33および両凹形状の負レンズL34を接合してなる第2接合レンズCL32とから構成される。結像レンズILは、各実施例に係る顕微鏡対物レンズの像側に配置される。 Since the microscope objective lens according to each embodiment is an infinity correction type lens, it is used in combination with an imaging lens that forms an image of an object. Therefore, an example of an imaging lens used in combination with a microscope objective lens will be described with reference to FIGS. 5 and 3. FIG. 5 is a cross-sectional view showing the configuration of an imaging lens used in combination with the microscope objective lens according to each embodiment. The various aberration diagrams of the microscope objective lens according to each embodiment are those when used in combination with this imaging lens. The imaging lens IL shown in FIG. 5 includes a first junction lens CL31 formed by joining a biconvex positive lens L31 and a biconcave negative lens L32 arranged in order from the object side, and a biconvex positive lens. It is composed of a second junction lens CL32 formed by bonding L33 and a biconcave negative lens L34. The imaging lens IL is arranged on the image side of the microscope objective lens according to each embodiment.

以下の表3に、結像レンズの諸元の値を掲げる。なお、[全体諸元]の表において、fiは結像レンズの全系の焦点距離を示す。[レンズデータ]の表において、面番号、R、D、nd、およびνdは、前述の表1〜表2の説明で示したものと同じである。 Table 3 below lists the specifications of the imaging lens. In the [Overall specifications] table, fi indicates the focal length of the entire system of the imaging lens. In the table of [lens data], the surface numbers, R, D, nd, and νd are the same as those shown in the above description of Tables 1 and 2.

(表3)
[全体諸元]
fi=200
[レンズデータ]
面番号 R D nd νd
1 75.043 5.10 1.622801 57.03
2 -75.043 2.00 1.749501 35.19
3 1600.580 7.50
4 50.256 5.10 1.667551 41.96
5 -84.541 1.80 1.612658 44.41
6 36.911
(Table 3)
[Overall specifications]
fi = 200
[Lens data]
Surface number RD nd νd
1 75.043 5.10 1.622801 57.03
2 -75.043 2.00 1.749501 35.19
3 1600.580 7.50
4 50.256 5.10 1.667551 41.96
5 -84.541 1.80 1.612658 44.41
6 36.911

上記各実施例によれば、視野全体にわたり平坦な像面を有して、軸上色収差が良好に補正されるとともに、視野全体にわたる倍率色収差が良好に補正された顕微鏡対物レンズを実現することができる。 According to each of the above embodiments, it is possible to realize a microscope objective lens having a flat image plane over the entire field of view, satisfactorily correcting axial chromatic aberration, and satisfactorily correcting chromatic aberration of magnification over the entire field of view. can.

ここで、上記各実施例は本実施形態の一具体例を示しているものであり、本実施形態はこれらに限定されるものではない。 Here, each of the above embodiments shows a specific example of the present embodiment, and the present embodiment is not limited thereto.

G1 第1レンズ群 G2 第2レンズ群
DOE 回折光学素子
G1 1st lens group G2 2nd lens group DOE diffractive optical element

Claims (15)

物体側から順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群とを備え、
前記第1レンズ群は、第1回折素子要素と第2回折素子要素とを含んで構成される回折光学素子を有し、
前記回折光学素子は、前記第1回折素子要素と前記第2回折素子要素との接合面に形成された、回折格子溝を構成する回折光学面を有し、
前記第2レンズ群は、物体側から順に並んだ、物体側に凸面を向けた正レンズおよび像側に凹面を向けた負レンズを接合してなる第1接合レンズと、物体側に凹面を向けた負レンズおよび像側に凸面を向けた正レンズを接合してなる第2接合レンズとからなり、
以下の条件式を満足する対物レンズ。
65.0<νd1
0.0045<θgd1+(0.002076×νd1)−1.36467
但し、νd1:前記第2接合レンズを構成する前記負レンズのd線を基準とするアッベ数
θgd1:前記第2接合レンズを構成する前記負レンズの部分分散比であり、前記負レンズのg線に対する屈折率をng1とし、前記負レンズのd線に対する屈折率をnd1とし、前記負レンズのF線に対する屈折率をnF1とし、前記負レンズのC線に対する屈折率をnC1としたとき、次式で定義される
θgd1=(ng1−nd1)/(nF1−nC1)
A first lens group having a positive refractive power and a second lens group having a negative refractive power arranged in order from the object side are provided.
The first lens group includes a diffraction optical element including a first diffraction element element and a second diffraction element element.
The diffractive optical element has a diffractive optical surface forming a diffraction grating groove formed on a junction surface between the first diffractive element and the second diffractive element.
The second lens group consists of a first junction lens in which a positive lens having a convex surface facing the object side and a negative lens having a concave surface facing the image side are joined in order from the object side, and a concave surface facing the object side. It consists of a negative lens and a second lens made by joining a positive lens with a convex surface facing the image side.
An objective lens that satisfies the following conditional expression.
65.0 <νd1
0.0045 <θgd1 + (0.002076 × νd1) -1.36467
However, νd1: the abbe number θgd1: the partial dispersion ratio of the negative lens constituting the second junction lens based on the d line of the negative lens constituting the second junction lens, and the g line of the negative lens. When the refractive index of the negative lens with respect to the d line is nd1, the refractive index of the negative lens with respect to the F line is nF1, and the refractive index of the negative lens with respect to the C line is nC1, the following equation is obtained. Θgd1 = (ng1-nd1) / (nF1-nC1) defined by
以下の条件式を満足する請求項1に記載の対物レンズ。
100<fDOE/f<500
但し、fDOE:前記回折光学素子の焦点距離
f:前記対物レンズの焦点距離
The objective lens according to claim 1, which satisfies the following conditional expression.
100 <fDOE / f <500
However, fDOE: focal length of the diffractive optical element f: focal length of the objective lens
以下の条件式を満足する請求項1または2に記載の対物レンズ。
0°<θmax<40°
但し、θmax:物体中心からの光線のうち開口数が最大となる光線が前記回折光学面に入射する際の入射角の最大値
The objective lens according to claim 1 or 2, which satisfies the following conditional expression.
0 ° <θmax <40 °
However, θmax: the maximum value of the incident angle when the light ray having the maximum numerical aperture among the light rays from the center of the object is incident on the diffractive optical surface.
前記回折光学素子は、主光線が光軸と交わる位置よりも物体側に配置される請求項1〜3のいずれか一項に記載の対物レンズ。 The objective lens according to any one of claims 1 to 3, wherein the diffractive optical element is arranged closer to an object than a position where a main ray intersects an optical axis. 前記第1レンズ群は、複数の接合レンズを有し、
前記第1レンズ群を構成する前記複数の接合レンズのうち少なくとも1つが前記回折光学素子よりも像側に配置される請求項1〜4のいずれか一項に記載の対物レンズ。
The first lens group has a plurality of junction lenses and has a plurality of junction lenses.
The objective lens according to any one of claims 1 to 4, wherein at least one of the plurality of bonded lenses constituting the first lens group is arranged on the image side of the diffractive optical element.
前記第1レンズ群を構成する前記複数の接合レンズのうち最も像側に配置された接合レンズが負の屈折力を有し、他の接合レンズが正の屈折力を有する請求項5に記載の対物レンズ。 The fifth aspect of claim 5, wherein the bonded lens arranged on the image side of the plurality of bonded lenses constituting the first lens group has a negative refractive power, and the other bonded lens has a positive refractive power. Objective lens. 前記第1レンズ群を構成する前記複数の接合レンズのうちの1つが、前記回折光学素子を含んで構成されて正の屈折力を有する請求項5または6に記載の対物レンズ。 The objective lens according to claim 5 or 6, wherein one of the plurality of junction lenses constituting the first lens group includes the diffractive optical element and has a positive refractive power. 前記第1レンズ群は、物体側から順に並んだ、正の屈折力を有する第1接合レンズと、物体側に凹面を向けたメニスカス形状の正レンズと、正の屈折力を有する第2接合レンズと、正の屈折力を有する第3接合レンズと、正の屈折力を有する第4接合レンズと、負の屈折力を有する第5接合レンズと、を有し、
前記第3接合レンズが、前記回折光学素子を含んで構成されている請求項1〜7のいずれか一項に記載の対物レンズ。
The first lens group includes a first junction lens having a positive refractive power arranged in order from the object side, a meniscus-shaped positive lens having a concave surface facing the object side, and a second junction lens having a positive refractive power. A third junction lens having a positive refractive power, a fourth junction lens having a positive refractive power, and a fifth junction lens having a negative refractive power.
The objective lens according to any one of claims 1 to 7, wherein the third junction lens includes the diffractive optical element.
前記第1レンズ群は、物体側から順に並んだ、正の屈折力を有する第1接合レンズと、物体側に凹面を向けたメニスカス形状の正レンズと、正の屈折力を有する第2接合レンズと、正の屈折力を有する第3接合レンズと、正の屈折力を有する第4接合レンズと、負の屈折力を有する第5接合レンズと、を有し、
前記第4接合レンズが、前記回折光学素子を含んで構成されている請求項1〜7のいずれか一項に記載の対物レンズ。
The first lens group includes a first junction lens having a positive refractive power arranged in order from the object side, a meniscus-shaped positive lens having a concave surface facing the object side, and a second junction lens having a positive refractive power. A third junction lens having a positive refractive power, a fourth junction lens having a positive refractive power, and a fifth junction lens having a negative refractive power.
The objective lens according to any one of claims 1 to 7, wherein the fourth junction lens includes the diffractive optical element.
前記第1回折素子要素は樹脂材料からなる請求項1〜9のいずれか一項に記載の対物レンズ。 The objective lens according to any one of claims 1 to 9, wherein the first diffraction element element is made of a resin material. 前記第1回折素子要素は光硬化型の樹脂材料からなる請求項1〜10のいずれか一項に記載の対物レンズ。 The objective lens according to any one of claims 1 to 10, wherein the first diffraction element element is made of a photocurable resin material. 前記第2回折素子要素は樹脂材料からなる請求項1〜11のいずれか一項に記載の対物レンズ。 The objective lens according to any one of claims 1 to 11, wherein the second diffraction element element is made of a resin material. 前記第2回折素子要素は光硬化型の樹脂材料からなる請求項1〜12のいずれか一項に記載の対物レンズ。 The objective lens according to any one of claims 1 to 12, wherein the second diffraction element element is made of a photocurable resin material. 請求項1〜13のいずれか一項に記載の対物レンズと、結像レンズとを備える光学系。 An optical system including the objective lens according to any one of claims 1 to 13 and an imaging lens. 請求項1〜13のいずれか一項に記載の対物レンズを備える顕微鏡。 A microscope comprising the objective lens according to any one of claims 1 to 13.
JP2018100127A 2018-05-25 2018-05-25 Objective lens, optical system, and microscope Pending JP2021139919A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018100127A JP2021139919A (en) 2018-05-25 2018-05-25 Objective lens, optical system, and microscope
PCT/JP2019/003605 WO2019225063A1 (en) 2018-05-25 2019-02-01 Objective lens, optical system, and microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018100127A JP2021139919A (en) 2018-05-25 2018-05-25 Objective lens, optical system, and microscope

Publications (1)

Publication Number Publication Date
JP2021139919A true JP2021139919A (en) 2021-09-16

Family

ID=68615710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018100127A Pending JP2021139919A (en) 2018-05-25 2018-05-25 Objective lens, optical system, and microscope

Country Status (2)

Country Link
JP (1) JP2021139919A (en)
WO (1) WO2019225063A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3312057B2 (en) * 1993-05-24 2002-08-05 オリンパス光学工業株式会社 Objective lens
JP5525803B2 (en) * 2009-01-14 2014-06-18 オリンパス株式会社 Dry microscope objective lens
JP6354170B2 (en) * 2014-01-20 2018-07-11 株式会社ニコン Objective lens

Also Published As

Publication number Publication date
WO2019225063A1 (en) 2019-11-28

Similar Documents

Publication Publication Date Title
US7262922B2 (en) Immersion microscope objective lens
JP5109712B2 (en) Objective lens
US20110063735A1 (en) Immersion microscope objective lens
JP5445898B2 (en) Immersion microscope objective lens
JP2015102758A (en) Liquid immersion microscope objective lens and microscope using the same
JP5993250B2 (en) Immersion microscope objective lens and microscope using the same
JP7186011B2 (en) microscope objective lens
JP6354170B2 (en) Objective lens
JP6644292B1 (en) Imaging optical system
JP5369503B2 (en) Microscope objective lens
JP2008015418A (en) Eyepiece
JP7416224B2 (en) Microscope optics, microscope equipment, and imaging lenses
JP5714350B2 (en) Viewfinder optical system
WO2019225063A1 (en) Objective lens, optical system, and microscope
JP3944099B2 (en) Immersion microscope objective lens
US5774272A (en) Low-magnification apochromatic microscope objective lens
JP6392947B2 (en) Immersion microscope objective lens and microscope using the same
JP2011017978A (en) Eye-piece zoom optical system
JP5581182B2 (en) Eyepiece optical system and optical apparatus
JP6233421B2 (en) Objective lens and microscope
JPH05119264A (en) Microscope objective
JPH10133119A (en) Microscope objective lens
WO2023210318A1 (en) Image formation lens and microscope device
US20230375818A1 (en) Microscope objective lens and microscope apparatus
JP2010197536A (en) Microscope objective lens