JP2021139176A - Hexagonal segment and construction method of lining body of shield tunnel - Google Patents

Hexagonal segment and construction method of lining body of shield tunnel Download PDF

Info

Publication number
JP2021139176A
JP2021139176A JP2020038274A JP2020038274A JP2021139176A JP 2021139176 A JP2021139176 A JP 2021139176A JP 2020038274 A JP2020038274 A JP 2020038274A JP 2020038274 A JP2020038274 A JP 2020038274A JP 2021139176 A JP2021139176 A JP 2021139176A
Authority
JP
Japan
Prior art keywords
hexagonal
hexagonal segment
joint surface
segment
bolt insertion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020038274A
Other languages
Japanese (ja)
Other versions
JP7365269B2 (en
Inventor
茂樹 木下
Shigeki Kinoshita
茂樹 木下
俊彦 伊東
Toshihiko Ito
俊彦 伊東
彰夫 橋口
Akio Hashiguchi
彰夫 橋口
亮一 清水
Ryoichi Shimizu
亮一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okumura Corp
IHI Construction Materials Co Ltd
Original Assignee
Okumura Corp
IHI Construction Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okumura Corp, IHI Construction Materials Co Ltd filed Critical Okumura Corp
Priority to JP2020038274A priority Critical patent/JP7365269B2/en
Publication of JP2021139176A publication Critical patent/JP2021139176A/en
Application granted granted Critical
Publication of JP7365269B2 publication Critical patent/JP7365269B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)

Abstract

To provide a hexagonal segment by which high joining rigidity between the connected hexagonal segments can be easily obtained, and which is excellent in the workability of a variety of kinds of work accompanied by connection.SOLUTION: A reinforced-concrete hexagonal segment 12 comprises a pair of V-shaped peripheral joining faces 17 formed of a pit-face side joining face 13, a pit-mouth side joining face 14, a pit-face side oblique joining face 15 and a pit-mouth side oblique joining face 16 which are arranged in parallel with one another, and forms a lining body of the shielded tunnel by being continuously assembled in an axial direction and a peripheral direction of the tunnel. A plurality of oblique bolt insertion holes 23a, 23b over the pit-mouth side oblique joining face 16 from the pit-face side joining face 13 are formed at both sides of an axial center line L1 which is formed along the axial direction of the tunnel, and the plurality of oblique bolt insertion holes 23 are formed in a state that the holes are aligned in a thickness direction of the hexagonal segment 12.SELECTED DRAWING: Figure 1

Description

本発明は、六角形セグメント及び六角形セグメントの接合構造に関し、特に、トンネルの軸方向及び周方向に連設して組み付けることによってシールドトンネルの覆工体を形成するのに用いられる六角形セグメント、及び六角形セグメントを用いたシールドトンネルの覆工体の構築方法に関する。 The present invention relates to a hexagonal segment and a joint structure of hexagonal segments, and in particular, a hexagonal segment used for forming a shield tunnel lining body by continuously assembling in the axial direction and the circumferential direction of the tunnel. And a method of constructing a shield tunnel lining using hexagonal segments.

都市部や平野部において各種のトンネルを構築する方法として、シールド掘進機によるシールド工法が広く採用されている。シールド工法は、シールド掘進機の先端の切羽面を、泥土、泥水、圧気等によって押さえ付けつつカッターによって地山を掘削すると共に、シールド掘進機の後方に、トンネルの軸方向及び周方向に連設してセグメントを順次組み付けることによって、トンネルの内周面を覆う覆工体を形成し、組み付けられた覆工体の前端部に、シールドジャッキを押し付けることにより反力を得ながら、発進立坑から到達立坑に向けて、トンネルを地中に構築してゆく工法である。 As a method of constructing various tunnels in urban areas and plains, a shield method using a shield excavator is widely adopted. In the shield method, the face of the tip of the shield excavator is pressed by mud, muddy water, pressure, etc. while excavating the ground with a cutter, and the tunnel is connected behind the shield excavator in the axial and circumferential directions. By sequentially assembling the segments, a lining body covering the inner peripheral surface of the tunnel is formed, and the shield jack is pressed against the front end of the assembled lining body to obtain a reaction force and reach from the starting shaft. It is a construction method in which a tunnel is constructed underground toward the shaft.

近年、工事の効率化等を図る観点から、トンネルの内周面を覆う覆工体を構成するセグメントとして、一般に用いられる矩形状の平面形状を備えるセグメントに換えて、六角形状の平面形状を備える六角形セグメントを用いたシールド工法が採用される場合がある(例えば、特許文献1、特許文献2参照)。六角形セグメントは、平行に配置された切羽側接合面及び坑口側接合面と、これらの接合面の両側の端部を各々連結するようにしてV字形状に配置された、切羽側斜め接合面及び坑口側斜め接合面からなる一対のV字状周方向接合面とを備えている(図1(a)参照)。六角形セグメントは、トンネルの掘進方向後方側に先行して組み付けられた六角形セグメントの切羽側接合面及び切羽側斜め接合面に、トンネルの掘進方向前方側に後続して組み付けられる六角形セグメントの坑口側接合面及び坑口側斜め接合面を各々重ね合わせつつ、各々の六角形セグメントにおける、トンネルの掘進方向前方側の半分の部分である等脚台形状部分を、交互に突出させながら、トンネルの軸方向及び周方向にハニカム状に配置されて順次組み付けられてゆくことになる(例えば、特許文献3の図4〜図6参照)。 In recent years, from the viewpoint of improving the efficiency of construction, the segment constituting the lining body covering the inner peripheral surface of the tunnel is provided with a hexagonal planar shape instead of the commonly used segment having a rectangular planar shape. A shield tunneling method using hexagonal segments may be adopted (see, for example, Patent Document 1 and Patent Document 2). The hexagonal segment is a V-shaped diagonal joint surface arranged in a V shape so as to connect the joint surfaces on the face side and the joint surface on the wellhead side arranged in parallel and the ends on both sides of these joint surfaces. It also has a pair of V-shaped circumferential joint surfaces composed of an oblique joint surface on the wellhead side (see FIG. 1 (a)). The hexagonal segment is a hexagonal segment that is assembled following the front side of the tunnel in the excavation direction on the face side joint surface and the face side diagonal joint surface of the hexagonal segment that is assembled prior to the rear side in the tunnel excavation direction. While superimposing the wellhead side joint surface and the wellhead side diagonal joint surface, the equiped trapezoidal part, which is the front half of the tunnel in the digging direction, of each hexagonal segment is alternately projected to form the tunnel. They are arranged in a honeycomb shape in the axial direction and the circumferential direction and are sequentially assembled (see, for example, FIGS. 4 to 6 of Patent Document 3).

また、六角形セグメントを用いたシールド工法では、六角形セグメントの交互に突出する等脚台形状部分の切羽側接合面にシールドジャッキを押し当てて、反力を取りつつシールド掘進機を掘進させながら、これと並行して、シールドジャッキを押し当てた隣接する等脚台形状部分の間の領域において、後続する六角形セグメントを組み付ける作業を行うことができるので、矩形状の平面形状を備えるセグメントを用いたシールド工法のように、シールド掘進機を掘進させる工程を一リング毎に中断してセグメントを組み立てる作業を行うことなく、六角形セグメントを組み付けながら、シールド掘進機を連続して掘進させることで、効率良くシールド工事を行なうことが可能である。 In the shield method using hexagonal segments, the shield jack is pressed against the face-side joint surface of the equilateral pedestal-shaped parts that protrude alternately in the hexagonal segments, and the shield excavator is dug while taking the reaction force. In parallel with this, the work of assembling the subsequent hexagonal segment can be performed in the area between the adjacent equilateral trapezoidal portions against which the shield jack is pressed. By continuously digging the shield digger while assembling the hexagonal segment, without interrupting the process of digging the shield digger for each ring and assembling the segments like the shield method used. , It is possible to carry out shield tunneling efficiently.

さらに、六角形セグメントを用いたシールド工法では、隣接する六角形セグメントの間の連結は、切羽側接合面や、坑口側接合面や、切羽側斜め接合面や、坑口側斜め接合面による端面の間を貫通して取り付けられる、連結用ボルトを用いて行なうになっているので(例えば、特許文献1、特許文献2、特許文献3参照)、矩形状のセグメントによる覆工体の内周面に現れるような、連結用ボルトの締結作業を行うためのボルトボックス等による凹凸が、六角形セグメントによる覆工体の内周面には形成されないようにすることが可能になる。またこれによって、覆工体の内周面を平滑な状態に保持することができるので、好ましくは内側面に防食層を施した六角形セグメントによる覆工体の内側に、さらに二次覆工を施工する必要がなく、六角形セグメントによる覆工体の内周面をそのままトンネルの内周面として用いて、構築したシールドトンネルを、例えば水を流通させる、下水道用の管渠や、雨水を一時的に貯留する貯留地用のトンネルとして、有効に活用することも可能になる。 Furthermore, in the shield method using hexagonal segments, the connection between adjacent hexagonal segments is made by connecting the facet side joint surface, the wellhead side joint surface, the face side diagonal joint surface, and the end face by the wellhead side diagonal joint surface. Since it is performed using connecting bolts that are attached through the space (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3), it is formed on the inner peripheral surface of the lining body by the rectangular segment. It is possible to prevent unevenness due to a bolt box or the like for fastening the connecting bolts, which appears, from being formed on the inner peripheral surface of the lining body by the hexagonal segment. Further, since this makes it possible to keep the inner peripheral surface of the lining body in a smooth state, it is preferable to further perform a secondary lining inside the lining body made of hexagonal segments having an anticorrosion layer on the inner side surface. There is no need to construct, and the inner peripheral surface of the lining body made of hexagonal segments is used as it is as the inner peripheral surface of the tunnel. It will also be possible to effectively utilize it as a tunnel for the storage area where the waste is stored.

特許第2596666号公報Japanese Patent No. 2596666 特開平9−273395号公報Japanese Unexamined Patent Publication No. 9-273395 特許第3253870号公報Japanese Patent No. 3253870 特許第3235494号公報Japanese Patent No. 3235494

ところで、大深度地下に構築するシールドトンネルや大口径のシールドトンネルにおいては、使用する六角形セグメントの厚みや重量が増大し、六角形セグメントどうしの接合部に、より大きな剪断力が加わるため、それに抗し得る強固な連結手段が必要となる。
斯かる連結手段としては、断面積の大きな連結用ボルトを用いることが考えられるが、連結用ボルトの重量が増大することによって、連結用ボルトを、人手で、搬送したり、ボルト挿通孔に挿入したりすることが困難となる等、連結作業の作業効率が低下する。
By the way, in shield tunnels constructed deep underground and shield tunnels with large diameters, the thickness and weight of the hexagonal segments used increase, and a larger shearing force is applied to the joints between the hexagonal segments. A strong tunneling means that can withstand is needed.
As such a connecting means, it is conceivable to use a connecting bolt having a large cross-sectional area, but as the weight of the connecting bolt increases, the connecting bolt is manually conveyed or inserted into the bolt insertion hole. The work efficiency of the connection work is reduced, for example, it becomes difficult to do so.

また連結用ボルトを挿通するボルト挿通孔として、六角形セグメントに、切羽側接合面から坑口側斜め接合面に亘り、切羽側斜め接合面と略平行に連結用ボルトが挿通される斜ボルト挿通孔と、切羽側接合面と坑口側接合面とを連通し、トンネルの軸方向と略平行に連結用ボルトが挿通される軸方向ボルト挿通孔とを形成することが知られている(特許文献2の図1参照)。
しかしながら、軸方向ボルト挿通孔は、同一構成の六角形セグメントをトンネルの軸方向に連結する際に、軸方向ボルト挿通孔の位置が重なるため、軸方向ボルト挿通孔を有する六角形セグメントを設置できる範囲が限られる。そのため、複数の六角形セグメントを貫く長尺なボルトを用いることも考えられるが、複数の六角形セグメントを貫通させて長尺なボルトを挿通する作業が容易ではない上に、個々の長尺なボルトも重量や長さが増大したものとなる。そのため、セグメントどうしの連結作業の作業効率が低下する。
In addition, as a bolt insertion hole for inserting a connecting bolt, an oblique bolt insertion hole is inserted into the hexagonal segment from the face side joint surface to the wellhead side diagonal joint surface and substantially parallel to the face side diagonal joint surface. It is known that the joint surface on the face side and the joint surface on the wellhead side are communicated with each other to form an axial bolt insertion hole through which a connecting bolt is inserted substantially parallel to the axial direction of the tunnel (Patent Document 2). (See Fig. 1).
However, since the positions of the axial bolt insertion holes overlap when connecting the hexagonal segments having the same configuration in the axial direction of the tunnel, the hexagonal segment having the axial bolt insertion holes can be installed. The range is limited. Therefore, it is conceivable to use a long bolt that penetrates a plurality of hexagonal segments, but it is not easy to insert a long bolt through a plurality of hexagonal segments, and each of them is long. Bolts also have increased weight and length. Therefore, the work efficiency of the connection work between the segments is lowered.

また、鋼又はダクタイル鋳鉄製のセグメントとして、セグメントどうしの継手部に配される継手板に、ボルト挿通孔を当該セグメントの厚み方向に複数設けたものが知られている(特許文献4)。しかし、鋼又はダクタイル鋳鉄製のセグメントである上に、平面視形状が六角形でもなく、特許文献4には、引用文献4の技術を、コンクリートを主体として構成される六角形セグメントに適用することについて何ら記載されていない。 Further, as a segment made of steel or ductile cast iron, a joint plate arranged in a joint portion between segments is known to have a plurality of bolt insertion holes provided in the thickness direction of the segment (Patent Document 4). However, in addition to being a segment made of steel or ductile cast iron, the plan view shape is not hexagonal, and in Patent Document 4, the technique of Cited Document 4 is applied to a hexagonal segment mainly composed of concrete. There is no mention of.

また本発明者らは、六角形セグメントにおける、トンネルの軸方向に沿う軸方向中央線の両側それぞれに、切羽側接合面から坑口側斜め接合面に亘るボルト挿通孔を、トンネルの周方向に所定の間隔で並べて複数形成することも考えたが、その場合、連結用ボルトを挿入する作業を行う際などの作業性が大きく低下することが判明した。 Further, the present inventors have defined bolt insertion holes extending from the face side joint surface to the wellhead side diagonal joint surface in the circumferential direction of the tunnel on both sides of the axial center line along the axial direction of the tunnel in the hexagonal segment. It was also considered to form a plurality of pieces by arranging them at intervals of the above, but in that case, it was found that the workability such as when inserting the connecting bolts was greatly reduced.

したがって、本発明の目的は、連結される六角形セグメントどうしの間に容易に高い接合強度が得られるとともに、連結に伴う各種作業の作業性にも優れる、六角形セグメント、及びそれを用いたシールドトンネルの覆工体の構築方法を提供することにある。 Therefore, an object of the present invention is a hexagonal segment and a shield using the hexagonal segment, which can easily obtain high bonding strength between connected hexagonal segments and are also excellent in workability of various operations associated with the connection. The purpose is to provide a method for constructing a tunnel lining.

本発明は、互いに平行に配置された切羽側接合面及び坑口側接合面と、これらの接合面の両側の端部を各々連結するようにしてV字形状に配置された、切羽側斜め接合面及び坑口側斜め接合面からなる一対のV字状周方向接合面とを備え、トンネルの軸方向及び周方向に連設して組み付けることによってシールドトンネルの覆工体を形成させる、鉄筋コンクリート製の六角形セグメントであって、トンネルの軸方向に沿って配される軸方向中央線の両側それぞれに、前記切羽側接合面から前記坑口側斜め接合面に亘る複数の斜ボルト挿通孔が形成されており、前記複数の斜ボルト挿通孔が、六角形セグメントの厚み方向に並んだ状態に形成されている、六角形セグメントを提供することにより、上記目的を達成したものである。 In the present invention, the face side joint surface and the tunnel side joint surface arranged parallel to each other and the face side diagonal joint surface arranged in a V shape so as to connect the ends on both sides of these joint surfaces. A hexagon made of reinforced concrete, which is provided with a pair of V-shaped circumferential joint surfaces consisting of an oblique joint surface on the wellhead side and is assembled in series in the axial and circumferential directions of the tunnel to form a shield tunnel lining. A plurality of oblique bolt insertion holes extending from the face side joint surface to the wellhead side diagonal joint surface are formed on both sides of the axial center line arranged along the axial direction of the tunnel, which is a square segment. The above object is achieved by providing the hexagonal segment in which the plurality of oblique bolt insertion holes are formed so as to be arranged in the thickness direction of the hexagonal segment.

本発明の六角形セグメントにおいては、前記複数の斜ボルト挿通孔として、前記六角形セグメントの外周面に近い位置に形成された外側の斜ボルト挿通孔と、前記六角形セグメントの内周面に近い位置に形成された内側の斜ボルト挿通孔とを有しており、前記外側の斜ボルト挿通孔における前記切羽側接合面側の開口の位置が、前記内側の斜ボルト挿通孔における前記切羽側接合面側の開口の位置に対して、前記切羽側斜め接合面側にずらしてあり、前記外側の斜ボルト挿入孔の長さと前記内側の斜ボルト挿入孔の長さが略同じとなっていることが好ましい。また本発明の六角形セグメントにおいては、前記坑口側斜め接合面に、他の六角形セグメントの切羽側斜め接合面に形成されたガイド凹部又はガイド凸部と係合するガイド凸部又はガイド凹部が形成されており、前記複数の斜ボルト挿通孔の、前記坑口側斜め接合面側の開口が、該坑口側斜め接合面の長手方向における前記ガイド凹部と前記ガイド凸部との間の領域に位置することが好ましい。 In the hexagonal segment of the present invention, as the plurality of oblique bolt insertion holes, an outer oblique bolt insertion hole formed at a position close to the outer peripheral surface of the hexagonal segment and an inner peripheral surface of the hexagonal segment are close to each other. It has an inner oblique bolt insertion hole formed at a position, and the position of the opening on the face side joint surface side in the outer oblique bolt insertion hole is the face side joint in the inner oblique bolt insertion hole. The length of the diagonal bolt insertion hole on the outer side and the length of the diagonal bolt insertion hole on the inner side are substantially the same with respect to the position of the opening on the surface side. Is preferable. Further, in the hexagonal segment of the present invention, the guide convex portion or the guide concave portion that engages with the guide concave portion or the guide convex portion formed on the face side diagonal joint surface of the other hexagonal segment is formed on the wellhead side diagonal joint surface. The openings of the plurality of oblique bolt insertion holes on the wellhead side diagonal joint surface side are located in the region between the guide concave portion and the guide convex portion in the longitudinal direction of the wellhead side diagonal joint surface. It is preferable to do so.

また本発明は、互いに平行に配置された切羽側接合面及び坑口側接合面と、これらの接合面の両側の端部を各々連結するようにしてV字形状に配置された、切羽側斜め接合面及び坑口側斜め接合面からなる一対のV字状周方向接合面とを備える六角形セグメントを、トンネルの軸方向及び周方向に連設して組み付けることによってシールドトンネルの覆工体を形成する、シールドトンネルの覆工体の構築方法であって、前記六角形セグメントとして、請求項1〜3の何れか1項に記載の六角形セグメントを用いるとともに、先行して配置された複数の六角形セグメントによって形成された等脚台形状の凹部に、セグメントの保持部を有するセグメントの搬送装置により、後続の六角形セグメントを移動させる第1工程、前記後続の六角形セグメントの前記切羽側接合面に、個々の六角形セグメントの前記切羽側接合面に押し当てその反力によりシールド掘進機を前進させるための複数のシールドジャッキのうちの一部のシールドジャッキを押し当てることによって、前記後続の六角形セグメントにおける坑口側の等脚台形状部分を前記凹部に密着させる第2工程、第2工程後に、前記後続の六角形セグメントにおける前記軸方向中央線の両側にそれぞれ複数設けられた前記斜ボルト挿通孔のそれぞれに連結用ボルトを挿通して、該後続の六角形セグメントを該前記先行して配置された六角形セグメントと緊結する第3工程を備える、シールドトンネルの覆工体の構築方法を提供するものである。 Further, in the present invention, the face side joint surface and the wellhead side joint surface arranged in parallel with each other and the face side diagonal joint arranged in a V shape so as to connect the ends on both sides of these joint surfaces. A lining body of a shield tunnel is formed by continuously assembling hexagonal segments including a pair of V-shaped circumferential joint surfaces consisting of a surface and an oblique joint surface on the wellhead side in the axial direction and the circumferential direction of the tunnel. , A method for constructing a lining body of a shield tunnel, wherein the hexagonal segment according to any one of claims 1 to 3 is used as the hexagonal segment, and a plurality of hexagons arranged in advance. In the first step of moving the subsequent hexagonal segment by the segment transfer device having the segment holding portion in the equilateral trapezoidal recess formed by the segment, to the face-side joint surface of the subsequent hexagonal segment. , The subsequent hexagon by pressing against the face-side joint surface of each hexagonal segment and pressing a part of the shield jacks among a plurality of shield jacks for advancing the shield excavator by the reaction force thereof. After the second step and the second step in which the equilateral trapezoidal portion on the wellhead side of the segment is brought into close contact with the recess, a plurality of oblique bolt insertion holes are provided on both sides of the axial center line in the subsequent hexagonal segment. Provided is a method for constructing a shield tunnel lining body, comprising a third step of inserting a connecting bolt into each of the above and binding the subsequent hexagonal segment to the previously arranged hexagonal segment. It is a thing.

また本発明のシールドトンネルの覆工体の構築方法は、前記セグメントの搬送装置の前記保持部に前記後続の六角形セグメントを保持した状態で行い、第3工程後に、その六角形セグメントを該保持部から分離する第4工程を備えることが好ましい。また本発明のシールドトンネルの覆工体の構築方法は、第3工程における、前記六角形セグメントどうしの緊結を、前記六角形セグメントと共に、前記搬送装置により搬送される自動締結装置により行うことが好ましい。また本発明のシールドトンネルの覆工体の構築方法は、前記六角形セグメントとして、前記外側の斜ボルト挿通孔における前記切羽側接合面側の開口の位置が、前記内側の斜ボルト挿通孔における前記切羽側接合面側の開口の位置に対して、前記切羽側斜め接合面側にずらしてあり、前記外側の斜ボルト挿入孔の長さと前記内側の斜ボルト挿入孔の長さが略同じとなっているものを用い、前記外側の斜ボルト挿入孔及び前記内側の斜ボルト挿入孔に挿入する連結用ボルトとして、長さが等しい共通の連結用ボルトを用いることが好ましい。 Further, the method of constructing the lining body of the shield tunnel of the present invention is carried out in a state where the subsequent hexagonal segment is held by the holding portion of the transport device of the segment, and the hexagonal segment is held by the holding portion after the third step. It is preferable to include a fourth step of separating from the portion. Further, in the method for constructing the lining body of the shield tunnel of the present invention, it is preferable that the hexagonal segments are tightly bound to each other in the third step by an automatic fastening device conveyed by the conveying device together with the hexagonal segments. .. Further, in the method of constructing the lining body of the shield tunnel of the present invention, as the hexagonal segment, the position of the opening on the face side joint surface side in the outer oblique bolt insertion hole is the position of the opening in the inner oblique bolt insertion hole. It is shifted toward the diagonal joint surface side on the face side with respect to the position of the opening on the joint surface side on the face side, and the length of the diagonal bolt insertion hole on the outer side and the length of the diagonal bolt insertion hole on the inner side are substantially the same. It is preferable to use a common connecting bolt having the same length as the connecting bolt to be inserted into the outer oblique bolt insertion hole and the inner oblique bolt insertion hole.

本発明の六角形セグメント及びシールドトンネルの覆工体の構築方法によれば、連結される六角形セグメントどうし間に容易に高い接合強度が得られるとともに、連結に伴う各種作業の作業性にも優れており、例えば、シールドトンネルの覆工体として、厚みが厚い覆工体や大口径の覆工体を形成する場合であっても、効率的な連結作業を行うことができる。 According to the method for constructing the hexagonal segment and the lining body of the shield tunnel of the present invention, high bonding strength can be easily obtained between the hexagonal segments to be connected, and the workability of various operations associated with the connection is also excellent. For example, even when a thick lining body or a lining body having a large diameter is formed as a lining body of a shield tunnel, efficient connection work can be performed.

本発明に係る六角形セグメントの一例を示す図であり、(a)は平面図、(b)は(a)をE方向から見た側面図、(c)は(a)をF方向から見た側面図、(d)は(a)をG方向から見た図である。It is a figure which shows an example of the hexagonal segment which concerns on this invention. FIG. A side view, (d) is a view of (a) viewed from the G direction. 本発明の六角形セグメント及びシールドトンネルの覆工体の製造方法を用いて形成されるシールドトンネルの覆工体の一例を示す部分破断斜視図である。It is a partially cutaway perspective view which shows an example of the lining body of the shield tunnel formed by using the manufacturing method of the lining body of the hexagonal segment and the shield tunnel of this invention. 斜ボルト挿通孔の好ましい配置の説明図であり、(a)は、図1(b)に示す切羽側接合面の下半部の一部分をその法線方向から視た拡大図、(b)は、図1(d)に示す坑口側斜め接合面をその法線方向から視た拡大図である。It is explanatory drawing of preferable arrangement of an oblique bolt insertion hole, (a) is an enlarged view of a part of the lower half part of the face side joint surface shown in FIG. 1 (b) seen from the normal direction, (b) is an enlarged view. , Is an enlarged view of the wellhead side oblique joint surface shown in FIG. 1D as viewed from the normal direction. 図1に示す六角形セグメントの斜ボルト挿通孔の説明図であり、(a)は、連結用ボルトを挿入する前の断面図、(b)は、連結用ボルトを挿入した状態の断面図である。It is explanatory drawing of the oblique bolt insertion hole of the hexagonal segment shown in FIG. 1, (a) is the sectional view before inserting the connecting bolt, (b) is the sectional view with the connecting bolt inserted. be. (a)〜(c)は、複数の六角形セグメントを組み付けて覆工体を形成する工程の説明図である。(A) to (c) are explanatory views of the steps of assembling a plurality of hexagonal segments to form a lining body.

以下、本発明をその好ましい実施形態に基づいて説明する。
本発明の好ましい一実施形態に係る六角形セグメント12は、図1(a)〜(d)に示すように、互いに平行に配置された切羽側接合面13及び坑口側接合面14と、これらの接合面13,14の両側の端部を各々連結するようにしてV字形状に配置された、切羽側斜め接合面15及び坑口側斜め接合面16からなる一対のV字状周方向接合面17とを備える、六角形の平面視形状を有する鉄筋コンクリート製のセグメントである。鉄筋コンクリート製の六角形セグメントは、その全体が鉄筋コンクリート製であるものに限定されず、適宜の箇所に、鋼板製の補強板等による補強が施されていても良い。六角形セグメント12は、トンネルの半径方向の外側に配される六角形形状の外周面20及びトンネルの半径方向の内側に配される六角形形状の内周面22を有し、全域に亘って略一定の厚みを有する板状体であり、切羽側接合面13及び坑口側接合面14に沿った方向の断面が、トンネルの半径に相当する曲率半径を有する円弧状の形状を有している(図1(b)、(c)参照)。六角形セグメント12は、任意の厚みや口径のシールドトンネルの覆工体11の構築に用いることができるが、特に大口径のトンネルの覆工体11の構築に適しており、切羽側接合面13及び坑口側接合面14に沿った方向の断面における外周面20の曲率半径は、例えば0.9〜17.45mであり、好ましくは2.0〜4.0mである。また大深度地下等、特に高い耐圧性が要求される場合にも適しており、六角形セグメント12の厚みT(外周面と内周面との間の距離)は、例えば、20〜90cmであり、好ましくは30〜60cmである。
Hereinafter, the present invention will be described based on the preferred embodiment thereof.
As shown in FIGS. 1 (a) to 1 (d), the hexagonal segment 12 according to the preferred embodiment of the present invention includes the face side joint surface 13 and the wellhead side joint surface 14 arranged in parallel with each other, and these. A pair of V-shaped circumferential joint surfaces 17 composed of an oblique joint surface 15 on the face side and an oblique joint surface 16 on the wellhead side, arranged in a V shape so as to connect the ends on both sides of the joint surfaces 13 and 14, respectively. A segment made of reinforced concrete having a hexagonal plan view shape. The hexagonal segment made of reinforced concrete is not limited to the one made of reinforced concrete as a whole, and may be reinforced with a reinforcing plate made of steel plate or the like at appropriate places. The hexagonal segment 12 has a hexagonal outer peripheral surface 20 arranged on the outer side in the radial direction of the tunnel and a hexagonal inner peripheral surface 22 arranged on the inner side in the radial direction of the tunnel, and covers the entire area. It is a plate-like body having a substantially constant thickness, and the cross section in the direction along the face-side joint surface 13 and the wellhead-side joint surface 14 has an arc-shaped shape having a radius of curvature corresponding to the radius of the tunnel. (See FIGS. 1 (b) and 1 (c)). The hexagonal segment 12 can be used for constructing a shield tunnel lining 11 having an arbitrary thickness and diameter, but is particularly suitable for constructing a large tunnel lining 11 and has a face-side joint surface 13. The radius of curvature of the outer peripheral surface 20 in the cross section in the direction along the tunnel entrance side joint surface 14 is, for example, 0.9 to 17.45 m, preferably 2.0 to 4.0 m. It is also suitable for cases where particularly high pressure resistance is required, such as in the deep underground, and the thickness T (distance between the outer peripheral surface and the inner peripheral surface) of the hexagonal segment 12 is, for example, 20 to 90 cm. , It is preferably 30 to 60 cm.

そして、六角形セグメント12は、その複数を、トンネルの軸方向(掘進方向)X及び周方向Yに連設してハニカム状に組み付けることによって、例えば、雨水を一時的に貯留する貯留地用のシールドトンネル等のシールドトンネルの内周面を覆う覆工体11(図2参照)を形成させることができるようになっている。六角形セグメント12における各々のV字状周方向接合面17における、切羽側斜め接合面15と坑口側斜め接合面16との間の角度θは、120°となっている(図1(a)参照)。これによって、複数の六角形セグメント12を、先行する六角形セグメント12の切羽側斜め接合面15及び切羽側接合面13に、後続して設置される六角形セグメント12の坑口側斜め接合面16及び坑口側接合面14を、順次隙間なく重ね合わせた状態で、軸方向及び周方向にハニカム状に配置してゆくことができるようになっている(図5参照)。 Then, the hexagonal segments 12 are for a storage area for temporarily storing rainwater, for example, by connecting a plurality of the hexagonal segments 12 in a series in the axial direction (digging direction) X and the circumferential direction Y of the tunnel and assembling them in a honeycomb shape. A lining body 11 (see FIG. 2) that covers the inner peripheral surface of a shield tunnel such as a shield tunnel can be formed. The angle θ between the face side diagonal joint surface 15 and the wellhead side diagonal joint surface 16 on each V-shaped circumferential joint surface 17 in the hexagonal segment 12 is 120 ° (FIG. 1 (a)). reference). As a result, the plurality of hexagonal segments 12 are placed on the face side diagonal joint surface 15 and the face side joint surface 13 of the preceding hexagonal segment 12, and the wellhead side diagonal joint surface 16 and the hexagonal segment 12 which are subsequently installed. The wellhead side joint surfaces 14 can be arranged in a honeycomb shape in the axial direction and the circumferential direction in a state of being sequentially overlapped without a gap (see FIG. 5).

本実施形態に係る六角形セグメント12には、図1に示すように、トンネルの軸方向に沿って配される軸方向中央線L1の両側それぞれに、切羽側接合面13から前記坑口側斜め接合面16に亘る複数の斜ボルト挿通孔23が形成されている。また軸方向中央線L1の両側それぞれに設けられた複数の斜ボルト挿通孔23は、図3に示すように、六角形セグメント12の厚み方向Zに並んだ状態に形成されている。軸方向中央線L1とは、六角形セグメント12における一対のV字状周方向接合面の先端どうし間の距離を2等分する仮想線であって、覆工体11を形成する際にトンネルの軸方向Xに沿って配される仮想線である。軸方向中央線L1の両側は、六角形セグメントの平面視における軸方向中央線L1の両側である(図1(a)参照)。 As shown in FIG. 1, the hexagonal segment 12 according to the present embodiment is diagonally joined from the face side joint surface 13 to the wellhead side diagonally on both sides of the axial center line L1 arranged along the axial direction of the tunnel. A plurality of oblique bolt insertion holes 23 are formed over the surface 16. Further, as shown in FIG. 3, a plurality of oblique bolt insertion holes 23 provided on both sides of the axial center line L1 are formed so as to be aligned in the thickness direction Z of the hexagonal segment 12. The axial center line L1 is a virtual line that divides the distance between the tips of the pair of V-shaped circumferential joint surfaces in the hexagonal segment 12 into two equal parts, and is a virtual line that divides the distance between the tips of the pair of V-shaped circumferential joint surfaces into two equal parts. It is a virtual line arranged along the axial direction X. Both sides of the axial center line L1 are both sides of the axial center line L1 in the plan view of the hexagonal segment (see FIG. 1A).

六角形セグメント12の軸方向中央線L1の両側それぞれに形成された複数の斜ボルト挿通孔23について、図1に示す(a)の軸方向中央線L1より下側に形成された複数の斜ボルト挿通孔23を例にして説明する。以下、軸方向中央線L1に対して一方の側に形成された複数の斜ボルト挿通孔、及び軸方向中央線L1に対して他方の側に形成された複数の斜ボルト挿通孔を、包括して「複数の斜ボルト挿通孔」ともいう。図1に示す六角形セグメント12は、軸方向中央線L1に対して線対称の形状を有している。 With respect to the plurality of oblique bolt insertion holes 23 formed on both sides of the axial center line L1 of the hexagonal segment 12, the plurality of oblique bolts formed below the axial center line L1 shown in FIG. 1 (a). The insertion hole 23 will be described as an example. Hereinafter, a plurality of oblique bolt insertion holes formed on one side of the axial center line L1 and a plurality of oblique bolt insertion holes formed on the other side of the axial center line L1 are included. Also referred to as "plural diagonal bolt insertion holes". The hexagonal segment 12 shown in FIG. 1 has a shape that is line-symmetrical with respect to the axial center line L1.

本実施形態に係る六角形セグメント12は、図1及び図3(a)に示すように、複数の斜ボルト挿通孔23として、六角形セグメント12の厚み方向Zにおける異なる位置に形成された複数の斜ボルト挿通孔23を有している。より具体的には、厚み方向Zにおいて、内周面22に近い位置に形成された内側の斜ボルト挿通孔23aと、その斜ボルト挿通孔23aよりも外周面20に近い位置に形成された外側の斜ボルト挿通孔23aとを有している。複数の斜ボルト挿通孔23が、六角形セグメント12の厚み方向Zに並んだ状態とは、少なくとも、複数の斜ボルト挿通孔23の切羽側接合面13側の開口が、六角形セグメントの厚み方向に並んでいることを意味するが、それに加えて、複数の斜ボルト挿通孔23の坑口側斜め接合面16側の開口が、六角形セグメントの厚み方向に並んでいることが好ましい。ここで、並ぶという表現には、本発明の効果が奏される範囲の多少のずれを有する場合も含まれる。 As shown in FIGS. 1 and 3A, the hexagonal segment 12 according to the present embodiment has a plurality of oblique bolt insertion holes 23 formed at different positions in the thickness direction Z of the hexagonal segment 12. It has an oblique bolt insertion hole 23. More specifically, in the thickness direction Z, the inner oblique bolt insertion hole 23a formed at a position closer to the inner peripheral surface 22 and the outer side formed at a position closer to the outer peripheral surface 20 than the oblique bolt insertion hole 23a. It has an oblique bolt insertion hole 23a. The state in which the plurality of oblique bolt insertion holes 23 are arranged in the thickness direction Z of the hexagonal segment 12 means that at least the openings on the face side joint surface 13 side of the plurality of oblique bolt insertion holes 23 are in the thickness direction of the hexagonal segment. In addition to this, it is preferable that the openings of the plurality of oblique bolt insertion holes 23 on the wellhead side oblique joint surface 16 side are arranged in the thickness direction of the hexagonal segment. Here, the expression "arranged" includes the case where there is a slight deviation in the range in which the effect of the present invention is exhibited.

図4(a)に示すように、本実施形態に係る六角形セグメント12における複数の斜ボルト挿通孔23は、それぞれ、挿入される連結用ボルト24の外周面と略同径の内周面を有する本体部23mを有するとともに、斜ボルト挿通孔23における切羽側接合面13側の端部に、連結用ボルト24の頭部を締着させる締着凹部23cが、その開口部を切羽側接合面13に開口させて形成されている。本体部23mは、長尺円筒状のシース管23sを鉄筋コンクリートのコンクリート内に埋設して形成されている。また締着凹部23cの底部は、鋼板等からなる支圧板23hによって補強されている。 As shown in FIG. 4A, the plurality of oblique bolt insertion holes 23 in the hexagonal segment 12 according to the present embodiment each have an inner peripheral surface having substantially the same diameter as the outer peripheral surface of the connecting bolt 24 to be inserted. A fastening recess 23c for fastening the head of the connecting bolt 24 to the end of the diagonal bolt insertion hole 23 on the face side joint surface 13 side has a main body portion 23 m, and the opening thereof is the face side joint surface. It is formed by opening at 13. The main body 23m is formed by burying a long cylindrical sheath pipe 23s in reinforced concrete concrete. The bottom of the fastening recess 23c is reinforced by a bearing plate 23h made of a steel plate or the like.

本実施形態におけるように、斜ボルト挿通孔23が、切羽側接合面13側の端部に締着凹部23cを有する場合であっても、斜ボルト挿通孔23の開口の中心点Ca,Cbは、図4(a)に示すように、本体部23mの軸中心線gと、切羽側接合面13に開口する締着凹部23cの開口面との交点である。しかし、前記交点と締着凹部23aの開口面の中心点とのズレは僅かであることが多いので、そのズレが大きいことが明らかである場合を除き、締着凹部23aの開口面の中心点を、斜ボルト挿通孔23の開口の中心点Ca,Cbとしても良い。 Even when the oblique bolt insertion hole 23 has a fastening recess 23c at the end on the face side joint surface 13 side as in the present embodiment, the center points Ca and Cb of the opening of the oblique bolt insertion hole 23 are still present. As shown in FIG. 4A, it is an intersection of the axis center line g of the main body portion 23 m and the opening surface of the fastening recess 23c that opens to the face side joint surface 13. However, since the deviation between the intersection and the center point of the opening surface of the fastening recess 23a is often small, the center point of the opening surface of the fastening recess 23a unless it is clear that the deviation is large. May be set as the center points Ca and Cb of the opening of the oblique bolt insertion hole 23.

本実施形態における斜ボルト挿通孔23は、坑口側斜め接合面16側の端部にも、本体部23mよりも横断面積が拡大した凹部23dを有している。斜ボルト挿通孔23が、坑口側斜め接合面16側の端部に、内周面が挿通される連結用ボルトの外周面に沿わない形状の凹部23dを有する場合においても、斜ボルト挿通孔23の開口の中心点Ca’,Cb’は、図4(b)に示すように、本体部23mの軸中心線gと、坑口側斜め接合面16に開口する前記凹部23dの開口面との交点である。しかし、通常、前記交点と凹部23dの開口面の中心点とのズレは僅かであることが多いので、そのズレが大きいことが明らかである場合を除き、当該凹部23dの開口面の中心点を、斜ボルト挿通孔23の開口の中心点Ca’,Cb’としても良い。 The oblique bolt insertion hole 23 in the present embodiment also has a recess 23d having a cross-sectional area larger than that of the main body portion 23 m at the end portion on the wellhead side oblique joint surface 16 side. Even when the oblique bolt insertion hole 23 has a recess 23d having a shape that does not follow the outer peripheral surface of the connecting bolt through which the inner peripheral surface is inserted, the oblique bolt insertion hole 23 is provided at the end on the side of the diagonal joint surface 16 on the wellhead side. As shown in FIG. 4B, the center points Ca'and Cb'of the opening of the above are the intersections of the axis center line g of the main body 23m and the opening surface of the recess 23d opening in the wellhead side diagonal joint surface 16. Is. However, since the deviation between the intersection and the center point of the opening surface of the recess 23d is usually small, the center point of the opening surface of the recess 23d is set unless it is clear that the deviation is large. , The center points Ca'and Cb'of the opening of the oblique bolt insertion hole 23 may be used.

六角形セグメント12は、軸方向中央線L1の両側それぞれに形成する複数の斜ボルト挿通孔として、図3(a)に示すように、六角形セグメントの内周面22に近い位置に形成された内側の斜ボルト挿通孔23aと、六角形セグメントの外周面20に近い位置に形成された外側の斜ボルト挿通孔23bとを有し、外側の斜ボルト挿通孔23bにおける切羽側接合面13側の開口の位置が、内側の斜ボルト挿通孔23aにおける切羽側接合面13側の開口の位置に対して、切羽側斜め接合面15側にずれており、外側の斜ボルト挿入孔23bの長さと内側の斜ボルト挿入孔23aの長さが略同じとなっている。 As shown in FIG. 3A, the hexagonal segment 12 is formed at a position close to the inner peripheral surface 22 of the hexagonal segment as a plurality of oblique bolt insertion holes formed on both sides of the axial center line L1. It has an inner oblique bolt insertion hole 23a and an outer oblique bolt insertion hole 23b formed at a position close to the outer peripheral surface 20 of the hexagonal segment, and is located on the face side joint surface 13 side of the outer oblique bolt insertion hole 23b. The position of the opening is shifted toward the face side diagonal joint surface 15 side with respect to the position of the opening on the face side joint surface 13 side in the inner diagonal bolt insertion hole 23a, and the length of the outer diagonal bolt insertion hole 23b and the inner side. The lengths of the oblique bolt insertion holes 23a are substantially the same.

これにより、斜ボルト挿通孔23aに挿通してセグメントどうしの緊結に用いる連結用ボルトとして、長さが共通の連結用ボルトを好適に使用することができる。また、複数の斜ボルト挿入孔23a,23bの形成に用いるシース管23s等も共通のものを使用することが容易となる。長さが共通の連結用ボルトを使用することは、本発明において必須ではないが、長さが共通の連結用ボルトを使用可能であることは、斜ボルト挿通孔毎に異なる連結用ボルトを用いる場合に比して、挿入作業、搬入作業、資材管理等の各種の負担を軽減可能である。 As a result, connecting bolts having the same length can be preferably used as the connecting bolts that are inserted into the oblique bolt insertion holes 23a and used to fasten the segments. Further, it becomes easy to use a common sheath tube 23s or the like used for forming the plurality of oblique bolt insertion holes 23a and 23b. It is not essential in the present invention to use connecting bolts having a common length, but the fact that connecting bolts having a common length can be used means that different connecting bolts are used for each oblique bolt insertion hole. Compared to the case, it is possible to reduce various burdens such as insertion work, carry-in work, and material management.

外側の斜ボルト挿入孔23bの長さと内側の斜ボルト挿入孔23aの長さを略同じとする方法として、複数の連結用ボルトの坑口側斜め接合面16側の開口の位置をずらす方法も考えられるが、少なくとも切羽側接合面15側の開口の位置をずらして、坑口側斜め接合面16側の開口の位置をずらさないか又はずらす程度を抑制することが、複数の連結用ボルトを通す位置を、坑口側斜め接合面16の長手方向中央部付近に集中させ、六角形セグメント12をトンネルの周方向及び軸方向に組み付けて形成される覆工体に優れた強度を付与する観点から好ましい。図3(a)に示すL2は、そのために必要な斜ボルト挿入孔23bのずれの長さである。なお、連結用ボルト24の長さは、切羽側接合面13側の開口の中心点Ca,Cbと、坑口側斜め接合面16側の開口の中心点Ca’,Cb’との間の距離である。 As a method of making the length of the outer oblique bolt insertion hole 23b and the length of the inner oblique bolt insertion hole 23a substantially the same, a method of shifting the positions of the openings on the wellhead side diagonal joint surface 16 side of a plurality of connecting bolts is also considered. However, at least the position of the opening on the face side joint surface 15 side can be shifted so that the position of the opening on the wellhead side diagonal joint surface 16 side is not shifted or the degree of shift is suppressed. Is concentrated near the central portion in the longitudinal direction of the diagonal joint surface 16 on the wellhead side, and is preferable from the viewpoint of imparting excellent strength to the lining body formed by assembling the hexagonal segments 12 in the circumferential direction and the axial direction of the tunnel. L2 shown in FIG. 3A is the length of deviation of the oblique bolt insertion hole 23b required for that purpose. The length of the connecting bolt 24 is the distance between the center points Ca and Cb of the opening on the face side joint surface 13 side and the center points Ca'and Cb'of the opening on the wellhead side diagonal joint surface 16 side. be.

六角形セグメント12の一対の切羽側斜め接合面15には、これらの中央部に、複数の斜ボルト挿通孔23に対応する複数の雌ネジ孔15a,15bが設けられている。雌ネジ孔15a,15bは、例えば雌ネジアンカーを埋込むことによって設けられている。雌ネジ孔15a,15bは、先行して設置された六角形セグメント12の切羽側斜め接合面15に、後続して設置される六角形セグメント12の坑口側斜め接合面16が重ね合わされた際に、後続する六角形セグメント12に設けられた斜ボルト挿通孔23の、締着凹部23aとは反対側の端部側と直線状に連通するようになっている。これによって、連通した斜ボルト挿通孔23及び雌ネジ孔15a,15bに、連結用ボルト24を挿通して締着させることにより、ハニカム状に配置された各々の隣接する六角形セグメント12を、強固に一体として連結することが可能になる(図2参照)。 The pair of face-side oblique joint surfaces 15 of the hexagonal segment 12 are provided with a plurality of female screw holes 15a and 15b corresponding to the plurality of oblique bolt insertion holes 23 at the central portions thereof. The female screw holes 15a and 15b are provided, for example, by embedding a female screw anchor. The female screw holes 15a and 15b are formed when the diagonal joint surface 16 on the face side of the hexagonal segment 12 installed in advance is overlapped with the diagonal joint surface 16 on the wellhead side of the hexagonal segment 12 installed subsequently. , The diagonal bolt insertion hole 23 provided in the subsequent hexagonal segment 12 is linearly communicated with the end side opposite to the fastening recess 23a. As a result, the connecting bolts 24 are inserted into and fastened to the diagonal bolt insertion holes 23 and the female screw holes 15a and 15b that are communicated with each other, thereby strengthening the adjacent hexagonal segments 12 arranged in a honeycomb shape. It becomes possible to connect to the honeycomb as a unit (see FIG. 2).

また本実施形態の六角形セグメント12においては、例えば特許第3253870号公報に記載の亀甲型セグメント(六角形セグメント)と同様に、切羽側斜め接合面15及び坑口側斜め接合面16に、位置決め用のガイド凸部25a及びガイド凹部25bが各々設けられている。これらの位置決め用のガイド凸部25a及びガイド凹部25bは、先行して設置された六角形セグメント12に後続して、次の六角形セグメント12を設置する際に、先行して設置された六角形セグメント12による、周方向Yに隣接して掘進方向X前方側に突出する等脚台形状部分の間の、等脚台形状の間隔部分(凹部)に(図5(a)参照)、後続する六角形セグメント12が配置されるように案内して、精度良く位置決めできるようにすると共に、組み付けられた六角形セグメント12に位置ずれが生じるのを、防止できるようにする機能を備えている。 Further, in the hexagonal segment 12 of the present embodiment, for positioning, the hexagonal segment 12 on the face side and the oblique joint surface 16 on the wellhead side are used for positioning, as in the case of the hexagonal segment (hexagonal segment) described in Japanese Patent No. 3253870. The guide convex portion 25a and the guide concave portion 25b of the above are provided respectively. These positioning guide convex portions 25a and guide concave portions 25b are hexagons that are installed in advance when the next hexagonal segment 12 is installed after the hexagonal segment 12 that is installed in advance. Following the equiped trapezoidal spacing portion (recess) between the equipedular trapezoidal portions adjacent to the circumferential direction Y and protruding forward in the excavation direction X by the segment 12 (see FIG. 5 (a)). It has a function of guiding the hexagonal segments 12 to be arranged so that they can be positioned with high accuracy and preventing the assembled hexagonal segments 12 from being displaced.

また本実施形態の六角形セグメント12には、これらの六角形セグメント12を組み付け用のエレクター装置(図示せず。)によって把持できるようにする把持孔29が、例えば内側面の中央部分に設けられていると共に、六角形セグメント12を吊り上げ可能とする吊上げ用インサート金具27が、例えば坑口側接合面14の両側の側部領域に配置されて、一対設けられている。 Further, the hexagonal segment 12 of the present embodiment is provided with a gripping hole 29 that allows the hexagonal segment 12 to be gripped by an assembly Elector device (not shown), for example, in the central portion of the inner side surface. In addition, a pair of lifting insert fittings 27 that enable the hexagonal segment 12 to be lifted are provided, for example, arranged in the side regions on both sides of the wellhead side joint surface 14.

また本実施形態の六角形セグメント12は、その厚み方向に離間した2箇所に、平面視における六角形セグメント12の全周に亘って設けられた内側周溝21a及び外側周溝21bを備えている。本明細書において、六角形セグメントの平面は、六角形セグメントの内周面側の面である(図1(a)参照)。六角形セグメント12の厚み方向Zにおいて、内側周溝21aは、外側周溝21bよりも内周面22に近い位置に形成されている。より詳細には、六角形セグメント1における、切羽側接合面13、坑口側接合面14、切羽側斜め接合面15及び坑口側斜め接合面16には、図1(a)〜(d)に示すように、六角形セグメント12の外周面から60mm程度の間隔をおいて、20mm程度の幅の外側周溝21bが、六角形セグメント12の全周に亘って連続するように形成されており、六角形セグメント12の内周面から60mm程度の間隔をおいて、20mm程度の幅の内側周溝21aが、六角形セグメント12の全周に亘って連続するように形成されている。内側周溝21a及び外側周溝21bは、六角形セグメント12の全周に亘って、相互間の距離が略一定であり、互いに平行に形成されている。内側周溝21a内及び外側周溝21b内には、それぞれ、好ましくは帯状の水膨潤性シール材からなるシール材18が、接着剤を介して、六角形セグメント12の全周に亘って連続するように設けられている。
上述した構成の六角形セグメント12は、内側周溝21a及び外側周溝21b内にシール材18が配されている状態として、その複数を、トンネルの軸方向(掘進方向)X及び周方向Yに連設して組み付けることによって、内側から外側及び外側から内側へ移行する水の流れを遮断する止水性能に優れたシールドトンネルの覆工体11(図2参照)を形成させることができる。
Further, the hexagonal segment 12 of the present embodiment includes an inner peripheral groove 21a and an outer peripheral groove 21b provided over the entire circumference of the hexagonal segment 12 in a plan view at two locations separated in the thickness direction thereof. .. In the present specification, the plane of the hexagonal segment is the plane on the inner peripheral surface side of the hexagonal segment (see FIG. 1A). In the thickness direction Z of the hexagonal segment 12, the inner peripheral groove 21a is formed at a position closer to the inner peripheral surface 22 than the outer peripheral groove 21b. More specifically, in the hexagonal segment 1, the face side joint surface 13, the wellhead side joint surface 14, the face side diagonal joint surface 15, and the wellhead side diagonal joint surface 16 are shown in FIGS. 1 (a) to 1 (d). As described above, the outer peripheral groove 21b having a width of about 20 mm is formed so as to be continuous over the entire circumference of the hexagonal segment 12 at a distance of about 60 mm from the outer peripheral surface of the hexagonal segment 12. An inner peripheral groove 21a having a width of about 20 mm is formed so as to be continuous over the entire circumference of the hexagonal segment 12 at a distance of about 60 mm from the inner peripheral surface of the square segment 12. The inner peripheral groove 21a and the outer peripheral groove 21b are formed in parallel with each other so that the distance between them is substantially constant over the entire circumference of the hexagonal segment 12. In the inner peripheral groove 21a and the outer peripheral groove 21b, a sealing material 18 preferably made of a strip-shaped water-swellable sealing material is continuously provided over the entire circumference of the hexagonal segment 12 via an adhesive. It is provided as follows.
In the hexagonal segment 12 having the above-described configuration, the sealing material 18 is arranged in the inner peripheral groove 21a and the outer peripheral groove 21b, and a plurality of the hexagonal segments 12 are arranged in the axial direction (digging direction) X and the circumferential direction Y of the tunnel. By continuously assembling, it is possible to form a shield tunnel lining body 11 (see FIG. 2) having excellent water stopping performance that blocks the flow of water migrating from the inside to the outside and from the outside to the inside.

本実施形態に係る六角形セグメント12は、その複数を、トンネルの軸方向X及び周方向Yに連設して、ハニカム状に組み付けることによって、シールドトンネルの覆工体11を形成することができる。複数の六角形セグメント12を、トンネルの軸方向(掘進方向)X及び周方向Yに連設してハニカム状に組み付けるには、例えば図5(a)〜(c)に示すように、トンネルの掘進方向Xの後方側に先行して組み付けられた六角形セグメント12の切羽側接合面13及び切羽側斜め接合面15に、トンネルの掘進方向Xの前方側に後続して組み付けられる六角形セグメント12の坑口側接合面14及び坑口側斜め接合面16を各々重ね合わせつつ、各々の六角形セグメント12における、トンネルの掘進方向Xの前方側の半分の部分である等脚台形状部分を、交互に突出させながら、複数の六角形セグメント12を、トンネルの軸方向X及び周方向Yにハニカム状に配置して順次組み付けてゆく。 The hexagonal segments 12 according to the present embodiment can form a shield tunnel lining body 11 by connecting a plurality of the hexagonal segments 12 in series in the axial direction X and the circumferential direction Y of the tunnel and assembling them in a honeycomb shape. .. In order to connect a plurality of hexagonal segments 12 in a series in the axial direction (digging direction) X and the circumferential direction Y of the tunnel and assemble them in a honeycomb shape, for example, as shown in FIGS. The hexagonal segment 12 that is subsequently assembled to the face side joint surface 13 and the face side diagonal joint surface 15 of the hexagonal segment 12 that is assembled prior to the rear side of the excavation direction X, after the front side of the tunnel excavation direction X. While superimposing the wellhead side joint surface 14 and the wellhead side diagonal joint surface 16 respectively, the equipedular trapezoidal portion, which is the front half portion of the tunnel excavation direction X in each hexagonal segment 12, is alternately formed. While projecting, the plurality of hexagonal segments 12 are arranged in a honeycomb shape in the axial direction X and the circumferential direction Y of the tunnel and assembled in sequence.

また、複数の六角形セグメント12を、トンネルの軸方向X及び周方向Yに順次組み付けてゆく際に、先行して組み付けられた六角形セグメント12における、交互に突出する、前記等脚台形状部分における先端の切羽側接合面13に、シールドジャッキ26を押し当てて、反力を取りつつシールド掘進機を掘進させながら、これと並行して、シールドジャッキ26を押し当てた隣接する等脚台形状部分の間の領域において、後続する六角形セグメント12を組み付ける作業を行うことが可能となっている。 Further, when the plurality of hexagonal segments 12 are sequentially assembled in the axial direction X and the circumferential direction Y of the tunnel, the hexagonal segment 12 assembled in advance alternately protrudes from the equipedular trapezoidal portion. The shield jack 26 is pressed against the face-side joint surface 13 at the tip of the above, and the shield excavator is dug while taking the reaction force. In the area between the portions, it is possible to carry out the work of assembling the subsequent hexagonal segment 12.

本発明のシールドトンネルの覆工体の構築方法の一実施態様として、上述した構成の六角形セグメント12を用いて覆工体11を構築する方法について説明すると、本実施態様の方法においては、図5(a)に示すように、切羽側接合面13にシールドジャッキ26を押し当てた周方向Yにおいて隣り合う等脚台形状部分の間の領域において、当該間の領域のシールドジャッキ26を収縮した状態として、当該間の領域に、セグメントの搬送装置(エレクター装置等)により、後続して設置する六角形セグメント12を搬送し、更に、そのセグメントの搬送装置により、当該間の領域に、先に配置した複数の六角形セグメントによって形成された等脚台形状の凹部28に、後続の六角形セグメント12を移動させる(第1工程)。第1工程においては、等脚台形状の凹部28に、後続して組み付けられる六角形セグメント12の後側半分の等脚台形状の部分を差し込むようにして、その等脚台形状部分に存する坑口側接合面14及び坑口側斜め接合面16を、先行して組み付けられた六角形セグメント12の、切羽側接合面13及び切羽側斜め接合面15に、各々近接又は当接させる(図5(a)参照)。 As an embodiment of the method for constructing the lining body of the shield tunnel of the present invention, a method for constructing the lining body 11 using the hexagonal segment 12 having the above-described configuration will be described. As shown in 5 (a), in the region between the equilateral trapezoidal portions adjacent to each other in the circumferential direction Y in which the shield jack 26 is pressed against the face-side joint surface 13, the shield jack 26 in the region between them is contracted. As a state, the hexagonal segment 12 to be installed subsequently is conveyed to the area between the segments by a segment transfer device (such as an erector device), and further, the hexagonal segment 12 to be installed subsequently is conveyed to the area between the sections first by the segment transfer device. The subsequent hexagonal segment 12 is moved to the equilateral trapezoidal recess 28 formed by the plurality of arranged hexagonal segments (first step). In the first step, the isopedical portion of the rear half of the hexagonal segment 12 to be assembled subsequently is inserted into the equipedular recess 28, and the wellhead existing in the equipedular portion is inserted. The side joint surface 14 and the wellhead side diagonal joint surface 16 are brought close to or in contact with the face side joint surface 13 and the face side diagonal joint surface 15 of the hexagonal segment 12 assembled in advance (FIG. 5 (a)). )reference).

しかる後に、隣接する等脚台形状部分の間の領域に配置された、例えば3本のシールドジャッキ26のうち、中央の1本のシールドジャッキ26を伸長させ、そのシールドジャッキ26を、後続する六角形セグメント12の切羽側接合面に押し当てることによって、該六角形セグメント12の後側半分の等脚台形状の部分を、前記凹部28に密着させる(第2工程)。第2工程においては、後続して組み付けられる六角形セグメント12の、後側半分の等脚台形状の部分に存する坑口側接合面14及び坑口側斜め接合面16が、先行して組み付けられた六角形セグメント12の切羽側接合面13及び切羽側斜め接合面15に押し付けられて各々密着する。より具体的には、後続して組み付けられる六角形セグメント12を、好ましくは把持孔29を介したセグメントの搬送装置による保持を維持しながら、その六角形セグメント12の切羽側接合面13における両側の斜ボルト挿通孔どうし間に位置する領域に、前記1本の前記シールドジャッキ26を押し当てることによって、該後続の六角形セグメント12を、先行して組み付けられた六角形セグメント12に押し付けた状態において、その後続の六角形セグメント12の切羽側接合面13の両側にそれぞれ複数設けられた斜ボルト挿通孔23のそれぞれに連結用ボルト24を挿通し、各片側に複数本づつ挿入した合計4本以上の連結用ボルト24を用いて、先に配置されている六角形セグメント12と緊結させる(第3工程)。第3工程においては、互いに連通させた後続の六角形セグメント12の斜ボルト挿通孔23と先行して設置された六角形セグメント12の雌ネジ孔15aとに、連結用ボルト24を挿通して締着させることにより、相隣接する六角形セグメント12どうしを連結して一体化させる。この第3工程により、後続の六角形セグメント12は、片側に2本以上、合計4本以上挿通された連結用ボルト24を介して、先行して設置された六角形セグメント12に対して強固に緊結される。この際、六角形セグメント12の自重で切羽側の端部が下がることを防止するため、六角形セグメント12の上側に設置する連結用ボルト24を許容範囲内で強く締め付けてもよい。 After that, one of the three shield jacks 26, for example, one in the center, which is arranged in the area between the adjacent equilateral trapezoidal portions, is extended, and the shield jack 26 is followed by six. By pressing against the face-side joint surface of the square segment 12, the equiped trapezoidal portion of the rear half of the hexagonal segment 12 is brought into close contact with the recess 28 (second step). In the second step, the wellhead side joint surface 14 and the wellhead side diagonal joint surface 16 existing in the isopedical portion of the rear half of the hexagonal segment 12 to be assembled subsequently are assembled in advance. The square segment 12 is pressed against the face-side joint surface 13 and the face-side diagonal joint surface 15 to be brought into close contact with each other. More specifically, the hexagonal segment 12 to be subsequently assembled is held on both sides of the hexagonal segment 12 at the face-side joint surface 13 of the hexagonal segment 12 while maintaining the holding of the hexagonal segment 12 by the transfer device, preferably via the grip hole 29. In a state where the subsequent hexagonal segment 12 is pressed against the previously assembled hexagonal segment 12 by pressing the one shield jack 26 against the region located between the oblique bolt insertion holes. , A total of four or more connecting bolts 24 are inserted into each of the diagonal bolt insertion holes 23 provided on both sides of the face-side joint surface 13 of the subsequent hexagonal segment 12, and a plurality of connecting bolts 24 are inserted on each side. Using the connecting bolt 24 of the above, the hexagonal segment 12 arranged earlier is fastened (third step). In the third step, the connecting bolt 24 is inserted and tightened through the diagonal bolt insertion hole 23 of the subsequent hexagonal segment 12 and the female screw hole 15a of the hexagonal segment 12 installed in advance. By wearing them, the hexagonal segments 12 adjacent to each other are connected and integrated. By this third step, the subsequent hexagonal segment 12 is firmly connected to the previously installed hexagonal segment 12 via the connecting bolts 24 in which two or more, a total of four or more, are inserted on one side. Be tied up. At this time, in order to prevent the end portion on the face side from being lowered by the weight of the hexagonal segment 12, the connecting bolt 24 installed on the upper side of the hexagonal segment 12 may be strongly tightened within an allowable range.

このような作業を、周方向に複数形成された、隣接する突出した等脚台形状部分の間の各々の領域において行うと共に、このようにして新たに設置された六角形セグメント12を、先行して組み付けられた既存の六角形セグメント12として、これらの切羽側接合面13にシールドジャッキ26を押し当てて反力を取りつつシールド掘進機を掘進させながら、これと並行して、シールドジャッキ26を押し当てたこれらの六角形セグメント12の間の領域において、更に後続する六角形セグメントを組み付ける作業を繰り返してゆくことによって、トンネルの軸方向X及び周方向Yにハニカム状に配置された複数の六角形セグメント12による、好ましくは雨水を一時的に貯留する貯留地用のシールドトンネルの内周面を覆う覆工体11を、容易に形成することが可能になる。 Such work is performed in each region between adjacent projecting equipedular trapezoidal portions formed in the circumferential direction, and the hexagonal segment 12 newly installed in this manner is preceded. As the existing hexagonal segment 12 assembled in the above direction, the shield jack 26 is pressed against the joint surface 13 on the face side to dig the shield excavator while taking the reaction force, and in parallel with this, the shield jack 26 is moved. In the region between these hexagonal segments 12 pressed against each other, by repeating the work of assembling the subsequent hexagonal segments, a plurality of six hexagons arranged in a honeycomb shape in the axial direction X and the circumferential direction Y of the tunnel. The square segment 12 makes it possible to easily form the lining body 11 that covers the inner peripheral surface of the shield tunnel for the storage area, which preferably temporarily stores rainwater.

本実施形態に係る六角形セグメント12及びそれを用いた上記のシールドトンネルの覆工体11の構築方法によれば、軸方向中央線L1の両側それぞれに厚み方向に並べた状態に設けた斜ボルト挿通孔23に挿通した合計4本以上の連結用ボルト24を挿通して、六角形セグメントどうしを緊結することができるため、互いに隣接させてハニカム状に組み付けられる六角形セグメントどうし間に高い接合強度が得られる。しかも、大断面の連結用ボルトを用いて接合強度を高める場合や複数の六角形セグメントを貫通する軸方向の連結用ボルトを用いる場合に比して、個々の連結用ボルトの重量を抑えることができるため、連結用ボルトの取り扱い性や作業効率を低下させることなく、六角形セグメントどうしが高い接合強度で結合した高耐力のシールドトンネル覆工体を容易に構築することができる。
そのため、例えば、大深度地下に構築するシールドトンネルや大口径のシールドトンネルを、厚みが厚い六角形セグメントや高重量の六角形セグメントを用いて構築することも容易となる。
According to the hexagonal segment 12 according to the present embodiment and the method for constructing the shield tunnel lining body 11 using the hexagonal segment 12, diagonal bolts provided on both sides of the axial center line L1 in a thickness direction. Since a total of four or more connecting bolts 24 inserted through the insertion holes 23 can be inserted to bind the hexagonal segments together, high bonding strength is achieved between the hexagonal segments that are assembled in a honeycomb shape adjacent to each other. Is obtained. Moreover, the weight of each connecting bolt can be reduced as compared with the case of using a connecting bolt having a large cross section to increase the joining strength or the case of using an axial connecting bolt penetrating a plurality of hexagonal segments. Therefore, it is possible to easily construct a high-strength shield tunnel lining body in which hexagonal segments are joined to each other with high joint strength without deteriorating the handleability and work efficiency of connecting bolts.
Therefore, for example, it becomes easy to construct a shield tunnel or a large-diameter shield tunnel to be constructed deep underground by using a thick hexagonal segment or a heavy-weight hexagonal segment.

また六角形セグメントの軸方向中央線L1の両側それぞれに、複数の斜ボルト挿通孔を、トンネルの周方向に沿う湾曲方向(図3(a)中の矢印Y1方向)に並べて形成する場合に比べて、両側の斜ボルト挿通孔どうし間に広い領域を確保しやすい。そのため、例えば、図5(c)に示すように、シールド掘進機を前進させるために個々の六角形セグメントに当接させる複数のシールドジャッキのうちの一部のシールドジャッキ26を当接させたり押し当てたりした状態下に、軸方向中央線L1の両側にそれぞれ複数設けた斜ボルト挿通孔23a,23bに連結用ボルト24を挿通させることも容易となる。 Further, as compared with the case where a plurality of oblique bolt insertion holes are arranged on both sides of the axial center line L1 of the hexagonal segment in the bending direction along the circumferential direction of the tunnel (direction of arrow Y1 in FIG. 3A). Therefore, it is easy to secure a wide area between the diagonal bolt insertion holes on both sides. Therefore, for example, as shown in FIG. 5 (c), some of the shield jacks 26 of the plurality of shield jacks that are brought into contact with the individual hexagonal segments in order to advance the shield excavator are brought into contact with or pushed. It is also easy to insert the connecting bolts 24 into the diagonal bolt insertion holes 23a and 23b provided on both sides of the axial center line L1 under the contacted state.

本発明のシールドトンネルの覆工体の構築方法の第3工程は、前記一部のシールドジャッキ26を、後続の六角形セグメント12から離した後に行っても良いが、その場合においても、六角形セグメントの厚み方向に複数のボルト挿通孔を並べてあることによって、両側の斜ボルト挿通孔どうし間に対向する部位に広い空間を確保できるため、例えば、その空間を利用して、連結用ボルトを斜ボルト挿通孔に挿入するための適正位置に搬送する作業や、連結用ボルトを斜ボルト挿通孔に挿入する作業、連結用ボルトを工具や自動緊締装置等により軸回りに回転させる作業等の各種作業を効率的に行うことができる。 The third step of the method for constructing the lining body of the shield tunnel of the present invention may be performed after the partial shield jack 26 is separated from the subsequent hexagonal segment 12, but even in that case, the hexagonal shape is used. By arranging a plurality of bolt insertion holes in the thickness direction of the segment, a wide space can be secured in the portion facing the diagonal bolt insertion holes on both sides. For example, the space can be used to tilt the connecting bolt. Various tasks such as transporting the connecting bolt to the proper position for insertion into the bolt insertion hole, inserting the connecting bolt into the diagonal bolt insertion hole, and rotating the connecting bolt around the axis with a tool or automatic tightening device. Can be done efficiently.

また軸方向中央線L1の両側それぞれに複数の斜ボルト挿通孔23を厚み方向に並べた状態に設けたことによって、坑口側斜め接合面16側に開口する斜ボルト挿通孔23の開口部の位置を、坑口側斜め接合面16の長手方向Eの中央部付近に集中させる設計も容易となる。隣接する六角形セグメント12どうしを、坑口側斜め接合面16と切羽側斜め接合面15とを重ねた連結部の中央部付近を通した複数の連結用ボルト24により緊結することによって、構築されるシールドトンネルの覆工体11におけるハニカム状に組み付けた六角形セグメントどうしの結合状態が力学的に優れたものとなる。これにより、各種作業の作業効率の悪化を抑制しながら、力学的に優れた特性を有する高耐力又は高強度の覆工体11を構築することが容易となる。 Further, by providing a plurality of oblique bolt insertion holes 23 on both sides of the axial center line L1 in a state of being arranged in the thickness direction, the position of the opening of the oblique bolt insertion hole 23 that opens on the wellhead side diagonal joint surface 16 side. Can be easily designed to be concentrated near the central portion of the oblique joint surface 16 on the wellhead side in the longitudinal direction E. It is constructed by binding the adjacent hexagonal segments 12 to each other with a plurality of connecting bolts 24 passing through the vicinity of the central portion of the connecting portion in which the wellhead side diagonal joint surface 16 and the face side diagonal joint surface 15 are overlapped. The bonding state of the hexagonal segments assembled in a honeycomb shape in the lining body 11 of the shield tunnel is mechanically excellent. As a result, it becomes easy to construct the lining body 11 having high yield strength or high strength having mechanically excellent characteristics while suppressing deterioration of work efficiency of various operations.

本実施態様に用いた六角形セグメント12は、図1及び図3に示すように、坑口側斜め接合面16に、他の六角形セグメントの切羽側斜め接合面に形成されたガイド凹部及びガイド凸部と係合する位置決め用のガイド凸部25a及びガイド凹部25bが形成されており、複数の斜ボルト挿通孔23a,23bの、坑口側斜め接合面16側の開口の全体が、該坑口側斜め接合面16の長手方向Eにおける、ガイド凸部25aとガイド凹部25bとの間の領域に位置している。斯かる構成は、力学的に優れた特性を有する高耐力又は高強度の覆工体11を得る観点から好ましい。 As shown in FIGS. 1 and 3, the hexagonal segment 12 used in the present embodiment has a guide recess and a guide convex formed on the wellhead side diagonal joint surface 16 and the face side diagonal joint surface of another hexagonal segment. A guide convex portion 25a and a guide concave portion 25b for positioning that engage with the portion are formed, and the entire opening of the plurality of oblique bolt insertion holes 23a and 23b on the wellhead side diagonal joint surface 16 side is oblique to the wellhead side. It is located in the region between the guide convex portion 25a and the guide concave portion 25b in the longitudinal direction E of the joint surface 16. Such a configuration is preferable from the viewpoint of obtaining a lining body 11 having a high yield strength or a high strength having mechanically excellent properties.

上述した一又は二以上の効果がより確実に奏されるようにする観点から、上述した実施形態の六角形セグメント12のように、軸方向中央線L1の両側にそれぞれ2本のボルト挿通孔を設ける場合、図3(a)及び図3(b)に示すように、内周面22側の斜ボルト挿通孔23aは、切羽側接合面13側の開口の中心点Ca及び坑口側斜め接合面16の開口の中心点Ca’が、いずれもセグメントの厚み方向中央線Z1より内周面22側に位置することが好ましく、外周面20側の斜ボルト挿通孔23bは、切羽側接合面13側の開口の中心点Ca及び坑口側斜め接合面16の開口の中心点Ca’が、いずれもセグメントの厚み方向中央線Z1より外周面20側に位置することが好ましい。 From the viewpoint of ensuring that one or more of the above-mentioned effects are exhibited more reliably, two bolt insertion holes are provided on both sides of the axial center line L1 as in the hexagonal segment 12 of the above-described embodiment. When provided, as shown in FIGS. 3 (a) and 3 (b), the diagonal bolt insertion hole 23a on the inner peripheral surface 22 side is the center point Ca of the opening on the face side joint surface 13 side and the wellhead side diagonal joint surface. It is preferable that the center point Ca'of the openings of 16 is located on the inner peripheral surface 22 side of the central line Z1 in the thickness direction of the segment, and the oblique bolt insertion hole 23b on the outer peripheral surface 20 side is on the face side joint surface 13 side. It is preferable that the center point Ca of the opening and the center point Ca of the opening of the wellhead side oblique joint surface 16 are both located on the outer peripheral surface 20 side of the central line Z1 in the thickness direction of the segment.

本実施形態の六角形セグメント12を用いた覆工体11の構築方法においては、上述した第2工程及び第3工程を、セグメントの搬送装置の保持部に、後続の六角形セグメントを保持した状態で行い、第3工程後に、その六角形セグメントを該保持部から分離することも好ましい。セグメントの搬送装置の保持部としては、公知のエレクター装置が備える各種公知の保持部を用いることができる。厚み方向Aに複数のボルト挿通孔を並べて配置した六角形セグメントを用いることによって、両側の斜ボルト挿通孔どうし間に対向する部位に空間を確保できるため、セグメントの搬送装置の保持部によりセグメントを保持しつつ、第2工程及び第3工程を行うことも可能となる。これにより、より安定した精度の高い六角形セグメントの組み付けが可能となる。 In the method of constructing the lining body 11 using the hexagonal segment 12 of the present embodiment, the above-mentioned second step and the third step are performed in a state where the subsequent hexagonal segment is held in the holding portion of the segment transfer device. It is also preferable to separate the hexagonal segment from the holding portion after the third step. As the holding part of the segment transfer device, various known holding parts provided in the known Elector device can be used. By using a hexagonal segment in which a plurality of bolt insertion holes are arranged side by side in the thickness direction A, a space can be secured in a portion facing between the oblique bolt insertion holes on both sides. It is also possible to perform the second step and the third step while holding the step. This enables more stable and highly accurate assembly of hexagonal segments.

また第3工程における、六角形セグメントどうしの緊結を、搬送装置により搬送される自動締結装置により行うことも好ましい。厚み方向Aに複数のボルト挿通孔を並べて配置した六角形セグメントを用いることによって、両側の斜ボルト挿通孔どうし間に対向する部位に空間を確保できるため、その空間又はその空間を含む空間に、搬送装置により搬送される自動締結装置を配置し、その自動締結装置を用いて六角形セグメントどうしの緊結を行うことも容易である。特に、エレクター装置等のトンネル周方向にセグメントを移動させる機構を備えたセグメントの搬送装置におけるセグメントとともに移動する箇所に自動締結装置を設けることが、トンネルの周方向の複数箇所において行う、連結用ボルトを用いた緊結作業を一層効率的に行うことができるので一層好ましい。なお、自動締結装置は、少なくとも、斜ボルト挿通孔に挿入する又は挿入された連結用ボルトをその軸回りに回転させる機能を有するものであり、斜ボルト挿通孔内に連結用ボルトを挿入する機能を有するものでも有しないものであっても良い。 Further, it is also preferable to fasten the hexagonal segments to each other in the third step by an automatic fastening device conveyed by the conveying device. By using a hexagonal segment in which a plurality of bolt insertion holes are arranged side by side in the thickness direction A, a space can be secured in a portion facing between the oblique bolt insertion holes on both sides. It is also easy to arrange an automatic fastening device to be transported by the transporting device and use the automatic fastening device to fasten the hexagonal segments together. In particular, a connecting bolt is provided at a plurality of locations in the circumferential direction of the tunnel by providing an automatic fastening device at a location where the segment is moved together with the segment in the segment transport device having a mechanism for moving the segment in the circumferential direction of the tunnel such as an erector device. It is more preferable because the binding work using the above can be performed more efficiently. The automatic fastening device has at least a function of inserting the connecting bolt into the oblique bolt insertion hole or rotating the inserted connecting bolt around the axis thereof, and has a function of inserting the connecting bolt into the oblique bolt insertion hole. It may or may not have.

本発明は、上述した実施形態に制限されず、適宜変更可能である。
例えば、図5には、3本のシールドジャッキ26のうちの中央の1本のシールドジャッキ26を六角形セグメント12の切羽側接合面に当接させつつ、その六角形セグメント12のボルト挿入孔に連結用ボルトを挿入したが、掘進時に個々の六角形セグメント12の切羽側接合面に当接させるシールドジャッキ26は2本又は4本以上であっても良く、第2工程で個々の切羽側接合面に当接させるシールドジャッキ26の本数も1本に代えて2本以上であっても良い。例えば、掘進時に個々の六角形セグメント12の切羽側接合面に当接させるシールドジャッキ26を4〜20本(例えば4本)とし、第2工程で当接させるシールドジャッキ26の本数を2〜10本(例えば2本)とすることもできる。
The present invention is not limited to the above-described embodiment, and can be appropriately modified.
For example, in FIG. 5, one of the three shield jacks 26 in the center is brought into contact with the face-side joint surface of the hexagonal segment 12, and is inserted into the bolt insertion hole of the hexagonal segment 12. Although the connecting bolts have been inserted, the number of shield jacks 26 to be brought into contact with the face-side joint surfaces of the individual hexagonal segments 12 during excavation may be two or four or more, and the individual face-side joints may be joined in the second step. The number of shield jacks 26 to be brought into contact with the surface may be two or more instead of one. For example, the number of shield jacks 26 that come into contact with the face-side joint surfaces of the individual hexagonal segments 12 during excavation is 4 to 20 (for example, 4), and the number of shield jacks 26 that come into contact with each other in the second step is 2 to 10. It can also be a book (for example, two).

11 シールドトンネルの覆工体
12 六角形セグメント
13 切羽側接合面
14 坑口側接合面
15 切羽側斜め接合面
16 坑口側斜め接合面
17 V字状周方向接合面
23a,23b,23 斜ボルト挿通孔
24 連結用ボルト
15a,15b 雌ネジ孔
26 シールドジャッキ
11 Shield tunnel lining body 12 Hexagonal segment 13 Face side joint surface 14 Wellhead side joint surface 15 Face side diagonal joint surface 16 Wellhead side diagonal joint surface 17 V-shaped circumferential joint surface 23a, 23b, 23 Diagonal bolt insertion hole 24 Connecting bolts 15a, 15b Female screw holes 26 Shield jack

Claims (7)

互いに平行に配置された切羽側接合面及び坑口側接合面と、これらの接合面の両側の端部を各々連結するようにしてV字形状に配置された、切羽側斜め接合面及び坑口側斜め接合面からなる一対のV字状周方向接合面とを備え、トンネルの軸方向及び周方向に連設して組み付けることによってシールドトンネルの覆工体を形成させる、鉄筋コンクリート製の六角形セグメントであって、
トンネルの軸方向に沿って配される軸方向中央線の両側それぞれに、前記切羽側接合面から前記坑口側斜め接合面に亘る複数の斜ボルト挿通孔が形成されており、
前記複数の斜ボルト挿通孔が、六角形セグメントの厚み方向に並んだ状態に形成されている、六角形セグメント。
The face side joint surface and the wellhead side joint surface arranged parallel to each other and the face side diagonal joint surface and the wellhead side diagonally arranged in a V shape so as to connect the ends on both sides of these joint surfaces. A hexagonal segment made of reinforced concrete that has a pair of V-shaped circumferential joint surfaces consisting of joint surfaces and is assembled in series in the axial and circumferential directions of the tunnel to form a shield tunnel lining. hand,
A plurality of oblique bolt insertion holes extending from the face side joint surface to the wellhead side diagonal joint surface are formed on both sides of the axial center line arranged along the axial direction of the tunnel.
A hexagonal segment in which the plurality of oblique bolt insertion holes are formed so as to be arranged in the thickness direction of the hexagonal segment.
前記複数の斜ボルト挿通孔として、前記六角形セグメントの内周面に近い位置に形成された内側の斜ボルト挿通孔と、前記六角形セグメントの外周面に近い位置に形成された外側の斜ボルト挿通孔とを有しており、
前記外側の斜ボルト挿通孔における前記切羽側接合面側の開口の位置が、前記内側の斜ボルト挿通孔における前記切羽側接合面側の開口の位置に対して、前記切羽側斜め接合面側にずれており、前記外側の斜ボルト挿入孔の長さと前記内側の斜ボルト挿入孔の長さが略同じとなっている、請求項1に記載の六角形セグメント。
As the plurality of oblique bolt insertion holes, an inner oblique bolt insertion hole formed at a position close to the inner peripheral surface of the hexagonal segment and an outer oblique bolt formed at a position close to the outer peripheral surface of the hexagonal segment. It has an insertion hole and
The position of the opening on the face side joint surface side in the outer oblique bolt insertion hole is closer to the face side oblique joint surface side with respect to the position of the opening on the face side joint surface side in the inner oblique bolt insertion hole. The hexagonal segment according to claim 1, wherein the hexagonal segment is offset so that the length of the outer oblique bolt insertion hole and the length of the inner oblique bolt insertion hole are substantially the same.
前記坑口側斜め接合面に、他の六角形セグメントの切羽側斜め接合面に形成されたガイド凹部及びガイド凸部と係合するガイド凸部及びガイド凹部が形成されており、
前記複数の斜ボルト挿通孔の、前記坑口側斜め接合面側の開口が、該坑口側斜め接合面の長手方向における前記ガイド凸部と前記ガイド凹部との間の領域に位置する、請求項1又は2に記載の六角形セグメント。
A guide concave portion and a guide concave portion that engage with the guide concave portion and the guide convex portion formed on the face side diagonal joint surface of the other hexagonal segment are formed on the wellhead side diagonal joint surface.
Claim 1 Or the hexagonal segment according to 2.
互いに平行に配置された切羽側接合面及び坑口側接合面と、これらの接合面の両側の端部を各々連結するようにしてV字形状に配置された、切羽側斜め接合面及び坑口側斜め接合面からなる一対のV字状周方向接合面とを備える六角形セグメントを、トンネルの軸方向及び周方向に連設して組み付けることによってシールドトンネルの覆工体を形成する、シールドトンネルの覆工体の構築方法であって、
前記六角形セグメントとして、請求項1〜3の何れか1項に記載の六角形セグメントを用いるとともに、
先行して配置された複数の六角形セグメントによって形成された等脚台形状の凹部に、セグメントの搬送装置により、後続の六角形セグメントを移動させる第1工程、前記後続の六角形セグメントの前記切羽側接合面に、個々の六角形セグメントの前記切羽側接合面に押し当てその反力によりシールド掘進機を前進させるための複数のシールドジャッキのうちの一部のシールドジャッキを押し当てることによって、前記後続の六角形セグメントにおける坑口側の等脚台形状部分を前記凹部に密着させる第2工程、第2工程後に、前記後続の六角形セグメントにおける前記軸方向中央線の両側にそれぞれ複数設けられた前記斜ボルト挿通孔のそれぞれに連結用ボルトを挿通して、該後続の六角形セグメントを該前記先行して配置された六角形セグメントと緊結する第3工程を備える、シールドトンネルの覆工体の構築方法。
The face side joint surface and the wellhead side joint surface arranged parallel to each other and the face side diagonal joint surface and the wellhead side diagonally arranged in a V shape so as to connect the ends on both sides of these joint surfaces. A shield tunnel cover that forms a shield tunnel lining by connecting and assembling hexagonal segments including a pair of V-shaped circumferential joint surfaces consisting of joint surfaces in the axial and circumferential directions of the tunnel. It ’s a method of constructing a structure,
As the hexagonal segment, the hexagonal segment according to any one of claims 1 to 3 is used, and the hexagonal segment is used.
The first step of moving a subsequent hexagonal segment into an isobaric recess formed by a plurality of previously arranged hexagonal segments by a segment transfer device, the face of the subsequent hexagonal segment. By pressing the side joint surface against the face side joint surface of each hexagonal segment and pressing a part of the shield jacks among a plurality of shield jacks for advancing the shield excavator by the reaction force, the said A plurality of the equipedular trapezoidal portions on the wellhead side of the subsequent hexagonal segment are provided on both sides of the axial center line in the subsequent hexagonal segment after the second step and the second step. Construction of a shield tunnel lining comprising a third step of inserting connecting bolts into each of the oblique bolt insertion holes and binding the subsequent hexagonal segment to the previously arranged hexagonal segment. Method.
第2工程及び第3工程を、前記セグメントの搬送装置の保持部に前記後続の六角形セグメントを保持した状態で行い、第3工程後に、その六角形セグメントを前記保持部から分離する、請求項4に記載のシールドトンネルの覆工体の構築方法。 A claim that the second step and the third step are performed in a state where the subsequent hexagonal segment is held by the holding portion of the transport device of the segment, and the hexagonal segment is separated from the holding portion after the third step. 4. The method for constructing a shield tunnel lining body according to 4. 第3工程における23b、前記六角形セグメントどうしの緊結を、前記搬送装置により搬送される自動締結装置により行う、請求項4又は5に記載のシールドトンネルの覆工体の構築方法。 The method for constructing a shield tunnel lining body according to claim 4 or 5, wherein 23b in the third step, the hexagonal segments are tied together by an automatic fastening device transported by the transport device. 前記六角形セグメントとして、請求項2に記載の六角形セグメントを用い、前記外側の斜ボルト挿入孔及び前記内側の斜ボルト挿入孔に挿入する連結用ボルトとして、長さが等しい共通の連結用ボルトを用いる、請求項4〜6の何れか1項に記載のシールドトンネルの覆工体の構築方法。
The hexagonal segment according to claim 2 is used as the hexagonal segment, and a common connecting bolt having the same length is used as a connecting bolt to be inserted into the outer oblique bolt insertion hole and the inner oblique bolt insertion hole. The method for constructing a shield tunnel lining body according to any one of claims 4 to 6, using the above method.
JP2020038274A 2020-03-05 2020-03-05 Construction method of hexagonal segment and shield tunnel lining Active JP7365269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020038274A JP7365269B2 (en) 2020-03-05 2020-03-05 Construction method of hexagonal segment and shield tunnel lining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020038274A JP7365269B2 (en) 2020-03-05 2020-03-05 Construction method of hexagonal segment and shield tunnel lining

Publications (2)

Publication Number Publication Date
JP2021139176A true JP2021139176A (en) 2021-09-16
JP7365269B2 JP7365269B2 (en) 2023-10-19

Family

ID=77668013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020038274A Active JP7365269B2 (en) 2020-03-05 2020-03-05 Construction method of hexagonal segment and shield tunnel lining

Country Status (1)

Country Link
JP (1) JP7365269B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754596A (en) * 1993-08-19 1995-02-28 Ishikawajima Constr Materials Co Ltd Segment connecting structure
JPH0932489A (en) * 1995-07-19 1997-02-04 Ishikawajima Constr Materials Co Ltd Joined structure of segment
JPH11236798A (en) * 1998-02-20 1999-08-31 Ishikawajima Harima Heavy Ind Co Ltd Segment assembling device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754596A (en) * 1993-08-19 1995-02-28 Ishikawajima Constr Materials Co Ltd Segment connecting structure
JPH0932489A (en) * 1995-07-19 1997-02-04 Ishikawajima Constr Materials Co Ltd Joined structure of segment
JPH11236798A (en) * 1998-02-20 1999-08-31 Ishikawajima Harima Heavy Ind Co Ltd Segment assembling device

Also Published As

Publication number Publication date
JP7365269B2 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
EP3450632B1 (en) Prestressed tube section structure and construction method thereof
JP7104641B2 (en) Synthetic segments, rings and buried structures
JP4566914B2 (en) Method of constructing rejoined segments and connected tunnels
KR20160075901A (en) Segment structure having shear key of island type and longitudinal strand for shield tunnel
GB1597534A (en) Method for the manufacture of underground pipes or tunnels or large diameter
JP6147818B2 (en) Large section tunnel construction method and large section lining body
JP2011157755A (en) Steel segment and composite segment
JP2021139176A (en) Hexagonal segment and construction method of lining body of shield tunnel
CN102691510A (en) Butt section lining structure in shield tunnel
JP3908978B2 (en) Junction structure and junction construction method for large-section tunnel segments
JP3350680B2 (en) Tunnel lining segment and assembly method thereof
JP2942874B2 (en) How to join tunnels
JP3257502B2 (en) Construction method of steel segment and tunnel lining
JP7393256B2 (en) Hexagonal segment with invert and joint structure of hexagonal segment
JP7365270B2 (en) end segment
JP7422064B2 (en) hexagonal segment
JP7339186B2 (en) Hexagonal segment
JP7417436B2 (en) hexagonal segment
JP7277403B2 (en) Joint structure of oblique joint surfaces of hexagonal segments
JP2010242398A (en) Composite segment with reinforcing ribs and tunnel
JP6619710B2 (en) Tunnel widening method and tunnel reinforcement device
JP7315444B2 (en) Hexagonal segments and joint structures of hexagonal segments
JP6811299B1 (en) Segment set consisting of B segment and K segment, open tunnel and its construction method
JP7277402B2 (en) Joint structure at the corner assembly of hexagonal segments
JP7355684B2 (en) Joint structure of hexagonal segments

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231006

R150 Certificate of patent or registration of utility model

Ref document number: 7365269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150