JP2021135365A - Mirror surface compensation value learning device, mirror surface compensation value determining device and mirror surface compensating device - Google Patents
Mirror surface compensation value learning device, mirror surface compensation value determining device and mirror surface compensating device Download PDFInfo
- Publication number
- JP2021135365A JP2021135365A JP2020030686A JP2020030686A JP2021135365A JP 2021135365 A JP2021135365 A JP 2021135365A JP 2020030686 A JP2020030686 A JP 2020030686A JP 2020030686 A JP2020030686 A JP 2020030686A JP 2021135365 A JP2021135365 A JP 2021135365A
- Authority
- JP
- Japan
- Prior art keywords
- compensation value
- mirror surface
- mirror
- learning
- compensator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000007613 environmental effect Effects 0.000 claims abstract description 131
- 230000008602 contraction Effects 0.000 claims description 7
- 230000005855 radiation Effects 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 5
- 238000013473 artificial intelligence Methods 0.000 description 4
- 238000010801 machine learning Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
Images
Landscapes
- Telescopes (AREA)
- Optical Elements Other Than Lenses (AREA)
- Mounting And Adjusting Of Optical Elements (AREA)
Abstract
Description
本開示は、鏡の鏡面精度を予め定められた精度に保つために鏡の鏡面の歪みを補償する補償器の補償値を学習する鏡面補償値学習装置、これを用いた鏡面補償値決定装置及び鏡面補償装置に関するものである。 The present disclosure discloses a mirror surface compensation value learning device that learns a compensation value of a compensator that compensates for distortion of the mirror surface of a mirror in order to maintain the mirror surface accuracy of the mirror at a predetermined accuracy, a mirror surface compensation value determining device using the compensation value, and a mirror surface compensation value determining device using the compensation value. It relates to a mirror surface compensation device.
従来、大型のアンテナ装置や大型の望遠鏡装置には、主反射鏡部を構成する主反射鏡支持構造や副反射鏡を支持する副反射鏡支持構造の重力傾斜が引き起こす自重による変形や熱変形を補償するものがある(例えば、特許文献1、特許文献2、特許文献3参照)。特許文献3には、補償器として、大型のアンテナ装置や大型の望遠鏡装置などの構造物に直接力を加えて歪みを補償するアクチュエータ、構造物を冷却して構造物の熱膨張による歪みを補償する冷却器などがあることが開示されている。
Conventionally, large antenna devices and large telescope devices are subject to deformation and thermal deformation due to their own weight caused by the gravity tilt of the main reflector support structure that constitutes the main reflector and the secondary reflector support structure that supports the secondary reflector. There is compensation (see, for example,
一方、大型のアンテナ装置や大型の望遠鏡装置などの構造物の熱変形による歪みを算出する技術がある(例えば、特許文献3参照)。特許文献3には、温度を上昇させる又は下降させる影響を与える環境データと構造物の温度とを関連付けた環境対温度情報と、構造物の温度及びその温度における構造物の歪みを関連付けた温度対歪み情報と、に基づいて、歪みを算出することが開示されている。 On the other hand, there is a technique for calculating distortion due to thermal deformation of a structure such as a large antenna device or a large telescope device (see, for example, Patent Document 3). Patent Document 3 describes environment-to-temperature information associating environmental data and the temperature of a structure that have an effect of raising or lowering the temperature, and a temperature pair associating the temperature of the structure and the strain of the structure at that temperature. It is disclosed that the strain is calculated based on the strain information.
また、望遠鏡装置には、AI(Artificial Intelligence)などを使った機械学習による学習モデルを、使用者の視度の違いによって生じるピントずれの補正に用いるものがある(例えば、特許文献4参照)。特許文献4には、縮小光学系を移動させる縮小光学系駆動機構の作動を制御する制御手段が、過去に行った補正動作における補正量を学習して将来の補正動作に反映させる学習機能が開示されている。
Further, some telescope devices use a learning model by machine learning using AI (Artificial Intelligence) or the like to correct the focus shift caused by the difference in diopter of the user (see, for example, Patent Document 4).
しかしながら、従来の大型のアンテナ装置や大型の望遠鏡装置では、鏡の鏡面精度を予め定められた精度に保つために鏡の鏡面の歪みを補償するために補償器を用いるが、一度、補償すると微調整が難しいという課題がある。そのため、微調整を必要としない補償値を得るために、AIなどを使った機械学習による学習モデルの活用が期待されるが、特許文献4に開示された補正は、使用者の視度の違いによって生じるピントずれため、適用ができないという課題がある。
However, in the conventional large-sized antenna device and large-sized telescope device, a compensator is used to compensate for the distortion of the mirror surface of the mirror in order to keep the mirror surface accuracy of the mirror at a predetermined accuracy. There is a problem that adjustment is difficult. Therefore, in order to obtain a compensation value that does not require fine adjustment, it is expected that a learning model by machine learning using AI or the like will be utilized, but the correction disclosed in
本開示は、上記のような課題を解決するためになされたものであり、自重歪み以外の、鏡の周囲環境の影響から、鏡が膨張又は収縮することを含む、鏡面の歪みの補償値を学習する鏡面補償値学習装置、これを用いた鏡面補償値決定装置及び鏡面補償装置を得ることを目的とする。 The present disclosure has been made to solve the above-mentioned problems, and compensates for the distortion of the mirror surface, including the expansion or contraction of the mirror due to the influence of the surrounding environment of the mirror other than the self-weight distortion. It is an object of the present invention to obtain a mirror surface compensation value learning device to be learned, a mirror surface compensation value determining device using the mirror surface compensation value learning device, and a mirror surface compensation device.
本開示に係る鏡面補償値学習装置は、鏡の鏡面精度を予め定められた精度に保つために前記鏡の鏡面の歪みを補償する前記補償器の補償値を学習する鏡面補償値学習装置において、前記鏡の自重により前記鏡面が歪む自重歪みを補償する前記補償値を、前記鏡面の姿勢ごとに、基準補償値として入力される基準補償値入力部と、前記自重歪み以外の、前記鏡の周囲環境の影響から、前記鏡が膨張又は収縮することを含む、前記鏡面が歪む環境歪みを補償する前記補償値を、前記鏡の周囲環境の情報である環境情報ごとに、環境影響補償値として入力される環境影響補償値入力部と、前記環境影響補償値を用いて前記基準補償値を前記環境情報ごとに補正した補正後補償値を学習する学習部とを備えたことを特徴とするものである。 The mirror surface compensation value learning device according to the present disclosure is a mirror surface compensation value learning device that learns the compensation value of the compensator that compensates for the distortion of the mirror surface of the mirror in order to maintain the mirror surface accuracy of the mirror at a predetermined accuracy. The compensation value for compensating for the self-weight distortion that the mirror surface is distorted by the self-weight of the mirror is input as a reference compensation value for each posture of the mirror surface. The compensation value for compensating for the environmental distortion that the mirror surface is distorted, including the expansion or contraction of the mirror due to the influence of the environment, is input as the environmental impact compensation value for each environmental information that is information on the surrounding environment of the mirror. It is characterized by including an environmental impact compensation value input unit and a learning unit that learns a corrected compensation value obtained by correcting the reference compensation value for each environmental information using the environmental impact compensation value. be.
本開示に係る鏡面補償値決定装置は、鏡の鏡面精度を予め定められた精度に保つために前記鏡の鏡面の歪みを補償する前記補償器の補償値を学習する鏡面補償値学習装置において、前記鏡の自重により前記鏡面が歪む自重歪みを補償する前記補償値を、前記鏡面の姿勢ごとに、基準補償値として入力される基準補償値入力部と、前記自重歪み以外の、前記鏡の周囲環境の影響から、前記鏡が膨張又は収縮することを含む、前記鏡面が歪む環境歪みを補償する前記補償値を、前記鏡の周囲環境の情報である環境情報ごとに、環境影響補償値として入力される環境影響補償値入力部と、前記環境影響補償値を用いて前記基準補償値を前記環境情報ごとに補正した補正後補償値を学習する学習部とを備えたことを特徴とする鏡面補償値学習装置の学習結果を用いた鏡面補償装置であって、前記環境情報が入力される環境情報入力部と、前記学習部が学習した学習結果に基づいて、前記環境情報入力部に入力された前記環境情報から、前記鏡面の姿勢ごとの前記補正後補償値を決定する補正後補償値決定部とを備えたことを特徴とするものである。 The mirror surface compensation value determining device according to the present disclosure is a mirror surface compensation value learning device that learns the compensation value of the compensator that compensates for the distortion of the mirror surface of the mirror in order to maintain the mirror surface accuracy of the mirror at a predetermined accuracy. The compensation value for compensating for the self-weight distortion that the mirror surface is distorted by the self-weight of the mirror is input as a reference compensation value for each posture of the mirror surface. The compensation value for compensating for the environmental distortion that the mirror surface is distorted, including the expansion or contraction of the mirror due to the influence of the environment, is input as the environmental impact compensation value for each environmental information that is information on the surrounding environment of the mirror. The mirror surface compensation is provided with an environmental impact compensation value input unit and a learning unit that learns the corrected compensation value obtained by correcting the reference compensation value for each environmental information using the environmental impact compensation value. It is a mirror surface compensation device using the learning result of the value learning device, and is input to the environment information input unit based on the learning result learned by the learning unit and the environment information input unit into which the environment information is input. It is characterized by including a corrected compensation value determining unit that determines the corrected compensation value for each posture of the mirror surface from the environmental information.
本開示に係る鏡面補償装置は、鏡の鏡面精度を予め定められた精度に保つために前記鏡の鏡面の歪みを補償する前記補償器の補償値を学習する鏡面補償値学習装置において、前記鏡の自重により前記鏡面が歪む自重歪みを補償する前記補償値を、前記鏡面の姿勢ごとに、基準補償値として入力される基準補償値入力部と、前記自重歪み以外の、前記鏡の周囲環境の影響から、前記鏡が膨張又は収縮することを含む、前記鏡面が歪む環境歪みを補償する前記補償値を、前記鏡の周囲環境の情報である環境情報ごとに、環境影響補償値として入力される環境影響補償値入力部と、前記環境影響補償値を用いて前記基準補償値を前記環境情報ごとに補正した補正後補償値を学習する学習部とを備えたことを特徴とする鏡面補償値学習装置の学習結果を用いた鏡面補償装置であって、前記環境情報が入力される環境情報入力部と、前記学習部が学習した学習結果に基づいて、前記環境情報入力部に入力された前記環境情報から、前記鏡面の姿勢ごとの前記補正後補償値を決定する補正後補償値決定部とを備えたことを特徴とする鏡面補償値決定装置を備えた鏡面補償装置であって、前記鏡面を支持する複数の前記補償器と、前記補正後補償値決定部が決定した前記補正後補償値を用いて、前記補償器によって前記鏡面の歪みを補償させる補償器制御部とを備えたことを特徴とするものである。 The mirror surface compensation device according to the present disclosure is the mirror surface compensation value learning device for learning the compensation value of the compensator that compensates for the distortion of the mirror surface of the mirror in order to maintain the mirror surface accuracy of the mirror at a predetermined accuracy. The compensation value for compensating for the self-weight distortion that the mirror surface is distorted by its own weight is input as a reference compensation value for each posture of the mirror surface. From the influence, the compensation value for compensating for the environmental distortion that the mirror surface is distorted, including the expansion or contraction of the mirror, is input as the environmental impact compensation value for each environmental information that is information on the surrounding environment of the mirror. Mirror surface compensation value learning characterized by including an environmental impact compensation value input unit and a learning unit that learns the corrected compensation value obtained by correcting the reference compensation value for each environmental information using the environmental impact compensation value. A mirror surface compensation device using the learning result of the device, the environment information input unit into which the environment information is input, and the environment input to the environment information input unit based on the learning result learned by the learning unit. A mirror surface compensation device including a mirror surface compensation value determining device including a corrected compensation value determining unit that determines the corrected compensation value for each posture of the mirror surface based on the information. It is characterized by including a plurality of the compensators that support it, and a compensator control unit that compensates for distortion of the mirror surface by the compensator using the corrected compensation value determined by the post-correction compensation value determining unit. Is to be.
本開示によれば、鏡の周囲環境の情報である環境情報ごとの環境影響補償値を用いて基準補償値を環境情報ごとに補正した補正後補償値を学習することができる鏡面補償値学習装置、これを用いた鏡面補償値決定装置及び鏡面補償装置を得ることができる。 According to the present disclosure, a mirror surface compensation value learning device capable of learning a corrected compensation value obtained by correcting a reference compensation value for each environmental information by using an environmental impact compensation value for each environmental information which is information on the surrounding environment of the mirror. , A mirror surface compensation value determining device and a mirror surface compensation device using this can be obtained.
実施の形態1.
以下、実施の形態1に係る鏡面補償値学習装置、これを用いた鏡面補償値決定装置及び鏡面補償装置について、図1から図7を用いて説明する。図1は、鏡面補償値学習装置を利用した好ましい一例である鏡面補償装置によって補償器が制御される望遠鏡装置の概念図である。望遠鏡装置は、光学望遠鏡でも電波望遠鏡でもよい。また、鏡面補償装置によって補償器が制御される対象は、望遠鏡装置に限らず、反射鏡を有するアンテナ装置でもよい。つまり、鏡面を補償する補償器を備えている構造物であればよい。補償器は、鏡(反射鏡)の鏡面精度を予め定められた精度に保つために鏡(反射鏡)の鏡面の歪みを補償するものである。予め定められた精度とは、望遠鏡装置やアンテナ装置(構造物)を実際に運用する際に必要が鏡面の精度である。図中、同一符号は、同一又は相当部分を示し、それらについての詳細な説明は省略する。
Hereinafter, the mirror surface compensation value learning device according to the first embodiment, the mirror surface compensation value determining device using the mirror surface compensation value learning device, and the mirror surface compensation device will be described with reference to FIGS. 1 to 7. FIG. 1 is a conceptual diagram of a telescope device in which a compensator is controlled by a mirror surface compensator, which is a preferable example of using a mirror surface compensation value learning device. The telescope device may be an optical telescope or a radio telescope. Further, the target for which the compensator is controlled by the mirror surface compensator is not limited to the telescope device, but may be an antenna device having a reflecting mirror. That is, any structure may be provided with a compensator for compensating the mirror surface. The compensator compensates for distortion of the mirror surface of the mirror (reflector) in order to maintain the mirror surface accuracy of the mirror (reflector) at a predetermined accuracy. The predetermined accuracy is the accuracy of the mirror surface that is required when actually operating the telescope device or the antenna device (structure). In the figure, the same reference numerals indicate the same or corresponding parts, and detailed description thereof will be omitted.
図2及び図4は、鏡面補償値学習装置(鏡面補償値学習方法)についての説明図である。図3は、鏡面補償値学習装置の動作(鏡面補償値学習方法)を説明するフローチャートである。図4は、鏡面補償値決定装置(鏡面補償値決定方法)についての説明図でもある。図4(A)は、鏡面補償値学習装置、及び、外部から新たな環境情報を得る鏡面補償値決定装置のブロック図である。図4(B)は、鏡面補償値学習装置、及び、環境センサを有する鏡面補償値決定装置のブロック図である。図5は、鏡面補償値決定装置の動作(鏡面補償値決定方法)を説明するフローチャートである。図6は、鏡面補償値学習装置、外部から新たな環境情報を得る鏡面補償値決定装置、鏡面補償装置のブロック図である。図7は、鏡面補償値学習装置、環境センサを有する鏡面補償値決定装置、鏡面補償装置のブロック図である。図中、同一符号は、同一又は相当部分を示し、それらについての詳細な説明は省略する。 2 and 4 are explanatory views of a mirror surface compensation value learning device (mirror surface compensation value learning method). FIG. 3 is a flowchart illustrating the operation of the mirror surface compensation value learning device (mirror surface compensation value learning method). FIG. 4 is also an explanatory diagram of a mirror surface compensation value determining device (mirror surface compensation value determining method). FIG. 4A is a block diagram of a mirror surface compensation value learning device and a mirror surface compensation value determining device that obtains new environmental information from the outside. FIG. 4B is a block diagram of a mirror surface compensation value learning device and a mirror surface compensation value determining device having an environmental sensor. FIG. 5 is a flowchart illustrating the operation of the mirror surface compensation value determining device (mirror surface compensation value determining method). FIG. 6 is a block diagram of a mirror surface compensation value learning device, a mirror surface compensation value determining device for obtaining new environmental information from the outside, and a mirror surface compensation device. FIG. 7 is a block diagram of a mirror surface compensation value learning device, a mirror surface compensation value determining device having an environmental sensor, and a mirror surface compensation device. In the figure, the same reference numerals indicate the same or corresponding parts, and detailed description thereof will be omitted.
図1において、望遠鏡装置1(アンテナ装置1、構造物1)は、主鏡1A、主鏡1Aを支持する支持部1B、副鏡1C、副鏡1Cを支持するステー1Dを有している。ステー1Dは、一端を副鏡1C側の部材に接続され、他端を支持部1Bに接続されている。図1では、ステー1Dは、副鏡1C側の部材と支持部1Bとを結ぶ間に、主鏡1Aがあるため、干渉を避けるための開口が主鏡1Aに必要だが、図の簡略化のため主鏡1Aの開口の図示は省略する。もちろん、ステー1Dは、主鏡1Aに開口を形成せず、主鏡1Aとの干渉を避けた配置にしてもよい。また、詳しくは、主鏡1Aと支持部1Bとの間には、補償器6が設けられている。詳細は後述するが、補償器6は、鏡(主鏡1A)の鏡面精度を予め定められた精度に保つために鏡の鏡面の歪みを補償するものである。もちろん、副鏡1と副鏡1C側の部材との間に、補償器6を設けてもよい。つまり、補償器6で、鏡(副鏡1C)の鏡面精度を予め定められた精度に保つために鏡の鏡面の歪みを補償してもよい。
In FIG. 1, the telescope device 1 (
図2及び図4において、実施の形態1に係る鏡面補償値学習装置(鏡面補償値学習装置2)は、基準補償値入力部3、環境影響補償値入力部4、学習部5を有している。鏡面補償値学習装置2は、鏡(主鏡1A又は副鏡1Cなどの反射鏡)の鏡面精度を予め定められた精度に保つために鏡の鏡面の歪みを補償する補償器6の補償値を学習するものである。基準補償値入力部3は、鏡の自重により鏡面が歪む自重歪みを補償する補償値を、鏡面の姿勢ごとに、基準補償値として入力されるものである。環境影響補償値入力部4は、鏡の自重歪み以外の、鏡の周囲環境の影響から、鏡が膨張又は収縮することを含む、鏡面が歪む環境歪みを補償する補償値を、鏡の周囲環境の情報である環境情報ごとに、環境影響補償値として入力されるものである。
In FIGS. 2 and 4, the mirror surface compensation value learning device (mirror surface compensation value learning device 2) according to the first embodiment has a reference compensation value input unit 3, an environmental impact compensation
基準補償値入力部3や環境影響補償値入力部4は、望遠鏡装置1(アンテナ装置1)の機種ごとに設定された値が入力されるようにしてもよい。同じく、基準補償値入力部3や環境影響補償値入力部4は、補償器6の機種ごとに設定された値が入力されるようにしてもよい。もちろん、望遠鏡装置1(アンテナ装置1)の機種と補償器6の機種との組合せごとに、設定された値を基準補償値入力部3や環境影響補償値入力部4へ入力してもよい。
The reference compensation value input unit 3 and the environmental impact compensation
好適には、基準補償値入力部3は、鏡面の姿勢ごとである鏡面の仰角(水平軸における角度)ごとに、鏡の自重により鏡面が歪む自重歪みを補償する補償値を、基準補償値として入力すればよい。望遠鏡装置1(アンテナ装置1)が、鉛直軸及び水平軸以外に、直交水平軸にも駆動するものである場合、基準補償値入力部3は、鏡面の仰角(水平軸における角度)と鏡面の直交水平軸における角度との組合せごとに、鏡の自重により鏡面が歪む自重歪みを補償する補償値を、基準補償値として入力すればよい。同じく、好適には、環境影響補償値入力部4は、風速、風向、日射量、温度、湿度、天候の少なくとも一つである環境情報ごとに、環境影響補償値が入力されるものである。
Preferably, the reference compensation value input unit 3 uses a compensation value for compensating for the weight distortion of the mirror surface due to the weight of the mirror as the reference compensation value for each elevation angle (angle on the horizontal axis) of the mirror surface for each posture of the mirror surface. Just enter it. When the telescope device 1 (antenna device 1) is driven not only on the vertical axis and the horizontal axis but also on the orthogonal horizontal axis, the reference compensation value input unit 3 is the elevation angle (angle on the horizontal axis) of the mirror surface and the mirror surface. For each combination with the angle on the orthogonal horizontal axis, a compensation value for compensating for the self-weight distortion in which the mirror surface is distorted by the self-weight of the mirror may be input as a reference compensation value. Similarly, preferably, the environmental impact compensation
図2及び図4において、学習部5は、環境影響補償値を用いて基準補償値を環境情報ごとに補正した補正後補償値を学習するものである。好ましくは、学習部5は、基準補償値を用いて鏡面の歪みを補償器6が補償した後の鏡面精度と予め定められた精度とが同じであれば、環境影響補償値は零と学習するものである。または、学習部5は、基準補償値を用いて鏡面の歪みを補償器が補償した後の鏡面精度と予め定められた精度との差が予め定められた範囲内であれば、環境影響補償値は零と学習するものである。
In FIGS. 2 and 4, the
図2及び図4において、補償器6は、鏡(鏡面)を支持する複数のアクチュエータ6(図1などに例示したもの)、又は、鏡(鏡面)を冷却又は加熱する温度調整部6の、少なくとも一方であればよい。補償器6が複数のアクチュエータ6の場合、補償値は、複数のアクチュエータ6の駆動量である。補償器6が温度調整部6の場合、補償値は、温度調整部6の温度調整量である。 In FIGS. 2 and 4, the compensator 6 is a plurality of actuators 6 (exemplified in FIG. 1 and the like) that support the mirror (mirror surface), or a temperature adjusting unit 6 that cools or heats the mirror (mirror surface). At least one is sufficient. When the compensator 6 is a plurality of actuators 6, the compensation value is the driving amount of the plurality of actuators 6. When the compensator 6 is the temperature adjusting unit 6, the compensation value is the temperature adjusting amount of the temperature adjusting unit 6.
好ましくは、学習部5は、基準補償値を用いて鏡面の歪みを補償器6が補償した後の鏡面精度と予め定められた精度とから、予め定められた精度を得るために必要な追加の補償器6の補償量を環境情報ごとに学習して、環境影響補償値として環境影響補償値入力部4へ出力するようにしてもよい。この機能を第1学習部として、学習部5とは別に形成してもよい。この場合、学習部5は、第2学習部5といえる。
Preferably, the
好ましくは、環境影響補償値入力部4は、基準補償値を用いて鏡面の歪みを補償器6が補償したときの環境情報に関連付けられた環境影響補償値が入力される。このとき、環境影響補償値は、基準補償値を用いて鏡面の歪みを補償器6が補償した後の鏡面精度が、予め定められた精度から外れていたときに、予め定められた精度を得るために必要な、追加の補償器6の補償量である。
Preferably, the environmental impact compensation
次に、図3を用いて実施の形態1に係る鏡面補償値学習装置の動作(実施の形態1に係る鏡面補償値学習方法)を説明する。図3において、ステップ1は、基準補償値入力部3に、鏡の自重により鏡面が歪む自重歪みを補償する補償値を、鏡面の姿勢ごとに、基準補償値として入力される処理ステップである。ステップ2は、環境影響補償値入力部4に、鏡の自重歪み以外の、鏡の周囲環境の影響から、鏡が膨張又は収縮することを含む、鏡面が歪む環境歪みを補償する補償値を、鏡の周囲環境の情報である環境情報ごとに、環境影響補償値として入力される処理ステップである。ステップ1及びステップ2は、処理の順序は問わない。同時でもよい。
Next, the operation of the mirror surface compensation value learning device according to the first embodiment (the mirror surface compensation value learning method according to the first embodiment) will be described with reference to FIG. In FIG. 3,
図4において、ステップ3は、基準補償値入力部3に入力された基準補償値と、環境影響補償値入力部4に入力された環境影響補償値とに基づいて、学習部5に、環境影響補償値を用いて基準補償値を環境情報ごとに補正した補正後補償値を学習させる処理ステップである。前述のとおり、学習部5(鏡面補償値学習装置2)には、AIなどの機械学習を適用すればよい。学習部5(鏡面補償値学習装置2)は学習モデルを構築して蓄積している。その他の学習部5の動作は、実施の形態1に係る鏡面補償値学習装置(鏡面補償値学習装置2)で行った説明と同様である。
In FIG. 4, step 3 tells the
図4(A)及び図4(B)において、実施の形態1に係る鏡面補償値決定装置(鏡面補償値決定装置7)は、図2及び図4に示す鏡面補償値学習装置2の学習結果(学習モデル)を用いたものである。鏡面補償値決定装置7は、環境情報入力部8(入力部8)、補正後補償値決定部9を有している。環境情報入力部8は、新たな環境情報が入力されるものである。新たな環境情報とは、これから運用するため、補償する望遠鏡装置1(アンテナ装置1、構造物1)の鏡面に、鏡自重歪み以外の、鏡の周囲環境の影響から、鏡が膨張又は収縮することを含む、鏡面が歪む環境歪みを生じさせる環境の情報である。補正後補償値決定部9は、学習部5が学習した学習結果に基づいて、環境情報入力部8に入力された新たな環境情報から、鏡面の姿勢ごとの補正後補償値を決定するものである。
In FIGS. 4 (A) and 4 (B), the mirror surface compensation value determining device (mirror surface compensation value determining device 7) according to the first embodiment is the learning result of the mirror surface compensation
実施の形態1に係る鏡面補償値決定装置(鏡面補償値決定装置7)は、姿勢情報入力部8(図4では、入力部8として環境情報入力部8と一体で示している)、又は、図4(B)に示す環境センサ10の少なくとも一方を、さらに有していてもよい。図4(A)は環境センサ10がない鏡面補償値決定装置7である。図4(B)は環境センサ10がある鏡面補償値決定装置7である。もちろん、図4(A)に示す鏡面補償値決定装置7(環境情報入力部8)へ入力される新たな環境情報は、鏡面補償値決定装置7の外部に設けられた環境センサ10から得てもよい。なお、後述する図6及び図7においても、姿勢情報入力部8は、入力部8として環境情報入力部8と一体で示している。
The mirror surface compensation value determining device (mirror surface compensation value determining device 7) according to the first embodiment is a posture information input unit 8 (in FIG. 4, the
姿勢情報入力部8は、鏡面の姿勢の情報である姿勢情報が入力されるものである。補正後補償値決定部9は、姿勢情報入力部8に入力された姿勢情報から補正後補償値を決定することになる。姿勢情報は、望遠鏡装置1(アンテナ装置1)の鏡面の姿勢ごとである鏡面の仰角(水平軸における角度)情報が考えられる。さらに、望遠鏡装置1(アンテナ装置1)が、鉛直軸及び水平軸以外に、直交水平軸にも駆動するものである場合、姿勢情報は、鏡面の仰角(水平軸における角度)と鏡面の直交水平軸における角度との組合せとなる。もちろん、いずれの場合でも、姿勢情報に、鏡面の鉛直軸における角度も組合せてもよい。
The posture
環境センサ10は、新たな環境情報を測定するものである。環境情報入力部8は環境センサ10が測定した新たな環境情報が入力されるものである。この場合、姿勢情報入力部8が、時間経過に沿って変化していく姿勢情報が入力されるようにしてもよい。このようにすることで、望遠鏡装置1やアンテナ装置1のように、鏡が動き、物理的に駆動して走査する構造物1の姿勢変化に合わせて、補償器6による補償を行うことができる。なお、物理的に駆動して走査するスケジュールが予め決まっている場合は、その情報を鏡面補償値決定装置7に保持しておければよい。例えば、入力部8で保持しておけばよい。
The
環境センサ10は、風速、風向、日射量、温度、湿度、天候の少なくとも一つである環境情報を取得できるセンサであればよい。環境情報が風速、風向であれば光波を利用したライダー装置や音波を利用したソダー装置が環境センサ10に好適である。環境情報が日射量であれば日射量計(日射計)が環境センサ10に好適である。環境情報が温度、湿度であれば温湿度計が環境センサ10に好適である。環境情報が天候であれば電波を利用した気象レーダが環境センサ10に好適である。風速、風向、日射量、温度、湿度、天候を予報から入手する場合は、環境センサ10からの情報はネットワーク経由で得ることになる。環境情報を得るために、環境センサ10を構造物1の近傍に配置や構造物1そのものに形成する必要があれば、そのようにするとよい。なお、環境センサ10は、異なる機能を含めて、複数あってもよい。
The
図5を用いて実施の形態1に係る鏡面補償値決定装置の動作(実施の形態1に係る鏡面補償値決定方法)を説明する。図5において、ステップ11は、環境情報入力部8(入力部8)に、新たな環境情報が入力される処理ステップである。ステップ12は、補正後補償値決定部9が、学習部5の学習結果(学習モデル)を使用する処理ステップである。ステップ13は、補正後補償値決定部9が、学習部5が学習した学習結果に基づいて、環境情報入力部8に入力された新たな環境情報から、鏡面の姿勢ごとの補正後補償値を決定する処理ステップである。その他の環境情報入力部8や補正後補償値決定部9の動作は、実施の形態1に係る鏡面補償値学習装置(鏡面補償値学習装置2)で行った説明と同様である。姿勢情報入力部8を加えた場合も同様である。
The operation of the mirror surface compensation value determining device according to the first embodiment (the mirror surface compensation value determining method according to the first embodiment) will be described with reference to FIG. In FIG. 5,
図6及び図7において、実施の形態1に係る鏡面補償装置の動作(実施の形態1に係る鏡面補償方法)は、図2及び図4に示す鏡面補償値学習装置2の学習結果(学習モデル)及び鏡面補償値決定装置7が決定した補正後補償値を用いた鏡面補償装置11である。図6は環境センサ10がない鏡面補償値決定装置7を利用した鏡面補償装置である。図4(B)は環境センサ10がある鏡面補償値決定装置7を利用した鏡面補償装置である。もちろん、図6に示す鏡面補償値決定装置7(環境情報入力部8)へ入力される新たな環境情報は、鏡面補償値決定装置7の外部に設けられた環境センサ10から得てもよい。
In FIGS. 6 and 7, the operation of the mirror surface compensation device according to the first embodiment (the mirror surface compensation method according to the first embodiment) is the learning result (learning model) of the mirror surface compensation
鏡面補償装置11は、詳しくは、鏡面補償値決定装置7を備えた鏡面補償装置11であって、鏡面を支持する複数の補償器6と、補正後補償値決定部9が決定した補正後補償値を、補正後補償値入力部12を介して用いて、補償器6によって鏡面の歪みを補償させる補償器制御部13を有するものである。補正後補償値決定部9と補正後補償値入力部12との間で分離して、鏡面補償装置11から鏡面補償値決定装置7の機能を分けてよい。また、少なくとも、鏡面補償装置11の機能部分は、構造物1(望遠鏡装置1、アンテナ装置1)に設けてもよい。
The mirror
図7に示しように、環境センサ10を構造物1(望遠鏡装置1、アンテナ装置1)の近傍に配置すれば、風速、風向、日射量、温度、湿度、天候の少なくとも一つである環境情報を取得しやすい。風速、風向、日射量、温度、湿度、天候の少なくとも一部を予報から入手する場合は、その一部用の環境センサ10からの情報はネットワーク経由で得ることになる。つまり、前述のように、環境センサ10は、異なる機能を含めて、複数あってもよい。
As shown in FIG. 7, if the
実施の形態1に係る鏡面補償装置(鏡面補償装置11)において、姿勢情報入力部8が、時間経過に沿って変化していく姿勢情報が入力されるものがある場合は次のようになる。補償器制御部13は、補正後補償値決定部9が決定した前記補正後補償値を、補正後補償値入力部12を介して用いて、補償器6により、時間経過に沿って変化していく鏡面の歪みを変化に合わせて補償させることができる。
In the mirror surface compensation device (mirror surface compensation device 11) according to the first embodiment, when the posture
以上、実施の形態1に係る鏡面補償値学習装置、これを用いた鏡面補償値決定装置及び鏡面補償装置は、鏡の自重歪み以外の、鏡の周囲環境の影響から、鏡が膨張又は収縮することを含む、鏡面の歪みの補償値を学習することで、補償値を微調整する必要性を大きく減じることができる。学習部5の学習が進めば、教師データが無い鏡面の姿勢(姿勢情報)や、環境情報であっても適切な補償値(補正後補償値)を得ることができるようになる。
As described above, in the mirror surface compensation value learning device according to the first embodiment, the mirror surface compensation value determining device using the mirror surface compensation value learning device, and the mirror surface compensation device, the mirror expands or contracts due to the influence of the surrounding environment of the mirror other than the self-weight distortion of the mirror. By learning the compensation value for the distortion of the mirror surface, including the above, the need for fine-tuning the compensation value can be greatly reduced. If the learning of the
1 望遠鏡装置(アンテナ装置、構造物)、1A 主鏡(鏡)、1B 支持部、
1C 副鏡(鏡)、1D ステー、2 鏡面補償値学習装置、3 基準補償値入力部、
4 環境影響補償値入力部、5 学習部、
6 補償器(アクチュエータ、温度調整部)、7 鏡面補償値決定装置、
8 入力部(環境情報入力部、姿勢情報入力部)、9 補正後補償値決定部、
10 環境センサ、11 鏡面補償装置、12 補正後補償値入力部、
13 補償器制御部。
1 Telescope device (antenna device, structure), 1A primary mirror (mirror), 1B support,
1C secondary mirror (mirror), 1D stay, 2 mirror surface compensation value learning device, 3 reference compensation value input unit,
4 Environmental impact compensation value input unit, 5 Learning unit,
6 Compensator (actuator, temperature controller), 7 Mirror surface compensation value determination device,
8 Input unit (environmental information input unit, posture information input unit), 9 Corrected compensation value determination unit,
10 Environmental sensor, 11 Mirror surface compensation device, 12 Corrected compensation value input unit,
13 Compensator control unit.
Claims (13)
前記鏡の自重により前記鏡面が歪む自重歪みを補償する前記補償値を、前記鏡面の姿勢ごとに、基準補償値として入力される基準補償値入力部と、前記自重歪み以外の、前記鏡の周囲環境の影響から、前記鏡が膨張又は収縮することを含む、前記鏡面が歪む環境歪みを補償する前記補償値を、前記鏡の周囲環境の情報である環境情報ごとに、環境影響補償値として入力される環境影響補償値入力部と、前記環境影響補償値を用いて前記基準補償値を前記環境情報ごとに補正した補正後補償値を学習する学習部とを備えたことを特徴とする鏡面補償値学習装置。 In a mirror surface compensation value learning device that learns the compensation value of the compensator that compensates for distortion of the mirror surface of the mirror in order to maintain the mirror surface accuracy of the mirror at a predetermined accuracy.
The compensation value for compensating for the self-weight distortion that the mirror surface is distorted by the self-weight of the mirror is input as a reference compensation value for each posture of the mirror surface. The compensation value for compensating for the environmental distortion that the mirror surface is distorted, including the expansion or contraction of the mirror due to the influence of the environment, is input as the environmental impact compensation value for each environmental information that is information on the surrounding environment of the mirror. The mirror surface compensation is provided with an environmental impact compensation value input unit and a learning unit that learns the corrected compensation value obtained by correcting the reference compensation value for each environmental information using the environmental impact compensation value. Value learning device.
前記環境影響補償値は、前記基準補償値を用いて前記鏡面の歪みを前記補償器が補償した後の前記鏡面精度が、前記予め定められた精度から外れていたときに前記予め定められた精度を得るために必要な、追加の前記補償器の前記補償量であることを特徴とする請求項1に記載の鏡面補償値学習装置。 The environmental impact compensation value input unit is input with the environmental impact compensation value associated with the environmental information when the compensator compensates for the distortion of the mirror surface using the reference compensation value.
The environmental impact compensation value is the predetermined accuracy when the mirror surface accuracy after the compensator compensates for the distortion of the mirror surface using the reference compensation value deviates from the predetermined accuracy. The mirror surface compensation value learning device according to claim 1, wherein the compensation amount of the additional compensator is required to obtain the mirror surface compensation value.
前記補償値は、前記アクチュエータの駆動量、又は、前記温度調整部の温度調整量の少なくとも一方であることを特徴とする請求項1から請求項6のいずれか1項に記載の鏡面補償値学習装置。 The compensator is at least one of a plurality of actuators that support the mirror or a temperature control unit that cools or heats the mirror.
The mirror compensation value learning according to any one of claims 1 to 6, wherein the compensation value is at least one of the driving amount of the actuator and the temperature adjusting amount of the temperature adjusting unit. Device.
新たな前記環境情報が入力される環境情報入力部と、前記学習部が学習した学習結果に基づいて、前記環境情報入力部に入力された新たな前記環境情報から、前記鏡面の姿勢ごとの前記補正後補償値を決定する補正後補償値決定部とを備えたことを特徴とする鏡面補償値決定装置。 A mirror surface compensation device using the learning result of the mirror surface compensation value learning device according to any one of claims 1 to 7.
From the environmental information input unit into which the new environmental information is input and the new environmental information input to the environmental information input unit based on the learning result learned by the learning unit, the above-mentioned for each posture of the mirror surface. A mirror surface compensation value determining device including a corrected compensation value determining unit for determining a corrected compensation value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020030686A JP2021135365A (en) | 2020-02-26 | 2020-02-26 | Mirror surface compensation value learning device, mirror surface compensation value determining device and mirror surface compensating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020030686A JP2021135365A (en) | 2020-02-26 | 2020-02-26 | Mirror surface compensation value learning device, mirror surface compensation value determining device and mirror surface compensating device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021135365A true JP2021135365A (en) | 2021-09-13 |
JP2021135365A5 JP2021135365A5 (en) | 2023-02-02 |
Family
ID=77661119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020030686A Pending JP2021135365A (en) | 2020-02-26 | 2020-02-26 | Mirror surface compensation value learning device, mirror surface compensation value determining device and mirror surface compensating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2021135365A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01238604A (en) * | 1988-03-18 | 1989-09-22 | Mitsubishi Electric Corp | Active supporting device for specular surface |
JP2007129463A (en) * | 2005-11-02 | 2007-05-24 | Mitsubishi Electric Corp | Telescope system |
-
2020
- 2020-02-26 JP JP2020030686A patent/JP2021135365A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01238604A (en) * | 1988-03-18 | 1989-09-22 | Mitsubishi Electric Corp | Active supporting device for specular surface |
JP2007129463A (en) * | 2005-11-02 | 2007-05-24 | Mitsubishi Electric Corp | Telescope system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6785028B1 (en) | Optical scanning device having a temperature compensation unit | |
US7916210B2 (en) | Driving device and image stabilizing system | |
US6404547B1 (en) | Semi-active focus and thermal compensation of a centrally-obscured reflective telescope | |
CN110361829A (en) | A kind of telescope Pointing Calibration method and telescope | |
CN105607250A (en) | Non-common-path aberration measurement and compensation device and method in high-resolution imaging telescope | |
CN109522573A (en) | A kind of emulation mode of optical remote sensing camera active optics system | |
US5303080A (en) | Beam scanning system including actively-controlled optical head | |
US9300851B2 (en) | Method and system for compensating optical aberrations in a telescope | |
CN117146989A (en) | Athermalization temperature compensation method for vehicle-mounted infrared thermal imaging lens group optical system | |
JP2021135365A (en) | Mirror surface compensation value learning device, mirror surface compensation value determining device and mirror surface compensating device | |
CN111458860A (en) | Laser emitting device with adjustable laser line and control method | |
Momeni et al. | Designing an automated alignment system in fluctuating thermal environments for opto-mechanical components at MROI | |
KR20190066664A (en) | Dual camera module and method for focusing of dual camera module | |
JPH05103255A (en) | Focus correcting mechanism for lens device | |
US10890850B2 (en) | Optical imaging arrangement with actively adjustable metrology support units | |
JP2021067710A (en) | Lens control device, optical instrument, and lens control method | |
JP6867646B2 (en) | Adaptive optics system and adaptive optics method | |
Karcher | Telescopes as mechatronic systems | |
JP2008098853A (en) | Lens antenna apparatus for satellite broadcasting and communication | |
Parvizi et al. | Reinforcement learning-based wavefront sensorless adaptive optics approaches for satellite-to-ground laser communication | |
WO2020100360A1 (en) | Corrective optical system and optical correction method | |
Rakoczy et al. | Primary mirror figure maintenance of the hobby-eberly telescope using the segment alignment maintenance system | |
US20240153140A1 (en) | Image quality calibration for multi-degree-of freedom actuator | |
JP2021135365A5 (en) | ||
WO2001088588A3 (en) | Auto-focus system with 2-d or 3-d compensation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20220427 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230125 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230125 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231205 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20240528 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20240705 |