JPH01238604A - Active supporting device for specular surface - Google Patents

Active supporting device for specular surface

Info

Publication number
JPH01238604A
JPH01238604A JP6626288A JP6626288A JPH01238604A JP H01238604 A JPH01238604 A JP H01238604A JP 6626288 A JP6626288 A JP 6626288A JP 6626288 A JP6626288 A JP 6626288A JP H01238604 A JPH01238604 A JP H01238604A
Authority
JP
Japan
Prior art keywords
force
mirror surface
weight
mirror
specular surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6626288A
Other languages
Japanese (ja)
Other versions
JPH0734059B2 (en
Inventor
Keizo Miyawaki
宮脇 啓造
Izumi Mikami
泉 三神
Noboru Ito
昇 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6626288A priority Critical patent/JPH0734059B2/en
Priority to DE3908430A priority patent/DE3908430A1/en
Priority to US07/324,652 priority patent/US5115351A/en
Publication of JPH01238604A publication Critical patent/JPH01238604A/en
Publication of JPH0734059B2 publication Critical patent/JPH0734059B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable compensation of force except a specular surface's own weight, for example, wind pressure, even if such force acts on the specular surface by providing force sensors to fixing mechanisms, determining the force command value to be instructed to respective supporting devices in correspondence to the force except its own weight and executing feedback control. CONSTITUTION:The respective supporting mechanisms support the specular surface 1 by the pushing force for compensation of the displacement of the specular surface generated by forces except its own weight. The force except its own weight, for example, the wind pressure, acts on 3 pieces of the fixing mechanisms 5 and is detected by 3 pieces of the force sensors B8 provided in correspondence thereto if said force acts on the specular surface 1. The values of the force sensors B8 are sent to a fixed supporting force feedback device 9, by which the force instruction values to be applied to the respective driving mechanisms 2 provided in correspondence to the supporting points disposed widely on the specular surface are calculated and the respective force instruction values are distributed to the respective driving mechanisms 2. The displacement of the specular surface except by its own weight is thus prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、望遠鏡等に使用する鏡面能動支持装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a mirror active support device used in a telescope or the like.

〔従来の技術〕[Conventional technology]

第4図は、従来の望遠鏡の鏡面能動支持装置を表わすブ
ロック図である。図において、(1)は鏡面であり1表
面で光を反射し集光するためのもので高い鏡面精度が必
要とされる。(2]は駆動機構であり、鏡面(1)の裏
側で、これに支持し、各支持点で鏡面を押し引きして弾
性変移を支え、鏡面変位を修正するものであり、複数個
設けられている。(3)は力センサAであり、それぞれ
の係合点における鏡面(1)と駆動機構(2)の間の押
圧力を測定するために設けられている。(4]は力制御
装置で、各駆動機構(2)が発生すべき押し引き力に対
応する力指令値が入力されると対応する駆動機構(2)
の力センサ−A(3)の読取値と前記指示値との比較を
行い、支持力が常に力指令値となるよう駆動機構(2)
を制御するためのものである。(5)は固定機構であり
、鏡面(1)を6自由度拘束(弾性変位は許容するが剛
体変位は生じない拘束方法)するため、3点に設けられ
ている。(6)はミラーセルであり、駆動機構(2)と
固定機構(5)を取り付けるための台である。(7)は
群制御装置であり、各支持点に対応する力制御装置(4
)に所要の力指令値を送る群制御装置で、鏡面(1)の
傾き角θが与えられると、各支持機構(2)がどのよう
な支持力を発生すればよいかの力指令値を求めるための
ものである。
FIG. 4 is a block diagram showing a conventional mirror active support device for a telescope. In the figure, (1) is a mirror surface that reflects and focuses light on one surface, and requires high mirror surface precision. (2) is a drive mechanism, which is supported on the back side of the mirror surface (1), supports elastic displacement by pushing and pulling the mirror surface at each support point, and corrects the displacement of the mirror surface. (3) is a force sensor A, which is provided to measure the pressing force between the mirror surface (1) and the drive mechanism (2) at each engagement point. (4) is a force control device When a force command value corresponding to the push/pull force to be generated by each drive mechanism (2) is input, the corresponding drive mechanism (2)
The reading value of the force sensor A (3) of the drive mechanism (2) is compared with the indicated value, and the drive mechanism (2)
The purpose is to control the (5) is a fixing mechanism, which is provided at three points in order to constrain the mirror surface (1) with six degrees of freedom (a constraint method that allows elastic displacement but does not cause rigid body displacement). (6) is a mirror cell, which is a stand for mounting the drive mechanism (2) and the fixing mechanism (5). (7) is a group control device, and force control device (4) corresponding to each support point
), the group control device sends the required force command value to the mirror surface (1), and when the inclination angle θ of the mirror surface (1) is given, the force command value that determines what kind of support force each support mechanism (2) should generate is determined. It is for seeking.

次に動作について説明する。鏡面(1)は固定機構(5
)によってミラーセル(6)に6自由度拘束の条件のも
とに固定される。ところで、鏡面(1)の3点を固定機
構(5)で支持するだけでは鏡面(1)の各部分の自重
による変形が大きいという問題がある。これの対応方法
として支持点を多く設けることが考えられたが単純に鏡
面(1)をミラーセル(6)に多くの点で固定してしま
うと今度はミラーセル(6)の自重変形。
Next, the operation will be explained. The mirror surface (1) has a fixing mechanism (5
) is fixed to the mirror cell (6) under the condition of six degrees of freedom constraint. By the way, there is a problem in that if only three points of the mirror surface (1) are supported by the fixing mechanism (5), each part of the mirror surface (1) deforms greatly due to its own weight. One way to deal with this was to provide many support points, but simply fixing the mirror surface (1) to the mirror cell (6) at many points would cause the mirror cell (6) to deform under its own weight.

熱変形が、鏡面(1)に伝わってしまうという問題があ
る。そこで固定(ぷ構(5)で拘束する3点以外は支持
力を常に力指令値に合致するよう制御され、−定となる
ような支持方法がとられた。このようにすればミラーセ
ル(6)に自重変形や熱変形が生じても力センサ−A(
31,力制御装置(4)、駆動機構(2)のループで定
値制御が行れ、駆動機構(2)の支持力が一定になるよ
う制御される。この結果、ミラーセル(6)の変形が駆
動機構(2)で吸収され、鏡面(1)には伝わらないこ
とになる。なお鏡面(1)の熱変形は。
There is a problem that thermal deformation is transmitted to the mirror surface (1). Therefore, a supporting method was adopted in which the supporting force was always controlled to match the force command value except for the three points restrained by the fixed structure (5), and the supporting force was - constant. Even if deformation due to its own weight or thermal deformation occurs in force sensor-A
31, constant value control can be performed in a loop of the force control device (4) and the drive mechanism (2), and the supporting force of the drive mechanism (2) is controlled to be constant. As a result, the deformation of the mirror cell (6) is absorbed by the drive mechanism (2) and is not transmitted to the mirror surface (1). The thermal deformation of the mirror surface (1) is as follows.

鏡面(1)の材料を低膨張ガラスにすることにより防い
でいる。
This is prevented by using low-expansion glass as the material for the mirror surface (1).

次に、鏡面(1)が傾いた場合の自重のか\り方の変化
による変形については、望遠鏡の仰角をθとすれば支持
力は、自重をベクトルと考えその鏡軸方向の成分つまり
自重)<sinθと求まることに着眼し1次のように制
御を行う。まず各支持点に対応して前記考え方による計
算が9群制御装置(7)で行われ、各力制御装置(4)
にそれぞれの所要の力指令値が出され、各駆動機構(2
)を制御して鏡面(1)の各部に所要の押引力を加える
。このようにすることによって鏡面(1)が傾いても、
各駆動機構(2)の支持力が正しい値に制御され、鏡面
(1)の形状が正しく医たれることになる。なお図示し
ていないが1鏡面の前方に鏡面の精度を測定する鏡面精
度測定装置を設け、前記計算値とは別に実際の鏡面の所
定値からの変位を測定し、この変位量を補正するよう駆
動機構を制御する。を併用することにより鏡面等の 拝
変化を併せて補正することも行われている。
Next, regarding the deformation due to the change in the direction of the mirror surface (1) due to its own weight when it is tilted, if the angle of elevation of the telescope is θ, then the supporting force is the component in the direction of the mirror axis (self-weight) considering the own weight as a vector. Focusing on finding <sin θ, control is performed in a first-order manner. First, calculations based on the above concept are performed in the 9-group control device (7) corresponding to each support point, and each force control device (4)
Each required force command value is output to each drive mechanism (2
) to apply the required pushing and pulling force to each part of the mirror surface (1). By doing this, even if the mirror surface (1) is tilted,
The supporting force of each drive mechanism (2) is controlled to a correct value, and the shape of the mirror surface (1) can be corrected. Although not shown, a mirror surface accuracy measuring device is provided in front of one mirror surface to measure the precision of the mirror surface, and in addition to the calculated value, the actual displacement of the mirror surface from a predetermined value is measured, and this amount of displacement is corrected. Control the drive mechanism. It is also used to correct for changes in the appearance of mirror surfaces, etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の鏡能動支持装置は9以上のように構成されている
ので、駆動機構(2)は、鏡面(1)の自重による弾性
変位のみを修正するよう制御されているが鏡面変位の原
因としては自重以外の力たとえば風圧等もあり、これら
の力が鏡面(1)に作用すると従来のものでは補償がで
きなく変形が生じるという問題点があった。
Since the conventional mirror active support device is configured as above, the drive mechanism (2) is controlled to correct only the elastic displacement of the mirror surface (1) due to its own weight, but the cause of the mirror surface displacement is There are forces other than the mirror's own weight, such as wind pressure, and when these forces act on the mirror surface (1), conventional mirrors cannot compensate and deformation occurs.

この発明はt記のような問題点を解消するためになされ
たもので、鏡面に自重以外の力1例えば風圧が作用して
もこれらの力を補償することができる鏡面能動支持装置
を得ることを目的としている。
This invention has been made in order to solve the problems mentioned in t.It is an object of the present invention to provide a mirror surface active support device that can compensate for forces other than its own weight, such as wind pressure, acting on the mirror surface. It is an object.

〔課題を解決するための手段〕[Means to solve the problem]

この発明による鏡面能動支持装置は、固定機構に力セン
サーを設け、鏡面に作用する自重以外の力(例えば風圧
)を検出し、この力によって生ずる鏡面変位を補正すべ
く、各支持装置へ指示すべき力指令値を求めると共にそ
の力指令値を各支持装置へ配分するフィードバック制御
系を構成するようにしたものである。
The mirror surface active support device according to the present invention includes a force sensor in the fixing mechanism, detects a force other than its own weight (for example, wind pressure) acting on the mirror surface, and instructs each support device to correct the mirror surface displacement caused by this force. A feedback control system is configured to obtain a power command value and distribute the force command value to each support device.

〔作 用〕[For production]

この発明における鏡面能動支持装置は、固定機構に力セ
ンサーを設け、力センサの読取データから自重以外の力
に対応して各支持装置へ指示すべき力指令値を求めフィ
ードバック制御するようにしたため、鏡面に作用する自
重以外の力も補正することができる。
In the mirror active support device of the present invention, a force sensor is provided in the fixing mechanism, and from the data read by the force sensor, a force command value to be instructed to each support device in response to a force other than its own weight is determined and feedback control is performed. Forces other than its own weight that act on the mirror surface can also be corrected.

〔発明の実施列〕[Implementation sequence of the invention]

以下、この発明の一実施例を図について説明する。第1
図において(1)〜(7)は従来装置と同一の機能のも
のを表わす。(8)は力センサ−Lであり、固定機構(
5)に生じる支持力を求めるものである。各固定機構(
3ケ所)毎に設けられている。(9)は固定支持力フィ
ードバック装置であり、力センサ−B(8)で測定した
3個所の固定支持点の支持力データから鏡面上に広がっ
て配置されている複数個の支持点に対応する各駆動機構
(2)の各々にフィードバックすべき力指示値を算出し
、各駆動機構(2)にフィードバックし、配分するため
のものである。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, (1) to (7) represent the same functions as the conventional device. (8) is the force sensor L, and the fixing mechanism (
5) The purpose is to find the supporting force generated in . Each fixing mechanism (
3 locations). (9) is a fixed support force feedback device, which corresponds to multiple support points spread out on a mirror surface based on the support force data of three fixed support points measured by force sensor B (8). This is for calculating the force instruction value to be fed back to each drive mechanism (2), feeding it back to each drive mechanism (2), and distributing it.

次にこの実施例の動作について説明する。各支持機構(
2)は自重分によって生ずる鏡面変位の補償のための押
引力で鏡面を支持している鏡面(1)に自重以外の力た
とえば風圧が作用すると風圧による力は3個の固定機構
(5)に作用し、対応して設けられている3個の力セン
サ−B(8)で検出される。3ケの力センサ−B(8)
の値は固定支持力フィードバック装置(9)に送られ、
鏡面上広く配置されている支持点に対応して設けられて
いる各駆動機構(2)のそれぞれに与える力指示値を計
算すると共にこの力指示値をそれぞれの駆動機構に配分
する。この力指示値は自重以外の力が鏡面(1)に作用
しても。
Next, the operation of this embodiment will be explained. Each support mechanism (
2) means that when a force other than its own weight, such as wind pressure, acts on the mirror surface (1) that supports the mirror surface with push and pull force to compensate for the displacement of the mirror surface caused by its own weight, the force due to the wind pressure is applied to the three fixing mechanisms (5). act and is detected by three force sensors B (8) provided correspondingly. 3 force sensors-B (8)
The value of is sent to the fixed support force feedback device (9),
A force instruction value to be applied to each drive mechanism (2) provided corresponding to support points widely arranged on the mirror surface is calculated, and this force instruction value is distributed to each drive mechanism. This force indication value is valid even if a force other than its own weight acts on the mirror surface (1).

これを打ち消す力を各駆動機構(2)で発生させるもの
である。このようにすることによって自重以外の力によ
る鏡面変形を防ぐことができる。所で。
Each drive mechanism (2) generates a force to counteract this. By doing so, deformation of the mirror surface due to forces other than its own weight can be prevented. At the place.

各駆動機構(21への力の配分方法としては5力を全部
の駆動機構(2)に配分し、補正する荷重を分布荷重に
する方法が考えられる。この分布荷重の方法としては第
2図に示すような低次の3つのモードX軸上及びγ軸上
の荷重分布が均一のもの(第2図(a))と、X軸上の
荷重分布は均一、γ軸上の荷重分布は一定の傾きをもっ
ているもの(第2図(b))と、X軸上の荷重分布は一
定の傾きをもっているがγ軸上の荷重分布は均一のもの
(第2図(c)。)で重さね合わせて表現する方法が考
えられる。この3つのモードの成分は、力センサ−B(
8)が3ケあるので、この3ケの情報から求められる。
As a method of distributing the force to each drive mechanism (21), it is possible to distribute the five forces to all drive mechanisms (2) and make the load to be corrected a distributed load.This distributed load method is shown in Figure 2. The three low-order modes shown in Figure 2 have a uniform load distribution on the The load distribution on the X-axis has a constant slope but the load distribution on the γ-axis is uniform (Figure 2(c)). One possible method is to express them by combining them.The components of these three modes are the force sensor B (
Since there are 3 pieces of information in 8), it can be found from the information of these 3 pieces.

なお、上記実施例では、力を配分する方法として、低次
の3つの分布モードに展開する方法を示したが、第3図
に示すように、鏡面を、3つの領域に分け、各領域に固
定機構(51と力センサ−B(8)を設け、各領域ごと
に自重以外の力を力センサ−B(8)検出し、この力を
打ち消すような力をこの領域内の駆動機構(2)に発生
させるようにしてもよい。
In the above embodiment, a method of distributing force into three low-order distribution modes was shown, but as shown in Fig. 3, the mirror surface is divided into three regions, and each region is A fixing mechanism (51) and a force sensor-B (8) are provided, and the force sensor-B (8) detects a force other than its own weight for each area, and a force that cancels this force is applied to the drive mechanism (2) in this area. ) may be generated.

また上記の説明では、自重以外の外力が鏡面(1)に作
用したときにこれらの力が打ち消されることを示したが
、各駆動機構(2)の力センサ−A(3)に誤差があっ
た場合も、自重以外の外力の場合と同様。
Furthermore, in the above explanation, it was shown that when external forces other than its own weight act on the mirror surface (1), these forces are canceled out, but there is an error in the force sensor A (3) of each drive mechanism (2). The same applies to external forces other than self-weight.

力センサ−A(3)の誤差が補正され、打ち消されると
いう効果がある。
This has the effect that the error of force sensor A (3) is corrected and canceled.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明をζよれば、複数個の固定機構
の間に生じる支持力誤差を検出し、これを打消すよう駆
動d構に力指示値を与えるようにしたため、自重以外の
外力や、支持装置の支持力誤差を補正し、打ち消すこと
ができる効果がある。
As described above, according to this invention, the support force error occurring between the plurality of fixing mechanisms is detected and a force instruction value is given to the drive mechanism to cancel this error, so that external forces other than self-weight can be applied. This has the effect of correcting and canceling out errors in the supporting force of the supporting device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による鏡面能動支持装置の
ブロック図、第2図、第3図は検出した力を各支持装置
にどのように配分するかその方法を説明するための図、
第4図は従来の鏡面能動支持装置を表わすブロック図で
ある。 (1)は鏡面、(2)は駆動機構、(3)は力センサ−
A。 (4)は力制御装置、(5)は固定機構、(6)はミラ
ーセル。 (7)は群制御装置、(8)は力センサ−B 、 +9
1は固定支持力フィードバック装置である。 なお1図中同一符号は同−又は相当部分を示す。
FIG. 1 is a block diagram of a mirror active support device according to an embodiment of the present invention, FIGS. 2 and 3 are diagrams for explaining how detected force is distributed to each support device,
FIG. 4 is a block diagram showing a conventional mirror surface active support device. (1) is a mirror surface, (2) is a drive mechanism, and (3) is a force sensor.
A. (4) is a force control device, (5) is a fixing mechanism, and (6) is a mirror cell. (7) is the group control device, (8) is the force sensor -B, +9
1 is a fixed support force feedback device. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] (1)高精度を必要とする鏡面と、この鏡面を剛体拘束
の方法で鏡面取付台に取付ける固定機構と、この固定機
構に取付られ固定機構と鏡面の間の支持力を測定する第
2の力センサと、前記鏡面と鏡面取付台の間にあつて一
端が鏡面の裏面の複数の所定位置に他端が鏡面取付台の
対応する位置にそれぞれ取付られ、印加される力制御信
号に応じ鏡面を押し引きする複数の支持機構と、この支
持機構に取付られ支持機構と鏡面の間の支持力を測定す
る第1の力センサと、鏡面の傾むき角によつて鏡面の自
重によつて発生する鏡面各部の変位を計算によつて求め
その変位を補正する力指令信号を発生する補正力算出と
その情報を各支持機構に対応して分配する群制御装置と
、前記第2の力センサによって測定された力情報から各
支持機構が発生すべき補償のために必要な力指令信号を
算出すると共に各支持機構に対応して分配する固定支持
力フィードバック装置と各支持機構に対応して設けられ
前記群制御装置と前記固定支持力フィードバック装置か
らの力指令値を基準信号とすると共に前記第1の力セン
サからの信号をフィードバック信号として力信号を発生
する力制御装置を備えた鏡面能動装置。
(1) A mirror surface that requires high precision, a fixing mechanism that attaches this mirror surface to a mirror mount using rigid body restraint, and a second device that is attached to this fixing mechanism and measures the supporting force between the fixing mechanism and the mirror surface. A force sensor is installed between the mirror surface and the mirror mount, one end of which is attached to a plurality of predetermined positions on the back surface of the mirror surface, and the other end of which is attached to a corresponding position of the mirror surface mount, and which moves the mirror surface in response to an applied force control signal. a plurality of support mechanisms that push and pull the force, a first force sensor attached to the support mechanisms that measures the supporting force between the support mechanisms and the mirror surface, and force generated by the mirror surface's own weight due to the angle of inclination of the mirror surface. A group control device calculates a correction force by calculating the displacement of each part of the mirror surface and generates a force command signal to correct the displacement, and distributes the information corresponding to each support mechanism, and the second force sensor A fixed support force feedback device that calculates a force command signal necessary for compensation to be generated by each support mechanism from the measured force information and distributes it to each support mechanism, and a fixed support force feedback device that is provided corresponding to each support mechanism. A mirror active device comprising: a force control device that generates a force signal by using force command values from the group control device and the fixed support force feedback device as a reference signal, and by using a signal from the first force sensor as a feedback signal.
JP6626288A 1988-03-18 1988-03-18 Mirror surface active support device Expired - Fee Related JPH0734059B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6626288A JPH0734059B2 (en) 1988-03-18 1988-03-18 Mirror surface active support device
DE3908430A DE3908430A1 (en) 1988-03-18 1989-03-15 Mirror-supporting device and mirror-supporting system
US07/324,652 US5115351A (en) 1988-03-18 1989-03-17 Mirror support apparatus and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6626288A JPH0734059B2 (en) 1988-03-18 1988-03-18 Mirror surface active support device

Publications (2)

Publication Number Publication Date
JPH01238604A true JPH01238604A (en) 1989-09-22
JPH0734059B2 JPH0734059B2 (en) 1995-04-12

Family

ID=13310765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6626288A Expired - Fee Related JPH0734059B2 (en) 1988-03-18 1988-03-18 Mirror surface active support device

Country Status (1)

Country Link
JP (1) JPH0734059B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043863A (en) * 1996-11-14 2000-03-28 Nikon Corporation Holder for reflecting member and exposure apparatus having the same
JP2010107658A (en) * 2008-10-29 2010-05-13 Mitsubishi Electric Corp Variable shape mirror device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043863A (en) * 1996-11-14 2000-03-28 Nikon Corporation Holder for reflecting member and exposure apparatus having the same
JP2010107658A (en) * 2008-10-29 2010-05-13 Mitsubishi Electric Corp Variable shape mirror device

Also Published As

Publication number Publication date
JPH0734059B2 (en) 1995-04-12

Similar Documents

Publication Publication Date Title
US6626412B1 (en) Mountings for optical apparatus
US4570065A (en) Robotic compensation systems
US6288381B1 (en) Integrated system for line-of-sight stabilization and auto-alignment of off-gimbal passive and active electro-optical sensors
US6434932B2 (en) Control mechanism with actuator employing shape memory alloy and method for adjusting servo control of the control mechanism
US5115351A (en) Mirror support apparatus and system
ATE207401T1 (en) HIGH BANDWIDTH AND DYNAMIC RIGIDITY MEASURING SYSTEM FOR MEASURING AND CONTROLLING INTELLIGENT INDUSTRIAL PROCESSES
US7130034B2 (en) Metrology system and method for measuring five degrees-of-freedom for a point target
Cochran et al. Fast-steering mirrors in optical control systems
CA1171884A (en) Adjustable linkage constraining the motion of a member to the motion along a reference axis
US5303080A (en) Beam scanning system including actively-controlled optical head
US4964478A (en) Electronic balance with scale on top
US4467186A (en) Mirror actuator control system
JPH01238604A (en) Active supporting device for specular surface
JPH09264759A (en) Method for correcting signal of encoder and apparatus therefor
Robertson Development of an active optics concept using a thin deformable mirror
JPS58115327A (en) Electronic scale with horizontal error compensating means
US5671058A (en) Device for supporting linearly moving a movable member and a controlling system for the device
JP3620168B2 (en) Electronic balance
JPH06222284A (en) Form estimating device for plate structure and active supporting device
US7126692B2 (en) Device for holding measurement instruments
JPH01238603A (en) Active supporting device for specular surface
Cox et al. Four-meter diameter adaptive optical system technology demonstration
JPH0124597Y2 (en)
JPH0283411A (en) Method for determining attitude of space flight body
JP2865064B2 (en) Light beam emission angle control device and light beam emission position control device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees