JP2021134933A - Feedwater heating system - Google Patents

Feedwater heating system Download PDF

Info

Publication number
JP2021134933A
JP2021134933A JP2020028564A JP2020028564A JP2021134933A JP 2021134933 A JP2021134933 A JP 2021134933A JP 2020028564 A JP2020028564 A JP 2020028564A JP 2020028564 A JP2020028564 A JP 2020028564A JP 2021134933 A JP2021134933 A JP 2021134933A
Authority
JP
Japan
Prior art keywords
water supply
temperature
water
heat
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020028564A
Other languages
Japanese (ja)
Inventor
一馬 伊佐
Kazuma Isa
一馬 伊佐
悟 大下
Satoru Oshita
悟 大下
和之 大谷
Kazuyuki Otani
和之 大谷
智也 大沢
Tomoya Osawa
智也 大沢
真嘉 金丸
Masayoshi Kanamaru
真嘉 金丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2020028564A priority Critical patent/JP2021134933A/en
Priority to KR1020200173943A priority patent/KR20210106878A/en
Priority to US17/120,826 priority patent/US20210262655A1/en
Priority to CN202011555887.2A priority patent/CN113294910A/en
Publication of JP2021134933A publication Critical patent/JP2021134933A/en
Priority to JP2024062145A priority patent/JP2024083505A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1054Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/003Feed-water heater systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/16Feed-water heaters, i.e. economisers or like preheaters with water tubes arranged otherwise than in the boiler furnace, fire tubes, or flue ways
    • F22D1/18Feed-water heaters, i.e. economisers or like preheaters with water tubes arranged otherwise than in the boiler furnace, fire tubes, or flue ways and heated indirectly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0005Domestic hot-water supply systems using recuperation of waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0036Domestic hot-water supply systems with combination of different kinds of heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1003Arrangement or mounting of control or safety devices for steam heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/174Supplying heated water with desired temperature or desired range of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/215Temperature of the water before heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/227Temperature of the refrigerant in heat pump cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/242Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/335Control of pumps, e.g. on-off control
    • F24H15/34Control of the speed of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/385Control of expansion valves of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/12Arrangements for connecting heaters to circulation pipes
    • F24H9/13Arrangements for connecting heaters to circulation pipes for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1809Arrangement or mounting of grates or heating means for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/06Superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/24Refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/223Temperature of the water in the water storage tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/246Water level
    • F24H15/248Water level of water storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2111Temperatures of a heat storage receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

To further improve efficiency in a feedwater heating system using both of a heat pump circuit and a heat exchanger for heat recovery.SOLUTION: A feedwater heating system 1 includes: a vapor compression-type heat pump circuit 10 in which a compressor 11, a condenser 12, an expansion valve 13 and an evaporator 14 are annularly connected by a refrigerant circulation line L9, and which takes out hot heat by the condenser 12 by driving the compressor 11; a heat recovery heat exchanger 40; a heat source fluid line L5 for circulating the heat source fluid successively to the heat recovery heat exchanger 40 and the evaporator 14; a water supply line L1 for circulating feedwater W1 successively to the heat recovery heat exchanger 40 and the condenser 12; refrigerant flow rate adjustment means controlled on the basis of a superheating degree of a gas refrigerant R flowing into the compressor 11, and adjusting a flow rate of the refrigerant; feedwater flow rate adjustment means controlled on the basis of a hot water tapping temperature of the feedwater W1 flowing out from the condenser 12 and adjusting a feedwater flow rate; and control means for controlling the refrigerant flow rate adjustment means and the feedwater flow rate adjustment means.SELECTED DRAWING: Figure 1

Description

本発明は、給水加温システムに関する。 The present invention relates to a water supply heating system.

近年、工場などの事業所では、温室効果ガスである二酸化炭素の排出量削減を目的として、各種設備で廃棄されている未利用熱を活用する取り組みが進められている。そこで、特許文献1および特許文献2に示されるように、廃温水を熱源とするヒートポンプ回路によりボイラ給水を加温し、ボイラの燃料使用量を削減する未利用熱活用システム(給水加温システム)が提案されている。 In recent years, factories and other business establishments have been making efforts to utilize unused heat discarded in various facilities for the purpose of reducing the emission of carbon dioxide, which is a greenhouse gas. Therefore, as shown in Patent Document 1 and Patent Document 2, an unused heat utilization system (water supply heating system) that heats the boiler feed water by a heat pump circuit using waste hot water as a heat source and reduces the fuel consumption of the boiler. Has been proposed.

特開2013−210118号公報Japanese Unexamined Patent Publication No. 2013-210118 特開2014−169819号公報Japanese Unexamined Patent Publication No. 2014-169819

特許文献1、2に記載された給水加温システムは、ボイラ給水の加温だけでなく、様々な生産プロセスにおける用水の加温にも適用できるものである。特許文献1に係るシステムは、蒸発器および熱回収用熱交換器の順に熱源流体(廃温水)を流通させると共に、熱回収用熱交換器、過冷却器および凝縮器の順に給水(冷水)を流通させる構成である。この構成により、特許文献1に係るシステムでは、熱回収用熱交換器および過冷却器のない従来型のヒートポンプシステムに比べてCOP(成績係数:エネルギー消費効率)を格段に高めることに成功している。その一方で、このシステムは、熱源流体の温度が比較的低温(例えば40℃以下)になると、熱回収用熱交換器の効力がなくなるという課題を有していた。
これに対し、特許文献2に係るシステムは、熱回収用熱交換器よび蒸発器の順に熱源流体(廃温水)を流通させる構成としている。この構成により、特許文献2に係るシステムでは、熱源流体の温度が給水よりも高ければ、熱回収用熱交換器の効力を最大限に発揮させることができる。特許文献2に係るシステムは、幅広い温度領域の熱源流体に対して高いCOPで熱回収を可能とするものであるが、ハイレベルの二酸化炭素排出量削減目標を掲げている事業場向けに更なる高効率化が望まれている。
The water supply heating system described in Patent Documents 1 and 2 can be applied not only to the heating of boiler water supply but also to the heating of irrigation water in various production processes. In the system according to Patent Document 1, the heat source fluid (waste hot water) is circulated in the order of the evaporator and the heat recovery heat exchanger, and the water supply (cold water) is supplied in the order of the heat recovery heat exchanger, the supercooler and the condenser. It is a structure to be distributed. With this configuration, the system according to Patent Document 1 has succeeded in significantly increasing the COP (coefficient of performance: energy consumption efficiency) as compared with the conventional heat pump system without a heat exchanger for heat recovery and a supercooler. There is. On the other hand, this system has a problem that the heat exchanger for heat recovery becomes ineffective when the temperature of the heat source fluid becomes relatively low (for example, 40 ° C. or lower).
On the other hand, the system according to Patent Document 2 has a configuration in which a heat source fluid (waste hot water) is circulated in the order of a heat recovery heat exchanger and an evaporator. With this configuration, in the system according to Patent Document 2, if the temperature of the heat source fluid is higher than that of the water supply, the effectiveness of the heat recovery heat exchanger can be maximized. The system according to Patent Document 2 enables heat recovery at a high COP for heat source fluids in a wide temperature range, but is further applied to business establishments that have set high-level carbon dioxide emission reduction targets. High efficiency is desired.

本発明は、上記課題に鑑みてなされたもので、ヒートポンプ回路と熱回収用熱交換器を併用した給水加温システムにおいて、一層の高効率化を図ることを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to further improve the efficiency of a water supply heating system in which a heat pump circuit and a heat exchanger for heat recovery are used in combination.

本発明は、圧縮機、凝縮器、膨張弁および蒸発器が冷媒循環ラインにより環状に接続され、前記圧縮機の駆動により前記凝縮器で温熱を取り出す蒸気圧縮式のヒートポンプ回路と、熱回収用熱交換器と、前記熱回収用熱交換器および前記蒸発器の順に熱源流体を流通させる熱源流体ラインと、前記熱回収用熱交換器および前記凝縮器の順に給水を流通させる給水ラインと、前記圧縮機に流入するガス冷媒の過熱度に基づいて制御され、冷媒流量を調整する冷媒流量調整手段と、前記凝縮器から流出する給水の出湯温度に基づいて制御され、給水流量を調整する給水流量調整手段と、前記冷媒流量調整手段および給水流量調整手段を制御する制御手段と、を備える給水加温システムに関する。 The present invention comprises a steam compression type heat pump circuit in which a compressor, a condenser, an expansion valve and an evaporator are cyclically connected by a refrigerant circulation line, and heat is taken out by the condenser by driving the compressor, and heat for heat recovery. The exchanger, the heat source fluid line that circulates the heat source fluid in the order of the heat recovery heat exchanger and the evaporator, the water supply line that circulates the water supply in the order of the heat recovery heat exchanger and the condenser, and the compression. A refrigerant flow rate adjusting means that is controlled based on the degree of superheat of the gas refrigerant flowing into the machine to adjust the refrigerant flow rate, and a water supply flow rate adjustment that is controlled based on the hot water discharge temperature of the supply water flowing out from the compressor to adjust the water supply flow rate. The present invention relates to a water supply heating system including means, a refrigerant flow rate adjusting means, and a control means for controlling the water supply flow rate adjusting means.

また、前記熱源流体ラインは、前記熱回収用熱交換器で熱源流体と給水をカウンターフローで熱交換させた後、前記蒸発器で熱源流体と液冷媒をカウンターフローで熱交換させる接続構成であることが好ましい。 Further, the heat source fluid line has a connection configuration in which the heat source fluid and the supply water are heat-exchanged by the counterflow in the heat recovery heat exchanger, and then the heat source fluid and the liquid refrigerant are heat-exchanged by the counterflow in the evaporator. Is preferable.

また、前記圧縮機に流入するガス冷媒の吸込温度を検知する吸込温度センサと、前記蒸発器から流出するガス冷媒の蒸気圧力を検知する蒸気圧力センサと、前記凝縮器から流出する給水の出湯温度を検知する出湯温度センサと、を備え、前記制御手段は、前記蒸気圧力センサの検知圧力から液冷媒の蒸発温度を求めると共に、前記吸込温度センサの検知温度から前記蒸発温度を差し引いてガス冷媒の過熱度を算出し、当該算出過熱度が目標過熱度になるように前記冷媒流量調整手段を制御し、前記出湯温度センサの検知温度が目標出湯温度になるように前記給水流量調整手段を制御することが好ましい。 Further, a suction temperature sensor that detects the suction temperature of the gas refrigerant flowing into the compressor, a steam pressure sensor that detects the steam pressure of the gas refrigerant flowing out of the evaporator, and a hot water discharge temperature of the water supply flowing out of the condenser. The control means obtains the evaporation temperature of the liquid refrigerant from the detection pressure of the vapor pressure sensor, and subtracts the evaporation temperature from the detection temperature of the suction temperature sensor to detect the gas refrigerant. The degree of superheat is calculated, the refrigerant flow rate adjusting means is controlled so that the calculated degree of superheat becomes the target degree of superheat, and the water supply flow rate adjusting means is controlled so that the detected temperature of the hot water temperature sensor becomes the target hot water temperature. Is preferable.

また、前記蒸発器に流入する前の熱源流体の温度を検知する熱源温度センサを備え、前記制御手段は、前記熱源温度センサの検知温度に応じて前記目標過熱度を設定することが好ましい。 Further, it is preferable that the heat source temperature sensor for detecting the temperature of the heat source fluid before flowing into the evaporator is provided, and the control means sets the target superheat degree according to the detection temperature of the heat source temperature sensor.

また、前記制御手段は、前記熱源温度センサの検知温度の変動が大きいと判定した場合、前記目標過熱度を大きくすることが好ましい。 Further, when the control means determines that the fluctuation of the detection temperature of the heat source temperature sensor is large, it is preferable to increase the target degree of superheat.

また、前記制御手段は、前記熱源温度センサの検知温度が安定していると判定した場合、前記目標過熱度を小さくすることが好ましい。 Further, when the control means determines that the detection temperature of the heat source temperature sensor is stable, it is preferable to reduce the target degree of superheat.

また、前記凝縮器に流入する前の給水の温度を検知する給水温度センサを備え、前記制御手段は、前記給水温度センサの検知温度に応じて前記目標出湯温度を設定することが好ましい。 Further, it is preferable that the water supply temperature sensor for detecting the temperature of the water supply water before flowing into the condenser is provided, and the control means sets the target hot water discharge temperature according to the detection temperature of the water supply temperature sensor.

また、前記凝縮器に流入する前の給水の温度を検知する給水温度センサを備え、前記目標出湯温度は、上限値と下限値の間の値に設定可能であり、前記下限値は、前記給水温度センサの検知温度に所定値を加えた値であって、前記給水温度センサの検知温度が高くなるほど高い値であることが好ましい。 Further, the water supply temperature sensor for detecting the temperature of the water supply water before flowing into the condenser is provided, the target hot water discharge temperature can be set to a value between the upper limit value and the lower limit value, and the lower limit value is the water supply. It is preferable that the value is obtained by adding a predetermined value to the detection temperature of the temperature sensor, and the higher the detection temperature of the water supply temperature sensor, the higher the value.

また、前記熱回収用熱交換器に対して給水をバイパス、および/または、前記熱回収用熱交換器に対して熱源流体をバイパスさせる1本ないし2本のバイパスラインと、給水および熱源流体を同時に前記熱回収用熱交換器に流通させる給水予熱モードと、給水および熱源流体の少なくとも一方を前記バイパスラインに流通させる予熱停止モードと、を切り替える予熱モード切替手段と、を備えることが好ましい。 Also, one or two bypass lines that bypass the water supply to the heat recovery heat exchanger and / or bypass the heat source fluid to the heat recovery heat exchanger, and the water supply and heat source fluid. It is preferable to provide a preheating mode switching means for switching between a preheating mode for supplying water to be distributed to the heat recovery heat exchanger and a preheating stop mode for distributing at least one of the water supply and the heat source fluid to the bypass line at the same time.

また、前記熱回収用熱交換器に流入する前の給水の温度を検知する熱交換器流入前給水温度センサと、前記熱回収用熱交換器に流入する前の熱源流体の温度を検知する熱交換器流入前熱源温度センサと、を備え、前記制御手段は、前記熱交換器流入前給水温度センサによる第1検知温度と、前記熱交換器流入前熱源温度センサによる第2検知温度と、を比較し、前記第1検知温度が前記第2検知温度を下回っている場合には、前記給水予熱モードを実行させるように予熱モード切替手段を制御し、前記第1検知温度が前記第2検知温度を上回っている場合には、前記予熱停止モードを実行させるように予熱モード切替手段を制御することが好ましい。 Further, a heat exchanger pre-inflow water supply temperature sensor that detects the temperature of the water supply before flowing into the heat recovery heat exchanger and heat that detects the temperature of the heat source fluid before flowing into the heat recovery heat exchanger. The control means includes a heat source temperature sensor before inflow of the exchanger, and the control means determines the first detected temperature by the water supply temperature sensor before inflow of the heat exchanger and the second detected temperature by the heat source temperature sensor before inflow of the heat exchanger. By comparison, when the first detection temperature is lower than the second detection temperature, the preheating mode switching means is controlled so as to execute the water supply preheating mode, and the first detection temperature is the second detection temperature. If it exceeds, it is preferable to control the preheating mode switching means so as to execute the preheating stop mode.

また、前記制御手段は、前記給水予熱モードまたは前記予熱停止モードの種別を指定する予熱モード指定信号を受け付ける信号入力部と、前記信号入力部に入力された前記予熱モード指定信号に従い、前記給水予熱モードまたは前記予熱停止モードを実行させるように前記予熱モード切替手段を制御する予熱モード切替制御部と、を有することが好ましい。 Further, the control means has a signal input unit that receives a preheating mode designation signal that specifies the type of the water supply preheating mode or the preheating stop mode, and the water supply preheating according to the preheating mode designation signal input to the signal input unit. It is preferable to have a preheating mode switching control unit that controls the preheating mode switching means so as to execute the mode or the preheating stop mode.

本発明によれば、ヒートポンプ回路と熱回収用熱交換器を併用した給水加温システムにおいて、一層の高効率化を図ることができる。 According to the present invention, it is possible to further improve the efficiency of a water supply heating system in which a heat pump circuit and a heat exchanger for heat recovery are used in combination.

本発明の一実施形態に係る給水加温システムを模式的に示す図である。It is a figure which shows typically the water supply heating system which concerns on one Embodiment of this invention. 上記実施形態の制御部を示すブロック図である。It is a block diagram which shows the control part of the said embodiment. 熱源温度センサの検知温度の変動を示すグラフである。It is a graph which shows the fluctuation of the detection temperature of a heat source temperature sensor. 上記実施形態における、目標出湯温度の設定可能範囲を示す図である。It is a figure which shows the settable range of the target hot water temperature in the said embodiment. ヒートポンプサイクルを説明するためのモリエル線図である。It is a Moriel diagram for explaining a heat pump cycle. 上記実施形態における、通水モード切替制御の状態遷移図である。It is a state transition diagram of the water flow mode switching control in the said embodiment. 上記実施形態における、目標過熱度の設定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the setting process of the target superheat degree in the said embodiment. 上記実施形態における、予熱モード切替制御の流れを示すフローチャートである。It is a flowchart which shows the flow of the preheating mode switching control in the said embodiment. 上記実施形態の変形例に係る給水加温システムを模式的に示す図である。It is a figure which shows typically the water supply heating system which concerns on the modification of the said embodiment.

以下、本発明の給水加温システム1の好ましい一実施形態について、図面を参照しながら説明する。なお、本明細書における「ライン」とは、流路、経路、管路等の流体の流通が可能なラインの総称である。 Hereinafter, a preferred embodiment of the water supply heating system 1 of the present invention will be described with reference to the drawings. In addition, the "line" in this specification is a general term of a line capable of flowing a fluid such as a flow path, a path, and a pipeline.

図1は、本実施形態に係る給水加温システム1の構成を模式的に示す図である。図1に示すように、給水加温システム1は、熱回収用熱交換器40およびヒートポンプ回路10で加温した給水W1を、温水W2として温水需要箇所に供給するシステムである。 FIG. 1 is a diagram schematically showing a configuration of a water supply heating system 1 according to the present embodiment. As shown in FIG. 1, the water supply heating system 1 is a system that supplies hot water W1 heated by the heat recovery heat exchanger 40 and the heat pump circuit 10 to hot water demand points as hot water W2.

より詳細には、本実施形態の給水加温システム1は、給水W1として利用される補給水Wを貯留する補給水タンク70と、給水W1を加温する熱回収用熱交換器40およびヒートポンプ回路10と、加温された給水W1を温水W2として貯留する温水タンク60と、熱源流体としての熱源水W5を貯留する熱源水タンク50を備える。
また、本実施形態の給水加温システム1は、熱回収用熱交換器40およびヒートポンプ回路10の凝縮器12の順に給水W1を流通させる給水ラインL1と、温水タンク60内の温水W2を熱回収用熱交換器40よりも上流側に還流させる還流ラインL2と、熱回収用熱交換器40に対して給水W1をバイパスさせるバイパスラインL3と、温水タンク60内の温水W2を温水需要箇所に供給するための温水供給ラインL4と、熱回収用熱交換器40およびヒートポンプ回路10の蒸発器14に熱源流体としての熱源水W5を流通させる熱源流体ラインL5と、を備える。
More specifically, the water supply heating system 1 of the present embodiment includes a make-up water tank 70 for storing the make-up water W used as the water supply W1, a heat recovery heat exchanger 40 for heating the water supply W1, and a heat pump circuit. A hot water tank 60 for storing the heated supply water W1 as hot water W2, and a heat source water tank 50 for storing heat source water W5 as a heat source fluid are provided.
Further, in the water supply heating system 1 of the present embodiment, the water supply line L1 for circulating the water supply W1 in the order of the heat recovery heat exchanger 40 and the condenser 12 of the heat pump circuit 10 and the hot water W2 in the hot water tank 60 are heat-recovered. A recirculation line L2 that recirculates to the upstream side of the heat exchanger 40, a bypass line L3 that bypasses the water supply W1 to the heat recovery heat exchanger 40, and hot water W2 in the hot water tank 60 are supplied to hot water demand points. It is provided with a hot water supply line L4 for performing the heat recovery, and a heat source fluid line L5 for circulating the heat source water W5 as the heat source fluid through the heat exchanger 40 for heat recovery and the evaporator 14 of the heat pump circuit 10.

補給水タンク70は、熱回収用熱交換器40およびヒートポンプ回路10で加温する給水W1として利用される補給水Wを貯留するタンクであり、給水ラインL1が接続されている。 The make-up water tank 70 is a tank for storing the make-up water W used as the supply water W1 to be heated by the heat recovery heat exchanger 40 and the heat pump circuit 10, and the water supply line L1 is connected to the make-up water tank 70.

熱回収用熱交換器40は、給水ラインL1を流れる給水W1と、熱源流体ラインL5を流れる熱源水W5との間の間接熱交換を行う間接熱交換器である。より詳細には、熱回収用熱交換器40は、ヒートポンプ回路10の凝縮器12を通過する前の給水W1と、ヒートポンプ回路10の蒸発器14を通過する前の熱源水W5との間で熱交換を行う。
給水ラインL1の給水W1は、熱回収用熱交換器40および凝縮器12の順に通過し、熱源流体ラインL5の熱源水W5は、熱回収用熱交換器40および蒸発器14の順に通過する。
The heat recovery heat exchanger 40 is an indirect heat exchanger that performs indirect heat exchange between the water supply W1 flowing through the water supply line L1 and the heat source water W5 flowing through the heat source fluid line L5. More specifically, the heat recovery heat exchanger 40 heats between the water supply W1 before passing through the condenser 12 of the heat pump circuit 10 and the heat source water W5 before passing through the evaporator 14 of the heat pump circuit 10. Make a replacement.
The water supply W1 of the water supply line L1 passes through the heat recovery heat exchanger 40 and the condenser 12 in this order, and the heat source water W5 of the heat source fluid line L5 passes through the heat recovery heat exchanger 40 and the evaporator 14 in this order.

ヒートポンプ回路10は、圧縮機11、凝縮器12、膨張弁13および蒸発器14が冷媒循環ラインL9により環状に接続され、圧縮機11の駆動により凝縮器12で温熱を取り出す蒸気圧縮式のヒートポンプ回路である。この冷媒循環ラインL9には冷媒Rが流れる。
圧縮機11は、駆動源としての電気モータ15を有しており、フロンガス等のガス状の冷媒Rを圧縮して高温高圧の冷媒Rにする。凝縮器12は、給水ラインL1を通じて送られてくる給水W1へ放熱して、圧縮機11からの冷媒Rを凝縮液化する。膨張弁13は、凝縮器12から送られた冷媒Rを通過させることで、冷媒Rの圧力と温度とを低下させる。蒸発器14は、熱源流体ラインL5を通じて送られてくる熱源水W5から吸熱して、膨張弁13から送られる冷媒Rを蒸発させる。
このように、ヒートポンプ回路10は、蒸発器14において、冷媒Rが外部から熱を奪って気化する一方、凝縮器12において、冷媒Rが外部へ放熱して凝縮している。このような原理を利用して、ヒートポンプ回路10は、蒸発器14において、熱源水W5から熱をくみ上げ、凝縮器12において、給水ラインL1の給水W1を加温する。
The heat pump circuit 10 is a steam compression type heat pump circuit in which a compressor 11, a condenser 12, an expansion valve 13, and an evaporator 14 are connected in an annular shape by a refrigerant circulation line L9, and heat is taken out by the condenser 12 by driving the compressor 11. Is. Refrigerant R flows through the refrigerant circulation line L9.
The compressor 11 has an electric motor 15 as a drive source, and compresses a gaseous refrigerant R such as chlorofluorocarbon gas into a high-temperature and high-pressure refrigerant R. The condenser 12 dissipates heat to the water supply W1 sent through the water supply line L1 to condense and liquefy the refrigerant R from the compressor 11. The expansion valve 13 reduces the pressure and temperature of the refrigerant R by passing the refrigerant R sent from the condenser 12. The evaporator 14 absorbs heat from the heat source water W5 sent through the heat source fluid line L5 to evaporate the refrigerant R sent from the expansion valve 13.
In this way, in the heat pump circuit 10, in the evaporator 14, the refrigerant R takes heat from the outside and vaporizes, while in the condenser 12, the refrigerant R dissipates heat to the outside and condenses. Utilizing such a principle, the heat pump circuit 10 draws heat from the heat source water W5 in the evaporator 14 and heats the water supply W1 in the water supply line L1 in the condenser 12.

ヒートポンプ回路の冷媒循環ラインL9には、圧縮機11に流入するガス冷媒Rの吸込温度を検知する吸込温度センサ17と、蒸発器14から流出するガス冷媒Rの蒸気圧力を検知する蒸気圧力センサ18と、が設けられている。 In the refrigerant circulation line L9 of the heat pump circuit, a suction temperature sensor 17 that detects the suction temperature of the gas refrigerant R flowing into the compressor 11 and a steam pressure sensor 18 that detects the vapor pressure of the gas refrigerant R flowing out of the evaporator 14 And are provided.

ここで、膨張弁13は、ヒートポンプ回路10の冷媒循環ラインL9を流れる冷媒Rの流量を調整する冷媒流量調整手段を構成する。具体的には、膨張弁13は、比例制御式のニードル弁として構成され、駆動用ステッピングモータの回転数制御によりニードル弁のストロークを変え、弁開度を調節することで、冷媒Rの流量を調整することができる。 Here, the expansion valve 13 constitutes a refrigerant flow rate adjusting means for adjusting the flow rate of the refrigerant R flowing through the refrigerant circulation line L9 of the heat pump circuit 10. Specifically, the expansion valve 13 is configured as a proportionally controlled needle valve, and the stroke of the needle valve is changed by controlling the rotation speed of the drive stepping motor to adjust the valve opening degree, thereby increasing the flow rate of the refrigerant R. Can be adjusted.

温水タンク60は、熱回収用熱交換器40およびヒートポンプ回路10で加温された給水W1を温水W2として貯留するタンクである。
温水タンク60内に貯留された温水W2は、循環して加温することが可能である。具体的には、温水タンク60内の温水W2は、還流ラインL2を通じて給水ラインL1と合流し、給水ラインL1を通じて、再度、熱回収用熱交換器40および凝縮器12を通過して加温され、温水タンク60内に戻ることが可能である。
そして、温水タンク60には、温水タンク60内の温水W2の温度を検知する温水温度センサ61を備える。また、温水タンク60には、温水タンク60内の水位を検出する水位検出部62が設けられている。本実施形態においては、水位検出部62は、複数の電極棒を備える電極式水位検出器により構成されている。具体的には、長さの異なる2本の電極棒621、622が、その下端部の高さ位置を互いに異ならせて差し込まれて保持されている。本実施形態においては、電極棒621、622が、順に下端部の高さ位置を低くして、温水タンク60に挿入されている。各電極棒621、622は、その下端部が水に浸かるか否かにより、下端部における水位の有無を検出する。
本実施形態においては、温水温度センサ61および水位検出部62の検出結果を用いるなどして、制御部100が、後述の通水モードの切り替え制御を行う。この制御内容については、追って詳細に説明する。
The hot water tank 60 is a tank that stores the supply water W1 heated by the heat recovery heat exchanger 40 and the heat pump circuit 10 as hot water W2.
The hot water W2 stored in the hot water tank 60 can be circulated and heated. Specifically, the hot water W2 in the hot water tank 60 merges with the water supply line L1 through the reflux line L2, and is heated again through the heat recovery heat exchanger 40 and the condenser 12 through the water supply line L1. , It is possible to return to the hot water tank 60.
The hot water tank 60 is provided with a hot water temperature sensor 61 that detects the temperature of the hot water W2 in the hot water tank 60. Further, the hot water tank 60 is provided with a water level detecting unit 62 for detecting the water level in the hot water tank 60. In the present embodiment, the water level detection unit 62 is composed of an electrode type water level detector including a plurality of electrode rods. Specifically, two electrode rods 621 and 622 having different lengths are inserted and held at different height positions of the lower end portions thereof. In the present embodiment, the electrode rods 621 and 622 are inserted into the hot water tank 60 with the height position of the lower end portion lowered in order. Each of the electrode rods 621 and 622 detects the presence or absence of a water level at the lower end portion depending on whether or not the lower end portion thereof is immersed in water.
In the present embodiment, the control unit 100 performs switching control of the water flow mode, which will be described later, by using the detection results of the hot water temperature sensor 61 and the water level detection unit 62. The details of this control will be described later.

熱源水タンク50は、ヒートポンプ回路10の熱源流体としての熱源水W5を貯留する。熱源水W5としては、例えば工場の廃温水などが用いられる。熱源水タンク50には、所定以上の熱源水をあふれさせる不図示のオーバーフローラインが設けられている。また、熱源水タンク50には、熱源水が所定の低水位を下回っていないことを監視するための、不図示の水位検出部が設けられている。 The heat source water tank 50 stores the heat source water W5 as the heat source fluid of the heat pump circuit 10. As the heat source water W5, for example, waste hot water from a factory is used. The heat source water tank 50 is provided with an overflow line (not shown) that overflows a predetermined amount of heat source water. Further, the heat source water tank 50 is provided with a water level detection unit (not shown) for monitoring that the heat source water does not fall below a predetermined low water level.

給水ラインL1は、その上流側が補給水タンク70に接続され、その下流側が温水タンク60に接続されている。そして、給水ラインL1には、上流側から、給水ポンプ21、第1逆止弁23、第1給水温度センサ24、バイパスライン分岐部に配置された三方弁25、熱回収用熱交換器40、第2給水温度センサ26、凝縮器12、出湯温度センサ27が順次配置されている。 The upstream side of the water supply line L1 is connected to the make-up water tank 70, and the downstream side thereof is connected to the hot water tank 60. Then, from the upstream side, the water supply line L1 includes a water supply pump 21, a first check valve 23, a first water supply temperature sensor 24, a three-way valve 25 arranged at a bypass line branch, and a heat recovery heat exchanger 40. The second water supply temperature sensor 26, the condenser 12, and the hot water temperature sensor 27 are sequentially arranged.

給水ポンプ21は、インバータにより回転数を制御可能とされる。給水ポンプ21の回転数を変更することで、後述の一過通水モードの場合において、給水ラインL1を介した温水タンク60への給水流量を調整することができる。すなわち、この給水ポンプ21は、一過通水モード時における給水流量調整手段を構成する。
第1逆止弁23は、後述の還流ラインL2の合流部よりも上流側に設けられている。これにより、後述の循環通水モードの際に、温水W2が補給水タンク70側に流れ込むのを防ぐ。
第1給水温度センサ24は、熱回収用熱交換器40に流入する前の給水W1の温度を検知する熱交換器流入前給水温度センサである。この第1給水温度センサ24は、バイパスラインL3の分岐部の上流側に設けられている。
三方弁25は、バイパスラインL3の分岐部に配置されている。この三方弁25は、熱回収用熱交換器40に対して給水W1をバイパスさせるか否かを切り替える手段であり、予熱モード切替手段を構成する。バイパスラインL3は、熱回収用熱交換器40に対して給水W1をバイパスさせるバイパスラインである。
第2給水温度センサ26は、ヒートポンプ回路10の凝縮器12に流入する前の給水W1の温度を検知する給水温度センサである。この第2給水温度センサ26は、凝縮器12の上流側に配置されており、本実施形態においては、熱回収用熱交換器40の下流側に配置されている。
出湯温度センサ27は、凝縮器12から流出する加温された給水W1の出湯温度を検知する。
The rotation speed of the water supply pump 21 can be controlled by an inverter. By changing the rotation speed of the water supply pump 21, the flow rate of water supplied to the hot water tank 60 via the water supply line L1 can be adjusted in the case of the transient water flow mode described later. That is, the water supply pump 21 constitutes a water supply flow rate adjusting means in the transient water flow mode.
The first check valve 23 is provided on the upstream side of the confluence portion of the reflux line L2, which will be described later. This prevents the hot water W2 from flowing into the make-up water tank 70 side in the circulation water flow mode described later.
The first water supply temperature sensor 24 is a heat exchanger pre-inflow water supply temperature sensor that detects the temperature of the water supply W1 before it flows into the heat recovery heat exchanger 40. The first water supply temperature sensor 24 is provided on the upstream side of the branch portion of the bypass line L3.
The three-way valve 25 is arranged at a branch portion of the bypass line L3. The three-way valve 25 is a means for switching whether or not to bypass the water supply W1 to the heat recovery heat exchanger 40, and constitutes a preheating mode switching means. The bypass line L3 is a bypass line that bypasses the water supply W1 to the heat recovery heat exchanger 40.
The second water supply temperature sensor 26 is a water supply temperature sensor that detects the temperature of the water supply W1 before flowing into the condenser 12 of the heat pump circuit 10. The second water supply temperature sensor 26 is arranged on the upstream side of the condenser 12, and in the present embodiment, is arranged on the downstream side of the heat recovery heat exchanger 40.
The hot water temperature sensor 27 detects the hot water temperature of the heated water supply W1 flowing out of the condenser 12.

還流ラインL2は、その上流側が温水タンク60に接続され、その下流側が給水ラインL1に接続されている。そして、還流ラインL2には、上流側から、還流ポンプ31(循環ポンプ31)、第2逆止弁33が順次配置されている。 The upstream side of the reflux line L2 is connected to the hot water tank 60, and the downstream side thereof is connected to the water supply line L1. A recirculation pump 31 (circulation pump 31) and a second check valve 33 are sequentially arranged on the recirculation line L2 from the upstream side.

還流ポンプ31は、インバータにより回転数を制御可能とされる。還流ポンプ31の回転数を変更することで、後述の循環通水モードの場合において、還流ラインL2および給水ラインL1を介して温水タンク60に戻るように循環する給水流量を調整することができる。すなわち、この還流ポンプ31は、循環通水モード時における給水流量調整手段を構成する。
第2逆止弁33は、還流ラインL2において、給水ラインL1と還流ラインL2の合流部よりも上流側に設けられている。これにより、後述の一過通水モードの際に、補給水タンク70からの補給水Wが温水タンク60側に流れ込むのを防ぐ。
The rotation speed of the reflux pump 31 can be controlled by an inverter. By changing the rotation speed of the recirculation pump 31, it is possible to adjust the water supply flow rate that circulates so as to return to the hot water tank 60 via the recirculation line L2 and the water supply line L1 in the case of the circulation water flow mode described later. That is, the recirculation pump 31 constitutes a water supply flow rate adjusting means in the circulation water flow mode.
The second check valve 33 is provided in the recirculation line L2 on the upstream side of the confluence of the water supply line L1 and the recirculation line L2. This prevents the make-up water W from the make-up water tank 70 from flowing into the hot water tank 60 side in the transient water flow mode described later.

このような給水ラインL1と還流ラインL2を備えることにより、還流ポンプ31を停止した状態で給水ポンプ21を作動させると、補給水タンク70からの補給水Wを給水W1として、熱回収用熱交換器40および凝縮器12の順に通して加温しながら温水タンク60へ給水することができる。これを、一過通水モードという。一方、給水ポンプ21を停止した状態で還流ポンプ31を作動させると、温水タンク60内の温水W2を給水W1として熱回収用熱交換器40および凝縮器12の順に通して再加温しながら温水タンク60へ戻して、温水タンク60内の貯留水を循環させることができる。これを、循環通水モードという。また、給水ポンプ21および還流ポンプ31を共に停止すると、熱回収用熱交換器40および凝縮器12への通水を停止することができる。これを、通水停止モードという。 By providing such a water supply line L1 and a recirculation line L2, when the water supply pump 21 is operated with the recirculation pump 31 stopped, the replenishment water W from the replenishment water tank 70 is used as the replenishment water W1 for heat exchange for heat recovery. Water can be supplied to the hot water tank 60 while being heated through the vessel 40 and the condenser 12 in this order. This is called the transient water flow mode. On the other hand, when the reflux pump 31 is operated with the water supply pump 21 stopped, the hot water W2 in the hot water tank 60 is used as the water supply W1 and is passed through the heat recovery heat exchanger 40 and the condenser 12 in this order to reheat the hot water. It can be returned to the tank 60 to circulate the stored water in the hot water tank 60. This is called a circulating water flow mode. Further, when both the water supply pump 21 and the reflux pump 31 are stopped, the water flow to the heat recovery heat exchanger 40 and the condenser 12 can be stopped. This is called the water flow stop mode.

すなわち、本実施形態においては、給水ポンプ21および還流ポンプ31が、還流ラインL2に温水W2を流通させずに凝縮器12に通水する一過通水モードと、還流ラインL2に温水W2を流通させながら凝縮器12に通水する循環通水モードと、凝縮器12への通水を停止する通水停止モードと、を切り替える通水モード切替手段を構成している。 That is, in the present embodiment, the water supply pump 21 and the recirculation pump 31 distribute the hot water W2 to the recirculation line L2 and the transient water flow mode in which the hot water W2 is passed through the condenser 12 without being circulated to the recirculation line L2. It constitutes a water flow mode switching means for switching between a circulating water flow mode in which water is passed through the condenser 12 and a water flow stop mode in which water flow to the condenser 12 is stopped.

そして、温水タンク60内の温水W2は、温水供給ラインL4を通じて、温水需要箇所に供給される。
温水供給ラインL4には、温水供給ポンプ63が設けられている。温水需要箇所の例としては、蒸気ボイラの給水利用が挙げられる。但し、温水W2の利用先は、蒸気ボイラに限らない。例えば、食品・飲料・薬品用の容器洗浄や、パストライザー殺菌(瓶詰の殺菌)等に、本実施形態の給水加温システム1により製造した温水W2を利用してもよい。この場合は、常に、60℃〜80℃程度の高温域の温水W2の供給が求められることがある。本実施形態の給水加温システム1によれば、このような、常に所定の温度範囲内の温度の温水の供給が要求される用途において、例えば、温水タンク60内に加温された給水W1のみが供給されるシステム(温水タンク60内に加温されていない補給水が直接供給されないシステム)において、特に好適に、温水を効率よく加温し、かつその温度を維持しつつ供給することができる。
Then, the hot water W2 in the hot water tank 60 is supplied to the hot water demand point through the hot water supply line L4.
The hot water supply line L4 is provided with a hot water supply pump 63. An example of a hot water demand location is the use of steam boilers for water supply. However, the destination of the hot water W2 is not limited to the steam boiler. For example, hot water W2 produced by the water supply heating system 1 of the present embodiment may be used for cleaning containers for foods, beverages, and chemicals, sterilizing pastorizers (sterilizing bottles), and the like. In this case, the supply of hot water W2 in a high temperature range of about 60 ° C. to 80 ° C. may always be required. According to the water supply heating system 1 of the present embodiment, in such an application in which the supply of hot water having a temperature within a predetermined temperature range is always required, for example, only the water supply W1 heated in the hot water tank 60 is used. In a system in which hot water is supplied (a system in which unheated make-up water is not directly supplied to the hot water tank 60), hot water can be efficiently heated and supplied while maintaining the temperature. ..

熱源流体ラインL5には、上流側から、熱源供給ポンプ53、第1熱源温度センサ54、熱回収用熱交換器40、第2熱源温度センサ55、蒸発器14が順次配置されている。
熱源供給ポンプ53を作動させることで、熱源水タンク50からの熱源水W5を、熱回収用熱交換器40と蒸発器14の順に流通させることができる。
第1熱源温度センサ54は、熱回収用熱交換器に流入させる前の熱源水W5の温度を検知する、熱交換器流入前熱源温度センサである。なお、本実施形態においては、第1熱源温度センサ54は、熱源流体ラインL5に設けられているが、このセンサは、熱源水タンク50に設けられていてもよい。
第2熱源温度センサ55は、蒸発器14で冷媒Rとの間で熱交換を行う熱源流体の温度を検知する熱源温度センサである。本実施形態においては、蒸発器14に流入する前の熱源水W5の温度を検出している。この第2熱源温度センサ55は、蒸発器14の上流側に配置されており、本実施形態においては、熱回収用熱交換器40の下流側に配置されている。
In the heat source fluid line L5, a heat source supply pump 53, a first heat source temperature sensor 54, a heat recovery heat exchanger 40, a second heat source temperature sensor 55, and an evaporator 14 are sequentially arranged from the upstream side.
By operating the heat source supply pump 53, the heat source water W5 from the heat source water tank 50 can be circulated in the order of the heat recovery heat exchanger 40 and the evaporator 14.
The first heat source temperature sensor 54 is a heat source temperature sensor before inflow of the heat exchanger that detects the temperature of the heat source water W5 before flowing into the heat recovery heat exchanger. In the present embodiment, the first heat source temperature sensor 54 is provided in the heat source fluid line L5, but this sensor may be provided in the heat source water tank 50.
The second heat source temperature sensor 55 is a heat source temperature sensor that detects the temperature of the heat source fluid that exchanges heat with the refrigerant R in the evaporator 14. In the present embodiment, the temperature of the heat source water W5 before flowing into the evaporator 14 is detected. The second heat source temperature sensor 55 is arranged on the upstream side of the evaporator 14, and in the present embodiment, is arranged on the downstream side of the heat recovery heat exchanger 40.

なお、上述のとおり、熱源流体ラインL5は、熱回収用熱交換器40および蒸発器14の順に熱源水W5を流通させる接続構成となっている。
このように、熱源水W5を先に熱回収用熱交換器40に流すことで給水W1の予熱量を増やし、熱回収用熱交換器40の熱出力をアップさせることができる。なお、熱源水W5の温度が高いほど熱出力を高める効果が大きい。
As described above, the heat source fluid line L5 has a connection configuration in which the heat source water W5 is circulated in the order of the heat recovery heat exchanger 40 and the evaporator 14.
In this way, by flowing the heat source water W5 through the heat recovery heat exchanger 40 first, the amount of preheat of the water supply W1 can be increased, and the heat output of the heat recovery heat exchanger 40 can be increased. The higher the temperature of the heat source water W5, the greater the effect of increasing the heat output.

また、熱源流体ラインL5は、図1に示すとおり、熱回収用熱交換器40で熱源水W5と給水W1をカウンターフローで熱交換させた後、蒸発器14で熱源水W5と液冷媒Rをカウンターフローで熱交換させる接続構成となっている。
このように、熱回収用熱交換器40および蒸発器14の順に熱源水W5を流し、かつ熱回収用熱交換器40と蒸発器14のそれぞれで給水W1の流れ方向に対してカウンターフローで流すことにより、熱回収量の最大化を図ることができる。
Further, in the heat source fluid line L5, as shown in FIG. 1, after heat exchange between the heat source water W5 and the supply water W1 by the heat recovery heat exchanger 40 by counterflow, the heat source water W5 and the liquid refrigerant R are exchanged by the evaporator 14. The connection configuration is such that heat is exchanged by the counter flow.
In this way, the heat source water W5 flows in the order of the heat recovery heat exchanger 40 and the evaporator 14, and the heat recovery heat exchanger 40 and the evaporator 14 each flow in a counterflow with respect to the flow direction of the water supply W1. Thereby, the heat recovery amount can be maximized.

次に、本実施形態の給水加温システム1の制御部100について説明する。図2は、本実施形態の給水加温システム1の制御手段としての制御部100のブロック図である。制御部100は、目標過熱度設定部111と、過熱度算出部112と、冷媒流量制御部113と、目標出湯温度設定可能範囲決定部121と、目標出湯温度設定部122と、給水流量制御部123と、通水モード切替制御部130と、予熱モード切替制御部140と、信号入力部150と、記憶部160と、を備える。 Next, the control unit 100 of the water supply heating system 1 of the present embodiment will be described. FIG. 2 is a block diagram of a control unit 100 as a control means of the water supply heating system 1 of the present embodiment. The control unit 100 includes a target superheat degree setting unit 111, a superheat degree calculation unit 112, a refrigerant flow rate control unit 113, a target hot water temperature settable range determination unit 121, a target hot water temperature setting unit 122, and a water supply flow rate control unit. It includes 123, a water flow mode switching control unit 130, a preheating mode switching control unit 140, a signal input unit 150, and a storage unit 160.

目標過熱度設定部111は、熱源温度センサとしての第2熱源温度センサ55が検知した熱源流体としての熱源水W5の温度を取得し、この第2熱源温度センサ55の検知温度に応じて目標過熱度を設定する。例えば、熱源流体としての熱源水W5の温度が低い場合には目標過熱度を低く設定する。これにより冷媒Rの循環流量が増加し、低温の熱源水W5であっても熱回収量を増やすことができる。
このように、熱源流体としての熱源水W5の温度に応じて適切な目標過熱度を設定することで、液圧縮や潤滑不良による圧縮機11の破損を防止しつつ、蒸発器14での熱回収量を増加させることができる。
The target superheat degree setting unit 111 acquires the temperature of the heat source water W5 as the heat source fluid detected by the second heat source temperature sensor 55 as the heat source temperature sensor, and the target superheat according to the detected temperature of the second heat source temperature sensor 55. Set the degree. For example, when the temperature of the heat source water W5 as the heat source fluid is low, the target superheat degree is set low. As a result, the circulating flow rate of the refrigerant R increases, and the amount of heat recovered can be increased even with the low-temperature heat source water W5.
In this way, by setting an appropriate target degree of superheat according to the temperature of the heat source water W5 as the heat source fluid, heat recovery in the evaporator 14 can be prevented while preventing damage to the compressor 11 due to liquid compression or poor lubrication. The amount can be increased.

また、目標過熱度設定部111は、第2熱源温度センサ55の検知温度の変動が大きいと判定した場合、目標過熱度を大きくする制御を行ってもよい。
図3は、縦軸を第2熱源温度センサ55の検知温度T、横軸を時間tとしたときのグラフであり、第2熱源温度センサ55の検知温度の変動を示すグラフである。例えば、図3に示すように、第2熱源温度センサ55の検知温度Tの単位時間t0当たりの変化量ΔTが所定の閾値ΔT0を上回った場合、第2熱源温度センサ55の検知温度の変動が大きいと判定し、目標過熱度を大きくする制御を行う。例えば、ΔT0=5℃、t0=1minとし、5℃/minよりも大きい変動があったときに、目標過熱度を大きくする制御を行う。このとき、例えばそれまでの目標過熱度が5℃に設定されていた場合、目標過熱度を例えば10℃に設定する。図3の例では、単位時間t0当たりの検知温度Tの低下量ΔTが、所定の閾値ΔT0よりも大きい。よって、熱源水W5の温度が急変する状況と考えられるため、目標過熱度を例えば10℃に変更する。
Further, when the target superheat degree setting unit 111 determines that the fluctuation of the detection temperature of the second heat source temperature sensor 55 is large, the target superheat degree setting unit 111 may perform control to increase the target superheat degree.
FIG. 3 is a graph when the vertical axis is the detection temperature T of the second heat source temperature sensor 55 and the horizontal axis is the time t, and is a graph showing the fluctuation of the detection temperature of the second heat source temperature sensor 55. For example, as shown in FIG. 3, when the amount of change ΔT of the detection temperature T of the second heat source temperature sensor 55 per unit time t0 exceeds a predetermined threshold value ΔT0, the fluctuation of the detection temperature of the second heat source temperature sensor 55 changes. It is determined that it is large, and control is performed to increase the target degree of superheat. For example, ΔT0 = 5 ° C. and t0 = 1min, and control is performed to increase the target degree of superheat when there is a fluctuation larger than 5 ° C./min. At this time, for example, if the target superheat degree up to that point has been set to 5 ° C., the target superheat degree is set to, for example, 10 ° C. In the example of FIG. 3, the amount of decrease ΔT of the detection temperature T per unit time t0 is larger than the predetermined threshold value ΔT0. Therefore, since it is considered that the temperature of the heat source water W5 changes suddenly, the target superheat degree is changed to, for example, 10 ° C.

これにより、熱源流体としての熱源水W5の温度が急変する状況が確認された場合であっても、安定的にヒートポンプ回路10を駆動することができる。
例えば、熱源水W5の温度の急変により温度が急激に低下するような場合であっても、目標過熱度を高い値に設定することにより蒸発器14で冷媒Rを確実に気化させることができるため、液圧縮による圧縮機11の破損を防止することができる。
As a result, the heat pump circuit 10 can be stably driven even when a situation is confirmed in which the temperature of the heat source water W5 as the heat source fluid suddenly changes.
For example, even when the temperature of the heat source water W5 suddenly drops due to a sudden change, the refrigerant R can be reliably vaporized by the evaporator 14 by setting the target superheat degree to a high value. , It is possible to prevent damage to the compressor 11 due to liquid compression.

また、目標過熱度設定部111は、第2熱源温度センサ55の検知温度が安定していると判定した場合、目標過熱度を小さくする制御を行ってもよい。
例えば、第2熱源温度センサ55の検知温度Tが所定時間、所定の温度の範囲内のときに、第2熱源温度センサ55の検知温度が安定していると判定する。また、検知温度Tが所定時間、単位時間t0当たりの変化量ΔTが所定の閾値ΔT0を下回っている場合に、第2熱源温度センサ55の検知温度が安定していると判定してもよい。そしてこのとき、目標過熱度を小さくする制御を行う。例えばそれまでの目標過熱度が10℃に設定されていた場合、目標過熱度を例えば5℃に変更する。
Further, when the target superheat degree setting unit 111 determines that the detection temperature of the second heat source temperature sensor 55 is stable, the target superheat degree setting unit 111 may perform control to reduce the target superheat degree.
For example, when the detection temperature T of the second heat source temperature sensor 55 is within a predetermined temperature range for a predetermined time, it is determined that the detection temperature of the second heat source temperature sensor 55 is stable. Further, when the detection temperature T is less than the predetermined threshold value ΔT0 for the predetermined time and the change amount ΔT per unit time t0, it may be determined that the detection temperature of the second heat source temperature sensor 55 is stable. At this time, control is performed to reduce the target degree of superheat. For example, when the target superheat degree up to that point has been set to 10 ° C., the target superheat degree is changed to, for example, 5 ° C.

なお、目標過熱度の下限値を例えば5℃にすることで、液圧縮による圧縮機11の破損を防止することができる。また、目標過熱度の上限値を例えば10℃にすることで、冷媒Rの循環流量を所定流量以上に維持し、熱回収量の低下を防止することができる。 By setting the lower limit of the target superheat degree to, for example, 5 ° C., damage to the compressor 11 due to liquid compression can be prevented. Further, by setting the upper limit value of the target superheat degree to, for example, 10 ° C., the circulating flow rate of the refrigerant R can be maintained at a predetermined flow rate or higher, and a decrease in the heat recovery amount can be prevented.

このように、熱源流体としての熱源水W5の温度が安定しているときは、目標過熱度を低い値に設定することにより冷媒Rの循環流量を増加させ、蒸発器14での熱回収量を増加させることができる。 In this way, when the temperature of the heat source water W5 as the heat source fluid is stable, the circulating flow rate of the refrigerant R is increased by setting the target superheat degree to a low value, and the amount of heat recovered by the evaporator 14 is increased. Can be increased.

なお、本実施形態においては、目標過熱度を設定する上で、熱源温度センサとして第2熱源温度センサ55の検知温度を用いているが、蒸発器14に流入する前の熱源水W5の温度(蒸発器流入前熱源温度)を検出する熱源温度センサとして、第1熱源温度センサ54を用いてもよい。蒸発器14に流入する直前ではないものの、第1熱源温度センサ54も、蒸発器14で冷媒Rとの間で熱交換を行う熱源流体の温度を間接的に検知することが可能であり、熱源水W5の温度が急変する状況を確認することが可能である。但し、第2熱源温度センサ55を用いて、蒸発器14に流入する直前の熱源水W5の温度を測定する方が、より好ましい。 In the present embodiment, the detection temperature of the second heat source temperature sensor 55 is used as the heat source temperature sensor to set the target superheat degree, but the temperature of the heat source water W5 before flowing into the evaporator 14 ( The first heat source temperature sensor 54 may be used as the heat source temperature sensor for detecting the heat source temperature before the inflow of the evaporator. Although not immediately before flowing into the evaporator 14, the first heat source temperature sensor 54 can also indirectly detect the temperature of the heat source fluid that exchanges heat with the refrigerant R in the evaporator 14, and is a heat source. It is possible to confirm the situation where the temperature of the water W5 changes suddenly. However, it is more preferable to use the second heat source temperature sensor 55 to measure the temperature of the heat source water W5 immediately before flowing into the evaporator 14.

過熱度算出部112は、圧縮機11に流入する冷媒Rの過熱度を算出する。
具体的には、過熱度算出部112は、蒸気圧力センサ18の検知圧力から液冷媒Rの蒸発温度を求めると共に、吸込温度センサ17の検知温度から蒸発温度を差し引いてガス冷媒Rの過熱度を算出する。
The superheat degree calculation unit 112 calculates the superheat degree of the refrigerant R flowing into the compressor 11.
Specifically, the superheat degree calculation unit 112 obtains the evaporation temperature of the liquid refrigerant R from the detection pressure of the steam pressure sensor 18, and subtracts the evaporation temperature from the detection temperature of the suction temperature sensor 17 to obtain the superheat degree of the gas refrigerant R. calculate.

冷媒流量制御部113は、算出過熱度(過熱度算出部112による算出値)が目標過熱度(目標過熱度設定部111による設定値)になるように冷媒流量制御手段を制御し、冷媒Rの流量を調整する。
具体的な制御としては、例えば、過熱度算出部112によりリアルタイムで算出される算出過熱度をフィードバック値として、この算出過熱度を目標過熱度に収束させるように膨張弁13の弁開度を調整するフィードバック制御を採用するのが好ましい。フィードバック制御は、比例制御(P制御)のほか、これに積分制御(I制御)および/または微分制御(D制御)を組み合わせた操作量の演算アルゴリズムを採用することができる。
The refrigerant flow control unit 113 controls the refrigerant flow control means so that the calculated superheat degree (value calculated by the superheat degree calculation unit 112) becomes the target superheat degree (set value by the target superheat degree setting unit 111), and the refrigerant R Adjust the flow rate.
As a specific control, for example, the calculated superheat degree calculated in real time by the superheat degree calculation unit 112 is used as a feedback value, and the valve opening degree of the expansion valve 13 is adjusted so that the calculated superheat degree converges to the target superheat degree. It is preferable to adopt feedback control. As the feedback control, in addition to the proportional control (P control), an operation amount calculation algorithm that combines the integral control (I control) and / or the differential control (D control) can be adopted.

このように、過熱度算出部112がガス冷媒Rの過熱度を正確に算出し、さらに冷媒流量制御部113がその値を一定に保つように制御することにより、給水W1に対する凝縮器12の熱出力が安定する。これにより、加温されて温水となって供給される給水W1の流量の変動が少なくなる。 In this way, the superheat degree calculation unit 112 accurately calculates the superheat degree of the gas refrigerant R, and the refrigerant flow rate control unit 113 controls so as to keep the value constant, whereby the heat of the condenser 12 with respect to the water supply W1 is generated. The output is stable. As a result, the fluctuation of the flow rate of the supply water W1 that is heated and supplied as hot water is reduced.

目標出湯温度設定可能範囲決定部121は、給水温度センサとしての第2給水温度センサ26が検知した凝縮器12に流入する前の給水W1の温度を取得し、この第2給水温度センサ26の検知温度に応じて目標出湯温度の設定可能範囲を決定する。 The target hot water temperature settable range determination unit 121 acquires the temperature of the water supply W1 before flowing into the condenser 12 detected by the second water supply temperature sensor 26 as the water supply temperature sensor, and detects the second water supply temperature sensor 26. Determine the settable range of the target hot water temperature according to the temperature.

図4は、第2給水温度センサ26の検知温度に応じて決定される、目標出湯温度の設定可能範囲を示す図である。図4の横軸は第2給水温度センサ26の検知温度(凝縮器流入前給水温度)であり、縦軸はそれに対応する目標出湯温度である。
本実施形態における目標出湯温度の設定可能範囲は、設定可能範囲Aに示される三角形の領域となっている。すなわち、本実施形態においては、目標出湯温度は、上限値と下限値の間の値に設定可能であり、下限値は、第2給水温度センサ26の検知温度に所定値を加えた値であって、第2給水温度センサ26の検知温度が高くなるほど高い値となっている。より詳細には、下限値は、第2給水温度センサ26の検知温度に15℃を加えた値となっており、上限値は、一定の温度、本実施形態においては75℃となっている。
FIG. 4 is a diagram showing a settable range of the target hot water temperature, which is determined according to the detection temperature of the second water supply temperature sensor 26. The horizontal axis of FIG. 4 is the detection temperature of the second water supply temperature sensor 26 (water supply temperature before the inflow of the condenser), and the vertical axis is the corresponding target hot water discharge temperature.
The settable range of the target hot water temperature in the present embodiment is a triangular region shown in the settable range A. That is, in the present embodiment, the target hot water temperature can be set to a value between the upper limit value and the lower limit value, and the lower limit value is a value obtained by adding a predetermined value to the detection temperature of the second water supply temperature sensor 26. Therefore, the higher the detection temperature of the second water supply temperature sensor 26, the higher the value. More specifically, the lower limit value is a value obtained by adding 15 ° C. to the detection temperature of the second water supply temperature sensor 26, and the upper limit value is a constant temperature, 75 ° C. in the present embodiment.

なお、下限値を設定するための所定値(例えば、15℃)は、後述の記憶部160に記憶されている。この場合、外部入力等により、この所定値を設定可能とすることが好ましい。或いは、この所定値に基づく下限値が、記憶部160に記憶されていてもよい。 A predetermined value (for example, 15 ° C.) for setting the lower limit value is stored in the storage unit 160 described later. In this case, it is preferable that this predetermined value can be set by an external input or the like. Alternatively, the lower limit value based on this predetermined value may be stored in the storage unit 160.

このように、設定可能範囲Aに示されるような領域を目標出湯温度の設定可能範囲とすることで、凝縮器12の入り口側と出口側の給水W1の温度差が十分大きくなるようにシステムを制御することになるため、ヒートポンプ回路10を流れる冷媒Rの過冷却不足を防止でき、かつ後述の給水流量制御部123による給水流量調整手段の制御において、給水W1の給水流量過多を抑制することができる。 In this way, by setting the area shown in the settable range A as the settable range of the target hot water temperature, the system is set so that the temperature difference between the water supply W1 on the inlet side and the outlet side of the condenser 12 becomes sufficiently large. Since the control is performed, it is possible to prevent insufficient supercooling of the refrigerant R flowing through the heat pump circuit 10, and it is possible to suppress an excessive supply flow rate of the water supply W1 in the control of the water supply flow rate adjusting means by the water supply flow rate control unit 123 described later. can.

なお、目標出湯温度の設定可能範囲を、上限値、下限値とも一定の値とする四角形の領域とする場合であっても、すなわち、下限値を一定にする場合であっても、例えば図4に示される設定可能範囲Bに示されるような領域とすれば、冷媒Rの過冷却不足を防止でき、かつ給水W1の給水流量過多を抑制することが可能である。しかしながら、この場合は、許容できる熱源水温度の範囲や、目標出湯温度の設定可能範囲が狭くなる。 Even when the settable range of the target hot water temperature is a quadrangular region in which both the upper limit value and the lower limit value are constant values, that is, even when the lower limit value is constant, for example, FIG. If the region is as shown in the settable range B shown in the above, it is possible to prevent insufficient supercooling of the refrigerant R and suppress an excessive flow rate of the water supply W1. However, in this case, the allowable range of the heat source water temperature and the settable range of the target hot water temperature are narrowed.

なお、目標出湯温度を、設定可能範囲Aに示される下限値よりも低い温度とした場合、例えば、第2給水温度センサ26の検知温度とあまり変わらない場合は、冷媒Rの過冷却不足が生じる可能性がある。 When the target hot water temperature is set to a temperature lower than the lower limit value shown in the settable range A, for example, when it is not so different from the detection temperature of the second water supply temperature sensor 26, the refrigerant R is insufficiently supercooled. there is a possibility.

これを、図5に示すモリエル線図(p−h線図)を使って説明する。
このモリエル線図の縦軸は冷媒の圧力(p)であり、横軸は冷媒の比エンタルピー(h)である。そして、モリエル線図には、飽和液線Y1と、飽和蒸気線Y2が示されている。このようなモリエル線図により、ヒートポンプサイクル中における冷媒Rの状態変化を表すことができる。冷媒Rは、飽和液線Y1よりも左側で過冷却液状態(液冷媒Rの状態)、飽和液線Y1と飽和蒸気線Y2との間で気液混合状態である湿り蒸気状態、飽和蒸気線Y2より右側で過熱蒸気状態(ガス冷媒Rの状態)となる。
This will be described with reference to the Moriel diagram (ph diagram) shown in FIG.
The vertical axis of the Moriel diagram is the pressure (p) of the refrigerant, and the horizontal axis is the specific enthalpy (h) of the refrigerant. Then, the saturated liquid line Y1 and the saturated vapor line Y2 are shown in the Moriel diagram. Such a Moriel diagram can represent the state change of the refrigerant R during the heat pump cycle. The refrigerant R is in a supercooled liquid state (state of liquid refrigerant R) on the left side of the saturated liquid line Y1, a wet steam state in which a gas-liquid mixture is formed between the saturated liquid line Y1 and the saturated steam line Y2, and a saturated steam line. The superheated steam state (the state of the gas refrigerant R) is set on the right side of Y2.

図5においてR(a→b→c→d)で示される実線は、適正な状態のヒートポンプサイクルにおける冷媒Rの状態の移り変わりを示している。
圧縮機11に吸引された過熱蒸気状態のガス冷媒Rは、圧縮機11において断熱圧縮されて高温高圧の過熱蒸気状態のガス冷媒Rとなり(a→b)、その後、凝縮器12で凝縮・過冷却されることにより過冷却液状態の液冷媒Rとなり(b→c)、さらにその後、膨張弁13にて断熱膨張されることにより湿り蒸気状態の冷媒Rとなる(c→d)。そして、湿り蒸気状態の冷媒Rは、蒸発器14において蒸発・加温されて、過熱蒸気状態のガス冷媒Rとなる(d→a)。このようなサイクルで、冷媒Rは循環する。なお、図5における(b→c)の過程について詳細に説明すると、凝縮器12は、ガス冷媒Rの潜熱および顕熱を放出して、ガス冷媒Rを液冷媒Rへと変化させ、かつ、液冷媒Rの過冷却を行っている。
The solid line indicated by R (a → b → c → d) in FIG. 5 indicates the transition of the state of the refrigerant R in the heat pump cycle in the proper state.
The superheated vapor state gas refrigerant R sucked into the compressor 11 is adiabatic compressed in the compressor 11 to become a high temperature and high pressure superheated steam state gas refrigerant R (a → b), and then condensed and excessively condensed by the condenser 12. By being cooled, it becomes a liquid refrigerant R in a supercooled liquid state (b → c), and after that, it becomes a refrigerant R in a wet steam state by being adiabatically expanded by the expansion valve 13 (c → d). Then, the refrigerant R in the wet steam state is evaporated and heated in the evaporator 14 to become the gas refrigerant R in the superheated steam state (d → a). In such a cycle, the refrigerant R circulates. Explaining the process of (b → c) in FIG. 5 in detail, the condenser 12 releases the latent heat and the sensible heat of the gas refrigerant R to change the gas refrigerant R into the liquid refrigerant R, and The liquid refrigerant R is overcooled.

ここで、目標出湯温度を、設定可能範囲Aに示される下限値よりも低い温度とした場合、凝縮器12の入り口側と出口側の給水W1の温度差が小さくなるため、冷媒Rが凝縮器12で十分に凝縮・過冷却されなくなる可能性がある(b→c’)。その結果、凝縮器12を通過後の冷媒Rの状態を示す「c’」の位置が、適正な場合に比べて右側にずれてしまう。すなわち、「c’」の状態にある冷媒Rは、過冷却不足となっている。また、十分に液冷媒Rの状態となっていない可能性もある。この場合は、適正なヒートポンプサイクルで運転できているとはいえない。
しかしながら、本実施形態においては、下限値を、第2給水温度センサ26の検知温度に所定値を加えた値としていることから、凝縮器12の入り口側と出口側の給水W1の温度差が少なくとも所定値より大きくなるようにシステムを制御することとなり、上述の問題は生じない。すなわち、適正な状態のヒートポンプサイクルで運転することができる。
Here, when the target hot water temperature is set to a temperature lower than the lower limit value shown in the settable range A, the temperature difference between the water supply W1 on the inlet side and the outlet side of the condenser 12 becomes small, so that the refrigerant R is the condenser. There is a possibility that the temperature of 12 will not be sufficiently condensed and supercooled (b → c'). As a result, the position of "c'" indicating the state of the refrigerant R after passing through the condenser 12 shifts to the right side as compared with the proper case. That is, the refrigerant R in the "c'" state is insufficiently supercooled. It is also possible that the liquid refrigerant R is not sufficiently in the state. In this case, it cannot be said that the operation can be performed with an appropriate heat pump cycle.
However, in the present embodiment, since the lower limit value is a value obtained by adding a predetermined value to the detection temperature of the second water supply temperature sensor 26, the temperature difference between the water supply W1 on the inlet side and the outlet side of the condenser 12 is at least. The system is controlled so as to be larger than a predetermined value, and the above-mentioned problem does not occur. That is, it can be operated with a heat pump cycle in an appropriate state.

目標出湯温度設定部122は、第2給水温度センサ26の検知温度に応じて、上述の目標出湯温度設定可能範囲内で、目標出湯温度を設定する。例えば、上述の設定可能範囲Aの範囲内で、温水需要箇所の要求等に基づき、任意の目標出湯温度を設定することができる。
すなわち、目標出湯温度設定部122は、第2給水温度センサ26の検知温度を取得し、取得した第2給水温度センサ26の検知温度に対して所定値を加えた値であって、第2給水温度センサ26の検知温度が高くなるほど高い値を下限値として、目標出湯温度を設定することができる。これにより、適正な状態のヒートポンプサイクルで運転することができ、かつ目標出湯温度の設定範囲を広くすることができる。
The target hot water temperature setting unit 122 sets the target hot water temperature within the above-mentioned target hot water temperature settable range according to the detection temperature of the second water supply temperature sensor 26. For example, within the above-mentioned settable range A, an arbitrary target hot water temperature can be set based on the request of the hot water demand location and the like.
That is, the target hot water temperature setting unit 122 acquires the detection temperature of the second water supply temperature sensor 26, and is a value obtained by adding a predetermined value to the detected temperature of the acquired second water supply temperature sensor 26, and is the second water supply. The higher the detection temperature of the temperature sensor 26, the higher the lower limit value, and the target hot water temperature can be set. As a result, it is possible to operate with a heat pump cycle in an appropriate state, and it is possible to widen the setting range of the target hot water temperature.

なお、第2給水温度センサ26の検知温度に、予め定められた値を加えた値を、目標出湯温度として自動的に設定する態様としてもよい。 In addition, a value obtained by adding a predetermined value to the detection temperature of the second water supply temperature sensor 26 may be automatically set as the target hot water discharge temperature.

給水流量制御部123は、出湯温度センサ27の検知温度が目標出湯温度(目標出湯温度設定部122による設定値)になるように給水流量調整手段を制御し、給水W1の流量を調整する。
具体的な制御としては、例えば、出湯温度センサ27によりリアルタイムに検知される出湯温度をフィードバック値として、この出湯温度を目標出湯温度に収束させるように給水ポンプ21または還流ポンプ31の駆動周波数を調整するフィードバック制御を採用するのが好ましい。フィードバック制御は、比例制御(P制御)のほか、これに積分制御(I制御)および/または微分制御(D制御)を組み合わせた操作量の演算アルゴリズムを採用することができる。
The water supply flow rate control unit 123 controls the water supply flow rate adjusting means so that the detection temperature of the hot water temperature sensor 27 becomes the target hot water temperature (set value set by the target hot water temperature setting unit 122), and adjusts the flow rate of the water supply W1.
As specific control, for example, the drive frequency of the water supply pump 21 or the recirculation pump 31 is adjusted so that the hot water temperature detected in real time by the hot water temperature sensor 27 is used as a feedback value and the hot water temperature converges to the target hot water temperature. It is preferable to adopt feedback control. As the feedback control, in addition to the proportional control (P control), an operation amount calculation algorithm that combines the integral control (I control) and / or the differential control (D control) can be adopted.

なお、後述の一過通水モードにおいては、インバータ制御が可能な給水ポンプ21が給水流量調整手段を構成し、循環通水モードにおいては、インバータ制御が可能な還流ポンプ31が、給水流量調整手段を構成する。 In the transient water flow mode described later, the water supply pump 21 capable of inverter control constitutes the water supply flow rate adjusting means, and in the circulating water flow mode, the reflux pump 31 capable of inverter control constitutes the water supply flow rate adjusting means. To configure.

なお、給水流量調整手段は、他の態様によって構成してもよい。例えば、給水ポンプ21、還流ポンプ31をオンオフ制御のみ可能なポンプにより構成する場合は、それぞれのポンプの下流側に比例制御可能な流量調整弁を設けて、これらを給水流量調整手段としてもよい。また、給水ラインL1と還流ラインL2の合流部の下流側に比例制御可能な流量調整弁を設けて、これを給水流量調整手段としてもよい。
また、給水ポンプ21および還流ポンプ31に替わる構成として、給水ラインL1と還流ラインL2に開閉弁を設けた上で、或いは給水ラインL1と還流ラインL2の合流部に三方弁を設けた上で、給水ラインL1と還流ラインL2の合流部の下流側にインバータ制御が可能なポンプを設けて、これを給水流量調整手段としてもよい。
The water supply flow rate adjusting means may be configured by another aspect. For example, when the water supply pump 21 and the recirculation pump 31 are composed of pumps capable of only on / off control, a flow rate adjusting valve capable of proportional control may be provided on the downstream side of each pump, and these may be used as the water supply flow rate adjusting means. Further, a flow rate adjusting valve capable of proportional control may be provided on the downstream side of the confluence of the water supply line L1 and the reflux line L2, and this may be used as the water supply flow rate adjusting means.
Further, as a configuration to replace the water supply pump 21 and the recirculation pump 31, an on-off valve is provided in the water supply line L1 and the recirculation line L2, or a three-way valve is provided at the confluence of the water supply line L1 and the recirculation line L2. A pump capable of inverter control may be provided on the downstream side of the confluence of the water supply line L1 and the reflux line L2, and this may be used as the water supply flow rate adjusting means.

このように、凝縮器12に流入する前の給水W1の温度に応じて適切な目標出湯温度を設定することで、凝縮器12での過冷却不足、給水流量過多等の発生を防止することができる。
さらに、凝縮器12に流入する前の給水W1の温度に応じて設定可能な目標出湯温度の範囲の下限値を設定することで、確実に凝縮器12での過冷却不足を防止して、蒸発器14での熱回収量を安定させることができる。また、給水W1の流量が過多になるのを防止して、給水ポンプ21等の過負荷による劣化を抑制することができる。
In this way, by setting an appropriate target hot water temperature according to the temperature of the water supply W1 before flowing into the condenser 12, it is possible to prevent the occurrence of insufficient supercooling, excessive water supply flow rate, etc. in the condenser 12. can.
Further, by setting the lower limit value of the range of the target hot water temperature that can be set according to the temperature of the water supply W1 before flowing into the condenser 12, it is possible to surely prevent the supercooling shortage in the condenser 12 and evaporate. The amount of heat recovered in the vessel 14 can be stabilized. Further, it is possible to prevent the flow rate of the water supply W1 from becoming excessive and suppress deterioration due to an overload of the water supply pump 21 or the like.

なお、本実施形態においては、目標出湯温度を設定する上で、第2給水温度センサ26の検知温度を用いているが、凝縮器12に流入する前の給水W1の温度(凝縮器流入前給水温度)を間接的に検出する給水温度センサとして、第1給水温度センサ24を用いてもよい。但し、より安定した制御を行うためには、第2給水温度センサ26を用いて、凝縮器12に流入する直前の給水W1の温度を測定する方が好ましい。 In this embodiment, the detection temperature of the second water supply temperature sensor 26 is used to set the target hot water temperature, but the temperature of the water supply W1 before flowing into the condenser 12 (water supply before the condenser inflow). The first water supply temperature sensor 24 may be used as the water supply temperature sensor that indirectly detects the temperature). However, in order to perform more stable control, it is preferable to use the second water supply temperature sensor 26 to measure the temperature of the water supply W1 immediately before flowing into the condenser 12.

ここまで説明したように、本実施形態の給水加温システム1は、熱源水W5を、熱回収用熱交換器40と蒸発器14の順に流通させている。そして、本実施形態の給水加温システム1は、圧縮機11に流入するガス冷媒Rの過熱度に基づいて制御され、冷媒流量を調整する冷媒流量調整手段を備える。また、凝縮器12から流出する給水W1の出湯温度に基づいて制御され、給水流量を調整する給水流量調整手段を備える。そして、制御部100は、冷媒流量調整手段を制御する冷媒流量制御部113と、給水流量調整手段を制御する給水流量制御部123と、を備える。 As described above, in the water supply heating system 1 of the present embodiment, the heat source water W5 is circulated in the order of the heat recovery heat exchanger 40 and the evaporator 14. The water supply heating system 1 of the present embodiment includes a refrigerant flow rate adjusting means that is controlled based on the degree of superheat of the gas refrigerant R flowing into the compressor 11 and adjusts the refrigerant flow rate. Further, the water supply flow rate adjusting means which is controlled based on the hot water temperature of the water supply W1 flowing out from the condenser 12 and adjusts the water supply flow rate is provided. The control unit 100 includes a refrigerant flow rate control unit 113 that controls the refrigerant flow rate adjusting means, and a water supply flow rate control unit 123 that controls the water supply flow rate adjusting means.

これにより、熱源水W5を先に熱回収用熱交換器40に流すことで熱回収用熱交換器40の熱出力がアップし、給水W1の予熱量が増える。なお、熱源水温度が高いほど熱出力を高める効果が大きい。熱回収用熱交換器40の熱回収量が増えると、相対的にヒートポンプ回路10の熱回収量を減らすことができる。すなわち、蒸発器14および熱回収用熱交換器40の順で熱源水W5を流す場合と同じシステム熱出力を得る場合、圧縮機の出力を下げてヒートポンプ回路10の電力消費量を低減することができる。
このとき、熱源水W5を先に熱回収用熱交換器40に流すことで蒸発器14に流入する熱源水W5の温度は低下するが、さらなる制御の追加、すなわち、過熱度に基づく冷媒流量の調整と、出湯温度に基づく給水流量の調整の組み合わせによる多重効果により、例えば、低い過熱度設定に応じた冷媒流量の調整による蒸発器14の熱入力アップと、低い出湯温度設定に応じた給水流量の調整による熱回収用熱交換器40の更なる熱出力アップおよび蒸発器14の熱出力アップの多重効果により、熱源水W5を先に熱回収用熱交換器40に流す構成において、システムのCOPを大幅に高めることができる。
As a result, the heat source water W5 is first flowed through the heat recovery heat exchanger 40, so that the heat output of the heat recovery heat exchanger 40 is increased and the preheat amount of the water supply W1 is increased. The higher the heat source water temperature, the greater the effect of increasing the heat output. When the heat recovery amount of the heat recovery heat exchanger 40 increases, the heat recovery amount of the heat pump circuit 10 can be relatively reduced. That is, when the same system heat output as when the heat source water W5 is passed in the order of the evaporator 14 and the heat recovery heat exchanger 40 is obtained, the output of the compressor can be reduced to reduce the power consumption of the heat pump circuit 10. can.
At this time, by first flowing the heat source water W5 through the heat recovery heat exchanger 40, the temperature of the heat source water W5 flowing into the evaporator 14 decreases, but further control is added, that is, the flow rate of the refrigerant based on the degree of superheat. Due to the multiple effect of the combination of adjustment and adjustment of the water supply flow rate based on the hot water temperature, for example, the heat input of the evaporator 14 is increased by adjusting the refrigerant flow rate according to the low superheat degree setting, and the water supply flow rate according to the low hot water temperature setting. Due to the multiple effects of further increasing the heat output of the heat recovery heat exchanger 40 and increasing the heat output of the evaporator 14, the heat source water W5 is first flowed to the heat recovery heat exchanger 40 by adjusting the COP of the system. Can be greatly increased.

通水モード切替制御部130は、一過通水モードと、循環通水モードと、通水停止モードと、を切り替える通水モード切替制御を行う。より詳細には、通水モード切替制御部130は、通水モード切替手段としての給水ポンプ21および還流ポンプ31を制御し、還流ラインL2に温水W2を流通させずに凝縮器12に通水する一過通水モードと、還流ラインL2に温水W2を流通させながら凝縮器12に通水する循環通水モードと、凝縮器12への通水を停止する通水停止モードと、を切り替える制御を行う。 The water flow mode switching control unit 130 performs water flow mode switching control for switching between a transient water flow mode, a circulation water flow mode, and a water flow stop mode. More specifically, the water flow mode switching control unit 130 controls the water supply pump 21 and the recirculation pump 31 as the water flow mode switching means, and allows water to flow to the condenser 12 without circulating the hot water W2 to the recirculation line L2. Control to switch between the transient water flow mode, the circulating water flow mode in which hot water W2 is circulated through the reflux line L2 and the water is passed through the condenser 12, and the water flow stop mode in which the water flow to the condenser 12 is stopped. conduct.

なお、一過通水モードのときは、還流ポンプ31の駆動を停止する一方、給水ポンプ21を駆動すると共に、熱源供給ポンプ53およびヒートポンプ回路10の圧縮機11を駆動する。循環通水モードのときは、給水ポンプ21の駆動を停止する一方、還流ポンプ31を駆動すると共に、熱源供給ポンプ53およびヒートポンプ回路10の圧縮機11を駆動する。通水停止モードにおいては、給水ポンプ21および還流ポンプ31の駆動を停止すると共に、ヒートポンプ回路10の圧縮機11の駆動も停止する。また、熱源供給ポンプ53の駆動も停止することが好ましい。 In the transient water flow mode, the recirculation pump 31 is stopped while the water supply pump 21 is driven, and the heat source supply pump 53 and the compressor 11 of the heat pump circuit 10 are driven. In the circulation water flow mode, the drive of the water supply pump 21 is stopped, the reflux pump 31 is driven, and the heat source supply pump 53 and the compressor 11 of the heat pump circuit 10 are driven. In the water flow stop mode, the drive of the water supply pump 21 and the recirculation pump 31 is stopped, and the drive of the compressor 11 of the heat pump circuit 10 is also stopped. It is also preferable to stop the drive of the heat source supply pump 53.

なお、本実施形態においては、給水ポンプ21および還流ポンプ31が通水モード切替手段を構成しているが、通水モード切替手段は、他の態様によって構成されていてもよい。例えば、給水ラインL1と還流ラインL2の合流部に設けられた三方弁と、給水ラインL1と還流ラインL2の合流部の下流側に設けられた給水ポンプとにより、通水モード切替手段を構成することもできる。この場合は、三方弁の切り替えと、給水ポンプのオンオフにより、通水モードを切り替える。 In the present embodiment, the water supply pump 21 and the recirculation pump 31 constitute the water flow mode switching means, but the water flow mode switching means may be configured by another aspect. For example, a three-way valve provided at the confluence of the water supply line L1 and the recirculation line L2 and a water supply pump provided at the downstream side of the confluence of the water supply line L1 and the recirculation line L2 constitute a water flow mode switching means. You can also do it. In this case, the water flow mode is switched by switching the three-way valve and turning the water supply pump on and off.

このように、一過通水モードに加えて循環通水モードでの運転を可能とすることで、必要に応じて温水タンク60の循環加温を行って貯湯温度を維持することができる。また、循環通水モードでは、還流ラインL2を用いて、熱回収用熱交換器40の手前に温水タンク60の貯留水を流入させる構成であるので、熱源水W5の温度が温水タンク60に貯留されている温水W2の温度よりも高い場合は、給水W1として流れる温水W2は、凝縮器12だけでなく、その前に熱回収用熱交換器40によっても加温される。よって、効率よく加温される。 In this way, by enabling the operation in the circulating water flow mode in addition to the transient water flow mode, the hot water tank 60 can be circulated and heated to maintain the hot water storage temperature as needed. Further, in the circulation water flow mode, the recirculation line L2 is used to allow the stored water in the hot water tank 60 to flow in front of the heat recovery heat exchanger 40, so that the temperature of the heat source water W5 is stored in the hot water tank 60. When the temperature of the hot water W2 is higher than the temperature of the hot water W2, the hot water W2 flowing as the water supply W1 is heated not only by the condenser 12 but also by the heat recovery heat exchanger 40 before that. Therefore, it is heated efficiently.

ここで、通水モード切替制御部130は、温水タンク60への給水制御を行うと共に、温水タンク60内の温水W2の温度に基づき、通水モードの切替制御を行うことも可能である。
具体的には、通水モード切替制御部130は、還流ラインL2の合流箇所に対して新たな水供給が実行される場合には、一過通水モードを実行させるように通水モード切替手段を制御し、合流箇所に対する新たな水供給が停止され、かつ温水温度センサ61の検知温度が所定の設定温度を下回っている場合には、循環通水モードを実行させるように通水モード切替手段を制御し、合流箇所に対する新たな水供給が停止され、かつ温水温度センサ61の検知温度が所定の設定温度を上回っている場合には、通水停止モードを実行させるように通水モード切替手段を制御する。
Here, the water flow mode switching control unit 130 can control the water supply to the hot water tank 60 and also perform the water flow mode switching control based on the temperature of the hot water W2 in the hot water tank 60.
Specifically, the water flow mode switching control unit 130 is a water flow mode switching means so as to execute the transient water flow mode when a new water supply is executed to the confluence point of the recirculation line L2. When the new water supply to the confluence is stopped and the detection temperature of the hot water temperature sensor 61 is lower than the predetermined set temperature, the water flow mode switching means is executed so as to execute the circulation water flow mode. When the new water supply to the confluence is stopped and the detection temperature of the hot water temperature sensor 61 exceeds the predetermined set temperature, the water flow mode switching means is executed so as to execute the water flow stop mode. To control.

この通水モード切替制御について、図6Aに示す状態遷移図を使って詳細に説明する。
通水モード切替制御部130は、各通水モードの実行中、水位検出部62により温水タンク60内の温水W2の水位を監視すると共に、温水温度センサ61により温水タンク60内の温水W2の温度を監視する。通水停止モードの実行中においては、水位検出部62の電極棒622の検出位置を上回り、かつ温水温度センサ61の検知温度が第1設定温度(例えば、目標出湯温度よりも2〜3℃低い温度)を上回っている場合には、通水モード切替制御部130は、通水停止モードを継続する。
This water flow mode switching control will be described in detail with reference to the state transition diagram shown in FIG. 6A.
The water flow mode switching control unit 130 monitors the water level of the hot water W2 in the hot water tank 60 by the water level detection unit 62 while executing each water flow mode, and the temperature of the hot water W2 in the hot water tank 60 by the hot water temperature sensor 61. To monitor. During the execution of the water flow stop mode, the detection position of the electrode rod 622 of the water level detection unit 62 is exceeded, and the detection temperature of the hot water temperature sensor 61 is lower than the first set temperature (for example, 2 to 3 ° C. than the target hot water discharge temperature). When the temperature exceeds the temperature), the water flow mode switching control unit 130 continues the water flow stop mode.

<イベントE1>
通水停止モードの実行中、温水タンク60内の水位が低下し、水位検出部62の電極棒622の検出位置を下回った場合には、通水モード切替制御部130は、還流ポンプ31の停止を維持したまま給水ポンプ21を駆動する。給水ポンプ21の駆動により、還流ラインL2の合流箇所に対して新たな補給水Wの供給が実行されることになるので、通水モード切替制御部130は、熱源供給ポンプ53および圧縮機11を駆動して一過通水モードへ移行させる。一過通水モードでは、所定の目標出湯温度に調節された温水W2が温水タンク60に供給される。
<Event E1>
When the water level in the hot water tank 60 drops and falls below the detection position of the electrode rod 622 of the water level detection unit 62 during the execution of the water flow stop mode, the water flow mode switching control unit 130 stops the reflux pump 31. The water supply pump 21 is driven while maintaining the above. By driving the water supply pump 21, new make-up water W is supplied to the confluence of the reflux line L2. Therefore, the water flow mode switching control unit 130 connects the heat source supply pump 53 and the compressor 11. Drive to shift to transient water flow mode. In the one-pass water flow mode, hot water W2 adjusted to a predetermined target hot water temperature is supplied to the hot water tank 60.

<イベントE2>
一過通水モードの実行中、温水タンク60内の水位が上昇し、水位検出部62の電極棒621の検出位置を上回った場合には、通水モード切替制御部130は、還流ポンプ31の停止を維持したまま給水ポンプ21を停止する。給水ポンプ21の停止により、還流ラインL2の合流箇所に対して新たな補給水Wの供給が停止されることになるので、通水モード切替制御部130は、熱源供給ポンプ53および圧縮機11を停止して通水停止モードへ移行させる。通水停止モードでは、温水タンク60への温水W2の供給が停止される。
<Event E2>
When the water level in the hot water tank 60 rises and exceeds the detection position of the electrode rod 621 of the water level detection unit 62 during the execution of the one-pass water flow mode, the water flow mode switching control unit 130 of the recirculation pump 31 The water supply pump 21 is stopped while maintaining the stop. When the water supply pump 21 is stopped, the supply of new make-up water W to the confluence of the reflux line L2 is stopped. Therefore, the water flow mode switching control unit 130 sets the heat source supply pump 53 and the compressor 11 to the compressor 11. Stop and shift to the water flow stop mode. In the water flow stop mode, the supply of hot water W2 to the hot water tank 60 is stopped.

<イベントE3>
通水停止モードの実行中、温水温度センサ61の検知温度が設定温度を下回った場合には、給水ポンプ21の停止を維持したまま還流ポンプ31を駆動する。還流ポンプ31の駆動により、還流ラインL2の合流箇所に対して新たな補給水Wの供給が停止された状態で貯留水の水循環が実行されることになるので、通水モード切替制御部130は、熱源供給ポンプ53および圧縮機11を駆動して循環通水モードへ移行させる。循環通水モードでは、所定の目標出湯温度まで再加温された温水W2が温水タンク60に供給される。
<Event E3>
If the detection temperature of the hot water temperature sensor 61 falls below the set temperature during the execution of the water flow stop mode, the reflux pump 31 is driven while maintaining the stop of the water supply pump 21. By driving the recirculation pump 31, the water circulation of the stored water is executed in a state where the supply of the new make-up water W is stopped at the confluence of the recirculation line L2. , The heat source supply pump 53 and the compressor 11 are driven to shift to the circulation water flow mode. In the circulating water flow mode, the hot water W2 reheated to a predetermined target hot water temperature is supplied to the hot water tank 60.

<イベントE4>
循環通水モードの実行中、温水温度センサ61の検知温度が設定温度を上回った場合には、通水モード切替制御部130は、給水ポンプ21の停止を維持したまま還流ポンプ31を停止する。そして、熱源供給ポンプ53および圧縮機11を停止して通水停止モードへ移行させる。通水停止モードでは、温水タンク60に対する温水W2の循環が停止される。
<Event E4>
If the detected temperature of the hot water temperature sensor 61 exceeds the set temperature during the execution of the circulating water flow mode, the water flow mode switching control unit 130 stops the recirculation pump 31 while maintaining the stop of the water supply pump 21. Then, the heat source supply pump 53 and the compressor 11 are stopped to shift to the water flow stop mode. In the water flow stop mode, the circulation of the hot water W2 to the hot water tank 60 is stopped.

<イベントE5>
循環通水モードの実行中、温水タンク60内の水位が低下し、水位検出部62の電極棒622の検出位置を下回った場合には、通水モード切替制御部130は、還流ポンプ31の停止させ、給水ポンプ21を駆動する。給水ポンプ21の駆動により、還流ラインL2の合流箇所に対して新たな補給水Wの供給が実行されることになるので、通水モード切替制御部130は、熱源供給ポンプ53および圧縮機11を駆動したまま一過通水モードへ移行させる。一過通水モードでは、所定の目標出湯温度に調節された温水W2が温水タンク60に供給される。
なお、本実施形態では、一過通水モードから循環通水モードへの移行は行わない。一過通水モードへは温水需要が大きいときに移行するので、補給水Wの温水タンク60への供給を優先し、速やかに水位を回復させるためである。また、一過通水モードでの出湯温度は、温水タンク60の貯湯温度よりも高いため、短時間で貯湯温度を上昇させることもできる。
<Event E5>
When the water level in the hot water tank 60 drops and falls below the detection position of the electrode rod 622 of the water level detection unit 62 during the execution of the circulation water flow mode, the water flow mode switching control unit 130 stops the reflux pump 31. And drive the water supply pump 21. By driving the water supply pump 21, new make-up water W is supplied to the confluence of the reflux line L2. Therefore, the water flow mode switching control unit 130 connects the heat source supply pump 53 and the compressor 11. Shift to the transient water flow mode while driving. In the one-pass water flow mode, hot water W2 adjusted to a predetermined target hot water temperature is supplied to the hot water tank 60.
In this embodiment, the transition from the transient water flow mode to the circulating water flow mode is not performed. This is to give priority to the supply of the make-up water W to the hot water tank 60 and to quickly recover the water level because the mode shifts to the one-pass water flow mode when the demand for hot water is large. Further, since the hot water outlet temperature in the transient water flow mode is higher than the hot water storage temperature of the hot water tank 60, the hot water storage temperature can be raised in a short time.

なお、通水停止モードの継続判定を行うための設定温度と、通水停止モードから循環通水モードへの移行判定を行うための設定温度は、同じ温度としてもよいし、異なる温度としてもよい。異なる温度とする場合は、後者の設定温度は前者の設定温度よりも低い温度とする。 The set temperature for determining the continuation of the water flow stop mode and the set temperature for determining the transition from the water flow stop mode to the circulating water flow mode may be the same temperature or different temperatures. .. If the temperatures are different, the latter set temperature is lower than the former set temperature.

なお、上述の通水モードの切替制御を行う上で、還流ラインL2の合流箇所に補給水W等による新たな水供給が実行されているか否かの判定は、給水ポンプ21の駆動状態(駆動指令信号または駆動フィードバック信号)に基づいて行ってもよい。
また、給水ラインL1における、還流ラインL2の合流箇所よりも上流側に不図示の流量センサを配置し、この流量センサの検出結果に基づいて判定を行ってもよい。
In addition, in performing the above-mentioned switching control of the water flow mode, it is determined whether or not a new water supply by the make-up water W or the like is executed at the confluence of the return line L2 in the driving state (driving) of the water supply pump 21. It may be performed based on a command signal or a drive feedback signal).
Further, a flow rate sensor (not shown) may be arranged on the upstream side of the confluence of the return line L2 in the water supply line L1 and a determination may be made based on the detection result of the flow rate sensor.

図6Aの状態遷移図に従ったモード切替制御によれば、温水需要が十分にあり補給水Wの供給が必要である時は、システムCOPが最大となる一過通水モードで運転させることができる。また、温水需要が小さく補給水Wの供給が必要でない時は、温水タンク60内の貯留水の温度低下時に、循環通水モードで貯留水の昇温を行うことができる。また、温水需要が小さく補給水Wの供給が必要でない時は、温水タンク60内の貯留水の温度低下が実質的になければ、通水停止モードで待機することができる。 According to the mode switching control according to the state transition diagram of FIG. 6A, when the demand for hot water is sufficient and the supply of make-up water W is required, the system can be operated in the transient water flow mode in which the system COP is maximized. can. Further, when the demand for hot water is small and the supply of the make-up water W is not necessary, the temperature of the stored water can be raised in the circulating water flow mode when the temperature of the stored water in the hot water tank 60 drops. Further, when the demand for hot water is small and the supply of the make-up water W is not necessary, if the temperature of the stored water in the hot water tank 60 does not substantially decrease, it is possible to stand by in the water flow stop mode.

以上で説明した構成であれば、温水タンク60内に設定温度以上の温水W2を常時確保することができる。また、循環通水モードは、温水タンク60内の貯留水の温度低下時のみ実行されるので、過剰な水循環により無駄な電力消費を発生させることもない。 With the configuration described above, hot water W2 having a set temperature or higher can always be secured in the hot water tank 60. Further, since the circulation water flow mode is executed only when the temperature of the stored water in the hot water tank 60 drops, wasteful power consumption is not generated due to excessive water circulation.

予熱モード切替制御部140は、給水予熱モードと、予熱停止モードと、を切り替える予熱モード切替制御を行う。より詳細には、予熱モード切替制御部140は、予熱モード切替手段としての三方弁25を制御し、給水W1および熱源水W5を同時に熱回収用熱交換器40に流通させる給水予熱モードと、給水W1をバイパスラインL3に流通させる予熱停止モードと、を切り替える制御を行う。 The preheating mode switching control unit 140 performs preheating mode switching control for switching between the water supply preheating mode and the preheating stop mode. More specifically, the preheating mode switching control unit 140 controls the three-way valve 25 as the preheating mode switching means, and simultaneously distributes the water supply W1 and the heat source water W5 to the heat recovery heat exchanger 40, and the water supply preheating mode and the water supply. Control is performed to switch between the preheating stop mode in which W1 is distributed to the bypass line L3.

なお、本実施形態においては、三方弁25が予熱モード切替手段を構成しているが、予熱モード切替手段は、他の態様によって構成されていてもよい。例えば、給水ラインL1における、バイパスラインL3との合流部の上流側と、バイパスラインL3とに、それぞれ二方弁を設け、これらの二方弁によって、予熱モード切替手段を構成してもよい。 In the present embodiment, the three-way valve 25 constitutes the preheating mode switching means, but the preheating mode switching means may be configured by another aspect. For example, two-way valves may be provided on the upstream side of the confluence with the bypass line L3 and the bypass line L3 in the water supply line L1, and the preheating mode switching means may be configured by these two-way valves.

なお、バイパスラインは、熱回収用熱交換器40に対して給水W1をバイパスさせるものに限らず、熱回収用熱交換器40に対して熱源水W5をバイパスさせるものであってもよい。この場合は、予熱停止モードにおいて、熱源水W5をバイパスラインに流通させる。
すなわち、熱回収用熱交換器40に対して給水W1をバイパス、および/または、熱回収用熱交換器40に対して熱源水W5をバイパスさせる1本ないし2本のバイパスラインを備え、予熱モード切替手段が、給水W1および熱源水W5を同時に熱回収用熱交換器40に流通させる給水予熱モードと、給水W1および熱源水W5の少なくとも一方をバイパスラインに流通させる予熱停止モードと、を切り替える態様となっていればよい。
これにより、熱回収用熱交換器40を、状況に応じて選択的に利用することができる。
The bypass line is not limited to the one that bypasses the water supply W1 to the heat recovery heat exchanger 40, and may be the one that bypasses the heat source water W5 to the heat recovery heat exchanger 40. In this case, the heat source water W5 is circulated to the bypass line in the preheating stop mode.
That is, the preheating mode is provided with one or two bypass lines for bypassing the water supply W1 to the heat recovery heat exchanger 40 and / or bypassing the heat source water W5 for the heat recovery heat exchanger 40. A mode in which the switching means switches between a water supply preheating mode in which the water supply W1 and the heat source water W5 are simultaneously circulated to the heat recovery heat exchanger 40 and a preheating stop mode in which at least one of the water supply W1 and the heat source water W5 is circulated in the bypass line. It should be.
As a result, the heat recovery heat exchanger 40 can be selectively used depending on the situation.

ここで、予熱モード切替制御部140は、熱回収用熱交換器40に流入させる前の給水W1の温度を検知する第1給水温度センサ24(熱交換器流入前給水温度センサ24)による第1検知温度(熱交換器流入前給水温度)と、熱回収用熱交換器40に流入させる前の熱源水W5の温度を検知する第1熱源温度センサ54(熱交換器流入前熱源温度センサ54)による第2検知温度(熱交換器流入前熱源温度)と、を取得し、この第1検知温度および第2検知温度に基づき、予熱モードの切替制御を行うことが可能である。
具体的には、予熱モード切替制御部140は、第1給水温度センサ24による第1検知温度と、第1熱源温度センサ54による第2検知温度と、を比較し、第1検知温度が第2検知温度を下回っている場合には、給水予熱モードを実行させるように予熱モード切替手段を制御し、第1検知温度が第2検知温度を上回っている場合には、予熱停止モードを実行させるように予熱モード切替手段を制御する。
このような、給水温度と熱源水温度に応じた自動予熱モード切替により、システムCOPの最大化を図ることができる。
Here, the preheating mode switching control unit 140 is the first by the first water supply temperature sensor 24 (heat exchanger pre-inflow water supply temperature sensor 24) that detects the temperature of the water supply W1 before flowing into the heat recovery heat exchanger 40. First heat source temperature sensor 54 (heat source temperature sensor 54 before inflow of heat exchanger) that detects the detected temperature (water supply temperature before inflow of heat exchanger) and the temperature of heat source water W5 before flowing into the heat recovery heat exchanger 40. It is possible to acquire the second detection temperature (heat source temperature before the inflow of the heat exchanger) and the preheating mode switching control based on the first detection temperature and the second detection temperature.
Specifically, the preheating mode switching control unit 140 compares the first detected temperature by the first water supply temperature sensor 24 with the second detected temperature by the first heat source temperature sensor 54, and the first detected temperature is the second. When the temperature is lower than the detected temperature, the preheating mode switching means is controlled so as to execute the water supply preheating mode, and when the first detected temperature is higher than the second detected temperature, the preheating stop mode is executed. Controls the preheating mode switching means.
The system COP can be maximized by such automatic preheating mode switching according to the water supply temperature and the heat source water temperature.

なお、予熱モード切替制御部140は、少なくとも通水モードが循環通水モードのときに、予熱モード切替手段を各予熱モード間で切り替え可能である。この場合、予熱モード切替制御部140は、通水モードが一過通水モードのときに、予熱モード切替手段を予熱モードに設定し、通水停止モードのときに、予熱モード切替手段を予熱停止モードに設定してもよい。
これにより、例えば、給水W1として比較的温度が低いことが多い補給水Wを用いる一過通水モードでは、熱回収用熱交換器を積極的に活用する一方、給水W1として比較的温度が高いことが多い温水タンク60の貯留水を用いる循環通水モードでは、給水W1と熱源水W5の温度の関係に応じて、選択的に熱回収用熱交換器を活用することができる。
但し、様々な補給水温度と熱源水温度の状況下においても効率的な加温ができるよう、予熱モード切替制御部140は、通水モードが循環通水モードまたは一過通水モードのときに、予熱モード切替手段を各予熱モード間で切り替え可能に構成してもよい。
The preheating mode switching control unit 140 can switch the preheating mode switching means between the preheating modes at least when the water flow mode is the circulating water flow mode. In this case, the preheating mode switching control unit 140 sets the preheating mode switching means to the preheating mode when the water flow mode is the transient water flow mode, and preheats and stops the preheating mode switching means when the water flow stop mode. It may be set to the mode.
As a result, for example, in the transient water flow mode in which the make-up water W, which often has a relatively low temperature as the water supply W1, is used, the heat exchanger for heat recovery is actively utilized, while the temperature is relatively high as the water supply W1. In the circulating water flow mode using the stored water of the hot water tank 60, which is often the case, the heat recovery heat exchanger can be selectively used according to the temperature relationship between the water supply W1 and the heat source water W5.
However, in order to enable efficient heating even under various make-up water temperatures and heat source water temperatures, the preheating mode switching control unit 140 is used when the water flow mode is the circulation water flow mode or the transient water flow mode. , The preheating mode switching means may be configured to be switchable between the preheating modes.

信号入力部150は、一過通水モード、循環通水モード、通水停止モードのいずれかを指定する通水モード指定信号を受け付ける第1信号入力部151を備える。
通水モード切替制御部130は、第1信号入力部151に入力された通水モード指定信号に従い、一過通水モード、循環通水モードまたは通水停止モードを実行させるように通水モード切替手段を制御する。そして、通水モード切替制御部130は、循環通水モードまたは通水停止モードの実行時に、給水ポンプ21を制御するなどして、還流ラインL2の合流箇所に対する新たな水供給を停止する。
これにより、例えば、補給水ありの外部信号を利用して、システムCOPが最大となる一過通水モードで運転させることができる。また、補給水なしの外部信号を利用して、循環通水モードで貯留水の保温を行うことができる。
The signal input unit 150 includes a first signal input unit 151 that receives a water flow mode designation signal that specifies any of a transient water flow mode, a circulation water flow mode, and a water flow stop mode.
The water flow mode switching control unit 130 switches the water flow mode so as to execute the transient water flow mode, the circulating water flow mode, or the water flow stop mode according to the water flow mode designation signal input to the first signal input unit 151. Control the means. Then, the water flow mode switching control unit 130 stops the new water supply to the confluence portion of the recirculation line L2 by controlling the water supply pump 21 or the like when the circulation water flow mode or the water flow stop mode is executed.
Thereby, for example, it is possible to operate in the transient water flow mode in which the system COP is maximized by using an external signal with make-up water. In addition, it is possible to keep the stored water warm in the circulating water flow mode by using an external signal without make-up water.

信号入力部150は、給水予熱モード、予熱停止モードのいずれかを指定する予熱モード指定信号を受け付ける第2信号入力部152も備える。
予熱モード切替制御部140は、第2信号入力部152に入力された予熱モード指定信号に従い、給水予熱モードまたは予熱停止モードを実行させるように予熱モード切替手段を制御する。
これにより、外部信号に従った他動予熱モード切替により、システムCOPの最大化を図ることができる。
The signal input unit 150 also includes a second signal input unit 152 that receives a preheating mode designation signal that specifies either a water supply preheating mode or a preheating stop mode.
The preheating mode switching control unit 140 controls the preheating mode switching means so as to execute the water supply preheating mode or the preheating stop mode according to the preheating mode designation signal input to the second signal input unit 152.
As a result, the system COP can be maximized by switching the passive preheating mode according to the external signal.

記憶部160は、各種の閾値等、制御に必要な種々の情報を記憶する。 The storage unit 160 stores various information necessary for control, such as various threshold values.

次に、本実施形態の制御部100による制御の流れの一例について説明する。 Next, an example of the flow of control by the control unit 100 of the present embodiment will be described.

図6Bは、制御部100の目標過熱度設定部111による、目標過熱度の設定処理の流れの一例を示すフローチャートである。 FIG. 6B is a flowchart showing an example of the flow of the target superheat degree setting process by the target superheat degree setting unit 111 of the control unit 100.

まず、システムが起動されると、目標過熱度設定部111は、ステップS1において、目標過熱度は高めの温度、例えば10℃に設定される。 First, when the system is started, the target superheat degree setting unit 111 sets the target superheat degree to a higher temperature, for example, 10 ° C. in step S1.

次に、ステップS2において、第2熱源温度センサ55の検知温度が安定しており、かつ所定の熱源温度閾値(例えば、60℃)以下であるか否かを判定する。第2熱源温度センサ55の検知温度が安定(ΔT≦ΔT0、図3参照)しており、かつ所定の熱源温度閾値以下であると判定した場合は(ステップS2:YES)、ステップS3において、目標過熱度を小さい値、例えば5℃に設定する。一方、第2熱源温度センサ55の検知温度が安定していないと判定した場合、または所定の熱源温度閾値超過であると判定した場合は(ステップS2:NO)、ステップS1に戻り、引き続き目標過熱度を10℃で維持する。 Next, in step S2, it is determined whether or not the detection temperature of the second heat source temperature sensor 55 is stable and equal to or less than a predetermined heat source temperature threshold value (for example, 60 ° C.). When it is determined that the detection temperature of the second heat source temperature sensor 55 is stable (ΔT ≦ ΔT 0, see FIG. 3) and is equal to or less than the predetermined heat source temperature threshold value (step S2: YES), the target in step S3. Set the degree of superheat to a small value, for example 5 ° C. On the other hand, if it is determined that the detection temperature of the second heat source temperature sensor 55 is not stable, or if it is determined that the predetermined heat source temperature threshold is exceeded (step S2: NO), the process returns to step S1 and the target overheating is continued. Maintain the degree at 10 ° C.

ステップS3で目標過熱度を5℃に設定した後、ステップS4において、第2熱源温度センサ55の検知温度の変動が大きい、または所定の熱源温度閾値超過であるか否か等を判定する。第2熱源温度センサ55の検知温度の変動が大きい(ΔT>ΔT0、図3参照)と判定した場合、または所定の熱源温度閾値超過であると判定した場合は(ステップS4:YES)、ステップS5において、目標過熱度を大きくし、例えば10℃に設定する。一方、第2熱源温度センサ55の検知温度の変動が大きくなく、かつ所定の熱源温度閾値以下であると判定した場合は(ステップS4:NO)、ステップS3に戻り、引き続き目標過熱度を5℃に維持する。
これにより、熱源流体としての熱源水W5の温度が急変する状況が確認された場合であっても、安定的にヒートポンプ回路10を駆動することができる。
After setting the target superheat degree to 5 ° C. in step S3, in step S4, it is determined whether or not the fluctuation of the detected temperature of the second heat source temperature sensor 55 is large, or whether or not the predetermined heat source temperature threshold value is exceeded. If it is determined that the fluctuation of the detected temperature of the second heat source temperature sensor 55 is large (ΔT> ΔT0, see FIG. 3), or if it is determined that the predetermined heat source temperature threshold is exceeded (step S4: YES), step S5. In, the target degree of superheat is increased and set to, for example, 10 ° C. On the other hand, if it is determined that the fluctuation of the detection temperature of the second heat source temperature sensor 55 is not large and is equal to or less than the predetermined heat source temperature threshold value (step S4: NO), the process returns to step S3 and the target superheat degree is continuously set to 5 ° C. Maintain to.
As a result, the heat pump circuit 10 can be stably driven even when a situation is confirmed in which the temperature of the heat source water W5 as the heat source fluid suddenly changes.

次に、予熱モード切替制御について説明する。なお、通水モード切替制御については、上述した通りである(図6A参照)。
図6Cは、制御部100の予熱モード切替制御部140による、給水予熱モードおよび予熱停止モードを切り替える予熱モード切替制御の流れの一例を示すフローチャートである。この例では、予熱モード切替制御部140は、第1給水温度センサ24(熱交換器流入前給水温度センサ)による第1検知温度(熱交換器流入前給水温度)と、第1熱源温度センサ54(熱交換器流入前熱源温度センサ)による第2検知温度(熱交換器流入前熱源温度)の検出結果に基づいて、予熱モードの切り替え制御を行っている。
Next, the preheating mode switching control will be described. The water flow mode switching control is as described above (see FIG. 6A).
FIG. 6C is a flowchart showing an example of a flow of preheating mode switching control for switching between the water supply preheating mode and the preheating stop mode by the preheating mode switching control unit 140 of the control unit 100. In this example, the preheating mode switching control unit 140 has the first detection temperature (heat exchanger pre-inflow water supply temperature) by the first water supply temperature sensor 24 (heat exchanger pre-inflow water supply temperature sensor) and the first heat source temperature sensor 54. The preheating mode switching control is performed based on the detection result of the second detection temperature (heat source temperature before inflow of the heat exchanger) by the (heat source temperature sensor before inflow of the heat exchanger).

予熱モード切替制御部140は、ステップS11において、循環通水モードが実行されているか否かを判定する。循環通水モードが実行されている場合は(ステップS21:YES)、ステップS12において、第1給水温度センサ24による第1検知温度と、第1熱源温度センサ54による第2検知温度の検出結果を比較する。そして、第1検知温度が第2検知温度を下回っている場合には(ステップS12:YES)、ステップS13において、給水予熱モードを実行する。一方、第1検知温度が第2検知温度を下回っていない場合には(ステップS12:NO)、ステップS14において、予熱停止モードを実行する。 In step S11, the preheating mode switching control unit 140 determines whether or not the circulating water flow mode is being executed. When the circulating water flow mode is executed (step S21: YES), in step S12, the detection results of the first detected temperature by the first water supply temperature sensor 24 and the second detected temperature by the first heat source temperature sensor 54 are obtained. compare. Then, when the first detection temperature is lower than the second detection temperature (step S12: YES), the water supply preheating mode is executed in step S13. On the other hand, when the first detection temperature is not lower than the second detection temperature (step S12: NO), the preheating stop mode is executed in step S14.

なお、ステップS11において、一過通水モードまたは循環通水モードが実行されているか否かを判定し、一過通水モードまたは循環通水モードが実行されている場合は、ステップS12に移行する制御を採用してもよい。 In step S11, it is determined whether or not the transient water flow mode or the circulating water flow mode is executed, and if the transient water flow mode or the circulating water flow mode is executed, the process proceeds to step S12. Control may be adopted.

図7は、第1実施形態の給水加温システム1の変形例を模式的に示す図である。
本実施形態におけるヒートポンプ回路10の凝縮器12は、冷媒Rの凝縮および過冷却の機能を担っていた。しかしながら、本変形例に示すように、ヒートポンプ回路10の凝縮器は、主に冷媒Rの凝縮の機能を担う凝縮器12Aと、主に冷媒Rの過冷却の機能を担う過冷却器12Bとに分かれていてもよい。この場合、ヒートポンプ回路10の冷媒Rは、好適には、凝縮器12Aにおいて潜熱を放出し、過冷却器12Bにおいて顕熱を放出する。すなわち、凝縮器12Aにおいて、ガス冷媒Rは凝縮して液冷媒Rとなり、その液冷媒Rが過冷却器12Bに供給されて、過冷却器12Bにおいて、液冷媒Rはさらに冷却(過冷却)される。
過冷却器12Bは、凝縮器12Aに送られる給水W1と、凝縮器12Aから膨張弁13に流れる冷媒Rとの間の熱交換を行う間接熱交換器である。過冷却器12Bにより、凝縮器12Aへの給水W1を用いて凝縮器12Aから膨張弁13への冷媒Rの過冷却を行うことができると共に、凝縮器12Aから膨張弁13への冷媒Rを用いて凝縮器12Aへの給水W1を加温することができる。
このように、冷媒Rの凝縮用と過冷却用とで熱交換器を分けることで、熱交換器の設計が容易となり、コスト削減を図ることができる。また、汎用の熱交換器の利用も可能となる。
なお、本変形例においては、ヒートポンプ回路10の凝縮器12に流入する前の給水W1の温度を検知する給水温度センサとしての第2給水温度センサ26は、過冷却器12Bの上流側に配置されていることが好ましい。
FIG. 7 is a diagram schematically showing a modified example of the water supply heating system 1 of the first embodiment.
The condenser 12 of the heat pump circuit 10 in the present embodiment has a function of condensing and supercooling the refrigerant R. However, as shown in this modification, the condenser of the heat pump circuit 10 mainly includes a condenser 12A that has a function of condensing the refrigerant R and a supercooler 12B that mainly has a function of supercooling the refrigerant R. It may be separated. In this case, the refrigerant R of the heat pump circuit 10 preferably releases latent heat in the condenser 12A and sensible heat in the supercooler 12B. That is, in the condenser 12A, the gas refrigerant R is condensed to become the liquid refrigerant R, the liquid refrigerant R is supplied to the supercooler 12B, and the liquid refrigerant R is further cooled (supercooled) in the supercooler 12B. NS.
The supercooler 12B is an indirect heat exchanger that exchanges heat between the water supply W1 sent to the condenser 12A and the refrigerant R flowing from the condenser 12A to the expansion valve 13. The supercooler 12B can supercool the refrigerant R from the condenser 12A to the expansion valve 13 by using the water supply W1 to the condenser 12A, and also use the refrigerant R from the condenser 12A to the expansion valve 13. The water supply W1 to the condenser 12A can be heated.
By separating the heat exchangers for condensing and supercooling the refrigerant R in this way, the design of the heat exchanger can be facilitated and the cost can be reduced. In addition, a general-purpose heat exchanger can be used.
In this modification, the second water supply temperature sensor 26 as a water supply temperature sensor that detects the temperature of the water supply W1 before flowing into the condenser 12 of the heat pump circuit 10 is arranged on the upstream side of the supercooler 12B. Is preferable.

なお、温水需要箇所が蒸気ボイラの場合など、温水タンク60内の温水W2の温度の低下がある程度許容される場合は、熱回収用熱交換器40およびヒートポンプ回路10を介さずに、補給水タンク70から温水タンク60に直接給水を可能とするための不図示の補給水ラインを設けてもよい。この場合は、温水タンク60内の温水W2の水位が電極棒622よりも長い電極棒の検出位置よりも低下したときなどに、補給水ラインに設けた補給水ポンプを駆動することにより、補給水タンク70から温水タンク60に直接補給水Wを供給することが可能となる。 If the temperature of the hot water W2 in the hot water tank 60 is allowed to decrease to some extent, such as when the hot water demand point is a steam boiler, the make-up water tank does not go through the heat recovery heat exchanger 40 and the heat pump circuit 10. A make-up water line (not shown) may be provided to enable direct water supply from the 70 to the hot water tank 60. In this case, when the water level of the hot water W2 in the hot water tank 60 drops below the detection position of the electrode rod longer than the electrode rod 622, the make-up water pump provided in the make-up water line is driven to make up the make-up water. The make-up water W can be directly supplied from the tank 70 to the hot water tank 60.

なお、本実施形態においては、ヒートポンプ回路10の熱源流体として熱源水W5を用いているが、熱源流体としては、熱源水W5に限らず、空気や排ガスなど各種の流体を用いることができる。熱源流体は、熱回収用熱交換器40において給水W1に熱(顕熱)を与えつつ自身は温度低下し、蒸発器14においてヒートポンプ回路10の冷媒Rに熱(顕熱)を与えつつ自身は温度低下する流体とすることが好ましい。 In the present embodiment, the heat source water W5 is used as the heat source fluid of the heat pump circuit 10, but the heat source fluid is not limited to the heat source water W5, and various fluids such as air and exhaust gas can be used. The heat source fluid itself lowers in temperature while applying heat (sensible heat) to the water supply W1 in the heat recovery heat exchanger 40, and itself while applying heat (sensible heat) to the refrigerant R of the heat pump circuit 10 in the evaporator 14. It is preferable to use a fluid that lowers the temperature.

なお、ヒートポンプ回路10の圧縮機11の駆動源は、電気モータに限らない。例えば、圧縮機11は、蒸気を用いて動力を起こすスチームモータによって駆動されてもよいし、ガスエンジンによって駆動されてもよい。この場合は、スチームモータへの給蒸量や、ガスエンジンへの供給ガス量を調整するなどして圧縮機11の出力を調整し、冷媒流量を調整してもよい。 The drive source of the compressor 11 of the heat pump circuit 10 is not limited to the electric motor. For example, the compressor 11 may be driven by a steam motor that uses steam to generate power, or may be driven by a gas engine. In this case, the output of the compressor 11 may be adjusted by adjusting the amount of steam supplied to the steam motor or the amount of gas supplied to the gas engine to adjust the flow rate of the refrigerant.

以上説明した第1実施形態の給水加温システム1によれば、以下の(1A)〜(11A)に示されるような効果を奏する。 According to the water supply heating system 1 of the first embodiment described above, the effects shown in the following (1A) to (11A) are obtained.

(1A)本実施形態の給水加温システム1は、圧縮機11、凝縮器12、膨張弁13および蒸発器14が冷媒循環ラインL9により環状に接続され、圧縮機11の駆動により凝縮器12で温熱を取り出す蒸気圧縮式のヒートポンプ回路10と、熱回収用熱交換器40と、熱回収用熱交換器40および蒸発器14の順に熱源流体を流通させる熱源流体ラインL5と、熱回収用熱交換器40および凝縮器12の順に給水W1を流通させる給水ラインL1と、圧縮機11に流入するガス冷媒Rの過熱度に基づいて制御され、冷媒流量を調整する冷媒流量調整手段と、凝縮器12から流出する給水W1の出湯温度に基づいて制御され、給水流量を調整する給水流量調整手段と、冷媒流量調整手段および給水流量調整手段を制御する制御手段と、を備える。
このように、熱源流体としての熱源水W5を先に熱回収用熱交換器40に流すことで熱回収用熱交換器40の熱出力がアップし、給水W1の予熱量が増える。熱源水温度が高いほど熱出力を高める効果が大きい。熱回収用熱交換器40の熱回収量が増えるので、相対的にヒートポンプ回路10の熱回収量を減らすことができる。蒸発器14および熱回収用熱交換器40の順で熱源水W5を流す場合と同じシステム熱出力を得る場合、圧縮機11の出力を下げてヒートポンプ回路10の電力消費量を低減することができる。
このとき、熱源水W5を先に熱回収用熱交換器40に流すことで蒸発器14に流入する熱源水W5の温度は低下するが、さらなる制御の追加、すなわち、過熱度に基づく冷媒流量の調整と、出湯温度に基づく給水流量の調整の組み合わせによる多重効果により、例えば、低い過熱度設定に応じた冷媒流量の調整による蒸発器14の熱入力アップと、低い出湯温度設定に応じた給水流量の調整による熱回収用熱交換器40の更なる熱出力アップおよび蒸発器14の熱出力アップの多重効果により、熱源水W5を先に熱回収用熱交換器40に流す構成において、システムのCOPを大幅に高めることができる。
(1A) In the water supply heating system 1 of the present embodiment, the compressor 11, the condenser 12, the expansion valve 13, and the evaporator 14 are connected in an annular shape by the refrigerant circulation line L9, and the compressor 11 is driven by the compressor 12. A steam compression type heat pump circuit 10 for taking out heat, a heat recovery heat exchanger 40, a heat source fluid line L5 for circulating heat source fluid in the order of heat recovery heat exchanger 40 and evaporator 14, and heat recovery heat exchange. A water supply line L1 that circulates water supply W1 in the order of the vessel 40 and the condenser 12, a refrigerant flow rate adjusting means that is controlled based on the degree of superheat of the gas refrigerant R flowing into the compressor 11 to adjust the refrigerant flow rate, and a condenser 12 It is provided with a water supply flow rate adjusting means for adjusting the water supply flow rate, which is controlled based on the hot water discharge temperature of the water supply water W1 flowing out from the water supply W1, and a control means for controlling the refrigerant flow rate adjusting means and the water supply flow rate adjusting means.
In this way, by first flowing the heat source water W5 as the heat source fluid through the heat recovery heat exchanger 40, the heat output of the heat recovery heat exchanger 40 is increased, and the preheating amount of the water supply W1 is increased. The higher the temperature of the heat source water, the greater the effect of increasing the heat output. Since the heat recovery amount of the heat recovery heat exchanger 40 increases, the heat recovery amount of the heat pump circuit 10 can be relatively reduced. When the same system heat output as when the heat source water W5 is passed in the order of the evaporator 14 and the heat recovery heat exchanger 40 is obtained, the output of the compressor 11 can be reduced to reduce the power consumption of the heat pump circuit 10. ..
At this time, by first flowing the heat source water W5 through the heat recovery heat exchanger 40, the temperature of the heat source water W5 flowing into the evaporator 14 decreases, but further control is added, that is, the flow rate of the refrigerant based on the degree of superheat. Due to the multiple effect of the combination of adjustment and adjustment of the water supply flow rate based on the hot water temperature, for example, the heat input of the evaporator 14 is increased by adjusting the refrigerant flow rate according to the low superheat degree setting, and the water supply flow rate according to the low hot water temperature setting. Due to the multiple effects of further increasing the heat output of the heat recovery heat exchanger 40 and increasing the heat output of the evaporator 14, the heat source water W5 is first flowed to the heat recovery heat exchanger 40 by adjusting the COP of the system. Can be greatly increased.

(2A)本実施形態の給水加温システム1の熱源流体ラインL5は、熱回収用熱交換器40で熱源流体と給水W1をカウンターフローで熱交換させた後、蒸発器14で熱源流体と液冷媒Rをカウンターフローで熱交換させる接続構成である。
このように、熱回収用熱交換器40および蒸発器14の順に熱源水W5を流し、かつ熱回収用熱交換器40と蒸発器14のそれぞれで給水W1の流れ方向に対してカウンターフローで流すことにより、熱回収量の最大化を図ることができる。
(2A) In the heat source fluid line L5 of the water supply heating system 1 of the present embodiment, the heat source fluid and the water supply W1 are heat-exchanged by the heat recovery heat exchanger 40 by the counterflow, and then the heat source fluid and the liquid are exchanged by the evaporator 14. This is a connection configuration in which the refrigerant R exchanges heat with a counterflow.
In this way, the heat source water W5 flows in the order of the heat recovery heat exchanger 40 and the evaporator 14, and the heat recovery heat exchanger 40 and the evaporator 14 each flow in a counterflow with respect to the flow direction of the water supply W1. Thereby, the heat recovery amount can be maximized.

(3A)本実施形態の給水加温システム1は、圧縮機11に流入するガス冷媒Rの吸込温度を検知する吸込温度センサ17と、蒸発器14から流出するガス冷媒Rの蒸気圧力を検知する蒸気圧力センサ18と、凝縮器12から流出する給水W1の出湯温度を検知する出湯温度センサ27と、を備え、制御手段は、蒸気圧力センサ18の検知圧力から液冷媒Rの蒸発温度を求めると共に、吸込温度センサ17の検知温度から蒸発温度を差し引いてガス冷媒Rの過熱度を算出し、当該算出過熱度が目標過熱度になるように冷媒流量調整手段を制御し、出湯温度センサ27の検知温度が目標出湯温度になるように給水流量調整手段を制御する。
このように、ガス冷媒Rの過熱度を正確に算出し、さらにその値を一定に保つことにより、予熱後の給水W1に対する凝縮器12の熱出力が安定する。これにより、温水流量の変動が少なくなる。また、例えば目標出湯温度の設定値により給水流量を適切に増やし、その流量を一定範囲に保つことにより、高い熱出力を維持することができる。
(3A) The water supply heating system 1 of the present embodiment detects the suction temperature sensor 17 that detects the suction temperature of the gas refrigerant R flowing into the compressor 11 and the steam pressure of the gas refrigerant R flowing out of the evaporator 14. A steam pressure sensor 18 and a hot water temperature sensor 27 for detecting the hot water temperature of the water supply W1 flowing out of the condenser 12 are provided, and the control means obtains the evaporation temperature of the liquid refrigerant R from the detected pressure of the steam pressure sensor 18. , The evaporation temperature is subtracted from the detection temperature of the suction temperature sensor 17, the superheat degree of the gas refrigerant R is calculated, the refrigerant flow rate adjusting means is controlled so that the calculated superheat degree becomes the target superheat degree, and the hot water temperature sensor 27 is detected. The water supply flow rate adjusting means is controlled so that the temperature reaches the target hot water discharge temperature.
In this way, by accurately calculating the degree of superheat of the gas refrigerant R and keeping the value constant, the heat output of the condenser 12 with respect to the preheated water supply W1 is stabilized. This reduces fluctuations in the hot water flow rate. Further, for example, a high heat output can be maintained by appropriately increasing the water supply flow rate according to the set value of the target hot water temperature and keeping the flow rate within a certain range.

(4A)本実施形態の給水加温システム1は、蒸発器14に流入する前の熱源流体の温度を検知する熱源温度センサを備え、制御手段は、熱源温度センサの検知温度に応じて目標過熱度を設定する。
このように、熱源流体の温度に応じて適切な目標過熱度を設定することで、液圧縮による圧縮機11の破損を防止しつつ、蒸発器14での熱回収量を増加させることができる。
例えば、熱源水温度が低い場合には目標過熱度を低く設定することにより冷媒循環流量が増加する。これにより、低温の熱源水W5であっても熱回収量を増やすことができる。目標過熱度の下限値を例えば5℃にすることで、液圧縮による圧縮機11の破損を防止することができる。また、目標過熱度の上限値を例えば10℃にすることで、冷媒循環流量を所定流量以上に維持し、熱回収量の低下を防止することができる。
(4A) The water supply heating system 1 of the present embodiment includes a heat source temperature sensor that detects the temperature of the heat source fluid before flowing into the evaporator 14, and the control means controls the target overheating according to the detection temperature of the heat source temperature sensor. Set the degree.
In this way, by setting an appropriate target degree of superheat according to the temperature of the heat source fluid, it is possible to increase the amount of heat recovered by the evaporator 14 while preventing damage to the compressor 11 due to liquid compression.
For example, when the heat source water temperature is low, the refrigerant circulation flow rate increases by setting the target superheat degree low. As a result, the amount of heat recovered can be increased even with the low-temperature heat source water W5. By setting the lower limit of the target superheat degree to, for example, 5 ° C., damage to the compressor 11 due to liquid compression can be prevented. Further, by setting the upper limit value of the target superheat degree to, for example, 10 ° C., the refrigerant circulation flow rate can be maintained at a predetermined flow rate or higher, and a decrease in the heat recovery amount can be prevented.

(5A)本実施形態の給水加温システム1の制御手段は、熱源温度センサの検知温度の変動が大きいと判定した場合、目標過熱度を大きくする。
これにより、熱源流体の温度が急変する状況が確認された場合であっても、安定的にヒートポンプ回路10を駆動することができる。
例えば、熱源流体の温度が急激に低下した場合であっても、目標過熱度を高い値に設定することにより蒸発器14で冷媒を確実に気化させることができるため、液圧縮による圧縮機11の破損を防止することができる。
(5A) The control means of the water supply heating system 1 of the present embodiment increases the target degree of superheat when it is determined that the fluctuation of the detection temperature of the heat source temperature sensor is large.
As a result, the heat pump circuit 10 can be stably driven even when a situation is confirmed in which the temperature of the heat source fluid suddenly changes.
For example, even when the temperature of the heat source fluid drops sharply, the refrigerant can be reliably vaporized by the evaporator 14 by setting the target superheat degree to a high value, so that the compressor 11 by liquid compression can be used. Damage can be prevented.

(6A)本実施形態の給水加温システム1の制御手段は、熱源温度センサの検知温度が安定していると判定した場合、目標過熱度を小さくする。
これにより、熱源流体の温度が安定しているときは、目標過熱度を低い値に設定することにより冷媒循環流量を増加させ、蒸発器14での熱回収量を増加させることができる。
(6A) The control means of the water supply heating system 1 of the present embodiment reduces the target degree of superheat when it is determined that the detection temperature of the heat source temperature sensor is stable.
As a result, when the temperature of the heat source fluid is stable, the refrigerant circulation flow rate can be increased by setting the target superheat degree to a low value, and the amount of heat recovered by the evaporator 14 can be increased.

(7A)本実施形態の給水加温システム1は、凝縮器12に流入する前の給水の温度を検知する給水温度センサを備え、制御手段は、給水温度センサの検知温度に応じて目標出湯温度を設定する。
このように、給水の温度に応じて適切な目標出湯温度を設定することで、凝縮器12での過冷却不足、給水流量過多等の発生を防止することができる。
(7A) The water supply heating system 1 of the present embodiment includes a water supply temperature sensor that detects the temperature of the water supply before flowing into the condenser 12, and the control means is a target hot water discharge temperature according to the detection temperature of the water supply temperature sensor. To set.
In this way, by setting an appropriate target hot water temperature according to the temperature of the water supply, it is possible to prevent the occurrence of insufficient supercooling in the condenser 12 and excessive flow rate of the water supply.

(8A)本実施形態の給水加温システム1は、凝縮器12に流入する前の給水の温度を検知する給水温度センサを備え、目標出湯温度は、上限値と下限値の間の値に設定可能であり、下限値は、給水温度センサの検知温度に所定値を加えた値であって、給水温度センサの検知温度が高くなるほど高い値である。
このように、給水温度に応じて設定可能な目標出湯温度の範囲の下限値を設定することで、確実に凝縮器12での過冷却不足を防止して、蒸発器14での熱回収量を安定させることができる。また、給水流量が過多になるのを防止して、給水ポンプ21の過負荷による劣化を抑制することができる。
(8A) The water supply heating system 1 of the present embodiment includes a water supply temperature sensor that detects the temperature of the water supply before flowing into the condenser 12, and the target hot water temperature is set to a value between the upper limit value and the lower limit value. It is possible, and the lower limit value is a value obtained by adding a predetermined value to the detection temperature of the water supply temperature sensor, and is a value higher as the detection temperature of the water supply temperature sensor becomes higher.
In this way, by setting the lower limit of the range of the target hot water temperature that can be set according to the water supply temperature, it is possible to surely prevent insufficient supercooling in the condenser 12 and reduce the amount of heat recovered in the evaporator 14. It can be stabilized. Further, it is possible to prevent the water supply flow rate from becoming excessive and suppress deterioration due to the overload of the water supply pump 21.

(9A)本実施形態の給水加温システム1は、熱回収用熱交換器40に対して給水W1をバイパス、および/または、熱回収用熱交換器40に対して熱源流体をバイパスさせる1本ないし2本のバイパスラインと、給水W1および熱源流体を同時に熱回収用熱交換器40に流通させる給水予熱モードと、給水W1および熱源流体の少なくとも一方をバイパスラインに流通させる予熱停止モードと、を切り替える予熱モード切替手段と、を備える。
これにより、熱回収用熱交換器40の効力を発揮できない条件では熱回収用熱交換器40をバイパスさせることで、給水W1および/または熱源水W5の圧力損失を低減させ、給水ポンプ21や熱源供給ポンプ53を含むシステムCOPを向上させることができる。
(9A) The water supply heating system 1 of the present embodiment is one that bypasses the water supply W1 to the heat recovery heat exchanger 40 and / or bypasses the heat source fluid to the heat recovery heat exchanger 40. Or two bypass lines, a water supply preheating mode in which the water supply W1 and the heat source fluid are simultaneously circulated to the heat recovery heat exchanger 40, and a preheating stop mode in which at least one of the water supply W1 and the heat source fluid is circulated in the bypass line. It is provided with a preheating mode switching means for switching.
As a result, the pressure loss of the water supply W1 and / or the heat source water W5 can be reduced by bypassing the heat recovery heat exchanger 40 under the condition that the heat recovery heat exchanger 40 cannot exert its effect, and the water supply pump 21 and the heat source can be used. The system COP including the feed pump 53 can be improved.

(10A)本実施形態の給水加温システム1は、熱回収用熱交換器40に流入する前の給水W1の温度を検知する熱交換器流入前給水温度センサ24と、熱回収用熱交換器40に流入する前の熱源流体の温度を検知する熱交換器流入前熱源温度センサ54と、を備え、制御手段は、熱交換器流入前給水温度センサ24による第1検知温度と、熱交換器流入前熱源温度センサ54による第2検知温度と、を比較し、第1検知温度が第2検知温度を下回っている場合には、給水予熱モードを実行させるように予熱モード切替手段を制御し、第1検知温度が第2検知温度を上回っている場合には、予熱停止モードを実行させるように予熱モード切替手段を制御する。
このような給水温度と熱源水温度に応じた自動予熱モード切替により、システムCOPの最大化を図ることができる。
(10A) The water supply heating system 1 of the present embodiment includes a heat exchanger pre-inflow water supply temperature sensor 24 that detects the temperature of the water supply W1 before flowing into the heat recovery heat exchanger 40, and a heat recovery heat exchanger. A heat exchanger pre-inflow heat source temperature sensor 54 for detecting the temperature of the heat source fluid before flowing into 40 is provided, and the control means are a first detected temperature by the heat exchanger pre-inflow water supply temperature sensor 24 and a heat exchanger. The second detection temperature by the heat source temperature sensor 54 before inflow is compared, and when the first detection temperature is lower than the second detection temperature, the preheating mode switching means is controlled so as to execute the water supply preheating mode. When the first detection temperature exceeds the second detection temperature, the preheating mode switching means is controlled so as to execute the preheating stop mode.
The system COP can be maximized by automatically switching the preheating mode according to the water supply temperature and the heat source water temperature.

(11A)本実施形態の給水加温システム1の制御手段は、給水予熱モードまたは予熱停止モードの種別を指定する予熱モード指定信号を受け付ける信号入力部150と、信号入力部150に入力された予熱モード指定信号に従い、給水予熱モードまたは予熱停止モードを実行させるように予熱モード切替手段を制御する予熱モード切替制御部140と、を有する。
このような外部信号に従った他動予熱モード切替により、システムCOPの最大化を図ることができる。
(11A) The control means of the water supply heating system 1 of the present embodiment is a signal input unit 150 that receives a preheating mode designation signal that specifies the type of water supply preheating mode or preheating stop mode, and preheating that is input to the signal input unit 150. It has a preheating mode switching control unit 140 that controls a preheating mode switching means so as to execute a water supply preheating mode or a preheating stop mode according to a mode designation signal.
The system COP can be maximized by switching the passive preheating mode according to such an external signal.

また、以上説明した第1実施形態の給水加温システム1によれば、以下の(1B)〜(8B)に示されるような効果も奏する。 Further, according to the water supply heating system 1 of the first embodiment described above, the effects shown in the following (1B) to (8B) are also obtained.

(1B)本実施形態の給水加温システム1は、圧縮機11、凝縮器12、膨張弁13および蒸発器14が冷媒循環ラインL9により環状に接続され、圧縮機11の駆動により凝縮器12で温熱を取り出す蒸気圧縮式のヒートポンプ回路10と、熱回収用熱交換器40と、熱回収用熱交換器40および蒸発器14に熱源流体を流通させる熱源流体ラインL5と、熱回収用熱交換器40および凝縮器12の順に給水W1を流通させる給水ラインL1と、凝縮器12で生成された温水W2を貯留する温水タンク60と、温水タンク60内の温水W2を熱回収用熱交換器40よりも上流側に還流させる還流ラインL2と、還流ラインL2に温水W2を流通させずに凝縮器12に通水する一過通水モードと、還流ラインL2に温水W2を流通させながら凝縮器12に通水する循環通水モードと、凝縮器12への通水を停止する通水停止モードと、を切り替える通水モード切替手段と、通水モード切替手段を制御する制御手段と、を備える。
このように、一過通水モードに加えて循環通水モードでの運転を可能とすることで、必要に応じて温水タンク60の循環加温を行って貯湯温度を維持することができる。循環通水モードでは、熱回収用熱交換器40の手前に貯留水を流入させる構成であるので、貯留水温度<熱源水温度になっているときは、効率のよい加温ができる。
(1B) In the water supply heating system 1 of the present embodiment, the compressor 11, the condenser 12, the expansion valve 13, and the evaporator 14 are connected in an annular shape by the refrigerant circulation line L9, and the condenser 12 is driven by the drive of the compressor 11. A steam compression type heat pump circuit 10 for taking out heat, a heat recovery heat exchanger 40, a heat source fluid line L5 for circulating a heat source fluid to a heat recovery heat exchanger 40 and an evaporator 14, and a heat recovery heat exchanger. The water supply line L1 that distributes the water supply W1 in the order of 40 and the condenser 12, the hot water tank 60 that stores the hot water W2 generated by the condenser 12, and the hot water W2 in the hot water tank 60 are transferred from the heat recovery heat exchanger 40. A recirculation line L2 that recirculates to the upstream side, a transient water flow mode in which hot water W2 is passed through the condenser 12 without flowing the hot water W2 through the recirculation line L2, and a condenser 12 while circulating hot water W2 through the recirculation line L2. It includes a water flow mode switching means for switching between a circulating water flow mode for passing water and a water flow stop mode for stopping water flow to the condenser 12, and a control means for controlling the water flow mode switching means.
In this way, by enabling the operation in the circulating water flow mode in addition to the transient water flow mode, the hot water tank 60 can be circulated and heated to maintain the hot water storage temperature as needed. In the circulating water flow mode, since the stored water flows in front of the heat recovery heat exchanger 40, efficient heating can be performed when the stored water temperature <heat source water temperature.

(2B)本実施形態の給水加温システム1は、熱回収用熱交換器40に対して給水W1をバイパス、および/または、熱回収用熱交換器40に対して熱源流体をバイパスさせる1本ないし2本のバイパスラインと、給水W1および熱源流体を同時に熱回収用熱交換器40に流通させる給水予熱モードと、給水W1および熱源流体の少なくとも一方をバイパスラインに流通させる予熱停止モードと、を切り替える予熱モード切替手段と、を備える。
これにより、熱回収用熱交換器40を、状況に応じて選択的に利用することができる。
(2B) The water supply heating system 1 of the present embodiment is one that bypasses the water supply W1 to the heat recovery heat exchanger 40 and / or bypasses the heat source fluid to the heat recovery heat exchanger 40. Or two bypass lines, a water supply preheating mode in which the water supply W1 and the heat source fluid are simultaneously circulated to the heat recovery heat exchanger 40, and a preheating stop mode in which at least one of the water supply W1 and the heat source fluid is circulated in the bypass line. It is provided with a preheating mode switching means for switching.
As a result, the heat recovery heat exchanger 40 can be selectively used depending on the situation.

(3B)本実施形態の給水加温システム1の制御手段は、少なくとも循環通水モードのときに、予熱モード切替手段を、給水予熱モードと、予熱停止モードとに切り替え可能である。
これにより、例えば、一過通水モードでは熱回収用熱交換器40を積極的に活用し、循環通水モードでは選択的に熱回収用熱交換器40を活用することができる。
(3B) The control means of the water supply heating system 1 of the present embodiment can switch the preheating mode switching means between the water supply preheating mode and the preheating stop mode at least in the circulation water flow mode.
Thereby, for example, the heat recovery heat exchanger 40 can be positively utilized in the transient water flow mode, and the heat recovery heat exchanger 40 can be selectively utilized in the circulating water flow mode.

(4B)本実施形態の給水加温システム1の熱源流体ラインL5は、熱回収用熱交換器40および蒸発器14の順に熱源流体を流通させる接続構成である。
これにより、熱源流体としての熱源水W5を先に熱回収用熱交換器40に流すことで給水W1の予熱量を増やし、熱回収用熱交換器40の熱出力をアップさせることができる。熱源水温度が高いほど熱出力を高める効果が大きい。
(4B) The heat source fluid line L5 of the water supply heating system 1 of the present embodiment has a connection configuration in which the heat source fluid is circulated in the order of the heat recovery heat exchanger 40 and the evaporator 14.
As a result, the amount of preheat of the water supply W1 can be increased by first flowing the heat source water W5 as the heat source fluid through the heat recovery heat exchanger 40, and the heat output of the heat recovery heat exchanger 40 can be increased. The higher the temperature of the heat source water, the greater the effect of increasing the heat output.

(5B)本実施形態の給水加温システム1は、温水タンク60内の温水W2の温度を検知する温水温度センサ61を備え、制御手段は、還流ラインL2の合流箇所に対して新たな水供給が実行されている場合には、一過通水モードを実行させるように通水モード切替手段を制御し、合流箇所に対する新たな水供給が停止され、かつ温水温度センサ61の検知温度が設定温度を下回っている場合には、循環通水モードを実行させるように通水モード切替手段を制御し、合流箇所に対する新たな水供給が停止され、かつ温水温度センサ61の検知温度が設定温度を上回っている場合には、通水停止モードを実行させるように通水モード切替手段を制御する。
これにより、温水需要が十分にあり補給水Wの供給が必要である時は、システムCOPが最大となる一過通水モードで運転させることができる。また、温水需要が小さく補給水Wの供給が必要でない時は、温水タンク60内の貯留水の温度低下時に、循環通水モードで貯留水の昇温を行うことができる。
(5B) The water supply heating system 1 of the present embodiment includes a hot water temperature sensor 61 that detects the temperature of the hot water W2 in the hot water tank 60, and the control means supplies new water to the confluence of the recirculation line L2. Is executed, the water flow mode switching means is controlled so as to execute the transient water flow mode, new water supply to the merging point is stopped, and the detection temperature of the hot water temperature sensor 61 is the set temperature. If it is below, the water flow mode switching means is controlled so as to execute the circulation water flow mode, the new water supply to the merging point is stopped, and the detection temperature of the hot water temperature sensor 61 exceeds the set temperature. If so, the water flow mode switching means is controlled so as to execute the water flow stop mode.
As a result, when the demand for hot water is sufficient and the supply of make-up water W is required, the system can be operated in the over-passage mode in which the system COP is maximized. Further, when the demand for hot water is small and the supply of the make-up water W is not necessary, the temperature of the stored water can be raised in the circulating water flow mode when the temperature of the stored water in the hot water tank 60 drops.

(6B)本実施形態の給水加温システム1は、熱回収用熱交換器40に流入させる前の給水W1の温度を検知する熱交換器流入前給水温度センサ24と、熱回収用熱交換器40に流入させる前の熱源流体の温度を検知する熱交換器流入前熱源温度センサ54と、を備え、制御手段は、熱交換器流入前給水温度センサ24による第1検知温度と、熱交換器流入前熱源温度センサ54による第2検知温度と、を比較し、第1検知温度が第2検知温度を下回っている場合には、給水予熱モードを実行させるように予熱モード切替手段を制御し、第1検知温度が第2検知温度を上回っている場合には、予熱停止モードを実行させるように予熱モード切替手段を制御する。
このような給水温度と熱源水温度に応じた自動予熱モード切替により、システムCOPの最大化を図ることができる。
(6B) The water supply heating system 1 of the present embodiment includes a heat exchanger pre-inflow water supply temperature sensor 24 that detects the temperature of the water supply W1 before it flows into the heat recovery heat exchanger 40, and a heat recovery heat exchanger. A heat exchanger pre-inflow heat source temperature sensor 54 for detecting the temperature of the heat source fluid before flowing into the heat exchanger 40 is provided, and the control means are the first detected temperature by the heat exchanger pre-inflow water supply temperature sensor 24 and the heat exchanger. The second detection temperature by the heat source temperature sensor 54 before inflow is compared, and when the first detection temperature is lower than the second detection temperature, the preheating mode switching means is controlled so as to execute the water supply preheating mode. When the first detection temperature exceeds the second detection temperature, the preheating mode switching means is controlled so as to execute the preheating stop mode.
The system COP can be maximized by automatically switching the preheating mode according to the water supply temperature and the heat source water temperature.

(7B)本実施形態の給水加温システム1の制御手段は、一過通水モード、循環通水モード、通水停止モードのいずれかを指定する通水モード指定信号を受け付ける第1信号入力部151と、第1信号入力部151に入力された通水モード指定信号に従い、一過通水モード、循環通水モードまたは通水停止モードを実行させるように通水モード切替手段を制御する通水モード切替制御部130と、を有し、通水モード切替制御部130は、循環通水モードまたは通水停止モードの実行時に、還流ラインL2の合流箇所に対する新たな水供給を停止する。
これにより、例えば補給水の供給ありの外部信号を利用して、システムCOPが最大となる一過流通モードで運転させることができる。また、補給水の供給なしの外部信号を利用して、循環モードで貯留水の保温を行うことができる。
(7B) The control means of the water supply heating system 1 of the present embodiment is a first signal input unit that receives a water flow mode designation signal that specifies one of a transient water flow mode, a circulation water flow mode, and a water flow stop mode. Water flow that controls the water flow mode switching means so as to execute the transient water flow mode, the circulation water flow mode, or the water flow stop mode according to the water flow mode designation signal input to 151 and the first signal input unit 151. It has a mode switching control unit 130, and the water flow mode switching control unit 130 stops new water supply to the confluence point of the recirculation line L2 when the circulation water flow mode or the water flow stop mode is executed.
Thereby, for example, the system can be operated in the over-distribution mode in which the system COP is maximized by using an external signal with a supply of make-up water. In addition, it is possible to keep the stored water warm in the circulation mode by using an external signal without supplying make-up water.

(8B)本実施形態の給水加温システム1の制御手段は、給水予熱モード、予熱停止モードのいずれかを指定する予熱モード指定信号を受け付ける第2信号入力部152と、第2信号入力部152に入力された予熱モード指定信号に従い、給水予熱モードまたは予熱停止モードを実行させるように予熱モード切替手段を制御する予熱モード切替制御部140と、を有する。
これにより、例えば外部信号に従った他動予熱モード切替も可能となり、システムCOPの最大化を図ることができる。
(8B) The control means of the water supply heating system 1 of the present embodiment is a second signal input unit 152 that receives a preheating mode designation signal that specifies either a water supply preheating mode or a preheating stop mode, and a second signal input unit 152. The preheating mode switching control unit 140 controls the preheating mode switching means so as to execute the water supply preheating mode or the preheating stop mode according to the preheating mode designation signal input to.
As a result, for example, the passive preheating mode can be switched according to an external signal, and the system COP can be maximized.

また、以上説明した第1実施形態の給水加温システム1によれば、以下の(1C)〜(7C)に示されるような効果も奏する。 Further, according to the water supply heating system 1 of the first embodiment described above, the effects shown in the following (1C) to (7C) are also obtained.

(1C)本実施形態の給水加温システム1は、圧縮機11、凝縮器12、膨張弁13および蒸発器14が冷媒循環ラインL9により環状に接続され、圧縮機11の駆動により凝縮器12で温熱を取り出す蒸気圧縮式のヒートポンプ回路10と、ヒートポンプ回路10を流れる冷媒Rの流量を調整する冷媒流量調整手段と、蒸発器14で冷媒Rとの間で熱交換を行う熱源流体の温度を検知する熱源温度センサと、冷媒流量調整手段を制御する制御手段と、を備え、制御手段は、熱源温度センサの検知温度に応じて目標過熱度を設定し、圧縮機11に流入する冷媒Rの過熱度が目標過熱度になるように冷媒流量調整手段を制御する。
このように、熱源流体の温度に応じて適切な目標過熱度を設定することで、液圧縮による圧縮機11の破損を防止しつつ、蒸発器14での熱回収量を増加させることができる。
例えば、熱源水温度が低い場合には目標過熱度を低く設定することにより冷媒循環流量が増加する。これにより、熱源流体が低温の熱源水W5であっても熱回収量を増やすことができる。目標過熱度の下限値を例えば5℃にすることで、液圧縮による圧縮機11の破損を防止することができる。また、目標過熱度の上限値を例えば10℃にすることで、冷媒循環流量を所定流量以上に維持し、熱回収量の低下を防止することができる。
(1C) In the water supply heating system 1 of the present embodiment, the compressor 11, the condenser 12, the expansion valve 13, and the evaporator 14 are connected in an annular shape by the refrigerant circulation line L9, and the compressor 11 is driven by the condenser 12. The temperature of the heat source fluid that exchanges heat between the steam compression type heat pump circuit 10 that takes out heat, the refrigerant flow rate adjusting means that adjusts the flow rate of the refrigerant R flowing through the heat pump circuit 10, and the refrigerant R is detected by the evaporator 14. A heat source temperature sensor and a control means for controlling the refrigerant flow rate adjusting means are provided, and the control means sets a target degree of overheating according to the detection temperature of the heat source temperature sensor and overheats the refrigerant R flowing into the compressor 11. The refrigerant flow rate adjusting means is controlled so that the degree becomes the target degree of overheating.
In this way, by setting an appropriate target degree of superheat according to the temperature of the heat source fluid, it is possible to increase the amount of heat recovered by the evaporator 14 while preventing damage to the compressor 11 due to liquid compression.
For example, when the heat source water temperature is low, the refrigerant circulation flow rate increases by setting the target superheat degree low. As a result, the amount of heat recovered can be increased even if the heat source fluid is the low temperature heat source water W5. By setting the lower limit of the target superheat degree to, for example, 5 ° C., damage to the compressor 11 due to liquid compression can be prevented. Further, by setting the upper limit value of the target superheat degree to, for example, 10 ° C., the refrigerant circulation flow rate can be maintained at a predetermined flow rate or higher, and a decrease in the heat recovery amount can be prevented.

(2C)本実施形態の給水加温システム1の制御手段は、熱源温度センサの検知温度の変動が大きいと判定した場合、目標過熱度を大きくする。
これにより、熱源流体の温度が急変する状況が確認された場合であっても、安定的にヒートポンプ回路10が駆動することができる。
例えば、熱源流体の温度が急激に低下した場合であっても、目標過熱度を高い値に設定することにより蒸発器14で冷媒を確実に気化させることができるため、液圧縮による圧縮機11の破損を防止することができる。
(2C) The control means of the water supply heating system 1 of the present embodiment increases the target degree of superheat when it is determined that the fluctuation of the detection temperature of the heat source temperature sensor is large.
As a result, the heat pump circuit 10 can be stably driven even when a situation is confirmed in which the temperature of the heat source fluid suddenly changes.
For example, even when the temperature of the heat source fluid drops sharply, the refrigerant can be reliably vaporized by the evaporator 14 by setting the target superheat degree to a high value, so that the compressor 11 by liquid compression can be used. Damage can be prevented.

(3C)本実施形態の給水加温システム1の制御手段は、熱源温度センサの検知温度が安定していると判定した場合、目標過熱度を小さくする。
これにより、熱源流体の温度が安定しているときは、目標過熱度を低い値に設定することにより冷媒循環流量を増加させ、蒸発器14での熱回収量を増加させることができる。
(3C) The control means of the water supply heating system 1 of the present embodiment reduces the target degree of superheat when it is determined that the detection temperature of the heat source temperature sensor is stable.
As a result, when the temperature of the heat source fluid is stable, the refrigerant circulation flow rate can be increased by setting the target superheat degree to a low value, and the amount of heat recovered by the evaporator 14 can be increased.

(4C)本実施形態の給水加温システム1は、圧縮機11に流入するガス冷媒Rの吸込温度を検知する吸込温度センサ17と、蒸発器14から流出するガス冷媒Rの蒸気圧力を検知する蒸気圧力センサ18と、を備え、制御手段は、蒸気圧力センサ18の検知圧力から液冷媒Rの蒸発温度を求めると共に、吸込温度センサ17の検知温度から蒸発温度を差し引いてガス冷媒Rの過熱度を算出し、当該算出過熱度が目標過熱度になるように冷媒流量調整手段を制御する。
このように、ガス冷媒Rの過熱度を正確に算出し、さらにその値を一定に保つことにより、予熱後の給水W1に対する凝縮器12の熱出力が安定する。これにより、温水流量の変動が少なくなる。
(4C) The water supply heating system 1 of the present embodiment detects the suction temperature sensor 17 for detecting the suction temperature of the gas refrigerant R flowing into the compressor 11 and the vapor pressure of the gas refrigerant R flowing out from the evaporator 14. A vapor pressure sensor 18 is provided, and the control means obtains the evaporation temperature of the liquid refrigerant R from the detection pressure of the vapor pressure sensor 18, and subtracts the evaporation temperature from the detection temperature of the suction temperature sensor 17 to obtain the degree of superheat of the gas refrigerant R. Is calculated, and the refrigerant flow rate adjusting means is controlled so that the calculated superheat degree becomes the target superheat degree.
In this way, by accurately calculating the degree of superheat of the gas refrigerant R and keeping the value constant, the heat output of the condenser 12 with respect to the preheated water supply W1 is stabilized. This reduces fluctuations in the hot water flow rate.

(5C)本実施形態の給水加温システム1は、凝縮器12を流通する給水流量を調整する給水流量調整手段と、凝縮器12から流出する給水W1の出湯温度を検知する出湯温度センサ27を備え、制御手段は、出湯温度センサ27の検知温度が目標出湯温度になるように給水流量調整手段を制御する。
これにより、給水W1を常に所望の温度に加温して出湯することができる。
(5C) The water supply heating system 1 of the present embodiment includes a water supply flow rate adjusting means for adjusting the water supply flow rate flowing through the condenser 12, and a hot water discharge temperature sensor 27 for detecting the hot water discharge temperature of the water supply W1 flowing out from the condenser 12. The control means controls the water supply flow rate adjusting means so that the detection temperature of the hot water temperature sensor 27 becomes the target hot water discharge temperature.
As a result, the water supply W1 can always be heated to a desired temperature and the hot water can be discharged.

(6C)本実施形態の給水加温システム1は、凝縮器12に流入する前の給水W1の温度を検知する給水温度センサを備え、制御手段は、給水温度センサの検知温度に応じて目標出湯温度を設定する。
このように、給水W1の温度に応じて適切な目標出湯温度を設定することで、凝縮器12での過冷却不足、給水流量過多等の発生を防止することができる。
(6C) The water supply heating system 1 of the present embodiment includes a water supply temperature sensor that detects the temperature of the water supply W1 before flowing into the condenser 12, and the control means is a target hot water discharge according to the detection temperature of the water supply temperature sensor. Set the temperature.
In this way, by setting an appropriate target hot water discharge temperature according to the temperature of the water supply W1, it is possible to prevent the occurrence of insufficient supercooling in the condenser 12 and excessive water supply flow rate.

(7C)本実施形態の給水加温システム1は、凝縮器12に流入する前の給水W1の温度を検知する給水温度センサを備え、目標出湯温度は、上限値と下限値の間の値に設定可能であり、下限値は、給水温度センサの検知温度に所定値を加えた値であって、給水温度センサの検知温度が高くなるほど高い値である。
このように、給水温度に応じて設定可能な目標出湯温度の範囲の下限値を設定することで、確実に凝縮器12での過冷却不足を防止して、蒸発器14での熱回収量を安定させることができる。また、給水流量が過多になるのを防止して、給水ポンプ21の過負荷による劣化を抑制することができる。
(7C) The water supply heating system 1 of the present embodiment includes a water supply temperature sensor that detects the temperature of the water supply W1 before flowing into the condenser 12, and the target hot water temperature is set to a value between the upper limit value and the lower limit value. It can be set, and the lower limit value is a value obtained by adding a predetermined value to the detection temperature of the water supply temperature sensor, and is a value higher as the detection temperature of the water supply temperature sensor becomes higher.
In this way, by setting the lower limit of the range of the target hot water temperature that can be set according to the water supply temperature, it is possible to surely prevent insufficient supercooling in the condenser 12 and reduce the amount of heat recovered in the evaporator 14. It can be stabilized. Further, it is possible to prevent the water supply flow rate from becoming excessive and suppress deterioration due to the overload of the water supply pump 21.

以上、本発明の給水加温システムの好ましい実施形態について説明したが、本発明は、上述の実施形態に制限されるものではなく、適宜変更が可能である。 Although the preferred embodiment of the water supply heating system of the present invention has been described above, the present invention is not limited to the above-described embodiment and can be appropriately modified.

1 給水加温システム
10 ヒートポンプ回路
11 圧縮機
12 凝縮器
12A 凝縮器
12B 過冷却器
13 膨張弁(冷媒流量調整手段)
14 蒸発器
17 吸込温度センサ
18 蒸気圧力センサ
21 給水ポンプ(給水流量調整手段、通水モード切替手段)
24 第1給水温度センサ(熱交換器流入前給水温度センサ、給水温度センサ)
25 三方弁(予熱モード切替手段)
26 第2給水温度センサ(給水温度センサ)
27 出湯温度センサ
31 還流ポンプ(給水流量調整手段、通水モード切替手段)
40 熱回収用熱交換器
50 熱源水タンク
53 熱源供給ポンプ
54 第1熱源温度センサ(熱交換器流入前熱源温度センサ、熱源温度センサ)
55 第2熱源温度センサ(熱源温度センサ)
60 温水タンク
61 温水温度センサ
62 水位検出部
63 温水供給ポンプ
70 補給水タンク
100 制御部
111 目標過熱度設定部
112 過熱度算出部
113 冷媒流量制御部
121 目標出湯温度設定可能範囲決定部
122 目標出湯温度設定部
123 給水流量制御部
130 通水モード切替制御部
140 予熱モード切替制御部
150 信号入力部
151 第1信号入力部
152 第2信号入力部
L1 給水ライン
L2 還流ライン
L3 バイパスライン
L4 温水供給ライン
L5 熱源流体ライン
L9 冷媒循環ライン
R 冷媒(ガス冷媒、液冷媒)
W 補給水
W1 給水
W2 温水
W5 熱源水(熱源流体)
1 Water supply heating system 10 Heat pump circuit 11 Compressor 12 Condenser
12A condenser
12B supercooler
13 Expansion valve (refrigerant flow rate adjusting means)
14 Evaporator 17 Suction temperature sensor 18 Steam pressure sensor 21 Water supply pump (water supply flow rate adjusting means, water flow mode switching means)
24 1st water supply temperature sensor (heat exchanger water supply temperature sensor before inflow, water supply temperature sensor)
25 Three-way valve (preheating mode switching means)
26 Second water supply temperature sensor (water supply temperature sensor)
27 Hot water temperature sensor 31 Reflux pump (water supply flow rate adjusting means, water flow mode switching means)
40 Heat exchanger for heat recovery 50 Heat source water tank 53 Heat source supply pump 54 First heat source temperature sensor (heat source temperature sensor before inflow of heat exchanger, heat source temperature sensor)
55 Second heat source temperature sensor (heat source temperature sensor)
60 Hot water tank 61 Hot water temperature sensor 62 Water level detection unit 63 Hot water supply pump 70 Makeup water tank 100 Control unit 111 Target superheat degree setting unit 112 Superheat degree calculation unit 113 Refrigerant flow control unit 121 Target hot water temperature settable range determination unit 122 Target hot water discharge Temperature setting unit 123 Water supply flow control unit 130 Water flow mode switching control unit 140 Preheating mode switching control unit 150 Signal input unit 151 1st signal input unit 152 2nd signal input unit L1 Water supply line L2 Reflux line L3 Bypass line L4 Hot water supply line L5 Heat source fluid line L9 Refrigerant circulation line R Refrigerant (gas refrigerant, liquid refrigerant)
W Make-up water W1 Supply water W2 Hot water W5 Heat source water (heat source fluid)

Claims (11)

圧縮機、凝縮器、膨張弁および蒸発器が冷媒循環ラインにより環状に接続され、前記圧縮機の駆動により前記凝縮器で温熱を取り出す蒸気圧縮式のヒートポンプ回路と、
熱回収用熱交換器と、
前記熱回収用熱交換器および前記蒸発器の順に熱源流体を流通させる熱源流体ラインと、
前記熱回収用熱交換器および前記凝縮器の順に給水を流通させる給水ラインと、
前記圧縮機に流入するガス冷媒の過熱度に基づいて制御され、冷媒流量を調整する冷媒流量調整手段と、
前記凝縮器から流出する給水の出湯温度に基づいて制御され、給水流量を調整する給水流量調整手段と、
前記冷媒流量調整手段および給水流量調整手段を制御する制御手段と、を備える給水加温システム。
A steam compression type heat pump circuit in which a compressor, a condenser, an expansion valve and an evaporator are cyclically connected by a refrigerant circulation line, and heat is taken out by the condenser by driving the compressor.
Heat exchanger for heat recovery and
A heat source fluid line that distributes the heat source fluid in the order of the heat recovery heat exchanger and the evaporator, and the heat source fluid line.
A water supply line that distributes water in the order of the heat recovery heat exchanger and the condenser,
A refrigerant flow rate adjusting means that is controlled based on the degree of superheat of the gas refrigerant flowing into the compressor and adjusts the refrigerant flow rate.
A water supply flow rate adjusting means that is controlled based on the temperature of the water supply flowing out of the condenser and adjusts the water supply flow rate.
A water supply heating system including the refrigerant flow rate adjusting means and a control means for controlling the water supply flow rate adjusting means.
前記熱源流体ラインは、前記熱回収用熱交換器で熱源流体と給水をカウンターフローで熱交換させた後、前記蒸発器で熱源流体と液冷媒をカウンターフローで熱交換させる接続構成である、請求項1に記載の給水加温システム。 The heat source fluid line has a connection configuration in which the heat source fluid and the supply water are heat-exchanged by the counterflow in the heat recovery heat exchanger, and then the heat source fluid and the liquid refrigerant are heat-exchanged by the counterflow in the evaporator. Item 1. The water supply heating system according to item 1. 前記圧縮機に流入するガス冷媒の吸込温度を検知する吸込温度センサと、
前記蒸発器から流出するガス冷媒の蒸気圧力を検知する蒸気圧力センサと、
前記凝縮器から流出する給水の出湯温度を検知する出湯温度センサと、を備え、
前記制御手段は、
前記蒸気圧力センサの検知圧力から液冷媒の蒸発温度を求めると共に、前記吸込温度センサの検知温度から前記蒸発温度を差し引いてガス冷媒の過熱度を算出し、当該算出過熱度が目標過熱度になるように前記冷媒流量調整手段を制御し、
前記出湯温度センサの検知温度が目標出湯温度になるように前記給水流量調整手段を制御する、請求項1または請求項2に記載の給水加温システム。
A suction temperature sensor that detects the suction temperature of the gas refrigerant flowing into the compressor, and
A steam pressure sensor that detects the steam pressure of the gas refrigerant flowing out of the evaporator, and
A hot water temperature sensor that detects the hot water temperature of the supply water flowing out of the condenser is provided.
The control means
The evaporation temperature of the liquid refrigerant is obtained from the detection pressure of the vapor pressure sensor, and the superheat degree of the gas refrigerant is calculated by subtracting the evaporation temperature from the detection temperature of the suction temperature sensor, and the calculated superheat degree becomes the target superheat degree. By controlling the refrigerant flow rate adjusting means so as to
The water supply heating system according to claim 1 or 2, wherein the water supply flow rate adjusting means is controlled so that the detection temperature of the hot water discharge temperature sensor reaches the target hot water discharge temperature.
前記蒸発器に流入する前の熱源流体の温度を検知する熱源温度センサを備え、
前記制御手段は、前記熱源温度センサの検知温度に応じて前記目標過熱度を設定する、請求項3に記載の給水加温システム。
A heat source temperature sensor for detecting the temperature of the heat source fluid before flowing into the evaporator is provided.
The water supply heating system according to claim 3, wherein the control means sets the target superheat degree according to the detection temperature of the heat source temperature sensor.
前記制御手段は、前記熱源温度センサの検知温度の変動が大きいと判定した場合、前記目標過熱度を大きくする、請求項4に記載の給水加温システム。 The water supply heating system according to claim 4, wherein the control means increases the target degree of superheat when it is determined that the fluctuation of the detection temperature of the heat source temperature sensor is large. 前記制御手段は、前記熱源温度センサの検知温度が安定していると判定した場合、前記目標過熱度を小さくする、請求項4または請求項5に記載の給水加温システム。 The water supply heating system according to claim 4 or 5, wherein when the control means determines that the detection temperature of the heat source temperature sensor is stable, the target superheat degree is reduced. 前記凝縮器に流入する前の給水の温度を検知する給水温度センサを備え、
前記制御手段は、前記給水温度センサの検知温度に応じて前記目標出湯温度を設定する、請求項3〜6のいずれか1項に記載の給水加温システム。
A water supply temperature sensor for detecting the temperature of the water supply before flowing into the condenser is provided.
The water supply heating system according to any one of claims 3 to 6, wherein the control means sets the target hot water temperature according to the detection temperature of the water supply temperature sensor.
前記凝縮器に流入する前の給水の温度を検知する給水温度センサを備え、
前記目標出湯温度は、上限値と下限値の間の値に設定可能であり、前記下限値は、前記給水温度センサの検知温度に所定値を加えた値であって、前記給水温度センサの検知温度が高くなるほど高い値である、請求項3〜6のいずれか1項に記載の給水加温システム。
A water supply temperature sensor for detecting the temperature of the water supply before flowing into the condenser is provided.
The target hot water temperature can be set to a value between the upper limit value and the lower limit value, and the lower limit value is a value obtained by adding a predetermined value to the detection temperature of the water supply temperature sensor, and is detected by the water supply temperature sensor. The water supply heating system according to any one of claims 3 to 6, wherein the higher the temperature, the higher the value.
前記熱回収用熱交換器に対して給水をバイパス、および/または、前記熱回収用熱交換器に対して熱源流体をバイパスさせる1本ないし2本のバイパスラインと、
給水および熱源流体を同時に前記熱回収用熱交換器に流通させる給水予熱モードと、給水および熱源流体の少なくとも一方を前記バイパスラインに流通させる予熱停止モードと、を切り替える予熱モード切替手段と、を備える、
請求項1〜8のいずれか1項に記載の給水加温システム。
One or two bypass lines that bypass the water supply to the heat recovery heat exchanger and / or bypass the heat source fluid to the heat recovery heat exchanger.
A preheating mode switching means for switching between a water supply preheating mode in which the water supply and the heat source fluid are simultaneously circulated to the heat recovery heat exchanger and a preheating stop mode in which at least one of the water supply and the heat source fluid is circulated in the bypass line is provided. ,
The water supply heating system according to any one of claims 1 to 8.
前記熱回収用熱交換器に流入する前の給水の温度を検知する熱交換器流入前給水温度センサと、
前記熱回収用熱交換器に流入する前の熱源流体の温度を検知する熱交換器流入前熱源温度センサと、を備え、
前記制御手段は、
前記熱交換器流入前給水温度センサによる第1検知温度と、前記熱交換器流入前熱源温度センサによる第2検知温度と、を比較し、
前記第1検知温度が前記第2検知温度を下回っている場合には、前記給水予熱モードを実行させるように予熱モード切替手段を制御し、
前記第1検知温度が前記第2検知温度を上回っている場合には、前記予熱停止モードを実行させるように予熱モード切替手段を制御する、
請求項9に記載の給水加温システム。
A heat exchanger pre-inflow water supply temperature sensor that detects the temperature of the water supply before it flows into the heat recovery heat exchanger, and
A heat exchanger pre-inflow heat source temperature sensor that detects the temperature of the heat source fluid before flowing into the heat recovery heat exchanger is provided.
The control means
The first detected temperature by the water supply temperature sensor before the inflow of the heat exchanger and the second detected temperature by the heat source temperature sensor before the inflow of the heat exchanger are compared.
When the first detection temperature is lower than the second detection temperature, the preheating mode switching means is controlled so as to execute the water supply preheating mode.
When the first detection temperature exceeds the second detection temperature, the preheating mode switching means is controlled so as to execute the preheating stop mode.
The water supply heating system according to claim 9.
前記制御手段は、
前記給水予熱モードまたは前記予熱停止モードの種別を指定する予熱モード指定信号を受け付ける信号入力部と、
前記信号入力部に入力された前記予熱モード指定信号に従い、前記給水予熱モードまたは前記予熱停止モードを実行させるように前記予熱モード切替手段を制御する予熱モード切替制御部と、を有する、請求項9に記載の給水加温システム。
The control means
A signal input unit that receives a preheating mode designation signal that specifies the type of the water supply preheating mode or the preheating stop mode, and
9. A preheating mode switching control unit that controls the preheating mode switching means so as to execute the water supply preheating mode or the preheating stop mode according to the preheating mode designation signal input to the signal input unit. Water supply heating system described in.
JP2020028564A 2020-02-21 2020-02-21 Feedwater heating system Pending JP2021134933A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020028564A JP2021134933A (en) 2020-02-21 2020-02-21 Feedwater heating system
KR1020200173943A KR20210106878A (en) 2020-02-21 2020-12-14 Feedwater heating system
US17/120,826 US20210262655A1 (en) 2020-02-21 2020-12-14 Supply-water warming system
CN202011555887.2A CN113294910A (en) 2020-02-21 2020-12-24 Water supply heating system
JP2024062145A JP2024083505A (en) 2020-02-21 2024-04-08 Water heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020028564A JP2021134933A (en) 2020-02-21 2020-02-21 Feedwater heating system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024062145A Division JP2024083505A (en) 2020-02-21 2024-04-08 Water heating system

Publications (1)

Publication Number Publication Date
JP2021134933A true JP2021134933A (en) 2021-09-13

Family

ID=77318731

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020028564A Pending JP2021134933A (en) 2020-02-21 2020-02-21 Feedwater heating system
JP2024062145A Pending JP2024083505A (en) 2020-02-21 2024-04-08 Water heating system

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024062145A Pending JP2024083505A (en) 2020-02-21 2024-04-08 Water heating system

Country Status (4)

Country Link
US (1) US20210262655A1 (en)
JP (2) JP2021134933A (en)
KR (1) KR20210106878A (en)
CN (1) CN113294910A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113669969A (en) * 2021-08-27 2021-11-19 广东美格动力新能源有限公司 Heat pump unit supply and return water temperature control system and method
CN113915800B (en) * 2021-09-27 2023-03-03 河南科技大学 High-temperature double-source heat pump device
CN114110736B (en) * 2021-11-25 2023-02-28 广西电网有限责任公司电力科学研究院 Non-contact heat exchange steam supply method for extracting steam at different steam temperatures

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278686A (en) * 2006-03-17 2007-10-25 Mitsubishi Electric Corp Heat pump water heater
JP2013210118A (en) * 2012-03-30 2013-10-10 Miura Co Ltd Feed water heating system
JP2014169819A (en) * 2013-03-04 2014-09-18 Miura Co Ltd Feedwater heating system
JP2014169820A (en) * 2013-03-04 2014-09-18 Miura Co Ltd Feedwater heating system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8539789B2 (en) * 2009-08-17 2013-09-24 Johnson Controls Technology Company Heat-pump chiller with improved heat recovery features

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278686A (en) * 2006-03-17 2007-10-25 Mitsubishi Electric Corp Heat pump water heater
JP2013210118A (en) * 2012-03-30 2013-10-10 Miura Co Ltd Feed water heating system
JP2014169819A (en) * 2013-03-04 2014-09-18 Miura Co Ltd Feedwater heating system
JP2014169820A (en) * 2013-03-04 2014-09-18 Miura Co Ltd Feedwater heating system

Also Published As

Publication number Publication date
CN113294910A (en) 2021-08-24
JP2024083505A (en) 2024-06-21
KR20210106878A (en) 2021-08-31
US20210262655A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
JP2021134933A (en) Feedwater heating system
KR102016982B1 (en) Feed water heating system
CN102032698B (en) Refrigeration cycle apparatus and hot water heater
JP2005315558A (en) Heat pump water heater
US20190323704A1 (en) Heat pump system for producing steam by using recuperator
JP7388584B2 (en) hot water production system
JP2021134935A (en) Feedwater heating system
JP2023181449A (en) Hot water producing system
JP6132188B2 (en) Water heating system
JP2009052880A (en) Heat pump water heater
JP6164565B2 (en) Water heating system
JP5605557B2 (en) Heat pump steam generator
JP2021134934A (en) Feedwater heating system
JP5962971B2 (en) Water heating system
JP7508933B2 (en) Hot water system
JP6083509B2 (en) Water heating system
JP2022028473A (en) Hot water supply system
JP7205138B2 (en) Water heating system
JP7243300B2 (en) heat pump system
JP2020051644A (en) Water supply heating unit
JP7103114B2 (en) Boiler system
KR102152499B1 (en) Liquid refrigerant separating type heat pump
JP6083508B2 (en) Water heating system
JP2002277091A (en) Absorption refrigerator and method for operating the same
JP2023065686A (en) Hot water producing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231219

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240408