JP2021134491A - Glass module, glass unit and glass window - Google Patents

Glass module, glass unit and glass window Download PDF

Info

Publication number
JP2021134491A
JP2021134491A JP2020028811A JP2020028811A JP2021134491A JP 2021134491 A JP2021134491 A JP 2021134491A JP 2020028811 A JP2020028811 A JP 2020028811A JP 2020028811 A JP2020028811 A JP 2020028811A JP 2021134491 A JP2021134491 A JP 2021134491A
Authority
JP
Japan
Prior art keywords
glass
flame
heat conductive
glass plate
conductive member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020028811A
Other languages
Japanese (ja)
Inventor
一幸 鈴木
Kazuyuki Suzuki
一幸 鈴木
隆司 久田
Takashi Hisada
隆司 久田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2020028811A priority Critical patent/JP2021134491A/en
Publication of JP2021134491A publication Critical patent/JP2021134491A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Special Wing (AREA)

Abstract

To provide a glass module, glass unit and glass window, which can efficiently prevent thermal cracking of a glass plate during fire disaster.SOLUTION: A surface of a glass module 10 faces a surface of a flame shielding member 20. The glass module can be assembled with the flame shielding member 20. The glass module comprises: a glass plate 1 including a first outer plate surface 5 and a second outer plate surface 6 disposed on a rear side of the first outer plate surface 5; and a heat conducting member 11 disposed to be adjacent to the first outer plate surface 5 and the second outer plate surface 6. The glass plate 1 includes a flame shielding area that can be covered with the flame shielding member 20 on the plate surfaces 5, 6. The heat conducting member 11 has higher heat conductivity than the glass plate 1, and is configured such that it can be disposed at least at a part of the flame shielding area.SELECTED DRAWING: Figure 2

Description

本発明は、ガラス板を備えるガラスモジュール、ガラスユニット及びガラス窓に関する。 The present invention relates to a glass module including a glass plate, a glass unit, and a glass window.

特許文献1には、ガラス板の周縁部が枠体等の遮炎部材によって被覆された複層ガラスユニットが開示されている。複層ガラスユニットのガラス板は、耐熱ガラスとLow−Eガラスとで構成されており、耐熱ガラス側で火災が発生した場合、耐熱ガラスの中央部が直接的に燃焼熱を受けることになる。そのため、耐熱ガラスは、中央部が高温になると共にエッジ面が最も低温となることから、中央部とエッジ面との温度差に起因して熱割れし易くなる。 Patent Document 1 discloses a double glazing unit in which the peripheral edge of a glass plate is covered with a flame-shielding member such as a frame. The glass plate of the double glazing unit is composed of heat-resistant glass and Low-E glass, and when a fire breaks out on the heat-resistant glass side, the central portion of the heat-resistant glass directly receives combustion heat. Therefore, the heat-resistant glass tends to be thermally cracked due to the temperature difference between the central portion and the edge surface because the central portion becomes hot and the edge surface becomes the coldest.

そこで、特許文献1に示されるガラスユニットは、耐熱ガラスの中央部とエッジ面との間の温度差を小さくするため、耐熱ガラスのエッジ面と面接触した状態で端部が枠体と接触する熱伝導部材を備えている。このように構成すると、火災により高温となった枠体から熱伝導部材を介して耐熱ガラスのエッジ面に熱が伝わる。これにより、耐熱ガラスのエッジ面の温度が上昇するため、結果として耐熱ガラスの中央部とエッジ面との温度差を小さくすることが可能となり、熱割れを防止することができる。 Therefore, in the glass unit shown in Patent Document 1, in order to reduce the temperature difference between the central portion of the heat-resistant glass and the edge surface, the end portion of the glass unit comes into contact with the frame in a state of surface contact with the edge surface of the heat-resistant glass. It is equipped with a heat conductive member. With this configuration, heat is transferred from the frame, which has become hot due to the fire, to the edge surface of the heat-resistant glass via the heat conductive member. As a result, the temperature of the edge surface of the heat-resistant glass rises, and as a result, the temperature difference between the central portion of the heat-resistant glass and the edge surface can be reduced, and thermal cracking can be prevented.

特開2011−220029号公報Japanese Unexamined Patent Publication No. 2011-220029

特許文献1の複層ガラスユニットでは、熱伝導部材が耐熱ガラスのエッジ面と枠体とに亘って設けられている。つまり、エッジ面の温度上昇には、枠体の温度上昇が不可避であり、枠体が直接的に火炎に晒されない場合にはエッジ面の温度上昇が緩慢となり、依然として熱割れし易くなる。また、熱伝導部材の端部を枠体と接触させる構成であるため、熱伝導部材は耐熱ガラスと枠体との間の板面に垂直な方向の寸法精度が悪い場合、熱伝導部材の端部と枠体との接触が不十分となり、エッジ面に熱伝導し難い。したがって、熱伝導部材は、耐熱ガラスと枠体との間の板面に垂直な方向の寸法精度を高める必要があった。さらに、枠体が熱伝導性の低い部材で構成されている場合には、熱伝導部材を介しても耐熱ガラスの端面は十分な温度上昇が見込めないため、この点においても改善の余地があった。 In the double glazing unit of Patent Document 1, a heat conductive member is provided over the edge surface and the frame of the heat-resistant glass. That is, the temperature rise of the edge surface is inevitable for the temperature rise of the edge surface, and when the frame body is not directly exposed to the flame, the temperature rise of the edge surface becomes slow and the heat cracking is still likely to occur. Further, since the end portion of the heat conductive member is brought into contact with the frame body, the heat conductive member has a poor dimensional accuracy in the direction perpendicular to the plate surface between the heat-resistant glass and the frame body. Insufficient contact between the part and the frame makes it difficult to conduct heat to the edge surface. Therefore, the heat conductive member needs to improve the dimensional accuracy in the direction perpendicular to the plate surface between the heat-resistant glass and the frame. Further, when the frame is made of a member having low thermal conductivity, the temperature of the end face of the heat-resistant glass cannot be expected to rise sufficiently even through the thermal conductive member, so there is room for improvement in this respect as well. rice field.

上記実情に鑑み、火災時においてガラス板の熱割れを効率的に防止できるガラスモジュール、ガラスユニット及びガラス窓が求められている。 In view of the above circumstances, there is a demand for a glass module, a glass unit, and a glass window that can efficiently prevent thermal cracking of a glass plate in the event of a fire.

本発明に係るガラスモジュールの特徴構成は、遮炎部材と面で対向し、前記遮炎部材に組付可能なガラスモジュールであって、第1外板面と、前記第1外板面の裏側に設けられる第2外板面とを有するガラス板と、前記第1外板面及び前記第2外板面に隣接して配置される熱伝導部材と、を備え、前記ガラス板は、板面に前記遮炎部材によって被覆可能な遮炎領域を有し、前記熱伝導部材は、前記ガラス板よりも高い熱伝導率を有し、前記遮炎領域の少なくとも一部に配置可能に構成されている点にある。 The characteristic configuration of the glass module according to the present invention is a glass module that faces the flame-shielding member on a surface and can be assembled to the flame-shielding member, and is a first outer plate surface and a back side of the first outer plate surface. A glass plate having a second outer plate surface provided on the surface of the glass plate and a heat conductive member arranged adjacent to the first outer plate surface and the second outer plate surface are provided, and the glass plate has a plate surface. Has a flame-shielding region that can be covered by the flame-shielding member, the heat-conducting member has a higher thermal conductivity than the glass plate, and is configured to be displaceable in at least a part of the flame-shielding region. There is a point.

ガラス板の何れか一方が面する区画域において火災が発生した場合、遮炎部材によって被覆されていない非遮炎領域が直接的に火炎に晒され、遮炎領域は遮炎部材により直接的に火炎に晒されない。その結果、非遮炎領域が高温になると共に遮炎領域が低温になり、非遮炎領域の熱膨張を拘束する遮炎領域に熱応力が発生し、ガラス板の熱割れが発生するおそれがある。 When a fire breaks out in the area facing either one of the glass plates, the non-flame-shielding area not covered by the flame-shielding member is directly exposed to the flame, and the flame-shielding area is directly exposed by the flame-shielding member. Not exposed to flames. As a result, the non-flame-shielding region becomes hot and the flame-shielding region becomes cold, and thermal stress is generated in the flame-shielding region that restrains the thermal expansion of the non-flame-shielding region, which may cause thermal cracking of the glass plate. be.

そこで、本構成のガラスモジュールは、ガラス板の第1外板面及び第2外板面に隣接して配置される熱伝導部材を備え、熱伝導部材は、ガラス板よりも高い熱伝導率を有し、遮炎領域の少なくとも一部に配置可能に構成されている。このため、ガラス板において非遮炎領域から遮炎領域への熱伝導が迅速に行われる。これにより、区画域において火災が発生した場合、その燃焼熱は、区画域に露出したガラス板の非遮炎領域に伝わると共に、非遮炎領域から熱伝導部材を介してガラス板の遮炎領域に伝わる。その結果、遮炎領域の温度が上昇して非遮炎領域と遮炎領域との温度差が小さくなることから、ガラス板の熱割れ現象を生じ難くすることができる。また、熱伝導部材は、ガラス板の第1外板面及び第2外板面に隣接して配置されていればよいので、ガラス板の板面に垂直な方向での寸法精度は要求されない。したがって、ガラス板のスペックや熱伝導部材の熱伝導率を考慮して、ガラス板と遮炎部材との隙間以下の寸法範囲内で熱伝導部材の厚み等を容易に調整することができる。このように、本構成のガラスモジュールは、火災時においてガラス板の熱割れを効率的に防止できる。 Therefore, the glass module having this configuration includes a heat conductive member arranged adjacent to the first outer plate surface and the second outer plate surface of the glass plate, and the heat conductive member has a higher thermal conductivity than the glass plate. It has and is configured to be displaceable in at least a part of the flame shield area. Therefore, heat conduction from the non-flame-shielding region to the flame-shielding region is rapidly performed in the glass plate. As a result, when a fire breaks out in the compartment, the heat of combustion is transferred to the non-flame-shielding region of the glass plate exposed in the compartment, and from the non-flame-shielding region to the flame-shielding region of the glass plate via the heat conductive member. It is transmitted to. As a result, the temperature of the flame-shielding region rises and the temperature difference between the non-flame-shielding region and the flame-shielding region becomes small, so that the thermal cracking phenomenon of the glass plate can be less likely to occur. Further, since the heat conductive member may be arranged adjacent to the first outer plate surface and the second outer plate surface of the glass plate, dimensional accuracy in the direction perpendicular to the plate surface of the glass plate is not required. Therefore, the thickness of the heat conductive member can be easily adjusted within the dimension range equal to or less than the gap between the glass plate and the flame shield member in consideration of the specifications of the glass plate and the thermal conductivity of the heat conductive member. As described above, the glass module having this configuration can efficiently prevent thermal cracking of the glass plate in the event of a fire.

他の特徴構成は、前記遮炎領域は、前記ガラス板の周縁部の板面に設けられ、前記ガラス板の端面から10mm以上30mm以下である点にある。 Another characteristic configuration is that the flame-shielding region is provided on the plate surface of the peripheral edge of the glass plate and is 10 mm or more and 30 mm or less from the end surface of the glass plate.

本構成によれば、遮炎領域がガラス板の周縁部の板面に設けられているので、ガラス板は熱伝導部材を介して中央部から周縁部に熱伝導することが可能になる。その結果、ガラス板において熱割れがより起こり難くなる。また、遮炎部材に対するガラス板のかかり代(差し込み量)は、「日本建築学 建築工事標準仕様書・同解説 JASS17 ガラス工事」(以下、JASS17と称する)において、10mm以上にすることが規定されている。一方、遮炎領域の上下方向の長さが30mm超であると、遮炎部材によりガラス板の周縁部が加熱を阻害され、ガラス板の中央部と周縁部との温度差が大きくなることに起因してガラス板の熱割れが発生し易くなる。そこで、本構成の遮炎領域は、ガラス板の端面から10mm以上30mm以下となるように構成されている。 According to this configuration, since the flame-shielding region is provided on the plate surface of the peripheral portion of the glass plate, the glass plate can conduct heat from the central portion to the peripheral portion via the heat conductive member. As a result, thermal cracking is less likely to occur in the glass plate. In addition, the allowance (insertion amount) of the glass plate for the flame-shielding member is stipulated to be 10 mm or more in the "Japanese Architecture Standard Specifications for Building Work / Explanation JASS17 Glass Work" (hereinafter referred to as JASS17). ing. On the other hand, if the length of the flame-shielding region in the vertical direction exceeds 30 mm, the flame-shielding member inhibits heating of the peripheral portion of the glass plate, resulting in a large temperature difference between the central portion and the peripheral portion of the glass plate. As a result, thermal cracking of the glass plate is likely to occur. Therefore, the flame-shielding region of this configuration is configured to be 10 mm or more and 30 mm or less from the end face of the glass plate.

他の特徴構成は、前記熱伝導部材は、前記ガラス板の端面の少なくとも一部に配置される点にある。 Another characteristic configuration is that the heat conductive member is arranged on at least a part of the end face of the glass plate.

本構成によれば、熱伝導部材がガラス板の周縁部の板面に加えて端面の少なくとも一部にも配置されるので、直接的に火炎に晒されるガラス板の中央部の熱は、熱伝導部材によってガラス板の端面まで効率的に伝熱される。その結果、ガラス板の端面の温度が上昇し易くなるので、ガラス板の中央部と周縁部との温度差をより小さくすることが可能となる。よって、ガラス板において、中央部から遠く温度上昇が緩慢な板ガラスの周縁部における熱割れを、確実に防止することができる。 According to this configuration, since the heat conductive member is arranged not only on the plate surface of the peripheral portion of the glass plate but also on at least a part of the end surface, the heat in the central portion of the glass plate directly exposed to the flame is heat. The conductive member efficiently transfers heat to the end face of the glass plate. As a result, the temperature of the end face of the glass plate tends to rise, so that the temperature difference between the central portion and the peripheral portion of the glass plate can be further reduced. Therefore, in the glass plate, it is possible to reliably prevent thermal cracking at the peripheral portion of the plate glass, which is far from the central portion and whose temperature rises slowly.

他の特徴構成は、熱伝導部材は、前記遮炎領域のみに配置される点にある。 Another characteristic configuration is that the heat conductive member is arranged only in the flame-shielding region.

本構成によれば、熱伝導部材が遮炎領域以外には配置されないので、熱伝導部材は外部から視認されない状態でガラス板に配置される。これにより、ガラス板の外観に熱伝導部材が影響を与えない状態でガラス板の熱割れを防止することができる。 According to this configuration, since the heat conductive member is not arranged outside the flame shielding region, the heat conductive member is arranged on the glass plate in a state where it cannot be visually recognized from the outside. As a result, it is possible to prevent thermal cracking of the glass plate in a state where the heat conductive member does not affect the appearance of the glass plate.

他の特徴構成は、前記ガラス板は、前記遮炎領域に隣接し前記遮炎部材によって被覆されていない非遮炎領域をさらに備え、前記熱伝導部材は、前記非遮炎領域における、前記第1外板面及び前記第2外板面の少なくとも一方に配置可能に構成されている点にある。 Another characteristic configuration is that the glass plate further comprises a non-flame-shielding region adjacent to the flame-shielding region and not covered by the flame-shielding member, and the heat-conducting member is the first in the non-flame-shielding region. 1 It is a point that it can be arranged on at least one of the outer plate surface and the second outer plate surface.

本構成によれば、熱伝導部材が非遮炎領域にも配置されているので、ガラス板の非遮炎領域が受けた燃焼熱は熱伝導部材を介して遮炎領域に伝わり易くなる。これにより、ガラス板の非遮炎領域と遮炎領域との温度差を迅速に小さくすることができる。また、熱伝導部材は、非遮炎領域のうち遮炎領域に隣接する部位に配置されることで、非遮炎領域における熱伝導部材の範囲を小さくして、ガラス板の外観に与える熱伝導部材の影響を最小限に抑制することが可能である。 According to this configuration, since the heat conductive member is also arranged in the non-flame shield region, the combustion heat received by the non-flame shield region of the glass plate is easily transferred to the flame shield region via the heat conductive member. As a result, the temperature difference between the non-flame-shielding region and the flame-shielding region of the glass plate can be quickly reduced. Further, by arranging the heat conductive member in a portion of the non-flame shield region adjacent to the flame shield region, the range of the heat conductive member in the non-flame shield region is reduced, and the heat conduction given to the appearance of the glass plate is reduced. It is possible to minimize the influence of the members.

他の特徴構成は、前記熱伝導部材は、少なくとも一部が前記遮炎部材と接触可能に構成されている点にある。 Another characteristic configuration is that the heat conductive member is configured so that at least a part thereof can come into contact with the flame shield member.

本構成によれば、熱伝導部材は、遮炎部材が受ける燃焼熱をガラス板の遮炎領域に伝える。これにより、火災時において、ガラス板の非遮炎領域の熱に加えて遮炎部材の熱も熱伝導部材を介してガラス板の遮炎領域に伝わるので、ガラス板の非遮炎領域と遮炎領域との温度差をより迅速に小さくすることができる。 According to this configuration, the heat conductive member transfers the combustion heat received by the flame shield member to the flame shield region of the glass plate. As a result, in the event of a fire, in addition to the heat in the non-flame-shielding region of the glass plate, the heat of the flame-shielding member is also transferred to the flame-shielding region of the glass plate via the heat conductive member, so that the heat is shielded from the non-flame-shielding region of the glass plate. The temperature difference from the flame region can be reduced more quickly.

他の特徴構成は、前記熱伝導部材は、前記遮炎部材に接触しないよう構成されている点にある。 Another characteristic configuration is that the heat conductive member is configured so as not to come into contact with the flame shield member.

本構成によれば、熱伝導部材は遮炎部材に接触しないのでガラス板の板面に垂直な方向での寸法精度が要求されない。したがって、ガラス板のスペックや熱伝導部材の熱伝導率を考慮して、ガラス板と遮炎部材との隙間以下の寸法範囲内で熱伝導部材の厚み等を容易に調整することができる。 According to this configuration, since the heat conductive member does not come into contact with the flame shield member, dimensional accuracy in the direction perpendicular to the plate surface of the glass plate is not required. Therefore, the thickness of the heat conductive member can be easily adjusted within the dimension range equal to or less than the gap between the glass plate and the flame shield member in consideration of the specifications of the glass plate and the thermal conductivity of the heat conductive member.

他の特徴構成は、前記熱伝導部材は、近赤外線の吸収率が前記ガラス板よりも大きい点にある。 Another characteristic configuration is that the heat conductive member has a higher absorption rate of near infrared rays than the glass plate.

火災時において遮炎部材が加熱された場合、遮炎部材から発生する輻射熱は、近赤外線によって伝播する。しかし、ガラス板は近赤外線を透過するため、遮炎部材の輻射熱によってガラス板の遮炎領域の温度上昇は生じ難い。そこで、本構成における熱伝導部材は、ガラス板より近赤外線の吸収率を大きくしている。これにより、ガラス板の遮炎領域は、熱伝導部材によって遮炎部材の輻射熱を受け取り易くなるので、ガラス板の非遮炎領域と遮炎領域との温度差をより迅速に小さくすることができる。 When the flame-shielding member is heated in the event of a fire, the radiant heat generated from the flame-shielding member is propagated by near infrared rays. However, since the glass plate transmits near infrared rays, the temperature of the flame-shielding region of the glass plate is unlikely to rise due to the radiant heat of the flame-shielding member. Therefore, the heat conductive member in this configuration has a higher absorption rate of near infrared rays than the glass plate. As a result, the flame-shielding region of the glass plate can easily receive the radiant heat of the flame-shielding member by the heat conductive member, so that the temperature difference between the non-flame-shielding region and the flame-shielding region of the glass plate can be reduced more quickly. ..

他の特徴構成は、前記熱伝導部材は、放射率が0.1以上である点にある。 Another characteristic configuration is that the heat conductive member has an emissivity of 0.1 or more.

本構成のごとく、熱伝導部材の放射率が0.1以上であると、遮炎部材からの輻射熱が熱伝導部材により反射される熱損失が抑制され、熱伝導部材を介して遮炎領域に輻射熱を効率的に伝えることができる。 As in this configuration, when the emissivity of the heat conductive member is 0.1 or more, the heat loss in which the radiant heat from the flame shield member is reflected by the heat conductive member is suppressed, and the heat loss region is reached via the heat conductive member. Radiant heat can be transferred efficiently.

他の特徴構成は、前記熱伝導部材は、金属箔と粘着層とを備え、前記粘着層は、粘着剤と熱伝導性微粒子とを有する点にある。 Another characteristic configuration is that the heat conductive member includes a metal foil and an adhesive layer, and the adhesive layer has an adhesive and heat conductive fine particles.

本構成によれば、熱伝導部材が粘着剤を有する粘着層を備えるので、ガラス板に熱伝導部材を容易に固定することができる。また、熱伝導部材は、金属箔を備え、粘着層に熱伝導微粒子を有するので、熱伝導部材によってガラス板の非遮炎領域の熱を遮炎領域に向けて確実に伝えることができる。 According to this configuration, since the heat conductive member includes an adhesive layer having an adhesive, the heat conductive member can be easily fixed to the glass plate. Further, since the heat conductive member includes the metal foil and has the heat conductive fine particles in the adhesive layer, the heat conductive member can surely transfer the heat of the non-flame-shielding region of the glass plate toward the flame-shielding region.

他の特徴構成は、前記金属箔の熱伝導率が50W/mK以上である点にある。 Another characteristic configuration is that the thermal conductivity of the metal foil is 50 W / mK or more.

例えばソーダガラスで構成されるガラス板の熱伝導率は、概ね1W/mK未満である。これに対し、本構成のごとく、金属箔の熱伝導率が50W/mK以上であると、熱伝導部材はガラス板に比べて格段に伝熱スピードが向上する。これにより、熱伝導部材によってガラス板の非遮炎領域から遮炎領域へと燃焼熱を迅速に伝えることが可能となり、ガラス板の非遮炎領域と遮炎領域との温度差を小さくすることができる。 For example, the thermal conductivity of a glass plate made of soda glass is generally less than 1 W / mK. On the other hand, when the heat conductivity of the metal foil is 50 W / mK or more as in this configuration, the heat transfer speed of the heat conductive member is remarkably improved as compared with the glass plate. As a result, the heat conductive member can quickly transfer the combustion heat from the non-flame-shielding region of the glass plate to the flame-shielding region, and the temperature difference between the non-flame-shielding region and the flame-shielding region of the glass plate can be reduced. Can be done.

他の特徴構成は、前記熱伝導性微粒子は、熱伝導率が前記粘着剤より高い点にある。 Another characteristic configuration is that the heat conductive fine particles have a higher thermal conductivity than the pressure-sensitive adhesive.

熱伝導部材の粘着層は、粘着剤を有するため、金属箔に比べて熱伝導率が低くなりがちである。しかし、本構成のように、熱伝導性微粒子の熱伝導率を粘着剤よりも高くすることで、熱伝導部材において、粘着層の熱伝導率を効果的に高めることができる。 Since the adhesive layer of the heat conductive member has an adhesive, the thermal conductivity tends to be lower than that of the metal foil. However, by making the thermal conductivity of the heat conductive fine particles higher than that of the pressure-sensitive adhesive as in this configuration, the heat conductivity of the pressure-sensitive adhesive layer can be effectively increased in the heat-conducting member.

他の特徴構成は、前記粘着層は、前記熱伝導性微粒子の含有量が50重量%以上90重量%以下である点にある。 Another characteristic configuration is that the pressure-sensitive adhesive layer has a content of the heat conductive fine particles of 50% by weight or more and 90% by weight or less.

本構成のごとく、粘着層において熱伝導性微粒子の含有量が50重量%以上90重量%以下であると、熱伝導部材は、粘着層における熱伝導性と粘着性の両方を確保することができる。粘着層において熱伝導性微粒子が50重量%未満であると、粘着層は十分な熱伝導性を得ることができない。また、粘着層において熱伝導性微粒子が90重量%超であると、粘着剤の割合が低くなり過ぎるため、粘着力が低下してガラス板から熱伝導部材が剥がれ易くなる。 When the content of the heat conductive fine particles in the adhesive layer is 50% by weight or more and 90% by weight or less as in this configuration, the heat conductive member can secure both the heat conductivity and the adhesiveness in the adhesive layer. .. If the heat conductive fine particles in the pressure-sensitive adhesive layer are less than 50% by weight, the pressure-sensitive adhesive layer cannot obtain sufficient heat conductivity. Further, when the heat conductive fine particles exceed 90% by weight in the pressure-sensitive adhesive layer, the ratio of the pressure-sensitive adhesive becomes too low, so that the pressure-sensitive adhesive force is lowered and the heat-conducting member is easily peeled off from the glass plate.

他の特徴構成は、前記粘着層は、厚みが10μm以上100μm以下である点にある。 Another characteristic configuration is that the pressure-sensitive adhesive layer has a thickness of 10 μm or more and 100 μm or less.

本構成のごとく、粘着層において厚みが10μm以上100μm以下であると、熱伝導部材は、粘着層における熱伝導性と粘着性の両方を確保することができる。熱伝導部材において、粘着層の厚みが10μmより小さいと、火災時に金属箔とガラス板の熱膨張差による剥離が生じる可能性がある。一方、粘着層の厚みが100μm超になると、粘着剤の影響を大きく受けて粘着層を含む熱伝導部材の熱伝導性が低くなる可能性がある。 When the thickness of the adhesive layer is 10 μm or more and 100 μm or less as in this configuration, the heat conductive member can secure both thermal conductivity and adhesiveness in the adhesive layer. If the thickness of the adhesive layer of the heat conductive member is smaller than 10 μm, peeling may occur due to the difference in thermal expansion between the metal foil and the glass plate in the event of a fire. On the other hand, when the thickness of the pressure-sensitive adhesive layer exceeds 100 μm, the heat conductivity of the heat-conducting member including the pressure-sensitive adhesive layer may be lowered due to the influence of the pressure-sensitive adhesive.

他の特徴構成は、前記熱伝導性微粒子は、粒径が10μm以上100μm以下である点にある。 Another characteristic configuration is that the heat conductive fine particles have a particle size of 10 μm or more and 100 μm or less.

本構成のごとく、熱伝導性微粒子において粒径が10μm以上100μm以下であると、熱伝導部材は、粘着層における熱伝導性を確実に確保することができる。熱伝導性微粒子の粒径が10μm未満であると、熱伝導性微粒子が粘着層において不均一に配置されるため、均等な熱伝導性が確保されない可能性がある。一方、熱伝導性微粒子の粒径が100μm超になると、熱伝導性微粒子の表面積が小さくなるため、熱伝導部材の熱伝導性が低くなる可能性がある。 When the particle size of the heat conductive fine particles is 10 μm or more and 100 μm or less as in this configuration, the heat conductive member can surely secure the heat conductivity in the adhesive layer. If the particle size of the heat conductive fine particles is less than 10 μm, the heat conductive fine particles are unevenly arranged in the adhesive layer, so that uniform heat conductivity may not be ensured. On the other hand, when the particle size of the heat conductive fine particles exceeds 100 μm, the surface area of the heat conductive fine particles becomes small, so that the heat conductivity of the heat conductive member may be lowered.

他の特徴構成は、前記熱伝導性微粒子が金属微粒子である点にある。 Another characteristic configuration is that the heat conductive fine particles are metal fine particles.

本構成のごとく、熱伝導性微粒子が金属微粒子であると、粘着層に熱伝導性を確実に付与することができる。 When the heat conductive fine particles are metal fine particles as in this configuration, the heat conductivity can be reliably imparted to the adhesive layer.

本発明に係るガラスユニットの特徴構成は、上記構成のガラスモジュールと、前記ガラス板の周縁部を挟持する遮炎部材と、を備える点にある。 The characteristic configuration of the glass unit according to the present invention is that it includes a glass module having the above configuration and a flame-shielding member that sandwiches the peripheral edge of the glass plate.

本構成のガラスユニットは、ガラス板よりも高い熱伝導率を有する熱伝導部材が配置されたガラス板を遮炎部材によって挟持される。これにより、ガラス板の何れか一方が面する区画域において火災が生じた場合、その燃焼熱は、区画域に露出したガラス板の非遮炎領域に伝わると共に、非遮炎領域から遮炎領域の熱伝導部材を介してガラス板の周縁部に伝わる。その結果、周縁部の温度が上昇してガラス板の中央部と周縁部との温度差が小さくなることから、ガラス板の熱割れ現象を生じ難くすることができる。 In the glass unit having this configuration, a glass plate on which a heat conductive member having a higher thermal conductivity than the glass plate is arranged is sandwiched by the flame shield member. As a result, when a fire breaks out in the compartment facing one of the glass plates, the heat of combustion is transferred to the non-flame-shielding region of the glass plate exposed in the compartment, and from the non-flame-shielding region to the flame-shielding region. It is transmitted to the peripheral edge of the glass plate via the heat conductive member of. As a result, the temperature of the peripheral portion rises and the temperature difference between the central portion and the peripheral portion of the glass plate becomes small, so that the thermal cracking phenomenon of the glass plate can be less likely to occur.

他の特徴構成は、前記遮炎部材は、前記ガラス板を面で挟持するよう構成されている点にある。 Another characteristic configuration is that the flame-shielding member is configured to sandwich the glass plate between surfaces.

本構成によれば、遮炎部材がガラス板を面で挟持するので、ガラス板を安定的に保持することができる。 According to this configuration, since the flame-shielding member sandwiches the glass plate between the surfaces, the glass plate can be stably held.

他の特徴構成は、前記遮炎部材は、サッシの固定枠である点にある。 Another characteristic configuration is that the flame-shielding member is a fixed frame of a sash.

本構成によれば、遮炎部材がサッシの固定枠であるので、火災時に遮炎部材が消失することなく、ガラス板の周縁部を効率的に加熱することができる。 According to this configuration, since the flame-shielding member is a fixed frame of the sash, the peripheral portion of the glass plate can be efficiently heated without the flame-shielding member disappearing in the event of a fire.

他の特徴構成は、前記固定枠の熱伝導率は、20W/mK以上250W/mK以下である点にある。 Another characteristic configuration is that the thermal conductivity of the fixed frame is 20 W / mK or more and 250 W / mK or less.

本構成のごとく、固定枠の熱伝導率を高く設定することで、固定枠からガラス板の周縁部に熱が伝わり易くなる。これにより、ガラス板において中央部と周縁部との温度差を小さくすることができる。固定枠の熱伝導率が250W/mk超にする場合には、固定枠がコスト高になるため、本構成における固定枠の熱伝導率は、20W/mK以上250W/mK以下に設定している。 By setting the thermal conductivity of the fixed frame to be high as in this configuration, heat can be easily transferred from the fixed frame to the peripheral edge of the glass plate. As a result, the temperature difference between the central portion and the peripheral portion of the glass plate can be reduced. If the thermal conductivity of the fixed frame exceeds 250 W / mk, the cost of the fixed frame becomes high. Therefore, the thermal conductivity of the fixed frame in this configuration is set to 20 W / mK or more and 250 W / mK or less. ..

本発明に係るガラス窓の特徴構成は、上記構成のガラスモジュールが前記遮炎部材に挟持されて固定されている点にある。 The characteristic configuration of the glass window according to the present invention is that the glass module having the above configuration is sandwiched and fixed by the flame shield member.

本構成によれば、遮炎部材に挟持されて固定されるガラスモジュールによって、ガラス板の熱割れを防止して防火性能を安定的に維持することができる。 According to this configuration, the glass module sandwiched and fixed by the flame-shielding member can prevent thermal cracking of the glass plate and stably maintain the fire protection performance.

第1実施形態のガラスユニットの正面図である。It is a front view of the glass unit of 1st Embodiment. 図1のII-II矢視断面図である。FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 第1実施形態のガラスユニットの分解図である。It is an exploded view of the glass unit of 1st Embodiment. 熱伝導部材の断面図である。It is sectional drawing of the heat conduction member. 第2実施形態のガラスユニットの部分断面図である。It is a partial cross-sectional view of the glass unit of the 2nd Embodiment. 第3実施形態のガラスユニットの部分断面図である。It is a partial cross-sectional view of the glass unit of 3rd Embodiment. 第4実施形態のガラスユニットの部分断面図である。It is a partial cross-sectional view of the glass unit of 4th Embodiment. 第5実施形態のガラスユニットの部分断面図である。It is a partial cross-sectional view of the glass unit of 5th Embodiment. 他の実施形態のガラスユニットの部分断面図である。It is a partial cross-sectional view of the glass unit of another embodiment. 他の実施形態のガラスユニットの部分断面図である。It is a partial cross-sectional view of the glass unit of another embodiment.

[第1実施形態]
本発明に係るガラスユニット100の第1実施形態について、図1〜図4に基づいて説明する。図2は完成したガラスユニット100を示し、図3はガラスユニット100の組立前の状態を示している。ガラスユニット100は、ガラスモジュール10と、遮炎部材20とを備える。ガラスモジュール10は、ガラス板1と後述の熱伝導部材11とを備える。
[First Embodiment]
The first embodiment of the glass unit 100 according to the present invention will be described with reference to FIGS. 1 to 4. FIG. 2 shows the completed glass unit 100, and FIG. 3 shows the state of the glass unit 100 before assembly. The glass unit 100 includes a glass module 10 and a flame shield member 20. The glass module 10 includes a glass plate 1 and a heat conductive member 11 described later.

図1〜図2に示すように、ガラス板1は、4辺の周縁部8を有する矩形状の単層ガラスであり、単層ガラスの周縁部8に沿った凹部を有する遮炎部材20に嵌め込み固定されている。 As shown in FIGS. 1 and 2, the glass plate 1 is a rectangular single-layer glass having peripheral edges 8 on four sides, and is formed on a flame-shielding member 20 having recesses along the peripheral edges 8 of the single-layer glass. It is fitted and fixed.

遮炎部材20は、枠体21で構成されている。ガラス板1は、遮炎部材20と面で対向し、遮炎部材20に組付可能に構成されている。本実施形態では、枠体21は凹部を有するサッシの固定枠である。この枠体21の熱伝導率は、20W/mK以上250W/mK以下としている。ガラス板1は、枠体21の凹部において周縁部8がバックアップ材23及び弾性支持体24に挟持されて固定されている。ガラス板1の4辺を嵌め込む枠体21の凹部の底面に、ガラス板1の端面4の保護機能を備えたセッティングブロック22が設置されている。セッティングブロック22は、ガラス板1の重量を十分に分散して支持できる程度にガラス板1の下端部の数箇所に設置されていればよく、ガラス板1の4辺の全領域に亘って設ける必要はない。また、ガラス板1を枠体21で固定するため、ガラス板1と枠体21との間にバックアップ材23が設けられる。さらに、ガラス板1と枠体21との間の防水性を向上させるため、バックアップ材23の上部にはシール材としての弾性支持体24が設けられる。こうして、ガラス板1は、弾性支持体24を介して枠体21(遮炎部材20)に挟持可能に構成されている。これにより、ガラス板1は、弾性支持体24によって枠体21(遮炎部材20)との間の隙間を埋めた状態で支持することができる。 The flame-shielding member 20 is composed of a frame body 21. The glass plate 1 faces the flame-shielding member 20 on a surface and is configured to be able to be assembled to the flame-shielding member 20. In the present embodiment, the frame body 21 is a fixed frame of a sash having a recess. The thermal conductivity of the frame 21 is 20 W / mK or more and 250 W / mK or less. The peripheral portion 8 of the glass plate 1 is sandwiched and fixed to the backup material 23 and the elastic support 24 in the recess of the frame body 21. A setting block 22 having a protective function for the end surface 4 of the glass plate 1 is installed on the bottom surface of the recess of the frame body 21 into which the four sides of the glass plate 1 are fitted. The setting blocks 22 need only be installed at several locations at the lower end of the glass plate 1 so as to sufficiently disperse and support the weight of the glass plate 1, and are provided over the entire area of the four sides of the glass plate 1. No need. Further, in order to fix the glass plate 1 with the frame body 21, a backup material 23 is provided between the glass plate 1 and the frame body 21. Further, in order to improve the waterproof property between the glass plate 1 and the frame 21, an elastic support 24 as a sealing material is provided on the upper part of the backup material 23. In this way, the glass plate 1 is configured to be sandwichable between the frame body 21 (flame shield member 20) via the elastic support 24. As a result, the glass plate 1 can be supported by the elastic support 24 in a state where the gap between the glass plate 1 and the frame 21 (flame shield member 20) is filled.

ガラス板1は、第1外板面5と、第1外板面5の裏側に設けられる第2外板面6とを有し、圧縮応力が150MPa以上の単層強化ガラスで構成されている。ガラス板1は、外板面5,6に、枠体21で被覆可能な遮炎領域2と、外部から視認可能であり遮炎部材20に被覆されていない非遮炎領域3と、を有する。図1に示されるように、ガラス板1は矩形状に構成されており、遮炎領域2が4辺の周縁部8に設けられている。ここで、遮炎領域2とは、ガラス板1の第1外板面5又は第2外板面6が板面に垂直な方向から火炎に晒された場合、第1外板面5又は第2外板面6のうち枠体21により火炎が遮断される板面のことを意味する。すなわち、遮炎領域2は、遮炎部材20からガラス板1に正投影した領域である。この遮炎領域2は、ガラス板1の端面4から10mm以上30mm以下であることが好ましい。遮炎部材20に対するガラス板1のかかり代(差し込み量)は、JASS17において、10mm以上にすることが規定されている。一方、遮炎領域2の上下方向の長さが30mm超であると、遮炎部材20によりガラス板1の周縁部8が加熱を阻害され、ガラス板1の中央部7と周縁部8との温度差が大きくなることに起因してガラス板1の熱割れが発生し易くなる。また、ガラス板1が上述の強化ガラスであると、ガラス板1における中央部7と周縁部8との温度差に起因するガラス板1の熱割れを抑制し易くなる。さらに、図2に示すように、ガラス板1の端面4は、搬送時や組立時に破損する危険性を低減するため、滑らかになるよう曲面形状に研磨加工している。 The glass plate 1 has a first outer plate surface 5 and a second outer plate surface 6 provided on the back side of the first outer plate surface 5, and is composed of a single-layer tempered glass having a compressive stress of 150 MPa or more. .. The glass plate 1 has outer plate surfaces 5 and 6 having a flame-shielding region 2 that can be covered by the frame body 21 and a non-flame-shielding region 3 that is visible from the outside and is not covered by the flame-shielding member 20. .. As shown in FIG. 1, the glass plate 1 is formed in a rectangular shape, and flame-shielding regions 2 are provided on peripheral edges 8 on four sides. Here, the flame-shielding region 2 refers to the first outer plate surface 5 or the first outer plate surface 5 or the second outer plate surface 6 when the first outer plate surface 5 or the second outer plate surface 6 of the glass plate 1 is exposed to a flame from a direction perpendicular to the plate surface. 2 It means a plate surface of the outer plate surface 6 from which the flame is blocked by the frame body 21. That is, the flame-shielding region 2 is a region that is orthographically projected onto the glass plate 1 from the flame-shielding member 20. The flame-shielding region 2 is preferably 10 mm or more and 30 mm or less from the end surface 4 of the glass plate 1. The JASS 17 stipulates that the engagement allowance (insertion amount) of the glass plate 1 with respect to the flame-shielding member 20 is 10 mm or more. On the other hand, when the length of the flame-shielding region 2 in the vertical direction exceeds 30 mm, the flame-shielding member 20 inhibits the heating of the peripheral edge portion 8 of the glass plate 1, and the central portion 7 and the peripheral edge portion 8 of the glass plate 1 Thermal cracking of the glass plate 1 is likely to occur due to the large temperature difference. Further, when the glass plate 1 is the above-mentioned tempered glass, it becomes easy to suppress the thermal cracking of the glass plate 1 due to the temperature difference between the central portion 7 and the peripheral portion 8 of the glass plate 1. Further, as shown in FIG. 2, the end surface 4 of the glass plate 1 is polished into a curved surface shape so as to be smooth in order to reduce the risk of damage during transportation or assembly.

ガラス板1は、周縁部8の第1外板面5及び第2外板面6(遮炎領域2)に隣接して配置される熱伝導部材11を備える。熱伝導部材11は、ガラス板1よりも高い熱伝導率を有し、遮炎領域2の少なくとも一部に配置可能に構成されている。すなわち、熱伝導部材11は、遮炎領域2の全体に配置されてもよいし、遮炎領域2の一部に配置されてもよい。図2の例では、熱伝導部材11が遮炎領域2の全体に配置されている。本実施形態では、熱伝導部材11がシート状に形成されており、遮炎領域2の外板面5,6に面接触した状態で固定されている。ここで、面接触した状態とは、遮炎領域2の外板面5,6に熱伝導部材11が面で対向していればよく、遮炎領域2の外板面5,6に熱伝導部材11の大半(例えば8割以上の面積)が接触していれば、一部が非接触状態であってもよい。ソーダガラスで構成されるガラス板1の熱伝導率は、概ね1W/mK未満である。一方、熱伝導部材11の熱伝導率は、50W/mK以上であることが好ましい。熱伝導部材11としては、例えばSn、Al、Ag、Cu、Zn等の金属または合金を用いることができる。なお、Snの熱伝導率は64W/mKであり、Alの熱伝導率は204W/mKであり、Agの熱伝導率は418W/mKであり、Cuの熱伝導率は372W/mKであり、Znの熱伝導率は113W/mKである。 The glass plate 1 includes a heat conductive member 11 arranged adjacent to the first outer plate surface 5 and the second outer plate surface 6 (flame shield region 2) of the peripheral edge portion 8. The heat conductive member 11 has a higher thermal conductivity than the glass plate 1 and is configured to be displaceable in at least a part of the flame shield region 2. That is, the heat conductive member 11 may be arranged in the entire flame-shielding region 2 or may be arranged in a part of the flame-shielding region 2. In the example of FIG. 2, the heat conductive member 11 is arranged in the entire flame-shielding region 2. In the present embodiment, the heat conductive member 11 is formed in a sheet shape and is fixed in a state of being in surface contact with the outer plate surfaces 5 and 6 of the flame shielding region 2. Here, the state of surface contact means that the heat conductive member 11 may face the outer plate surfaces 5 and 6 of the flame shield region 2 in a plane, and heat conduction to the outer plate surfaces 5 and 6 of the flame shield region 2. As long as most of the members 11 (for example, an area of 80% or more) are in contact with each other, a part of the members 11 may be in a non-contact state. The thermal conductivity of the glass plate 1 made of soda glass is generally less than 1 W / mK. On the other hand, the thermal conductivity of the heat conductive member 11 is preferably 50 W / mK or more. As the heat conductive member 11, for example, a metal or alloy such as Sn, Al, Ag, Cu, Zn can be used. The thermal conductivity of Sn is 64 W / mK, the thermal conductivity of Al is 204 W / mK, the thermal conductivity of Ag is 418 W / mK, and the thermal conductivity of Cu is 372 W / mK. The thermal conductivity of Zn is 113 W / mK.

このように、周縁部8の外板面5,6(遮炎領域2)に熱伝導部材11が隣接して配置されることで、ガラス板1において非遮炎領域3から遮炎領域2への熱伝導が迅速に行われる。これにより、例えば、ガラス板1の何れか一方が面する区画域において火災が発生した場合、その燃焼熱は、区画域に露出したガラス板1の非遮炎領域3に伝わると共に、非遮炎領域3から熱伝導部材11を介してガラス板1の遮炎領域2に伝わる。その結果、遮炎領域2の温度が上昇して非遮炎領域3と遮炎領域2との温度差が小さくなることから、ガラス板1の熱割れ現象を生じ難くすることができる。 In this way, by arranging the heat conductive members 11 adjacent to the outer plate surfaces 5 and 6 (flame-shielding region 2) of the peripheral edge portion 8, the glass plate 1 moves from the non-flame-shielding region 3 to the flame-shielding region 2. Heat conduction is done quickly. As a result, for example, when a fire breaks out in a compartment facing either one of the glass plates 1, the heat of combustion is transmitted to the non-flame-shielding region 3 of the glass plate 1 exposed in the compartment, and is also non-flame-shielding. It is transmitted from the region 3 to the flame-shielding region 2 of the glass plate 1 via the heat conductive member 11. As a result, the temperature of the flame-shielding region 2 rises and the temperature difference between the non-flame-shielding region 3 and the flame-shielding region 2 becomes small, so that the thermal cracking phenomenon of the glass plate 1 can be prevented from occurring.

本実施形態における熱伝導部材11は、ガラス板1の外板面5,6から端面4に亘って設けられている。熱伝導部材11は、ガラス板1の端面4の少なくとも一部に配置される。すなわち、熱伝導部材11は、ガラス板1の端面4の全体に配置されてもよいし、端面4の一部に配置されてもよい。図2の例では、熱伝導部材11がガラス板1の端面4の全体に配置されている。これにより、火災時に直接的に火炎に晒されるガラス板1の中央部7の熱は、熱伝導部材11によって周縁部8の端面4まで効率的に伝熱される。その結果、ガラス板1の端面4の温度が上昇し易くなるので、ガラス板1の中央部7と周縁部8との温度差をより小さくすることが可能となる。よって、ガラス板1において、中央部7から遠く温度上昇が緩慢なガラス板1の周縁部8における熱割れを、確実に防止することができる。 The heat conductive member 11 in the present embodiment is provided from the outer plate surfaces 5 and 6 to the end surface 4 of the glass plate 1. The heat conductive member 11 is arranged on at least a part of the end surface 4 of the glass plate 1. That is, the heat conductive member 11 may be arranged on the entire end surface 4 of the glass plate 1, or may be arranged on a part of the end surface 4. In the example of FIG. 2, the heat conductive member 11 is arranged on the entire end surface 4 of the glass plate 1. As a result, the heat of the central portion 7 of the glass plate 1 that is directly exposed to the flame in the event of a fire is efficiently transferred to the end surface 4 of the peripheral edge portion 8 by the heat conductive member 11. As a result, the temperature of the end surface 4 of the glass plate 1 tends to rise, so that the temperature difference between the central portion 7 and the peripheral portion 8 of the glass plate 1 can be further reduced. Therefore, in the glass plate 1, thermal cracking in the peripheral portion 8 of the glass plate 1 far from the central portion 7 and the temperature rise slowly can be reliably prevented.

熱伝導部材11は、ガラス板1の遮炎領域2及び非遮炎領域3のうち遮炎領域2のみに配置されている。すなわち、熱伝導部材11が非遮炎領域3にはみ出さないので、熱伝導部材11は外部から視認されない状態でガラス板1に配置される。これにより、ガラス板1の外観に熱伝導部材11が影響を与えない状態でガラス板1の熱割れを防止することができる。 The heat conductive member 11 is arranged only in the flame-shielding region 2 of the flame-shielding region 2 and the non-flame-shielding region 3 of the glass plate 1. That is, since the heat conductive member 11 does not protrude into the non-flame shield region 3, the heat conductive member 11 is arranged on the glass plate 1 in a state where it cannot be visually recognized from the outside. As a result, it is possible to prevent thermal cracking of the glass plate 1 in a state where the heat conductive member 11 does not affect the appearance of the glass plate 1.

本実施形態では、熱伝導部材11が遮炎部材20により被覆される遮炎領域2の全域(高さが端面4から遮炎部材20の上端面まで)に亘って配置されている。このように構成すると、火災が発生した場合に、熱伝導部材11を介して、火災の燃焼熱により高温となったガラス板1の中央部7(非遮炎領域3)から周縁部8(遮炎領域2)に熱が伝わる。その結果、遮炎部材20により火炎に直接的に晒されないガラス板1の周縁部8の温度が迅速に上昇し、火災の燃焼熱により非常に高温となる中央部7と周縁部8との温度差が小さくなるため、ガラス板1の熱割れが防止され、ガラス板1の防火性が向上する。 In the present embodiment, the heat conductive member 11 is arranged over the entire area (height from the end surface 4 to the upper end surface of the flame shield member 20) of the flame shield region 2 covered by the flame shield member 20. With this configuration, in the event of a fire, the central portion 7 (non-flame-shielding region 3) to the peripheral portion 8 (shielding) of the glass plate 1 that has become hot due to the heat of combustion of the fire via the heat conductive member 11 Heat is transferred to the flame area 2). As a result, the temperature of the peripheral portion 8 of the glass plate 1 that is not directly exposed to the flame by the flame-shielding member 20 rises rapidly, and the temperature of the central portion 7 and the peripheral portion 8 becomes extremely high due to the heat of combustion of the fire. Since the difference is small, thermal cracking of the glass plate 1 is prevented, and the fire resistance of the glass plate 1 is improved.

図4に示すように、熱伝導部材11は、例えば熱伝導性に優れたテープ体で構成されており、金属箔12と粘着層13とを備える。粘着層13は、粘着剤14と熱伝導性微粒子15とを有する。熱伝導部材11はテープ体であると、ガラス板1に面で密着させやすいので、熱伝導性の向上が期待できる。また、図3のガラスモジュール10に示すように、ガラス板1の周縁部8の外板面5,6及び端面4に熱伝導部材11を貼り付けた状態でガラス板1を用意しておけば、熱伝導部材11の取り付けが容易になるとともに、熱伝導部材11が端面4を保護することにもなるので好ましい。つまり、図3に示すように、セッティングブロック22及びバックアップ材23が収容された枠体21に、熱伝導部材11がガラス板1に固定されたガラスモジュール10を挿入し、ガラスモジュール10と枠体21との隙間に弾性支持体24を嵌め込めばガラスユニット100が完成するので、組付けが容易である。なお、熱伝導部材11はガラス板1において熱割れが発生しやすいと想定される部分のみに設けてもよいが、防火性をより確実なものとするためには、ガラス板1の全周(4辺の周縁部8)に亘って設けることが望ましい。 As shown in FIG. 4, the heat conductive member 11 is composed of, for example, a tape body having excellent heat conductivity, and includes a metal foil 12 and an adhesive layer 13. The pressure-sensitive adhesive layer 13 has a pressure-sensitive adhesive 14 and heat-conductive fine particles 15. If the heat conductive member 11 is a tape body, it can be easily brought into close contact with the glass plate 1 on the surface, so that improvement in heat conductivity can be expected. Further, as shown in the glass module 10 of FIG. 3, if the glass plate 1 is prepared in a state where the heat conductive member 11 is attached to the outer plate surfaces 5 and 6 and the end surfaces 4 of the peripheral edge portion 8 of the glass plate 1. It is preferable because the heat conductive member 11 can be easily attached and the heat conductive member 11 also protects the end face 4. That is, as shown in FIG. 3, the glass module 10 in which the heat conductive member 11 is fixed to the glass plate 1 is inserted into the frame body 21 in which the setting block 22 and the backup material 23 are housed, and the glass module 10 and the frame body are inserted. Since the glass unit 100 is completed by fitting the elastic support 24 into the gap between the glass unit 21 and the glass unit 24, the glass unit 100 is easy to assemble. The heat conductive member 11 may be provided only on the portion of the glass plate 1 where thermal cracking is likely to occur, but in order to ensure fire resistance, the entire circumference of the glass plate 1 ( It is desirable to provide it over the peripheral edges 8) of the four sides.

本実施形態では、熱伝導部材11は、遮炎部材20の枠体21に接触しないよう構成されている。熱伝導部材11が枠体21に接触しないことで、熱伝導部材11はガラス板1の板面に垂直な方向での寸法精度が要求されない。したがって、ガラス板1のスペックや熱伝導部材11の熱伝導率を考慮して、ガラス板1と枠体21との隙間以下の寸法範囲内で熱伝導部材11の厚み等を容易に調整することができる。 In the present embodiment, the heat conductive member 11 is configured so as not to come into contact with the frame 21 of the flame shield member 20. Since the heat conductive member 11 does not come into contact with the frame body 21, the heat conductive member 11 is not required to have dimensional accuracy in the direction perpendicular to the plate surface of the glass plate 1. Therefore, in consideration of the specifications of the glass plate 1 and the thermal conductivity of the heat conductive member 11, the thickness of the heat conductive member 11 and the like can be easily adjusted within the dimensional range below the gap between the glass plate 1 and the frame 21. Can be done.

熱伝導部材11は、近赤外線(波長0.7μm〜2.5μm)の吸収率がガラス板1よりも大きいことが好ましく、特に波長2.5μmの近赤外線に対する吸収率がガラス板1よりも大きいことが好ましい。この吸収率は最大値が1に対して0.1以上であることが好ましく、0.2以上であればより好ましい。火災時において枠体21が加熱された場合、枠体21から発生する輻射熱は、近赤外線によって伝播することがある。しかし、ガラス板1は近赤外線を透過するため、枠体21からの輻射熱によってガラス板1の周縁部8の温度上昇は生じ難い。そこで、本実施形態では、熱伝導部材11の近赤外線の吸収率を、ガラス板1の近赤外線の吸収率よりも大きくしている。また、本実施形態における枠体21の熱伝導率を20W/mK以上としている。これにより、ガラス板1の周縁部8は、熱伝導部材11によって枠体21からの輻射熱を受け取り易くなるので、ガラス板1の周縁部8を昇温させてガラス板1の中央部7と周縁部8との温度差をより迅速に小さくすることができる。また、熱伝導部材11の放射率は、最大値が1に対して0.1以上であることが好ましく、0.2以上であればより好ましい。これにより、枠体21の輻射熱が熱伝導部材11によって反射される熱損失を抑制することができるので、熱伝導部材11を介して遮炎領域2に輻射熱を効率的に伝えることができる。 The heat conductive member 11 preferably has a higher absorption rate of near infrared rays (wavelength 0.7 μm to 2.5 μm) than the glass plate 1, and particularly has a higher absorption rate for near infrared rays having a wavelength of 2.5 μm than the glass plate 1. Is preferable. The maximum value of this absorption rate is preferably 0.1 or more with respect to 1, and more preferably 0.2 or more. When the frame body 21 is heated in the event of a fire, the radiant heat generated from the frame body 21 may be propagated by near infrared rays. However, since the glass plate 1 transmits near infrared rays, it is unlikely that the temperature of the peripheral portion 8 of the glass plate 1 will rise due to the radiant heat from the frame body 21. Therefore, in the present embodiment, the absorption rate of the near infrared rays of the heat conductive member 11 is made larger than the absorption rate of the near infrared rays of the glass plate 1. Further, the thermal conductivity of the frame body 21 in this embodiment is set to 20 W / mK or more. As a result, the peripheral edge 8 of the glass plate 1 can easily receive the radiant heat from the frame 21 by the heat conductive member 11, so that the peripheral edge 8 of the glass plate 1 is heated to raise the temperature of the central portion 7 and the peripheral edge of the glass plate 1. The temperature difference from the part 8 can be reduced more quickly. Further, the emissivity of the heat conductive member 11 is preferably 0.1 or more, and more preferably 0.2 or more with respect to the maximum value of 1. As a result, the heat loss in which the radiant heat of the frame body 21 is reflected by the heat conductive member 11 can be suppressed, so that the radiant heat can be efficiently transferred to the flame shielding region 2 via the heat conductive member 11.

熱伝導部材11は、金属箔12の表面に微細な凹凸を有して構成されていてもよい。金属箔12の表面に微細な凹凸があると、金属箔12において輻射熱の表面反射が抑制されるため、金属箔12は輻射熱を吸収し易くなる。その結果、熱伝導部材11は遮炎部材20からも効率よく輻射熱を受けてガラス板1の周縁部8を加熱することができる。 The heat conductive member 11 may be configured to have fine irregularities on the surface of the metal foil 12. If the surface of the metal foil 12 has fine irregularities, the surface reflection of the radiant heat is suppressed in the metal foil 12, so that the metal foil 12 easily absorbs the radiant heat. As a result, the heat conductive member 11 can efficiently receive radiant heat from the flame shield member 20 to heat the peripheral edge portion 8 of the glass plate 1.

熱伝導部材11に備えられる金属箔12は、熱伝導率が50W/mK以上であり、好ましくは100W/mK以上である。金属箔12の熱伝導率が50W/mK以上であると、熱伝導部材11の熱伝導率も50W/mK以上に高めることができる。これにより、熱伝導部材11を介して、ガラス板1の中央部7の熱がガラス板1の周縁部8に早く伝わり、周縁部8を迅速に加熱することができる。熱伝導部材11の熱伝導率を高めるうえで、金属箔12の熱伝導率は、100W/mk以上であることがより好ましい。 The metal foil 12 provided in the heat conductive member 11 has a thermal conductivity of 50 W / mK or more, preferably 100 W / mK or more. When the thermal conductivity of the metal foil 12 is 50 W / mK or more, the thermal conductivity of the heat conductive member 11 can also be increased to 50 W / mK or more. As a result, the heat of the central portion 7 of the glass plate 1 is quickly transferred to the peripheral edge portion 8 of the glass plate 1 via the heat conductive member 11, and the peripheral edge portion 8 can be heated quickly. In order to increase the thermal conductivity of the heat conductive member 11, the thermal conductivity of the metal foil 12 is more preferably 100 W / mk or more.

金属箔12は、Sn、Al、Ag、Cu、Zn等の金属または合金で構成されており、Sn、Al、Ag、Cu、Znの少なくとも1つが50重量%以上含まれている。Snの熱伝導率は64W/mK、Alの熱伝導率は204W/mK、Agの熱伝導率は418W/mK、Cuの熱伝導率は372W/mK、Znの熱伝導率は113W/mKである。すなわち、Sn、Al、Ag、Cu、Znは、いずれも熱伝導率が50W/mK以上である。したがって、金属箔12が前述の金属の少なくとも1つを50重量%以上含むことによって、熱伝導部材11の熱伝導率を容易に高めることができる。Sn、Al、Ag、Cu、Znのうち、Znは、腐食の原因となる水分、酸素等を透過しない防食効果を有するため、最も好ましい。 The metal leaf 12 is made of a metal or alloy such as Sn, Al, Ag, Cu, and Zn, and contains at least one of Sn, Al, Ag, Cu, and Zn in an amount of 50% by weight or more. The thermal conductivity of Sn is 64 W / mK, the thermal conductivity of Al is 204 W / mK, the thermal conductivity of Ag is 418 W / mK, the thermal conductivity of Cu is 372 W / mK, and the thermal conductivity of Zn is 113 W / mK. be. That is, Sn, Al, Ag, Cu, and Zn all have a thermal conductivity of 50 W / mK or more. Therefore, when the metal foil 12 contains at least one of the above-mentioned metals in an amount of 50% by weight or more, the thermal conductivity of the heat conductive member 11 can be easily increased. Of Sn, Al, Ag, Cu, and Zn, Zn is most preferable because it has an anticorrosive effect that does not allow moisture, oxygen, and the like that cause corrosion to permeate.

粘着剤14は、アクリル系、シリコーン系、天然ゴム系のいずれかである。これにより、熱伝導部材11において、粘着層13を容易に構成することができる。 The pressure-sensitive adhesive 14 is any of an acrylic type, a silicone type, and a natural rubber type. Thereby, the adhesive layer 13 can be easily formed in the heat conductive member 11.

熱伝導性微粒子15は、熱伝導率が粘着剤14よりも高い。これにより、熱伝導部材11は、熱伝導性微粒子15によって粘着層13の熱伝導率を高めることができる。 The heat conductive fine particles 15 have a higher thermal conductivity than the pressure-sensitive adhesive 14. As a result, the heat conductive member 11 can increase the heat conductivity of the pressure-sensitive adhesive layer 13 by the heat conductive fine particles 15.

粘着層13は、熱伝導性微粒子15の含有量が50重量%以上90重量%以下、好ましくは60重量%以上80重量%以下である。こうすると、熱伝導部材11は、粘着層13における熱伝導性と粘着性の両方を確保することができる。粘着層13において熱伝導性微粒子15が50重量%未満になると、粘着層13は十分な熱伝導性を得ることができない。また、粘着層13において熱伝導性微粒子15が90重量%超になると、粘着剤14の割合が低くなり過ぎるため粘着力が低下してガラス板1から熱伝導部材11が剥がれ易くなる。 The content of the heat conductive fine particles 15 in the adhesive layer 13 is 50% by weight or more and 90% by weight or less, preferably 60% by weight or more and 80% by weight or less. In this way, the heat conductive member 11 can secure both heat conductivity and adhesiveness in the adhesive layer 13. If the heat conductive fine particles 15 in the pressure-sensitive adhesive layer 13 are less than 50% by weight, the pressure-sensitive adhesive layer 13 cannot obtain sufficient heat conductivity. Further, when the heat conductive fine particles 15 exceed 90% by weight in the pressure-sensitive adhesive layer 13, the ratio of the pressure-sensitive adhesive 14 becomes too low, so that the adhesive strength decreases and the heat-conducting member 11 easily peels off from the glass plate 1.

粘着層13は、厚みが10μm以上100μm以下であり、好ましくは20μm以上90μm以下である。粘着層13において厚みが10μm以上100μm以下であると、熱伝導部材11は、粘着層13における熱伝導性と粘着性の両方を確保することができる。熱伝導部材11において、粘着層13の厚みが10μmより小さいと、火災時に金属箔12とガラス板1の熱膨張差により剥離が生じる可能性がある。一方、粘着層13の厚みが100μm超になると、粘着剤14の影響を大きく受けて粘着層13を含む熱伝導部材11の熱伝導性が低くなる可能性がある。粘着層13は金属箔12よりも熱伝導率の低い粘着剤14を含むことから、粘着層13の厚みは金属箔12の厚みよりも小さいことが好ましい。例えば金属箔12の厚みが100μmであれば、粘着層13の厚みは30〜50μmに設定することができる。このように、粘着層13は、金属箔12の半分程度の厚みに設定することが可能である。 The thickness of the adhesive layer 13 is 10 μm or more and 100 μm or less, preferably 20 μm or more and 90 μm or less. When the thickness of the adhesive layer 13 is 10 μm or more and 100 μm or less, the heat conductive member 11 can secure both the thermal conductivity and the adhesiveness of the adhesive layer 13. If the thickness of the adhesive layer 13 of the heat conductive member 11 is smaller than 10 μm, peeling may occur due to the difference in thermal expansion between the metal foil 12 and the glass plate 1 in the event of a fire. On the other hand, when the thickness of the pressure-sensitive adhesive layer 13 exceeds 100 μm, the heat conductivity of the heat conductive member 11 including the pressure-sensitive adhesive layer 13 may be lowered due to the influence of the pressure-sensitive adhesive 14. Since the pressure-sensitive adhesive layer 13 contains the pressure-sensitive adhesive 14 having a lower thermal conductivity than the metal foil 12, the thickness of the pressure-sensitive adhesive layer 13 is preferably smaller than the thickness of the metal foil 12. For example, if the thickness of the metal foil 12 is 100 μm, the thickness of the adhesive layer 13 can be set to 30 to 50 μm. In this way, the adhesive layer 13 can be set to a thickness of about half that of the metal foil 12.

粘着層13に含まれる熱伝導性微粒子15は、平均粒径が10μm以上100μm以下であり、好ましくは20μm以上90μm以下である。熱伝導性微粒子15の粒径が10μm以上100μm以下であると、熱伝導部材11は、粘着層13における熱伝導性を確実に確保することができる。熱伝導性微粒子15の粒径が10μm未満であると、熱伝導性微粒子15が粘着層13において不均一に配置されるため、均等な熱伝導性が確保されない可能性がある。一方、熱伝導性微粒子15の粒径が100μm超になると、熱伝導性微粒子15の表面積が小さくなるため、熱伝導部材11の熱伝導性が低くなる可能性がある。熱伝導性微粒子15の粒径は粘着層13の厚み以下であることが好ましい。図4に示すように、本実施形態では、熱伝導部材11は、熱伝導性微粒子15の粒径と粘着層13の厚みとが同じになるように構成されている。 The heat conductive fine particles 15 contained in the adhesive layer 13 have an average particle size of 10 μm or more and 100 μm or less, preferably 20 μm or more and 90 μm or less. When the particle size of the heat conductive fine particles 15 is 10 μm or more and 100 μm or less, the heat conductive member 11 can surely secure the heat conductivity in the adhesive layer 13. If the particle size of the heat conductive fine particles 15 is less than 10 μm, the heat conductive fine particles 15 are unevenly arranged in the adhesive layer 13, so that uniform heat conductivity may not be ensured. On the other hand, when the particle size of the heat conductive fine particles 15 exceeds 100 μm, the surface area of the heat conductive fine particles 15 becomes small, so that the heat conductivity of the heat conductive member 11 may decrease. The particle size of the thermally conductive fine particles 15 is preferably equal to or less than the thickness of the adhesive layer 13. As shown in FIG. 4, in the present embodiment, the heat conductive member 11 is configured so that the particle size of the heat conductive fine particles 15 and the thickness of the adhesive layer 13 are the same.

熱伝導性微粒子15は金属微粒子である。熱伝導性微粒子15が金属微粒子であると、粘着層13に熱伝導性を確実に付与することができる。金属微粒子は、Sn、Al、Ag、Cu、Zn等の金属または合金で構成されており、Sn、Al、Ag、Cu、Znの少なくとも1つが50重量%以上含まれている。このようにすれば、粘着層13において熱伝導率を容易に高めることができる。 The heat conductive fine particles 15 are metal fine particles. When the heat conductive fine particles 15 are metal fine particles, heat conductivity can be reliably imparted to the adhesive layer 13. The metal fine particles are composed of a metal or alloy such as Sn, Al, Ag, Cu, and Zn, and contain at least one of Sn, Al, Ag, Cu, and Zn in an amount of 50% by weight or more. In this way, the thermal conductivity of the adhesive layer 13 can be easily increased.

金属微粒子としては、Sn、Al、Ag、Cu、Znのうち、低融点のSn、Zn、Alが好ましい。低融点の金属微粒子に用いた場合には、粘着剤14が火災時の燃焼熱を受けて粘着性が低下したとしても、金属微粒子の表面の溶融によりガラス板1と粘着層13の密着性を確保することができる。また、粘着層13に含まれる金属微粒子は、一種類の金属のみによって構成されてもよいし、異なる金属の金属微粒子が混在させていてもよい。 Of the Sn, Al, Ag, Cu, and Zn, the metal fine particles preferably have a low melting point of Sn, Zn, and Al. When used for low melting point metal fine particles, even if the adhesive 14 receives the heat of combustion during a fire and its adhesiveness decreases, the adhesion between the glass plate 1 and the adhesive layer 13 is improved by melting the surface of the metal fine particles. Can be secured. Further, the metal fine particles contained in the adhesive layer 13 may be composed of only one kind of metal, or may be a mixture of metal fine particles of different metals.

バックアップ材23及び弾性支持体24は、ガラス板1を枠体21に支持するための部材なので、ガラス板1を破損させないように、ある程度の弾性を有する樹脂又はゴムで構成されている。バックアップ材23及び弾性支持体24が断熱性の高い樹脂又はゴムであり、火災で高温となったガラス板1の中央部7から熱伝導部材11を介したバックアップ材23及び弾性支持体24への熱伝導が抑制される。その分、熱伝導部材11を介してガラス板1の周縁部8に伝えられる熱が増大するので、周縁部8を効率的に昇温することができ、防火性をより確実に向上させることができる。また、熱伝導部材11からセッティングブロック22に熱が逃げるのを抑制し、ガラス板1の周縁部8の温度を効率的に上昇させるために、セッティングブロック22も断熱性の高い材料であることが望ましい。 Since the backup material 23 and the elastic support 24 are members for supporting the glass plate 1 on the frame body 21, they are made of resin or rubber having a certain degree of elasticity so as not to damage the glass plate 1. The backup material 23 and the elastic support 24 are made of highly heat-insulating resin or rubber, and from the central portion 7 of the glass plate 1 which has become hot due to a fire to the backup material 23 and the elastic support 24 via the heat conductive member 11. Heat conduction is suppressed. Since the heat transferred to the peripheral edge 8 of the glass plate 1 via the heat conductive member 11 increases by that amount, the temperature of the peripheral edge 8 can be raised efficiently, and the fire resistance can be improved more reliably. can. Further, in order to suppress heat from escaping from the heat conductive member 11 to the setting block 22 and to efficiently raise the temperature of the peripheral portion 8 of the glass plate 1, the setting block 22 is also a material having high heat insulating properties. desirable.

建物等に設けられるガラス窓は、ガラスモジュール10が遮炎部材20に挟持されて固定されることで実現される。 A glass window provided in a building or the like is realized by sandwiching and fixing a glass module 10 between flame shield members 20.

本実施形態のガラスモジュール10の防火性能を検証するための防火試験を行った。実施例1として、粘着層13に金属微粒子を有する熱伝導部材11を備えるガラスモジュール、実施例2として、粘着層13に金属微粒子を有しない熱伝導部材11を備えるガラスモジュール、比較例1として、熱伝導部材11を備えていない従来型のガラスモジュールを用意した。 A fire protection test was conducted to verify the fire protection performance of the glass module 10 of the present embodiment. As Example 1, a glass module having a heat conductive member 11 having metal fine particles in the adhesive layer 13, a glass module having a heat conductive member 11 having no metal fine particles in the adhesive layer 13 as Example 2, and Comparative Example 1. A conventional glass module not provided with the heat conductive member 11 was prepared.

ガラス板1は、板厚が5mmの熱強化処理を施した単層ソーダガラスによって構成されている。枠体21はアルミ製、バックアップ材23は難燃性樹脂、弾性支持体24は防火用シリコーンシール材、セッティングブロック22はケイ酸カルシウム製の耐火ブロックとしている。実施例1及び実施例2に用いられる熱伝導部材11は、金属箔12がSn箔であって厚さが100μm、粘着層13の厚さが40μmのテープ体であり、遮炎領域2の外板面5,6に配置されている。熱伝導部材11は、エッジ(端面4の縁)から中央側に向けて7mmまでの位置に配置されている。実施例1の熱伝導部材11の粘着層13には、粒径40μmのSn微粒子が分散した状態で含まれている。 The glass plate 1 is made of a single-layer soda glass having a plate thickness of 5 mm and subjected to a heat strengthening treatment. The frame 21 is made of aluminum, the backup material 23 is a flame-retardant resin, the elastic support 24 is a fireproof silicone sealant, and the setting block 22 is a fireproof block made of calcium silicate. The heat conductive member 11 used in Examples 1 and 2 is a tape body in which the metal foil 12 is a Sn foil and has a thickness of 100 μm and the adhesive layer 13 has a thickness of 40 μm, and is outside the flame-shielding region 2. It is arranged on the plate surfaces 5 and 6. The heat conductive member 11 is arranged at a position up to 7 mm from the edge (edge of the end face 4) toward the center side. The adhesive layer 13 of the heat conductive member 11 of Example 1 contains Sn fine particles having a particle size of 40 μm in a dispersed state.

防火試験はガラス板1の一側面側での火災発生を想定しており、炉内温度Tを下記のI SO−834加熱曲線に従い10分間昇温し、10分後における、ガラス板1のそれぞれのエッジの温度(以下、エッジ温度と称する)と、ガラス板1の中央の温度(以下、中央温度と称する)とを計測した。
ISO−834加熱曲線: T= 345log(8t+1)+20 t:加熱時間(分)
The fire prevention test assumes that a fire will occur on one side of the glass plate 1, and the temperature inside the furnace T is raised for 10 minutes according to the ISO-834 heating curve below, and after 10 minutes, each of the glass plates 1 The edge temperature (hereinafter referred to as edge temperature) and the center temperature of the glass plate 1 (hereinafter referred to as center temperature) were measured.
ISO-834 heating curve: T = 345log (8t + 1) + 20 t: heating time (minutes)

ガラス板1において中央とエッジとの温度差は、通常、防火試験の開始から10分程度で最大値を取り、その後は温度差が小さくなる。このことから、防火試験の開始から10分後のガラス板1の中央とエッジとの温度差を確認することで、実施例1、実施例2、及び比較例のガラス板1について防火性能を比較することができる。 The temperature difference between the center and the edge of the glass plate 1 usually reaches a maximum value about 10 minutes after the start of the fire protection test, and then the temperature difference becomes small. From this, by confirming the temperature difference between the center and the edge of the glass plate 1 10 minutes after the start of the fire protection test, the fire protection performance of the glass plates 1 of Example 1, Example 2, and Comparative Example was compared. can do.

以上の条件で防火試験を行ったところ、防火試験の10分後において、実施例1ではエッジ温度が255℃、実施例2ではエッジ温度が232℃、比較例1ではエッジ温度が210℃であった。また、ガラス板1の中央温度は、実施例1、実施例2、及び比較例1のいずれも530℃であった。これらの結果により、ガラス板1における中央とエッジとの温度差は、実施例1が275℃となり、実施例2が298℃となり、比較例1が320℃となった。 When the fire protection test was conducted under the above conditions, 10 minutes after the fire protection test, the edge temperature was 255 ° C. in Example 1, the edge temperature was 232 ° C. in Example 2, and the edge temperature was 210 ° C. in Comparative Example 1. rice field. The central temperature of the glass plate 1 was 530 ° C. in all of Example 1, Example 2, and Comparative Example 1. Based on these results, the temperature difference between the center and the edge of the glass plate 1 was 275 ° C in Example 1, 298 ° C in Example 2, and 320 ° C in Comparative Example 1.

実施例1及び実施例2においては、ガラス板1の一側面の側で火災が発生した場合に、熱伝導部材11を介して、火災により高温となったガラス板1の中央からエッジに熱が伝わる。その結果、ガラス板1のエッジの温度が上昇し、火災の燃焼熱により非常に高温となる中央とエッジとの温度差が比較例1に比べて小さくなる。 In the first and second embodiments, when a fire breaks out on one side surface of the glass plate 1, heat is generated from the center to the edge of the glass plate 1 which has become hot due to the fire through the heat conductive member 11. It is transmitted. As a result, the temperature of the edge of the glass plate 1 rises, and the temperature difference between the center and the edge, which becomes extremely high due to the heat of combustion of the fire, becomes smaller than that of Comparative Example 1.

一方、比較例1においては、ガラス板1に熱伝導部材11が設けられていないため、ガラス板1のエッジを積極的に昇温することができない。このため、ガラス板1において、火災の燃焼熱により非常に高温となる中央と、火災の燃焼熱の影響を受けにくいエッジとの温度差が実施例1及び実施例2に比べて大きくなる。 On the other hand, in Comparative Example 1, since the glass plate 1 is not provided with the heat conductive member 11, the edge of the glass plate 1 cannot be positively heated. Therefore, in the glass plate 1, the temperature difference between the center, which becomes extremely high due to the heat of combustion of the fire, and the edge, which is not easily affected by the heat of combustion of the fire, is larger than that of the first and second embodiments.

以上の防火試験の結果より、実施例1及び実施例2は、比較例1よりも防火性能に優れていることが示された。試験結果を検証すると、実施例1及び実施例2が防火性能に優れているのは、熱伝導部材11がガラス板1のエッジから遮炎領域2の外板面5,6に設けられているという特徴構成によるものと考えられる。 From the results of the above fire protection test, it was shown that Example 1 and Example 2 were superior in fire protection performance to Comparative Example 1. When the test results are verified, the reason why Example 1 and Example 2 are excellent in fire protection is that the heat conductive member 11 is provided on the outer plate surfaces 5 and 6 of the flame shielding region 2 from the edge of the glass plate 1. It is considered that this is due to the characteristic composition.

また、実施例1、実施例2、及び比較例1において、ガラス板1に求められる表面圧縮応力を検証したところ、比較例1の場合は最低120MPaであるに対し、実施例1の場合は最低101MPaであり、実施例2の場合は最低111MPaであった。以上の結果より、ガラス板1の外板面5,6に熱伝導部材11を設けることにより、表面圧縮応力の比較的低いガラス板1を防火用のガラスモジュール10に使用できることが明らかとなった。 Further, when the surface compressive stress required for the glass plate 1 was verified in Example 1, Example 2, and Comparative Example 1, the minimum was 120 MPa in the case of Comparative Example 1, while the minimum was 120 MPa in the case of Example 1. It was 101 MPa, and in the case of Example 2, it was at least 111 MPa. From the above results, it was clarified that the glass plate 1 having a relatively low surface compressive stress can be used for the fireproof glass module 10 by providing the heat conductive members 11 on the outer plate surfaces 5 and 6 of the glass plate 1. ..

[第2実施形態]
ガラスユニット100の第2実施形態について、図5に基づいて説明する。第1実施形態と同様の部材については同じ番号を付しており、ここでの説明は省略する。
[Second Embodiment]
A second embodiment of the glass unit 100 will be described with reference to FIG. The same members as those in the first embodiment are assigned the same numbers, and the description thereof will be omitted here.

熱伝導部材11は、非遮炎領域3における、第1外板面5及び第2外板面6の少なくとも一方に配置可能に構成されていてもよい。本実施形態は、熱伝導部材11が、ガラス板1の遮炎領域2に加えて、遮炎領域2に隣接する非遮炎領域3の外板面5,6の両方に隣接して配置されている。図示しないが、熱伝導部材11は、非遮炎領域3において、第1外板面5及び第2外板面6の一方のみに配置されていてもよい。このように構成すれば、非遮炎領域3に固定される熱伝導部材11の存在により、ガラス板1の非遮炎領域3が受けた燃焼熱は熱伝導部材11を介して遮炎領域2に伝わり易くなる。これにより、ガラス板1の非遮炎領域3と遮炎領域2との温度差を迅速に小さくすることができる。また、熱伝導部材11は、非遮炎領域3のうち遮炎領域2に隣接する外板面5,6に設けられているので、非遮炎領域3における熱伝導部材11の範囲を小さくして、ガラス板1の外観に与える熱伝導部材11の影響を最小限に抑制することが可能である。 The heat conductive member 11 may be configured to be dispositionable on at least one of the first outer plate surface 5 and the second outer plate surface 6 in the non-flame shield region 3. In the present embodiment, the heat conductive member 11 is arranged adjacent to both the outer plate surfaces 5 and 6 of the non-flame shield region 3 adjacent to the flame shield region 2 in addition to the flame shield region 2 of the glass plate 1. ing. Although not shown, the heat conductive member 11 may be arranged only on one of the first outer plate surface 5 and the second outer plate surface 6 in the non-flame shield region 3. With this configuration, the heat of combustion received by the non-flame-shielding region 3 of the glass plate 1 due to the presence of the heat-conducting member 11 fixed to the non-flame-shielding region 3 passes through the heat-conducting member 11 to the flame-shielding region 2. It becomes easy to be transmitted to. As a result, the temperature difference between the non-flame-shielding region 3 and the flame-shielding region 2 of the glass plate 1 can be quickly reduced. Further, since the heat conductive member 11 is provided on the outer panel surfaces 5 and 6 adjacent to the flame shield region 2 in the non-flame shield region 3, the range of the heat conductive member 11 in the non-flame shield region 3 is reduced. Therefore, it is possible to minimize the influence of the heat conductive member 11 on the appearance of the glass plate 1.

[第3実施形態]
ガラスユニット100の第3実施形態について、図6に基づいて説明する。第1実施形態と同様の部材については同じ番号を付しており、ここでの説明は省略する。
[Third Embodiment]
A third embodiment of the glass unit 100 will be described with reference to FIG. The same members as those in the first embodiment are assigned the same numbers, and the description thereof will be omitted here.

本実施形態は、熱伝導部材11が、ガラス板1の外板面5,6(遮炎領域2)のみに設けられ、端面4には設けられていない。このような構成であっても、遮炎領域2に配置された熱伝導部材11によって、火災の燃焼熱により非常に高温となったガラス板1の中央部7の熱を、熱伝導部材11を介して端面4を含む周縁部8に伝えることができる。これにより、ガラス板1において中央部7と周縁部8との温度差を小さくすることができ、防火性を向上させることができる。 In this embodiment, the heat conductive member 11 is provided only on the outer plate surfaces 5 and 6 (flame shield region 2) of the glass plate 1, and is not provided on the end surface 4. Even with such a configuration, the heat conductive member 11 is used to transfer the heat of the central portion 7 of the glass plate 1 which has become extremely high due to the heat of combustion of the fire by the heat conductive member 11 arranged in the flame shield region 2. It can be transmitted to the peripheral edge portion 8 including the end face 4 via. As a result, the temperature difference between the central portion 7 and the peripheral portion 8 of the glass plate 1 can be reduced, and the fire resistance can be improved.

[第4実施形態]
ガラスユニット100の第4実施形態について、図7に基づいて説明する。第1実施形態と同様の部材については同じ番号を付しており、ここでの説明は省略する。
[Fourth Embodiment]
A fourth embodiment of the glass unit 100 will be described with reference to FIG. The same members as those in the first embodiment are assigned the same numbers, and the description thereof will be omitted here.

本実施形態は、ガラス板1の外板面5,6から枠体21に亘って熱伝導部材11が設けられている。このように、熱伝導部材11は、少なくとも一部が遮炎部材20である枠体21と接触可能に構成されていてもよい。熱伝導部材11は、第1接触部16と第2接触部17とを有する。第1接触部16は、ガラス板1の外板面5,6に面接触する部分である。第2接触部17は、枠体21とバックアップ材23との間に挟まれた状態で枠体21の内側面25に面接触する部分である。また、枠体21の熱伝導率が20W/mK以上であるので、ガラス板1の熱伝導率(1W/mK程度)よりも十分に大きく、第2接触部17を介して枠体21からガラス板1の周縁部8に伝熱され易くなる。このように構成すれば、ガラス板1の周縁部8に至る伝熱経路が、ガラス板1の中央部7からと枠体21からとの2経路確保できるので、ガラス板1の周縁部8への加熱をより促進することができる。 In this embodiment, the heat conductive member 11 is provided from the outer plate surfaces 5 and 6 of the glass plate 1 to the frame body 21. As described above, the heat conductive member 11 may be configured so as to be in contact with the frame body 21, which is at least a part of the flame shield member 20. The heat conductive member 11 has a first contact portion 16 and a second contact portion 17. The first contact portion 16 is a portion that comes into surface contact with the outer plate surfaces 5 and 6 of the glass plate 1. The second contact portion 17 is a portion that comes into surface contact with the inner side surface 25 of the frame body 21 in a state of being sandwiched between the frame body 21 and the backup material 23. Further, since the thermal conductivity of the frame body 21 is 20 W / mK or more, it is sufficiently larger than the thermal conductivity of the glass plate 1 (about 1 W / mK), and the glass from the frame body 21 is passed through the second contact portion 17. Heat is easily transferred to the peripheral edge 8 of the plate 1. With this configuration, two heat transfer paths to the peripheral edge portion 8 of the glass plate 1 can be secured from the central portion 7 of the glass plate 1 and from the frame body 21, so that the heat transfer path to the peripheral edge portion 8 of the glass plate 1 can be secured. The heating of the glass can be promoted more.

[第5実施形態]
ガラスユニット100の第5実施形態について、図8に基づいて説明する。第1実施形態と同様の部材については同じ番号を付しており、ここでの説明は省略する。
[Fifth Embodiment]
A fifth embodiment of the glass unit 100 will be described with reference to FIG. The same members as those in the first embodiment are assigned the same numbers, and the description thereof will be omitted here.

本実施形態では、ガラス板1の遮炎領域2と枠体21との間に第2熱伝導部材30が介在する。第2熱伝導部材30は、枠体21と遮炎領域2に固定された熱伝導部材11との間に配置されている。第2熱伝導部材30は、熱伝導率が20W/mK以上250W/mK以下である金属で構成されている。第2熱伝導部材30が金属であれば、ガラス板1よりも熱伝導率の高い材料を容易に選択することができる。第2熱伝導部材30は、第1接触部31と第2接触部32とを有する。第1接触部31は、ガラス板1の周縁部8に固定された熱伝導部材11に面接触する部分である。第2接触部32は、バックアップ材23よりも枠体21の底部側に屈曲しており、枠体21の内側面25に面接触する部分である。このように構成すると、ガラス板1の熱伝導率(1W/mK程度)よりも十分大きい熱伝導率を有する第2熱伝導部材30を介して、火災により高温となった枠体21からガラス板1の周縁部8に熱を伝え易くすることができる。また、枠体21の熱伝導率が20W/mK以上であるので、ガラス板1の熱伝導率(1W/mK程度)よりも十分に大きく、火災により高温となった枠体21から第2熱伝導部材30を介してガラス板1の周縁部8に伝熱され易くなる。これにより、ガラス板1の周縁部8が昇温し易くなるので、ガラス板1において中央部7と周縁部8との温度差を迅速に小さくできる。その結果、ガラス板1の熱割れを防止することができるので、ガラス板1の防火性を向上させることができる。 In the present embodiment, the second heat conductive member 30 is interposed between the flame shielding region 2 of the glass plate 1 and the frame body 21. The second heat conductive member 30 is arranged between the frame 21 and the heat conductive member 11 fixed to the flame shield region 2. The second heat conductive member 30 is made of a metal having a thermal conductivity of 20 W / mK or more and 250 W / mK or less. If the second heat conductive member 30 is a metal, a material having a higher thermal conductivity than the glass plate 1 can be easily selected. The second heat conductive member 30 has a first contact portion 31 and a second contact portion 32. The first contact portion 31 is a portion that comes into surface contact with the heat conductive member 11 fixed to the peripheral edge portion 8 of the glass plate 1. The second contact portion 32 is a portion that is bent toward the bottom of the frame body 21 with respect to the backup material 23 and is in surface contact with the inner side surface 25 of the frame body 21. With this configuration, the glass plate from the frame 21 that has become hot due to the fire is passed through the second heat conductive member 30 that has a thermal conductivity sufficiently higher than the thermal conductivity of the glass plate 1 (about 1 W / mK). It is possible to easily transfer heat to the peripheral portion 8 of 1. Further, since the thermal conductivity of the frame 21 is 20 W / mK or more, it is sufficiently larger than the thermal conductivity of the glass plate 1 (about 1 W / mK), and the second heat from the frame 21 which has become hot due to the fire. Heat is easily transferred to the peripheral edge 8 of the glass plate 1 via the conductive member 30. As a result, the temperature of the peripheral portion 8 of the glass plate 1 becomes easy to rise, so that the temperature difference between the central portion 7 and the peripheral portion 8 of the glass plate 1 can be quickly reduced. As a result, thermal cracking of the glass plate 1 can be prevented, so that the fire resistance of the glass plate 1 can be improved.

[他の実施形態]
(1)上記の実施形態では、ガラスモジュール10において、熱伝導部材11がガラス板1の周縁部8の全周に亘って配置される例を示したが、熱伝導部材11はガラス板1の周縁部8の周方向において間隔を有して配置されてもよい。熱伝導部材11は、例えばガラス板1の4辺のうち上辺部及び下辺部のみに配置されてもよい。熱伝導部材11は、ガラス板1の周縁部8の4辺に配置される場合であっても、2辺が交差する角部には熱伝導部材11を配置せずに構成してもよい。また、上記の実施形態では、熱伝導部材11を枠体21の高さ方向に対応する遮炎領域2全体に配置する例を示したが、熱伝導部材11は、例えば端面4に隣接する遮炎領域2の一部のみに配置してもよい。
[Other embodiments]
(1) In the above embodiment, in the glass module 10, the heat conductive member 11 is arranged over the entire circumference of the peripheral edge portion 8 of the glass plate 1, but the heat conductive member 11 is the glass plate 1. They may be arranged at intervals in the circumferential direction of the peripheral edge portion 8. The heat conductive member 11 may be arranged only on the upper side portion and the lower side portion of the four sides of the glass plate 1, for example. The heat conductive member 11 may be arranged on the four sides of the peripheral edge portion 8 of the glass plate 1, or may be formed without arranging the heat conductive member 11 at the corners where the two sides intersect. Further, in the above embodiment, an example is shown in which the heat conductive member 11 is arranged in the entire flame shielding region 2 corresponding to the height direction of the frame body 21, but the heat conductive member 11 is, for example, a shield adjacent to the end surface 4. It may be arranged only in a part of the flame region 2.

(2)上記の実施形態における遮炎領域2は、ガラス板1の周縁部8に加えてガラス板1の中央部分を横断する形状で設けても良く、ガラス板1の枠体21の形状に応じて適宜設定される。また、遮炎領域2は、遮炎部材20により被覆されるガラス板1の外板面5,6の少なくとも一部で構成されていればよい。つまり、枠体21は、ガラス板1の端面4を被覆しない形状であってもよい。 (2) The flame-shielding region 2 in the above embodiment may be provided so as to cross the central portion of the glass plate 1 in addition to the peripheral edge portion 8 of the glass plate 1, and may be provided in the shape of the frame 21 of the glass plate 1. It is set appropriately according to it. Further, the flame-shielding region 2 may be composed of at least a part of the outer plate surfaces 5 and 6 of the glass plate 1 covered with the flame-shielding member 20. That is, the frame body 21 may have a shape that does not cover the end surface 4 of the glass plate 1.

(3)上記の実施形態では、遮炎部材20の枠体21がサッシの固定枠である例を示したが、枠体21はサッシの固定枠に限定されず、一対のL型のアングル等、他の構成であってもよい。 (3) In the above embodiment, an example is shown in which the frame body 21 of the flame shield member 20 is a fixed frame of the sash, but the frame body 21 is not limited to the fixed frame of the sash, and a pair of L-shaped angles and the like. , Other configurations may be used.

(4)上記の実施形態では、遮炎部材20がバックアップ材23及び弾性支持体24を含む例を示したが、図9に示すように、遮炎部材20が枠体21のみで構成されていてもよい。 (4) In the above embodiment, the flame-shielding member 20 includes the backup material 23 and the elastic support 24. However, as shown in FIG. 9, the flame-shielding member 20 is composed of only the frame body 21. You may.

(5)上記の実施形態では、ガラス板1が単層ガラスで構成されている例を示したが、図10に示すように、ガラス板1は複層ガラスで構成されていてもよい。図10の例では、ガラス板1は、第1ガラス板41と第2ガラス板42と、第1ガラス板41と第2ガラス板42との間に配置されるスペーサ43によって構成される。第1ガラス板41は強化ガラスであり、第2ガラス板42はLow−Eガラスである。第2ガラス板42の第1ガラス板41に対向する側の面44には低反射膜44aがコーティングされている。熱伝導部材11は、第1ガラス板41の外板面45及び端面47、第2ガラス板42の外板面46及び端面48に少なくとも接触して固定されている。熱伝導部材11は、さらに、第1ガラス板41の内側及び第2ガラス板42の内側に接触して固定されていてもよい。 (5) In the above embodiment, an example in which the glass plate 1 is made of single-layer glass is shown, but as shown in FIG. 10, the glass plate 1 may be made of double-glazed glass. In the example of FIG. 10, the glass plate 1 is composed of the first glass plate 41 and the second glass plate 42, and the spacer 43 arranged between the first glass plate 41 and the second glass plate 42. The first glass plate 41 is tempered glass, and the second glass plate 42 is Low-E glass. A low reflection film 44a is coated on the surface 44 of the second glass plate 42 on the side facing the first glass plate 41. The heat conductive member 11 is fixed in contact with at least the outer plate surface 45 and the end surface 47 of the first glass plate 41 and the outer plate surface 46 and the end surface 48 of the second glass plate 42. The heat conductive member 11 may be further contacted and fixed to the inside of the first glass plate 41 and the inside of the second glass plate 42.

なお、いずれの実施形態においても、熱伝導部材11又は第2熱伝導部材30の構成は図1〜図10に示したものに限らない。すなわち、ガラスユニット100の完成時にガラス板1の外板面(5,6、45、46)に熱伝導部材11が存在していれば、他の構成を採用することも可能である。 In any of the embodiments, the configuration of the heat conductive member 11 or the second heat conductive member 30 is not limited to that shown in FIGS. 1 to 10. That is, if the heat conductive member 11 is present on the outer plate surface (5, 6, 45, 46) of the glass plate 1 when the glass unit 100 is completed, another configuration can be adopted.

本発明は、ガラス板を備えるガラスモジュール及びガラスユニットに適用することができる。又、単層ガラスのみならず、複層ガラスにも適用することができる。 The present invention can be applied to a glass module and a glass unit including a glass plate. Further, it can be applied not only to single glazing but also to double glazing.

1 :ガラス板
2 :遮炎領域
3 :非遮炎領域
4 :端面
5,6 :外板面
7 :中央部
8 :周縁部
10 :ガラスモジュール
11 :熱伝導部材
12 :金属箔
13 :粘着層
14 :粘着剤
15 :熱伝導性微粒子
20 :遮炎部材
21 :枠体
22 :セッティングブロック
23 :バックアップ材
24 :シール材(弾性支持体)
30 :第2熱伝導部材
41 :第1ガラス板
42 :第2ガラス板
100 :ガラスユニット
1: Glass plate 2: Flame-insulating area 3: Non-flame-insulating area 4: End faces 5, 6: Outer plate surface 7: Central part 8: Peripheral part 10: Glass module 11: Heat conductive member 12: Metal foil 13: Adhesive layer 14: Adhesive 15: Thermally conductive fine particles 20: Flame shield member 21: Frame body 22: Setting block 23: Backup material 24: Sealing material (elastic support)
30: Second heat conductive member 41: First glass plate 42: Second glass plate 100: Glass unit

Claims (21)

遮炎部材と面で対向し、前記遮炎部材に組付可能なガラスモジュールであって、
第1外板面と、前記第1外板面の裏側に設けられる第2外板面とを有するガラス板と、
前記第1外板面及び前記第2外板面に隣接して配置される熱伝導部材と、を備え、
前記ガラス板は、板面に前記遮炎部材によって被覆可能な遮炎領域を有し、
前記熱伝導部材は、前記ガラス板よりも高い熱伝導率を有し、前記遮炎領域の少なくとも一部に配置可能に構成されている、ガラスモジュール。
A glass module that faces the flame-shielding member on a surface and can be assembled to the flame-shielding member.
A glass plate having a first outer plate surface and a second outer plate surface provided on the back side of the first outer plate surface, and
A heat conductive member arranged adjacent to the first outer plate surface and the second outer plate surface is provided.
The glass plate has a flame-insulating region that can be covered by the flame-shielding member on the plate surface.
A glass module in which the heat conductive member has a higher thermal conductivity than the glass plate and can be arranged in at least a part of the flame shield region.
前記遮炎領域は、前記ガラス板の周縁部の板面に設けられ、前記ガラス板の端面から10mm以上30mm以下である、請求項1に記載のガラスモジュール。 The glass module according to claim 1, wherein the flame-shielding region is provided on a plate surface of a peripheral portion of the glass plate and is 10 mm or more and 30 mm or less from the end surface of the glass plate. 前記熱伝導部材は、前記ガラス板の端面の少なくとも一部に配置される、請求項2に記載のガラスモジュール。 The glass module according to claim 2, wherein the heat conductive member is arranged on at least a part of an end face of the glass plate. 前記熱伝導部材は、前記遮炎領域のみに配置される、請求項1又は2に記載のガラスモジュール。 The glass module according to claim 1 or 2, wherein the heat conductive member is arranged only in the flame shielding region. 前記ガラス板は、前記遮炎領域に隣接し前記遮炎部材によって被覆されていない非遮炎領域をさらに備え、
前記熱伝導部材は、前記非遮炎領域における、前記第1外板面及び前記第2外板面の少なくとも一方に配置可能に構成されている、請求項1から4のいずれか一項に記載のガラスモジュール。
The glass plate further comprises a non-flame shield region adjacent to the flame shield region and not covered by the flame shield member.
The invention according to any one of claims 1 to 4, wherein the heat conductive member is configured to be dispositionable on at least one of the first outer plate surface and the second outer plate surface in the non-flame-shielding region. Glass module.
前記熱伝導部材は、少なくとも一部が前記遮炎部材と接触可能に構成されている、請求項1から5のいずれか一項に記載のガラスモジュール。 The glass module according to any one of claims 1 to 5, wherein at least a part of the heat conductive member is configured to be in contact with the flame shield member. 前記熱伝導部材は、前記遮炎部材に接触しないように構成されている、請求項1から5のいずれか一項に記載のガラスモジュール。 The glass module according to any one of claims 1 to 5, wherein the heat conductive member is configured so as not to come into contact with the flame shield member. 前記熱伝導部材は、近赤外線の吸収率が前記ガラス板よりも大きい、請求項1から7のいずれか一項に記載のガラスモジュール。 The glass module according to any one of claims 1 to 7, wherein the heat conductive member has a higher absorption rate of near infrared rays than the glass plate. 前記熱伝導部材は、放射率が0.1以上である、請求項8に記載のガラスモジュール。 The glass module according to claim 8, wherein the heat conductive member has an emissivity of 0.1 or more. 前記熱伝導部材は、金属箔と粘着層とを備え、
前記粘着層は、粘着剤と熱伝導性微粒子とを有する、請求項1から9のいずれか一項に記載のガラスモジュール。
The heat conductive member includes a metal foil and an adhesive layer, and has an adhesive layer.
The glass module according to any one of claims 1 to 9, wherein the adhesive layer has an adhesive and thermally conductive fine particles.
前記金属箔の熱伝導率が50W/mK以上である、請求項10に記載のガラスモジュール。 The glass module according to claim 10, wherein the metal foil has a thermal conductivity of 50 W / mK or more. 前記熱伝導性微粒子は、熱伝導率が前記粘着剤より高い、請求項10又は11に記載のガラスモジュール。 The glass module according to claim 10 or 11, wherein the heat conductive fine particles have a higher thermal conductivity than the pressure-sensitive adhesive. 前記粘着層は、前記熱伝導性微粒子の含有量が50重量%以上90重量%以下である、請求項10から12のいずれか一項に記載のガラスモジュール。 The glass module according to any one of claims 10 to 12, wherein the adhesive layer has a content of the heat conductive fine particles of 50% by weight or more and 90% by weight or less. 前記粘着層は、厚みが10μm以上100μm以下である、請求項10から13のいずれか一項に記載のガラスモジュール。 The glass module according to any one of claims 10 to 13, wherein the adhesive layer has a thickness of 10 μm or more and 100 μm or less. 前記熱伝導性微粒子は、粒径が10μm以上100μm以下である、請求項10から14のいずれか一項に記載のガラスモジュール。 The glass module according to any one of claims 10 to 14, wherein the heat conductive fine particles have a particle size of 10 μm or more and 100 μm or less. 前記熱伝導性微粒子が金属微粒子である、請求項10から15のいずれか一項に記載のガラスモジュール。 The glass module according to any one of claims 10 to 15, wherein the heat conductive fine particles are metal fine particles. 請求項1から16のいずれか一項に記載のガラスモジュールと、
前記ガラス板の周縁部を挟持する遮炎部材と、を備える、ガラスユニット。
The glass module according to any one of claims 1 to 16.
A glass unit including a flame-shielding member that sandwiches a peripheral edge of the glass plate.
前記遮炎部材は、前記ガラス板を面で挟持するよう構成されている、請求項17に記載のガラスユニット。 The glass unit according to claim 17, wherein the flame-shielding member is configured to sandwich the glass plate between surfaces. 前記遮炎部材は、サッシの固定枠である、請求項18に記載のガラスユニット。 The glass unit according to claim 18, wherein the flame-shielding member is a fixed frame for a sash. 前記固定枠の熱伝導率は、20W/mK以上250W/mK以下である、請求項19に記載のガラスユニット。 The glass unit according to claim 19, wherein the fixed frame has a thermal conductivity of 20 W / mK or more and 250 W / mK or less. 請求項1から16のいずれか一項に記載のガラスモジュールが前記遮炎部材に挟持されて固定されている、ガラス窓。 A glass window in which the glass module according to any one of claims 1 to 16 is sandwiched and fixed to the flame shield member.
JP2020028811A 2020-02-21 2020-02-21 Glass module, glass unit and glass window Pending JP2021134491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020028811A JP2021134491A (en) 2020-02-21 2020-02-21 Glass module, glass unit and glass window

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020028811A JP2021134491A (en) 2020-02-21 2020-02-21 Glass module, glass unit and glass window

Publications (1)

Publication Number Publication Date
JP2021134491A true JP2021134491A (en) 2021-09-13

Family

ID=77660509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020028811A Pending JP2021134491A (en) 2020-02-21 2020-02-21 Glass module, glass unit and glass window

Country Status (1)

Country Link
JP (1) JP2021134491A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021169037A (en) * 2020-04-28 2021-10-28 株式会社三洋物産 Game machine
JP2021169036A (en) * 2020-04-28 2021-10-28 株式会社三洋物産 Game machine
JP2021169038A (en) * 2020-06-04 2021-10-28 株式会社三洋物産 Game machine
JP2021169035A (en) * 2020-04-22 2021-10-28 株式会社三洋物産 Game machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04333792A (en) * 1991-05-07 1992-11-20 Nippon Electric Glass Co Ltd Clear fire door
JPH08159749A (en) * 1994-12-09 1996-06-21 Nissin Electric Co Ltd Rotation measuring apparatus
JP3144257U (en) * 2008-06-10 2008-08-21 日本板硝子株式会社 Sheet glass mounting structure
JP2011220029A (en) * 2010-04-13 2011-11-04 Nippon Sheet Glass Co Ltd Double glazing unit or double glazing
JP2012219503A (en) * 2011-04-08 2012-11-12 Central Glass Co Ltd Glass structure for preventing thermal crack
JP2016023529A (en) * 2014-07-24 2016-02-08 Ykk Ap株式会社 Resin fireproof fitting

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04333792A (en) * 1991-05-07 1992-11-20 Nippon Electric Glass Co Ltd Clear fire door
JPH08159749A (en) * 1994-12-09 1996-06-21 Nissin Electric Co Ltd Rotation measuring apparatus
JP3144257U (en) * 2008-06-10 2008-08-21 日本板硝子株式会社 Sheet glass mounting structure
JP2011220029A (en) * 2010-04-13 2011-11-04 Nippon Sheet Glass Co Ltd Double glazing unit or double glazing
JP2012219503A (en) * 2011-04-08 2012-11-12 Central Glass Co Ltd Glass structure for preventing thermal crack
JP2016023529A (en) * 2014-07-24 2016-02-08 Ykk Ap株式会社 Resin fireproof fitting

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021169035A (en) * 2020-04-22 2021-10-28 株式会社三洋物産 Game machine
JP2021169037A (en) * 2020-04-28 2021-10-28 株式会社三洋物産 Game machine
JP2021169036A (en) * 2020-04-28 2021-10-28 株式会社三洋物産 Game machine
JP2021169038A (en) * 2020-06-04 2021-10-28 株式会社三洋物産 Game machine

Similar Documents

Publication Publication Date Title
JP2021134491A (en) Glass module, glass unit and glass window
EP1030023B1 (en) Glass panel
JP6049629B2 (en) Single glass for fire doors and double glazing for fire doors
JP5759355B2 (en) Solar glazing
JP4284694B2 (en) Fire-resistant glass article having heat insulation and method of using the same
EP0303411B1 (en) Glazing units
EP0036657A2 (en) Infrared reflective, visible light transparent windows
CZ58593A3 (en) Fire-retarding window system
JPS5912832B2 (en) Heat resistant window glass assembly
JP2014133675A (en) Double glazing
JP2001097747A (en) Heat-shielding fireproof glass article
JP2011220029A (en) Double glazing unit or double glazing
JP7557299B2 (en) Insulating glass modules, insulating glass units and glass windows
JP2014097901A (en) Fireproof double glazing
JP2021134492A (en) Glass module, glass unit and glass window
JP2002128542A (en) Heat-shielding fireproof glass article
JP3537841B2 (en) Elements with fire-resistant glass
JP7141714B2 (en) Fire rated double glazing and fire rated glass units
JP7141712B2 (en) Fireproof double glazing, fireproof glass units and windows of heating cookers
CN215907220U (en) Fireproof heat-insulation skylight component
JP3295917B2 (en) Fireproof glass panel
JP4547657B2 (en) Fireproof glass articles
JPH0563558U (en) Fireproof glass body with gel
JPH061640A (en) Fire resisting glass panel
JP2009209040A (en) Double glazing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240905