JP2021133412A - Low hydrogen type coated electrode for horizontal fillet welding - Google Patents

Low hydrogen type coated electrode for horizontal fillet welding Download PDF

Info

Publication number
JP2021133412A
JP2021133412A JP2020033164A JP2020033164A JP2021133412A JP 2021133412 A JP2021133412 A JP 2021133412A JP 2020033164 A JP2020033164 A JP 2020033164A JP 2020033164 A JP2020033164 A JP 2020033164A JP 2021133412 A JP2021133412 A JP 2021133412A
Authority
JP
Japan
Prior art keywords
total
welding
oxide
metal
conversion value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020033164A
Other languages
Japanese (ja)
Other versions
JP7346328B2 (en
Inventor
雅大 渡部
Masahiro Watabe
雅大 渡部
将 高橋
Susumu Takahashi
将 高橋
健太郎 岩立
Kentaro Iwatate
健太郎 岩立
瑠太 三浦
Ryuta Miura
瑠太 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP2020033164A priority Critical patent/JP7346328B2/en
Publication of JP2021133412A publication Critical patent/JP2021133412A/en
Application granted granted Critical
Publication of JP7346328B2 publication Critical patent/JP7346328B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

To provide a low hydrogen type coated electrode for horizontal fillet welding, capable of obtaining a weld metal having favorable low-temperature toughness, having no weld defect, excellent in welding workability and favorable in productivity.SOLUTION: A low hydrogen type coated electrode for horizontal fillet welding is characterized by including in mass% based on total mass of coating material, 5-15% total of metal carbonates, 1-10% total of metal fluoride, 8-18% total of TiO2 conversion value, 8-18% total of SiO2 conversion value, 1-6% total of Al2O3 conversion value, 5-15% MgO, 0.1-0.3% total of C, 2-8% Mn, 1-5% Ni, 0.1-2.0% Mg, 1-5% Ni-Mg alloy, 20-40% iron dust and 1-6% total of both conversion values of Na2O and K2O.SELECTED DRAWING: None

Description

本発明は、水平すみ肉溶接用低水素系被覆アーク溶接棒に関し、特に低温靭性が良好な溶接金属が得られ、プライマ塗装鋼板の水平すみ肉溶接においてピットなどの溶接欠陥が発生せず、優れたビード形状が得られるなど溶接作業性が良好で、かつ、生産性にも優れる水平すみ肉溶接用低水素系被覆アーク溶接棒に関する。 The present invention relates to a low hydrogen-based shielded metal arc welding rod for horizontal fillet welding, in which a weld metal having particularly good low-temperature toughness can be obtained, and welding defects such as pits do not occur in horizontal fillet welding of prime-coated steel plates, which is excellent. The present invention relates to a low hydrogen-based shielded metal arc welding rod for horizontal fillet welding, which has good welding workability such as a bead shape and excellent productivity.

近年、建築、橋梁及び船舶などの溶接構造物の大型化に伴って490MPa級高張力鋼以上の鋼板が使用されているが、使用環境が低温の場合も考慮して溶接金属の低温靭性向上の要求が高まっている。 In recent years, steel plates of 490 MPa class high-strength steel or higher have been used due to the increase in size of welded structures such as buildings, bridges and ships. The demand is increasing.

しかし、水平すみ肉溶接用低水素系被覆アーク溶接棒は、1パス溶接での溶着量と脚長を確保するために通常の被覆アーク溶接棒に比べて太径心線で被覆外径が厚く長尺であるため、溶接金属中に比較的多くの酸化物が残留し、溶接金属の低温靭性が低下する傾向がある。 However, the low hydrogen-based shielded metal arc welding rod for horizontal fillet welding has a thicker core wire and a thicker outer diameter than the normal shielded metal arc welding rod in order to secure the welding amount and leg length in 1-pass welding. Since it is a scale, a relatively large amount of oxide remains in the weld metal, and the low temperature toughness of the weld metal tends to decrease.

また、水平すみ肉溶接用低水素系被覆アーク溶接棒は、通常品と比べて太径径心線で被覆外径が厚いので、生産面で溶接棒生産の乾燥時に被覆割れが生じやすく、製品の歩留りが低く、生産性が悪いという問題点がある。 In addition, the low-hydrogen shielded metal arc welding rod for horizontal fillet welding has a larger diameter core wire and a thicker outer diameter than the normal product, so the coating cracks are likely to occur during drying of the welding rod production in terms of production. There is a problem that the yield is low and the productivity is poor.

一方、海洋地域などの過酷な環境下で長時間使用される箇所では、鋼板表面に防錆を目的にプライマを塗装したプライマ塗装鋼板が広く使用されている。このようなプライマ塗装鋼板を用いた溶接構造物の溶接では、複雑な構造物の溶接が可能で、溶接能率が高く、溶接金属の品質を均一にできるグラビティ溶接による太径での水平すみ肉溶接用低水素系覆アーク溶接棒が使用されるが、溶接時に鋼板表面に塗装したプライマが蒸気化してピットが発生しやすく、また、アンダーカットなどのビード形状不良も発生しやすいという問題点がある。 On the other hand, in places where the steel sheet is used for a long time in a harsh environment such as a marine area, a primer-coated steel sheet in which the surface of the steel sheet is coated with a primer for the purpose of rust prevention is widely used. In the welding of welded structures using such a prime-coated steel plate, it is possible to weld complicated structures, the welding efficiency is high, and the quality of the welded metal can be made uniform. A low-hydrogen-based cover arc welding rod is used, but there is a problem that the prima coated on the steel plate surface is vaporized during welding and pits are likely to occur, and bead shape defects such as undercuts are also likely to occur. ..

このような状況下において、溶接金属の低温靭性が良好で、グラビティ溶接で良好なビード形状が得られ、プライマ塗装鋼板での溶接でもピットなどの溶接欠陥が発生せず、かつ、生産性にも優れた低水素系すみ肉溶接用被覆アーク溶接棒が開示されている。 Under such circumstances, the low temperature toughness of the weld metal is good, a good bead shape can be obtained by gravity welding, welding defects such as pits do not occur even when welding with prime coated steel plate, and productivity is also improved. An excellent shielded metal arc welding rod for low hydrogen fillet welding is disclosed.

例えば、特許文献1には、平均粒径が50〜90μmの高炭素フェロマンガン、マグネシアクリンカー、マグネサイト、金属弗化物の含有量を規定することで、良好なビード形状が得られる低水素系被覆アーク溶接棒が開示されている。しかし、特許文献1に記載された低水素系被覆アーク溶接棒は、高炭素フェロマンガンを含有することでスラグ流動性が良くなり、ビード形状が改善する反面、溶接金属中にCを多く含有するので、溶接金属の強度が高くなり、靭性が低下する。また、高炭素フェロマンガンの粒径が比較的細かいので、被覆の乾燥割れが発生しやすい。さらに、特許文献1に記載の低水素系被覆アーク溶接棒には、脱酸剤などが全く記載されていないので、プライマ塗装鋼板で溶接する場合、十分な耐ピット性が得られず、ピットが発生しやすいという問題点がある。 For example, Patent Document 1 specifies the contents of high carbon ferromanganese, magnesia clinker, magnesite, and metal fluoride having an average particle size of 50 to 90 μm, whereby a low hydrogen coating that can obtain a good bead shape can be obtained. Arc welding rods are disclosed. However, the low hydrogen-based shielded metal arc welding rod described in Patent Document 1 has improved slag fluidity and improved bead shape by containing high carbon ferromanganese, but contains a large amount of C in the weld metal. Therefore, the strength of the weld metal is increased and the toughness is decreased. Further, since the particle size of high carbon ferromanganese is relatively fine, drying cracks of the coating are likely to occur. Further, since the low hydrogen-based shielded metal arc welding rod described in Patent Document 1 does not contain any deoxidizing agent or the like, sufficient pit resistance cannot be obtained when welding with a primer-coated steel plate, and pits are formed. There is a problem that it is easy to occur.

また、特許文献2には、Ti、AlまたはMgなどの強脱酸剤による相乗効果によって、溶接金属を低酸素化し、溶接金属の低温靭性を改善した低温鋼用低水素系被覆アーク溶接棒が開示されている。しかし、特許文献2に記載された低温鋼用被覆アーク溶接棒では、溶接金属の低温靭性の向上は図れるものの、良好なビード形状は得ることができない。また、水素または水と反応性が高い金属元素を多く含むので、被覆の乾燥割れが発生しやすくなるという問題点がある。 Further, Patent Document 2 describes a low-hydrogen shielded metal arc welding rod for low-temperature steel that reduces oxygen in the weld metal and improves the low-temperature toughness of the weld metal by the synergistic effect of a strong deoxidizer such as Ti, Al or Mg. It is disclosed. However, with the shielded metal arc welding rod for low temperature steel described in Patent Document 2, although the low temperature toughness of the weld metal can be improved, a good bead shape cannot be obtained. In addition, since it contains a large amount of metal elements that are highly reactive with hydrogen or water, there is a problem that drying cracks of the coating are likely to occur.

さらに、特許文献3には、被覆剤中にNi−Mg合金を含有させることで、溶接金属を低酸素化して破壊靭性を改善する低水素系被覆アーク溶接棒が開示されている。しかし、特許文献3に記載の低水素系被覆アーク溶接棒は、良好な溶接金属の低温靭性が得られるものの、良好なビード形状が得られず、プライマ塗装鋼板で溶接する場合には十分な耐ピット性が得られずピットが発生しやすい。また、溶接棒製造時の乾燥の際に被覆割れが発生しやすいという問題点があった。 Further, Patent Document 3 discloses a low hydrogen-based shielded metal arc welding rod that improves fracture toughness by reducing oxygen in the weld metal by containing a Ni—Mg alloy in the coating agent. However, the low hydrogen-based shielded metal arc welding rod described in Patent Document 3 can obtain good low-temperature toughness of the weld metal, but cannot obtain a good bead shape, and has sufficient resistance when welding with a prime-coated steel sheet. Pit characteristics cannot be obtained and pits are likely to occur. In addition, there is a problem that coating cracks are likely to occur during drying during manufacturing of the welding rod.

特開平5−261592号公報Japanese Unexamined Patent Publication No. 5-261592 特開平10−175094号公報Japanese Unexamined Patent Publication No. 10-175094 特開平9−327793号公報Japanese Unexamined Patent Publication No. 9-327793

そこで本発明は、かかる問題点に鑑みて案出されたものであって、−60℃の低温で靭性が良好な溶接金属が得られ、プライマ塗装鋼板の水平すみ肉溶接において、ピットなどの溶接欠陥が発生せず、アンダーカットのない良好なビード形状が得られるなど溶接作業性に優れ、かつ、生産性が良好な水平すみ肉溶接用低水素系被覆アーク溶接棒を提供することを目的とする。 Therefore, the present invention has been devised in view of such a problem, and a weld metal having good toughness can be obtained at a low temperature of -60 ° C. An object of the present invention is to provide a low hydrogen-based shielded metal arc welding rod for horizontal fillet welding, which has excellent welding workability such as no defects and a good bead shape without undercuts and good productivity. do.

本発明の要旨は、鋼心線に被覆剤が塗布されている水平すみ肉溶接用低水素系被覆アーク溶接棒において、前記被覆剤は、被覆剤全質量に対する質量%で、金属炭酸塩の1種または2種以上の合計:5〜15%、金属弗化物の1種又は2種以上の合計:1〜10%、Ti酸化物のTiO換算値の合計:8〜18%、Si酸化物のSiO換算値の合計:8〜18%、Al酸化物のAl換算値の合計:1〜6%、MgO:5〜15%、C及びCを含む合金中のCの合計:0.1〜0.3%、Mn:2〜8%、Ni:1〜5%、Mg:0.1〜2.0%、前記Ni及びMgにはNi−Mg合金:1〜5%を含み、鉄粉:20〜40%、Na酸化物及びK酸化物のNaO換算値及びKO換算値の合計:1〜6%を含有し、その他は塗布剤、鉄合金からのFe分及び不可避不純物からなることを特徴とする。 The gist of the present invention is that in a low hydrogen-based coated arc welding rod for horizontal fillet welding in which a coating agent is applied to a steel core wire, the coating agent is 1 of a metal carbonate in mass% with respect to the total mass of the coating agent. Total of seeds or 2 or more: 5 to 15%, Total of 1 or 2 or more of metal fluorides: 1 to 10%, Total of Ti Oxide converted to TiO 2 : 8 to 18%, Si oxide Total SiO 2 conversion value: 8 to 18%, Total Al 2 O 3 conversion value of Al oxide: 1 to 6%, MgO: 5 to 15%, Total C in alloy containing C and C: 0.1-0.3%, Mn: 2-8%, Ni: 1-5%, Mg: 0.1-2.0%, Ni-Mg alloy: 1-5% for Ni and Mg. Contains 20-40% iron powder , total Na 2 O conversion value and K 2 O conversion value of Na oxide and K oxide: 1 to 6%, and the others are coating agents and Fe from iron alloys. It is characterized by being composed of minutes and unavoidable impurities.

また、被覆剤全質量に対する質量%で、Al:0.1〜0.6%をさらに含有することも特徴とする。 It is also characterized by further containing Al: 0.1 to 0.6% in mass% with respect to the total mass of the coating agent.

さらに、被覆剤全質量に対する質量%で、MnO:0.1〜3.0%をさらに含有することも特徴とする水平すみ肉溶接用低水素系被覆アーク溶接棒にある。 Further, the low hydrogen-based coated arc welding rod for horizontal fillet welding is also characterized in that it further contains MnO 2 : 0.1 to 3.0% in mass% with respect to the total mass of the coating agent.

本発明の水平すみ肉溶接用低水素系被覆アーク溶接棒によれば、低温で優れた靭性の溶接金属が得られ、プライマ塗装鋼板の水平すみ肉溶接でもピットなどの溶接欠陥が発生せず、アンダーカットのない良好なビード形状が得られるなど溶接作業性が良好で、かつ、生産性にも優れるので、溶接の品質向上が図れる。 According to the low hydrogen-based shielded metal arc welding rod for horizontal fillet welding of the present invention, a weld metal having excellent toughness can be obtained at a low temperature, and welding defects such as pits do not occur even in horizontal fillet welding of a prime-coated steel plate. Welding workability is good, such as obtaining a good bead shape without undercuts, and productivity is also excellent, so welding quality can be improved.

本発明者らは、水平すみ肉溶接用低水素系被覆アーク溶接棒の溶接金属の低温靭性について鋭意研究し、NiとMgの一部をNi−Mg合金に置換して被覆剤中に含有させることによって溶接金属の低温靭性を改善できることを見出して本発明を完成した。 The present inventors have diligently studied the low-temperature toughness of the weld metal of a low-hydrogen shielded metal arc welding rod for horizontal fillet welding, and replaced a part of Ni and Mg with a Ni-Mg alloy to contain it in the coating agent. The present invention has been completed by finding that the low temperature toughness of the weld metal can be improved by this.

水平すみ肉溶接用低水素系被覆アーク溶接棒は、低温で良好な溶接金属の靭性を確保する目的として、Ni、Mnや強脱酸剤であるAlやMg、Al−Mgなどを含有している。特に、Mgは、高温での酸素との反応性が高く、強脱酸剤としては優れている金属元素である。しかし、Mgの融点は約650℃であり、溶接棒の生産時の焼成温度400〜500℃の温度域でMg表面が酸化され、本来のMgとしての脱酸能力が十分に発揮されなくなる。また、溶接棒の生産時に水分を含む固着剤を添加するが、Mgは水との反応性も高いので、Mgの含有量が多いと、固着剤中の水分とMgが反応してしまい、溶接棒の乾燥中に被覆割れを生じやすくなるという問題点があった。 The low hydrogen-based shielded metal arc welding rod for horizontal fillet welding contains Ni, Mn and strong deoxidizers Al, Mg, Al-Mg, etc. for the purpose of ensuring good toughness of the weld metal at low temperature. There is. In particular, Mg is a metal element that has high reactivity with oxygen at high temperatures and is excellent as a strong deoxidizer. However, the melting point of Mg is about 650 ° C., and the Mg surface is oxidized in the temperature range of the firing temperature of 400 to 500 ° C. at the time of production of the welding rod, and the original deoxidizing ability as Mg is not sufficiently exhibited. In addition, a fixing agent containing water is added during the production of the welding rod, but since Mg has high reactivity with water, if the content of Mg is high, the water in the fixing agent reacts with Mg, and welding is performed. There is a problem that coating cracks are likely to occur during drying of the rod.

本発明者らは、Mg以外の脱酸剤として、Si、Mn、Si−Mnなどの脱酸剤についてさらに検討した結果、これら脱酸剤を適量添加することで生産時の被覆の被覆割れを抑制することができた。しかし、Mgを含有した時と同等の溶接金属の酸素量を得ようとすると、溶接金属中の合金成分が過剰となり低温靭性を改善するには至らなかった。 As a result of further study on deoxidizers such as Si, Mn, and Si-Mn as deoxidizers other than Mg, the present inventors further investigated the deoxidizers such as Si, Mn, and Si-Mn. I was able to suppress it. However, when trying to obtain the same amount of oxygen in the weld metal as when Mg was contained, the alloy component in the weld metal became excessive and the low temperature toughness could not be improved.

そこで、本発明者らは、水平すみ肉溶接用低水素系被覆アーク溶接棒において、低温靭性に有効な強脱酸剤について検討した結果、NiとMgの含有量を規定し、かつ、融点が約1200℃と高いNi−Mg合金を適量添加することで、焼成温度400〜500℃でもMgの酸化が抑制され、Mgが強脱酸剤として脱酸能が低減することなく機能できるので、溶接金属の低温靭性向上に有効であり、Alを適量添加することで、さらに低温靭性を向上できることを突き止めた。また、C及びCを含む合金やMnを適量添加することで、十分な溶接金属の強度を確保できることも突き止めた。 Therefore, as a result of examining a strong deoxidizer effective for low temperature toughness in a low hydrogen-based shielded metal arc welding rod for horizontal fillet welding, the present inventors have defined the contents of Ni and Mg and have a melting point. By adding an appropriate amount of Ni-Mg alloy, which is as high as about 1200 ° C, oxidation of Mg is suppressed even at a firing temperature of 400 to 500 ° C, and Mg can function as a strong deoxidizer without reducing its deoxidizing ability. It was found that it is effective in improving the low temperature toughness of metals, and that the low temperature toughness can be further improved by adding an appropriate amount of Al. It was also found that sufficient strength of the weld metal can be secured by adding an appropriate amount of C and an alloy containing C and Mn.

さらに、本発明者らは、Ni−Mg合金を適量添加することで、Mg単体としての含有量が抑えられるので、生産時の乾燥の被覆割れを低減することが可能となり、生産性が向上できることを突き止めた。 Furthermore, the present inventors can reduce the content of Mg as a single substance by adding an appropriate amount of Ni-Mg alloy, so that it is possible to reduce the coating cracking during drying during production, and the productivity can be improved. I found out.

溶接作業性に関しては、本発明者らは、アーク吹付け及びアーク安定性は金属炭酸塩、Na酸化物及びK酸化物、C及びCを含む合金、Ti酸化物及び鉄粉を適量添加することで良好になり、スパッタ発生量及びヒューム発生量を低減できることを見出した。また、スラグ被包性及びスラグ剥離性はSi酸化物及びMgOを適量添加することで、ビード形状はTi酸化物、Si酸化物、C及びCを含む合金、Al酸化物及びNi−Mg合金を適量添加することで良好になり、溶接時の棒焼けは鉄粉を適量添加することで防止できることを突き止めた。 Regarding welding workability, the present inventors add an appropriate amount of metal carbonate, Na oxide and K oxide, alloy containing C and C, Ti oxide and iron powder for arc spraying and arc stability. It was found that the amount of spatter generated and the amount of fume generated could be reduced. In addition, the slag encapsulation property and slag peelability are obtained by adding an appropriate amount of Si oxide and MgO, and the bead shape is Ti oxide, Si oxide, an alloy containing C and C, Al oxide and Ni-Mg alloy. It was found that adding an appropriate amount improved the condition, and that stick burning during welding could be prevented by adding an appropriate amount of iron powder.

また、本発明者らは、ピットなどの溶接欠陥は、金属弗化物や脱酸剤であるMn及びMgを適量添加することで、強いアークを維持しながら溶融池内の酸素を十分に脱酸できるので、ピットなどの溶接欠陥を防止できることを見出した。 Further, the present inventors can sufficiently deoxidize the oxygen in the molten pool while maintaining a strong arc by adding an appropriate amount of metal fluoride and deoxidizing agents Mn and Mg to welding defects such as pits. Therefore, it was found that welding defects such as pits can be prevented.

以下、本発明の水平すみ肉溶接用低水素系被覆アーク溶接棒の被覆剤の成分組成及び成分組成の限定理由について詳細に説明する。なお、各成分組成の含有量は、被覆剤全質量に対する質量%で表すこととし、その質量%を表すときには単に%と記載することとする。 Hereinafter, the component composition of the coating agent for the low hydrogen-based coated arc welding rod for horizontal fillet welding of the present invention and the reason for limiting the component composition will be described in detail. The content of each component composition shall be expressed in mass% with respect to the total mass of the coating agent, and when the mass% is expressed, it shall be simply described as%.

[金属炭酸塩の1種または2種以上の合計:5〜15%]
金属炭酸塩は、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、炭酸マンガンなどから添加され、アーク雰囲気中で分解して炭酸ガスを発生して溶融池に侵入しようとする酸素、窒素及び水素などのガス成分から保護するとともに、アークの吹付けを強くして溶融池の撹拌を高めることでピットなどの溶接欠陥の発生を防止する効果がある。金属炭酸塩の1種または2種以上の合計が5%未満であると、シールド効果が不足及びアークの吹付けが弱くなり、ピットなどの溶接欠陥が発生しやすくなる。一方、金属炭酸塩の1種または2種以上の合計が15%を超えると、アークの吹付けが強くなりすぎてアンダーカットが発生しやすくなり、ビード形状が不良となる。したがって、金属炭酸塩の1種または2種以上の合計は5〜15%とする。
[Total of one or more metal carbonates: 5-15%]
Metallic carbonate is added from magnesium carbonate, calcium carbonate, barium carbonate, manganese carbonate, etc., and decomposes in an arc atmosphere to generate carbonic acid gas, which is a gas component such as oxygen, nitrogen, and hydrogen that tries to enter the molten pool. In addition to protecting from the pits, it has the effect of preventing the occurrence of welding defects such as pits by strengthening the spraying of the arc and increasing the agitation of the molten pool. If the total of one or more of the metal carbonates is less than 5%, the shielding effect is insufficient, the arc spraying is weakened, and welding defects such as pits are likely to occur. On the other hand, if the total of one or more of the metal carbonates exceeds 15%, the arc spraying becomes too strong and undercuts are likely to occur, resulting in a poor bead shape. Therefore, the total of one or more metal carbonates is 5 to 15%.

[金属弗化物の1種または2種以上の合計:1〜10%]
金属弗化物は、蛍石、弗化マグネシウム、弗化バリウム、弗化アルミニウム、氷晶石、弗化ナトリウム、弗化リチウムなどから添加され、溶融スラグの流動性を調整するとともに、弗素の蒸気圧が高いので、酸素、窒素及び水素などのガス成分から溶融地を保護する効果がある。金属弗化物の1種または2種以上の合計が1%未満では、溶融地のシールド性が劣化し、ピットなどの溶接欠陥が発生しやすくなる。一方、金属弗化物の1種または2種以上の合計が10%を超えると、溶融スラグの融点が低下し、スラグ剥離性が不良となる。したがって、金属弗化物の1種または2種以上の合計は1〜10%とする。
[Total of one or more metal fluorides: 1-10%]
Metal fluorides are added from fluorite, magnesium fluoride, barium fluoride, aluminum fluoride, cryolite, sodium fluoride, lithium fluoride, etc. to adjust the fluidity of molten slag and the vapor pressure of fluoride. Therefore, it has the effect of protecting the molten land from gas components such as oxygen, nitrogen and hydrogen. If the total of one type or two or more types of metal fluoride is less than 1%, the shielding property of the molten metal deteriorates, and welding defects such as pits are likely to occur. On the other hand, if the total of one or more of the metal fluorides exceeds 10%, the melting point of the molten slag is lowered and the slag peelability is deteriorated. Therefore, the total of one or more types of metal fluoride is 1 to 10%.

[Ti酸化物のTiO換算値の合計:8〜18%]
Ti酸化物は、ルチール、酸化チタン、チタン酸ナトリウム、チタンスラグ、イルミナイトなどから添加され、アーク安定剤及びスラグ粘性の調整剤として作用し、アークを安定にしてスパッタ発生量を少なくし、ビード形状を良好にする効果がある。Ti酸化物のTiO換算値の合計が8%未満では、アークが不安定となってスパッタ発生量が多くなる。また、Ti酸化物のTiO換算値の合計が8%未満では、スラグの粘性が悪くなってビード形状が不良になる。一方、Ti酸化物のTiO換算値の合計が18%を超えると、スラグが緻密になりスラグ剥離性が不良となる。したがって、Ti酸化物のTiO換算値の合計は8〜18%とする。
[Total TiO 2 conversion value of Ti oxide: 8-18%]
Ti oxide is added from rutile, titanium oxide, sodium titanate, titanium slag, illuminate, etc., acts as an arc stabilizer and a slag viscosity modifier, stabilizes the arc, reduces the amount of spatter generated, and beads. It has the effect of improving the shape. If the total of the TIO 2 conversion values of the Ti oxide is less than 8%, the arc becomes unstable and the amount of spatter generated increases. On the other hand, if the total value of the Ti oxides converted to TIO 2 is less than 8%, the viscosity of the slag becomes poor and the bead shape becomes poor. On the other hand, when the total of the TIO 2 conversion values of the Ti oxide exceeds 18%, the slag becomes dense and the slag peelability becomes poor. Therefore, the total TiO 2 conversion value of Ti oxide is set to 8 to 18%.

[Si酸化物のSiO換算値の合計:8〜18%]
Si酸化物は、珪砂、長石、水ガラスなどから添加され、スラグ粘性の調整剤及びスラグ被包性を良好にする効果がある。Si酸化物のSiO換算値の合計が8%未満では、スラグ被包性が悪くなり、ビード形状が不良になる。一方、Si酸化物のSiO換算値の合計が18%を超えると、スラグの粘性が高くなり、溶融池と溶融スラグの距離が近くなるので、スラグ被包性が不良となる。したがって、Si酸化物のSiO換算値の合計は8〜18%とする。
[Total SiO 2 conversion value of Si oxide: 8-18%]
Si oxide is added from silica sand, feldspar, water glass and the like, and has an effect of improving slag viscosity adjusting agent and slag encapsulation. If the total SiO 2 conversion value of the Si oxide is less than 8%, the slag encapsulation property becomes poor and the bead shape becomes poor. On the other hand, when the total SiO 2 conversion value of the Si oxide exceeds 18%, the viscosity of the slag becomes high and the distance between the molten pool and the molten slag becomes short, so that the slag encapsulation property becomes poor. Therefore, the total value of Si oxide in terms of SiO 2 is set to 8 to 18%.

[Al酸化物のAl換算値の合計:1〜6%]
Al酸化物は、アルミナ、長石、マイカなどから添加され、溶融スラグの粘度を調整してビード形状を良好にする効果がある。Al酸化物のAl換算値の合計が1%未満では、溶融スラグの粘度が低くなり、ビード形状が不良になる。一方、Al酸化物のAl換算値の合計が6%を超えると、スラグの粘性が高くなることで、溶融池と溶融スラグの距離が近くなり、スラグ被包性が不良となる。したがって、Al酸化物のAl換算値の合計は1〜6%とする。
[Total Al 2 O 3 conversion value of Al oxide: 1 to 6%]
Al oxide is added from alumina, feldspar, mica, etc., and has the effect of adjusting the viscosity of molten slag to improve the bead shape. If the total Al 2 O 3 conversion value of the Al oxide is less than 1%, the viscosity of the molten slag becomes low and the bead shape becomes poor. On the other hand, when the total of the Al 2 O 3 conversion values of the Al oxide exceeds 6%, the viscosity of the slag becomes high, so that the distance between the molten pool and the molten slag becomes short, and the slag encapsulation property becomes poor. Therefore, the total of Al 2 O 3 conversion values of Al oxide is 1 to 6%.

[MgO:5〜15%]
MgOは、マグネシアクリンカーなどから添加され、スラグ剥離性を良好にする効果がある。MgOが5%未満では、スラグの凝固温度が低く、スラグ剥離性が不良になる。一方、MgOが15%を超えると、スラグの凝固温度が過剰に高くなり、ビード形状が不良になる。したがって、MgOは5〜15%とする。
[MgO: 5 to 15%]
MgO is added from magnesia clinker and the like, and has the effect of improving the slag peelability. If MgO is less than 5%, the solidification temperature of the slag is low and the slag peelability becomes poor. On the other hand, when MgO exceeds 15%, the solidification temperature of the slag becomes excessively high, and the bead shape becomes poor. Therefore, MgO is set to 5 to 15%.

[C及びCを含む合金中のCの合計:0.1〜0.3%]
Cは、黒鉛やFe−Mnなどの合金粉にCが付随している状態で添加され、溶接金属の強度を向上させ、アークの吹付けを強くして溶接金属の溶込みを深くしてビード形状を良好にする効果がある。C及びCを含む合金中のCの合計が0.1%未満では、アークの吹付けが弱くなり、十分な溶込み深さが得られず、ビード形状が不良となり、溶接金属の強度が低下する。一方、C及びCを含む合金中のCの合計が0.3%を超えると、溶接金属中にC量が増え、溶接金属の強度が高くなり、溶接金属の靭性が低下する。さらに、C及びCを含む合金中のCの合計が0.3%を超えると、溶融地のアーク温度が上昇し、ヒューム発生量が多くなるとともに、アークの吹付けが過剰に強くなり、スパッタ発生量も増加する。したがって、C及びCを含む合金中のC換算値の合計は0.1〜0.3%とする。
[Total of C in the alloy containing C and C: 0.1 to 0.3%]
C is added in a state where C is attached to an alloy powder such as graphite or Fe-Mn to improve the strength of the weld metal, strengthen the spraying of the arc, deepen the penetration of the weld metal, and bead. It has the effect of improving the shape. If the total of C in the alloy containing C and C is less than 0.1%, the arc spraying becomes weak, a sufficient penetration depth cannot be obtained, the bead shape becomes poor, and the strength of the weld metal decreases. do. On the other hand, when the total of C in the alloy containing C and C exceeds 0.3%, the amount of C in the weld metal increases, the strength of the weld metal increases, and the toughness of the weld metal decreases. Furthermore, when the total of C in the alloy containing C and C exceeds 0.3%, the arc temperature of the molten ground rises, the amount of fume generated increases, and the arc spraying becomes excessively strong, resulting in spatter. The amount generated also increases. Therefore, the total C conversion value in the alloy containing C and C is set to 0.1 to 0.3%.

[Mn:2〜8%]
Mnは、金属Mn、Fe−Mn、などの合金粉などから添加され、脱酸剤として作用し、溶接金属の強度及び靭性を向上させる効果がある。Mnが2%未満では、脱酸不足となって溶接金属の強度及び靭性が低下するとともに、ピットなどの溶接欠陥が発生しやすくなる。一方、Mnが8%を超えると、溶接金属の強度が過剰に高くなる。したがって、Mnは2〜8%とする。
[Mn: 2-8%]
Mn is added from alloy powders such as metal Mn and Fe-Mn, acts as a deoxidizer, and has the effect of improving the strength and toughness of the weld metal. If Mn is less than 2%, deoxidation is insufficient, the strength and toughness of the weld metal are lowered, and welding defects such as pits are likely to occur. On the other hand, when Mn exceeds 8%, the strength of the weld metal becomes excessively high. Therefore, Mn is set to 2 to 8%.

[Ni:1〜5%]
Niは、金属Ni、Fe−Ni、Ni−Mg合金などの合金粉などから添加され、溶接金属の強度及び靭性を向上させる効果がある。Niが1%未満では、必要な溶接金属の靭性が得られない。一方、Niが5%を超えると、溶接金属の強度が過剰に高くなる。したがって、Niは1〜5%とする。
[Ni: 1-5%]
Ni is added from alloy powders such as metallic Ni, Fe-Ni, and Ni-Mg alloys, and has the effect of improving the strength and toughness of the weld metal. If Ni is less than 1%, the required toughness of the weld metal cannot be obtained. On the other hand, when Ni exceeds 5%, the strength of the weld metal becomes excessively high. Therefore, Ni is set to 1 to 5%.

[Mg:0.1〜2.0%]
Mgは、金属Mg、Al−Mg、Ni−Mg合金などの合金粉などから添加され、強脱酸剤として作用し、ピットなどの溶接欠陥を防止し、溶接金属の靭性を向上する効果がある。Mgが0.1%未満では、脱酸不足となり、溶接金属の靭性が低下する。また、Mgが0.1%未満では、ピットなどの溶接欠陥が発生しやすくなる。一方、Mgが2.0%を超えると、溶接金属の靭性は向上するものの、溶接棒生産の乾燥時に被覆割れが発生しやすくなり、製品歩留りが低下し、生産性が悪くなる。したがって、Mgは0.1〜2.0%とする。
[Mg: 0.1 to 2.0%]
Mg is added from alloy powders such as metal Mg, Al-Mg, and Ni-Mg alloys, acts as a strong deoxidizer, prevents welding defects such as pits, and has the effect of improving the toughness of the weld metal. .. If Mg is less than 0.1%, deoxidation will be insufficient and the toughness of the weld metal will decrease. Further, if Mg is less than 0.1%, welding defects such as pits are likely to occur. On the other hand, if Mg exceeds 2.0%, the toughness of the weld metal is improved, but coating cracks are likely to occur during drying of the welding rod production, the product yield is lowered, and the productivity is deteriorated. Therefore, Mg is set to 0.1 to 2.0%.

[Ni−Mg合金:1〜5%]
前述の金属Ni及び金属Mgを含むNi−Mg合金は、生産性を向上させるとともに、ビード形状を良好にする効果がある。前述のNi及びMgを含むNi−Mg合金が1%未満では、被覆剤中のMgやAl−Mgが相対的に多くなり、乾燥時の被覆割れが発生しやすくなる。また、Ni及びMgを含むNi−Mg合金が1%未満では、溶接時に保護筒の溶融が不均一となり、アンダーカットが発生しやすくなり、ビード形状が不良になる。一方、前述のNi及びMgを含むNi−Mg合金が5%を超えると、スラグ剥離性が不良となる。したがって、前述のNi及びMgを含むNi−Mg合金は1〜5%とする。なお、Ni−Mg合金は、Niが70〜90%、Mgが10〜30%の割合とする。
[Ni-Mg alloy: 1-5%]
The above-mentioned Ni-Mg alloy containing metallic Ni and metallic Mg has the effect of improving productivity and improving the bead shape. If the content of the Ni-Mg alloy containing Ni and Mg is less than 1%, the amount of Mg and Al-Mg in the coating agent is relatively large, and coating cracks are likely to occur during drying. Further, if the content of the Ni—Mg alloy containing Ni and Mg is less than 1%, the protective cylinder melts unevenly during welding, undercuts are likely to occur, and the bead shape becomes poor. On the other hand, if the content of the Ni—Mg alloy containing Ni and Mg exceeds 5%, the slag peelability becomes poor. Therefore, the Ni-Mg alloy containing Ni and Mg described above is set to 1 to 5%. The Ni-Mg alloy has a ratio of 70 to 90% for Ni and 10 to 30% for Mg.

[鉄粉:20〜40%]
鉄粉は、アークを安定にする効果がある。鉄粉が20%未満では、アークが不安定になってスパッタ発生量が多くなる。一方、鉄粉が40%を超えると、被覆剤に電流が流れやすくなり、棒焼けを発生しやすくなる。したがって、鉄粉は20〜40%とする。
[Iron powder: 20-40%]
Iron powder has the effect of stabilizing the arc. If the iron powder content is less than 20%, the arc becomes unstable and the amount of spatter generated increases. On the other hand, when the iron powder exceeds 40%, an electric current tends to flow through the coating agent, and stick burning is likely to occur. Therefore, the iron powder is 20 to 40%.

[Na酸化物及びK酸化物のNaO換算値及びKO換算値の合計:1〜6%]
Na酸化物及びK酸化物は、水ガラス中の珪酸ナトリウム及び珪酸カリウム、カリ長石、カリガラス及びソーダ長石などから添加され、アークを安定にしてスパッタ発生量を低減する効果がある。Na酸化物及びK酸化物のNaO換算値及びKO換算値の合計が1%未満では、アークが不安定となってスパッタ発生量が多くなる。一方、Na酸化物及びK酸化物のNaO換算値及びKO換算値の合計が6%を超えると、アークの吹付けが過剰に強くなり、アンダーカットが発生しやすくなり、ビード形状が不良となる。したがって、Na酸化物及びK酸化物のNaO換算値及びKO換算値の合計は1〜6%とする。
[Total of Na 2 O conversion value and K 2 O conversion value of Na oxide and K oxide: 1 to 6%]
Na oxide and K oxide are added from sodium silicate and potassium silicate, potassium feldspar, potassium feldspar, soda feldspar and the like in water glass, and have the effect of stabilizing the arc and reducing the amount of spatter generated. If the total of the Na 2 O conversion value and the K 2 O conversion value of the Na oxide and the K oxide is less than 1%, the arc becomes unstable and the amount of spatter generated increases. On the other hand, when the total of the Na 2 O conversion value and the K 2 O conversion value of Na oxide and K oxide exceeds 6%, the arc spraying becomes excessively strong, undercut is likely to occur, and the bead shape is formed. Becomes defective. Therefore, the total of the Na 2 O conversion value and the K 2 O conversion value of Na oxide and K oxide is 1 to 6%.

[Al:0.1〜0.6%]
Alは、金属Al、Fe−Al、Al−Mgなどの合金粉などから添加され、強脱酸剤として作用し、ピットなどの溶接欠陥を防止し、溶接金属の靭性をさらに向上する効果がある。Alが0.1%未満では、ピットなどの溶接欠陥の発生を抑制する効果が十分に得られず、溶接金属の靭性の向上効果も十分に得られない。一方、Alが0.6%を超えると、Alが溶接金属中に過剰に留まってしまい、溶接金属中の酸素量が高くなり、溶接金属の靭性が低下する。したがって、Alは0.1〜0.6%とする。
[Al: 0.1-0.6%]
Al is added from alloy powders such as metal Al, Fe-Al, and Al-Mg, acts as a strong deoxidizer, prevents welding defects such as pits, and has the effect of further improving the toughness of the weld metal. .. If Al is less than 0.1%, the effect of suppressing the occurrence of welding defects such as pits cannot be sufficiently obtained, and the effect of improving the toughness of the weld metal cannot be sufficiently obtained. On the other hand, when Al exceeds 0.6%, Al 2 O 3 stays excessively in the weld metal, the amount of oxygen in the weld metal increases, and the toughness of the weld metal decreases. Therefore, Al is 0.1 to 0.6%.

[MnO:0.1〜3.0%]
MnOは、アーク雰囲気中で吸熱反応により分解され、アークの吹付けをさらに強くする効果を有する。MnOが0.1%未満では、アークの吹付けを強くする効果が十分に得られない。一方、MnOが3.0%を超えると、アークの吹付けが過剰に強くなり、アンダーカットが発生しやすくなり、ビード形状が不良となる。したがって、MnOは0.1〜3.0%とする。
[MnO 2 : 0.1 to 3.0%]
MnO 2 is decomposed by an endothermic reaction in an arc atmosphere, and has the effect of further strengthening the spraying of the arc. If MnO 2 is less than 0.1%, the effect of strengthening the spraying of the arc cannot be sufficiently obtained. On the other hand, when MnO 2 exceeds 3.0%, the arc spraying becomes excessively strong, undercuts are likely to occur, and the bead shape becomes poor. Therefore, MnO 2 is set to 0.1 to 3.0%.

なお、本発明の水平すみ肉溶接用低水素系被覆アーク溶接棒の被覆剤中のその他は、上述の成分のほか、生産性の観点からアルギン酸ソーダ、セルロースなどの塗布剤が0.1〜3%、Fe−Mn、Fe−Ni、Fe−Alなどの鉄合金からのFe分及び不可避不純物である。 In addition to the above-mentioned components, the other components in the coating agent for the low-hydrogen shielded metal arc welding rod for horizontal fillet welding of the present invention include 0.1 to 3 coating agents such as sodium alginate and cellulose from the viewpoint of productivity. %, Fe content from iron alloys such as Fe-Mn, Fe-Ni, Fe-Al and unavoidable impurities.

また、使用する鋼心線は、JIS G 3523 SWY11を用いることが好ましい。さらに、鋼心線への被覆剤の被覆率は35〜55%であることが好ましい。 Further, it is preferable to use JIS G 3523 SWY11 as the steel core wire to be used. Further, the coverage of the coating agent on the steel core wire is preferably 35 to 55%.

以下、本発明の効果を実施例により更に詳細に説明する。 Hereinafter, the effects of the present invention will be described in more detail with reference to Examples.

表1に示す各種被覆剤を直径5.0mm、長さ700mmのJIS G 3523 SWY11の鋼心線(鋼心線全質量に対し、C:0.06質量%、Si:0.09質量%、Mn:0.51%、P:0.008%、S:0.003質量)に、表1に示す組成成分の被覆剤を被覆率40〜50%で塗布した後に400℃で焼成した溶接棒を各種試作し、生産性、溶接作業性、耐ピット性及び機械的性質について調査した。 Various coating agents shown in Table 1 are used for JIS G 3523 SWY11 steel core wire having a diameter of 5.0 mm and a length of 700 mm (C: 0.06% by mass, Si: 0.09% by mass, based on the total mass of the steel core wire). Mn: 0.51%, P: 0.008%, S: 0.003 mass), the coating agent of the composition component shown in Table 1 was applied at a coverage rate of 40 to 50%, and then the welding rod was fired at 400 ° C. We made various prototypes and investigated productivity, welding workability, pit resistance and mechanical properties.

Figure 2021133412
Figure 2021133412

生産性の評価は、各種試作溶接棒を500kg生産し、生産時に被覆割れなどの有無を目視で確認し、被覆外観が良好で欠陥がないものを良好とした。 In the productivity evaluation, 500 kg of various prototype welding rods were produced, and the presence or absence of coating cracks was visually confirmed at the time of production, and those having a good coating appearance and no defects were considered to be good.

溶接作業性の評価は、各種試作溶接棒を用い、JIS G 3106 SM490A、板厚12mm×幅100mm×長さ1000mmの鋼板表面に膜厚25〜35μmのウォッシュプライマを塗装したプライマ塗装鋼板をT字型に組んだT字試験体にて、交流溶接機を用いてグラビティ溶接で溶接電流200Aで水平すみ肉溶接を行い、アークの吹付け、アーク安定性、スパッタ発生量及びヒューム発生量、ビード形状、スラグ被包性、スラグ剥離性の良否、棒焼けの有無を目視で調査した。なお、耐ピット性は、溶接ビード全長にピットが全く発生しなかったものを良好とした。 Welding workability was evaluated by using various prototype welding rods and using a T-shaped primer-coated steel plate with a JIS G 3106 SM490A, plate thickness 12 mm x width 100 mm x length 1000 mm coated with a wash primer with a thickness of 25 to 35 μm. Horizontal fillet welding is performed with a T-shaped test piece assembled in a mold with a welding current of 200 A by gravity welding using an AC welding machine, and arc spraying, arc stability, spatter generation amount and fume generation amount, bead shape. , The slag encapsulation property, the quality of the slag peeling property, and the presence or absence of stick burning were visually investigated. The pit resistance was good when no pits were generated over the entire length of the weld bead.

機械的性質の評価は、JIS G 3106 SM490Aの板厚20mmの鋼板を用い、JIS Z 3111に準じて交流溶接機で溶着金属試験を行い、引張試験片(A1号)と衝撃試験片(Vノッチ試験片)を採取して引張試験及び衝撃試験を行った。引張試験は引張強さが490〜600MPa、衝撃試験は試験温度−60℃で各々繰り返し3回の吸収エネルギーの平均値が34J以上を良好とした。これらの調査結果を表2にまとめて示す。 For the evaluation of mechanical properties, a weld metal test was conducted with an AC welder according to JIS Z 3111 using a steel plate with a thickness of 20 mm of JIS G 3106 SM490A, and a tensile test piece (A1) and an impact test piece (V notch) were evaluated. The test piece) was collected and subjected to a tensile test and an impact test. In the tensile test, the tensile strength was 490 to 600 MPa, and in the impact test, the test temperature was -60 ° C., and the average value of the absorbed energy three times was set to be good at 34 J or more. The results of these surveys are summarized in Table 2.

Figure 2021133412
Figure 2021133412

表1及び表2中溶接棒No.1〜溶接棒No.15が本発明例、溶接棒No.16〜溶接棒No.30は比較例である。本発明である溶接棒No.1〜溶接棒No.15は、被覆剤中の金属炭酸塩の合計、金属弗化物の合計、Ti酸化物のTiO換算値の合計、Si酸化物のSiO換算値の合計、Al酸化物のAl換算値の合計、MgO、C及びCを含む合金中のCの合計、Mn、Ni、Mg、Ni−Mg合金、鉄粉、Na酸化物及びK酸化物のNaO換算値及びKO換算値の合計が適量であるので、生産時に被覆割れの発生は無いなど生産性は良好であった。また、アークの吹付けが良好であり、アークが安定しており、ヒューム発生量及びスパッタ発生量が少なく、ビード形状が良好であり、スラグの被包性及びスラグ剥離性が良好で、棒焼けが発生しないなど溶接作業性が良好であった。また、溶着金属中にピットの発生も無く、溶着金属の引張強さ及び吸収エネルギーともに良好であった。 Welding rod Nos. in Tables 1 and 2. 1-Welding rod No. 15 is an example of the present invention, welding rod No. 15. 16-Welding rod No. 30 is a comparative example. Welding rod No. of the present invention. 1-Welding rod No. Reference numeral 15 denotes a total of metal carbonates in the coating agent, a total of metal fluorides, a total of Ti oxide converted to TiO 2, a total of Si oxide converted to SiO 2 , and an Al oxide converted to Al 2 O 3. Total values, total C in alloys containing MgO, C and C, Na 2 O conversion values and K 2 O conversion values of Mn, Ni, Mg, Ni-Mg alloys, iron powder, Na oxides and K oxides Since the total value was an appropriate amount, the productivity was good, such as no coating cracking during production. In addition, the spraying of the arc is good, the arc is stable, the amount of fume and spatter generated is small, the bead shape is good, the slag encapsulation and slag peelability are good, and the stick burns. Welding workability was good, such as no occurrence of slag. In addition, no pits were generated in the weld metal, and both the tensile strength and the absorbed energy of the weld metal were good.

また、溶接棒No.4、6、8、9、12、13、15は、Alが適量添加されているので、溶着金属の吸収エネルギーが60J以上とさらに良好であった。さらに、溶接棒No.5、8、9、11、13〜15は、MnOが適量添加されているので、アークの吹付けが強くて良好であった。 In addition, the welding rod No. In 4, 6, 8, 9, 12, 13, and 15, since an appropriate amount of Al was added, the absorption energy of the weld metal was even better at 60 J or more. Furthermore, the welding rod No. In 5, 8, 9, 11, 13 to 15, since an appropriate amount of MnO 2 was added, the arc spraying was strong and good.

比較例中の溶接棒No.16は、金属炭酸塩の合計が多いので、アークの吹付けが過剰に強くなり、アンダーカットが発生してビード形状が不良であった。また、C及びCを含む合金中のCの合計が多いので、ヒューム発生量及びスパッタ発生量が多かった。さらに、溶着金属中にCが過剰に固溶し、溶着金属の引張強さが高く、吸収エネルギーが低かった。 Welding rod No. in the comparative example. In No. 16, since the total amount of metal carbonate was large, the arc spraying became excessively strong, undercut occurred, and the bead shape was poor. Further, since the total amount of C in the alloy containing C and C was large, the amount of fume generated and the amount of spatter generated were large. Further, C was excessively dissolved in the weld metal, the tensile strength of the weld metal was high, and the absorbed energy was low.

溶接棒No.17は、金属炭酸塩の合計が少ないので、アークの吹付けが弱く、ピットが発生した。また、Mnが多いので、溶着金属の引張強さが高かった。 Welding rod No. In No. 17, since the total amount of metal carbonate was small, the arc was weakly sprayed and pits were generated. Further, since the amount of Mn was large, the tensile strength of the weld metal was high.

溶接棒No.18は、金属弗化物の合計が多いので、スラグ剥離性が不良であった。また、Na酸化物及びK酸化物のNaO換算値及びKO換算値の合計が多いので、アークの吹付けが過剰に強く、アンダーカットが発生してビード形状が不良であった。 Welding rod No. In No. 18, the total amount of metal fluoride was large, so that the slag removability was poor. Further, since the total of the Na 2 O conversion value and the K 2 O conversion value of Na oxide and K oxide was large, the arc spraying was excessively strong, undercut occurred, and the bead shape was poor.

溶接棒No.19は、金属弗化物の合計が少ないので、溶融池のシールド性が低下し、ピットが発生した。また、Ni−Mg合金が少ないので、アンダーカットが発生してビード形状が不良であった。さらに、Ni−Mg合金が少ないので、生産時に乾燥割れが発生し、生産性が悪かった。 Welding rod No. In No. 19, since the total amount of metal fluoride was small, the shielding property of the molten pool was lowered and pits were generated. Further, since the amount of Ni—Mg alloy was small, undercut occurred and the bead shape was poor. Further, since the amount of Ni—Mg alloy is small, drying cracks occur during production, resulting in poor productivity.

溶接棒No.20は、C及びCを含む合金中のCの合計が少ないので、アークの吹付けが弱く、溶込みが十分に得られずにビード形状が不良であった。また、溶着金属の引張強さが低かった。さらに、MnOが少ないので、アークの吹付けを強くする効果は得られなかった。 Welding rod No. In No. 20, since the total amount of C in the alloy containing C and C was small, the arc spraying was weak, sufficient penetration could not be obtained, and the bead shape was poor. In addition, the tensile strength of the weld metal was low. Further, since the amount of MnO 2 is small, the effect of strengthening the spraying of the arc could not be obtained.

溶接棒No.21は、Mnが少ないので、脱酸不足となり、ピットが発生し、溶着金属の引張強さ及び吸収エネルギーが低かった。また、Alが少ないので、ピットの発生の抑制及び溶着金属の吸収エネルギーを向上する効果は得られなかった。 Welding rod No. In No. 21, since Mn was small, deoxidation was insufficient, pits were generated, and the tensile strength and absorbed energy of the weld metal were low. Further, since the amount of Al is small, the effects of suppressing the generation of pits and improving the absorbed energy of the weld metal could not be obtained.

溶接棒No.22は、Ti酸化物のTiO換算値の合計が多いので、スラグが緻密になり、スラグ剥離性が不良であった。また、Si酸化物のSiO換算値の合計が少ないので、スラグの被包性が悪く、ビード形状が不良であった。 Welding rod No. In No. 22, since the total of the TiO 2 conversion values of the Ti oxide was large, the slag became dense and the slag peelability was poor. Further, since the total value of the Si oxides converted to SiO 2 is small, the slag encapsulation property is poor and the bead shape is poor.

溶接棒No.23は、Ti酸化物のTiO換算値の合計が少ないので、アークが不安定で、スパッタ発生量が多く、ビード形状が不良であった。また、Al酸化物のAl換算値の合計が多いので、スラグ被包性が不良であった。 Welding rod No. In No. 23, since the total of the TIO 2 conversion values of the Ti oxide was small, the arc was unstable, the amount of spatter generated was large, and the bead shape was poor. Further, since the total of the Al 2 O 3 conversion values of the Al oxide was large, the slag encapsulation property was poor.

溶接棒No.24は、Si酸化物のSiO換算値の合計が多いので、スラグ被包性が不良であった。また、MnOが多いので、アークの吹付けが過剰に強く、アンダーカットが発生してビード形状が不良であった。 Welding rod No. In No. 24, the total value of Si oxides converted to SiO 2 was large, so that the slag encapsulation property was poor. Further, since MnO 2 is large, the arc spraying is excessively strong, undercut occurs, and the bead shape is poor.

溶接棒No.25は、Al酸化物のAl換算値の合計が少ないので、ビード形状が不良であった。また、Niが少ないので、溶着金属の吸収エネルギーが低かった。 Welding rod No. No. 25 had a poor bead shape because the total of Al 2 O 3 conversion values of Al oxide was small. Moreover, since the amount of Ni was small, the absorbed energy of the weld metal was low.

溶接棒No.26は、MgOが多いので、スラグの凝固が早くなり、ビード形状が不良であった。また、Na酸化物及びK酸化物のNaO換算値及びKO換算値の合計が少ないので、アークが不安定となり、スパッタ発生量が多かった。 Welding rod No. In No. 26, since there was a large amount of MgO, the slag solidified quickly and the bead shape was poor. Further, since the total of the Na 2 O conversion value and the K 2 O conversion value of Na oxide and K oxide was small, the arc became unstable and the amount of spatter generated was large.

溶接棒No.27は、MgOが少ないので、スラグの凝固温度が低く、スラグ剥離性が不良であった。また、鉄粉が少ないので、被覆の通電性が悪くなり、アークが不安定となり、スパッタ発生量が多かった。 Welding rod No. In No. 27, since the amount of MgO was small, the solidification temperature of the slag was low and the slag peelability was poor. Further, since the amount of iron powder was small, the electrical conductivity of the coating was deteriorated, the arc became unstable, and the amount of spatter generated was large.

溶接棒No.28は、Niが多いので、溶着金属の引張強さが高かった。また、Mgが多いので、乾燥時で被覆割れが発生し、生産性が悪かった。 Welding rod No. No. 28 had a high tensile strength of the weld metal because it contained a large amount of Ni. In addition, since the amount of Mg is large, coating cracks occur during drying, resulting in poor productivity.

溶接棒No.29は、Mgが少ないので、脱酸不足となり、ピットが発生した。また、Mgが少ないので、溶着金属の吸収エネルギーが低かった。さらに、鉄粉が多いので、溶接時に棒焼けが発生した。 Welding rod No. In No. 29, since the amount of Mg was small, deoxidation was insufficient and pits were generated. Moreover, since the amount of Mg was small, the absorbed energy of the weld metal was low. Furthermore, since there is a large amount of iron powder, stick burning occurred during welding.

溶接棒No.30は、Ni−Mgが多いので、スラグ剥離性が不良となった。また、Alが多いので、溶着金属の吸収エネルギーが低かった。 Welding rod No. No. 30 had a large amount of Ni-Mg, so that the slag peelability was poor. Moreover, since the amount of Al was large, the absorbed energy of the weld metal was low.

Claims (3)

鋼心線に被覆剤が塗布されている水平すみ肉溶接用低水素系被覆アーク溶接棒において、
前記被覆剤は、被覆剤全質量に対する質量%で、
金属炭酸塩の1種または2種以上の合計:5〜15%、
金属弗化物の1種または2種以上の合計:1〜10%、
Ti酸化物のTiO換算値の合計:8〜18%、
Si酸化物のSiO換算値の合計:8〜18%、
Al酸化物のAl換算値の合計:1〜6%、
MgO:5〜15%、
C及びCを含む合金中のCの合計:0.1〜0.3%、
Mn:2〜8%、
Ni:1〜5%、
Mg:0.1〜2.0%、
前記Ni及びMgはNi−Mg合金:1〜5%を含み、
鉄粉:20〜40%、
Na酸化物及びK酸化物のNaO換算値及びKO換算値の合計:1〜6%を含有し、
その他は塗布剤、鉄合金からのFe分及び不可避不純物からなることを特徴とする水平すみ肉溶接用低水素系被覆アーク溶接棒。
In a low hydrogen-based shielded metal arc welding rod for horizontal fillet welding in which a coating agent is applied to the steel core wire,
The coating agent is a mass% based on the total mass of the coating agent.
Total of one or more metal carbonates: 5-15%,
Total of one or more metal fluorides: 1-10%,
Total TiO 2 conversion value of Ti oxide: 8-18%,
Total SiO 2 conversion value of Si oxide: 8-18%,
Total Al 2 O 3 conversion value of Al oxide: 1 to 6%,
MgO: 5-15%,
Total of C in the alloy containing C and C: 0.1-0.3%,
Mn: 2-8%,
Ni: 1-5%,
Mg: 0.1 to 2.0%,
The Ni and Mg contain a Ni—Mg alloy: 1 to 5%.
Iron powder: 20-40%,
Total of Na 2 O conversion value and K 2 O conversion value of Na oxide and K oxide: 1 to 6% is contained.
Others are low hydrogen-based shielded metal arc welding rods for horizontal fillet welding, which are composed of a coating agent, Fe content from an iron alloy, and unavoidable impurities.
被覆剤全質量に対する質量%で、Al:0.1〜0.6%をさらに含有することを特徴とする請求項1に記載の水平すみ肉溶接用低水素系被覆アーク溶接棒。 The low hydrogen-based coated arc welding rod for horizontal fillet welding according to claim 1, further containing Al: 0.1 to 0.6% in mass% with respect to the total mass of the coating agent. 被覆剤全質量に対する質量%で、MnO:0.1〜3.0%をさらに含有することを特徴とする請求項1または請求項2に記載の水平すみ肉溶接用低水素系被覆アーク溶接棒。 The low hydrogen-based shielded metal arc welding for horizontal fillet welding according to claim 1 or 2, further containing MnO 2 : 0.1 to 3.0% in mass% with respect to the total mass of the coating agent. rod.
JP2020033164A 2020-02-28 2020-02-28 Low hydrogen coated arc welding rod for horizontal fillet welding Active JP7346328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020033164A JP7346328B2 (en) 2020-02-28 2020-02-28 Low hydrogen coated arc welding rod for horizontal fillet welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020033164A JP7346328B2 (en) 2020-02-28 2020-02-28 Low hydrogen coated arc welding rod for horizontal fillet welding

Publications (2)

Publication Number Publication Date
JP2021133412A true JP2021133412A (en) 2021-09-13
JP7346328B2 JP7346328B2 (en) 2023-09-19

Family

ID=77659659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020033164A Active JP7346328B2 (en) 2020-02-28 2020-02-28 Low hydrogen coated arc welding rod for horizontal fillet welding

Country Status (1)

Country Link
JP (1) JP7346328B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6434387B2 (en) 2015-09-29 2018-12-05 日鐵住金溶接工業株式会社 Low hydrogen coated arc welding rod
JP6821445B2 (en) 2017-01-17 2021-01-27 日鉄溶接工業株式会社 Shielded metal arc welding rod for low hydrogen fillet welding
JP7039374B2 (en) 2018-04-11 2022-03-22 日鉄溶接工業株式会社 Shielded metal arc welding rod for low hydrogen fillet welding

Also Published As

Publication number Publication date
JP7346328B2 (en) 2023-09-19

Similar Documents

Publication Publication Date Title
JP5207994B2 (en) Metal flux cored wire for Ar-CO2 mixed gas shielded arc welding
JP5179073B2 (en) Flux-cored wire for gas shielded arc welding
JP5557790B2 (en) Flux-cored wire for 2-electrode horizontal fillet CO2 gas shielded arc welding
JP2015217393A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP6437419B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP5014189B2 (en) Two-electrode fillet gas shielded arc welding method
JP4838100B2 (en) Flux-cored wire for horizontal corner gas shielded arc welding for weathering steel
JP4425756B2 (en) Flux-cored wire for horizontal fillet welding
JP7039374B2 (en) Shielded metal arc welding rod for low hydrogen fillet welding
JP6821445B2 (en) Shielded metal arc welding rod for low hydrogen fillet welding
JP2016203179A (en) Flux-cored wire for gas-shielded arc welding
JP2012051021A (en) FLUX-CORED WIRE FOR Ar-CO2 MIXED GAS SHIELDED ARC WELDING
JP5938375B2 (en) Flux-cored wire for 2-electrode horizontal fillet CO2 gas shielded arc welding
JP2021090980A (en) Flux-cored wire for gas shielded arc welding for coastal weather-resistant steel
JP2020168651A (en) COATED ARC WELDING ELECTRODE FOR 9% Ni STEEL WELDING
JP6688162B2 (en) Illuminite coated arc welding rod
JP5824403B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP7346328B2 (en) Low hydrogen coated arc welding rod for horizontal fillet welding
JP2003025088A (en) Flux cored wire for gas-shielded arc welding
JP2010194571A (en) Flux-cored wire for two-electrode horizontal fillet gas shield arc welding
JP6845094B2 (en) High titanium oxide shielded metal arc welding rod
JP2021109200A (en) Iron powder low hydrogen type coated arc welding electrode
JPH03294092A (en) Flux cored wire electrode for gas shielded arc welding
JP7210410B2 (en) Iron Powder Low Hydrogen Type Coated Arc Welding Rod
JP6999461B2 (en) High titanium oxide-based shielded metal arc welding rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230906

R150 Certificate of patent or registration of utility model

Ref document number: 7346328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150