JP2021133317A - Filter production method - Google Patents

Filter production method Download PDF

Info

Publication number
JP2021133317A
JP2021133317A JP2020031974A JP2020031974A JP2021133317A JP 2021133317 A JP2021133317 A JP 2021133317A JP 2020031974 A JP2020031974 A JP 2020031974A JP 2020031974 A JP2020031974 A JP 2020031974A JP 2021133317 A JP2021133317 A JP 2021133317A
Authority
JP
Japan
Prior art keywords
filter
catalyst
organic solvent
slurry
filter medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020031974A
Other languages
Japanese (ja)
Other versions
JP7369062B2 (en
Inventor
将利 勝木
Masatoshi Katsuki
将利 勝木
匠 鈴木
Takumi Suzuki
匠 鈴木
健太 垣谷
Kenta Kakitani
健太 垣谷
浩庸 秋山
Hiroyasu Akiyama
浩庸 秋山
輝一 西口
Terukazu Nishiguchi
輝一 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2020031974A priority Critical patent/JP7369062B2/en
Priority to CN202180016084.6A priority patent/CN115151328A/en
Priority to PCT/JP2021/001944 priority patent/WO2021171840A1/en
Publication of JP2021133317A publication Critical patent/JP2021133317A/en
Application granted granted Critical
Publication of JP7369062B2 publication Critical patent/JP7369062B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Filtering Materials (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Catalysts (AREA)

Abstract

To provide a method for producing at low cost, a filter in which a PTFE-based material such as Teflon is adopted as a filter material and a high contact efficiency with gas is achieved.SOLUTION: A filter production method comprises: a step of deriving every filter material, the relation of concentration of organic solvent included in a catalyst slurry/organic solvent in a water system with the support amount of a catalyst supported on the filter material when applying the catalyst slurry on the filter material; a step of determining the concentration of the organic solvent from a target support amount supported by the filter material based on the above relation derived in the above derivation step; a step of producing the catalyst slurry having a concentration equal to or higher than that of the organic solvent determined in the concentration determining step; and a step of applying the catalyst slurry produced in the slurry production step to the filter material.SELECTED DRAWING: Figure 1

Description

本開示は、フィルタの製造方法に関する。 The present disclosure relates to a method for manufacturing a filter.

特許文献1には、触媒粒子を担持した延伸ポリテトラフルオロエチレン(以下「PTFE」と記す)多孔質膜またはテープの製造方法が開示されている。かかる延伸PTFE多孔質膜またはテープの製造方法では、分散液中の触媒粒子の平均粒径は、含浸されるテープ状多孔質PTFEの平均孔径よりも有意に小さく、かつ、0.001〜0.1μmの範囲内とすることが好ましいとされている。また、テープ状多孔質PTFEに所期の触媒担持量の10倍量の触媒が含浸されるように触媒分散液等における触媒濃度を0.1〜10質量%の範囲内で任意に調整できることが好ましいとされている。 Patent Document 1 discloses a method for producing a stretched polytetrafluoroethylene (hereinafter referred to as “PTFE”) porous membrane or tape carrying catalyst particles. In the method for producing a stretched PTFE porous membrane or tape, the average particle size of the catalyst particles in the dispersion is significantly smaller than the average pore size of the impregnated tape-shaped porous PTFE, and 0.001 to 0. It is said that it is preferably within the range of 1 μm. Further, the catalyst concentration in the catalyst dispersion or the like can be arbitrarily adjusted within the range of 0.1 to 10% by mass so that the tape-shaped porous PTFE is impregnated with the catalyst in an amount 10 times the desired amount of the catalyst supported. It is said to be preferable.

特許文献2には、PTFE分散系と触媒粒子を混合してスラリーを作成する工程と、そのスラリーを乾燥して作成した粉末からペーストを作成する工程と、そのペーストから作成したエレメントを加熱・延伸膨張し、ポリマー結節を有する多孔質延伸膨張PTFEマトリックスにする工程と、含む化学的反応性基材の製造方法が開示されている。 Patent Document 2 describes a step of mixing a PTFE dispersion system and catalyst particles to prepare a slurry, a step of preparing a paste from a powder prepared by drying the slurry, and heating and stretching an element prepared from the paste. Disclosed is a step of expanding to form a porous stretch-expanded PTFE matrix with polymer nodules and a method of producing a chemically reactive substrate comprising.

特許第5455407号公報Japanese Patent No. 5455407 特表平11−505469号公報Special Table No. 11-505469

しかしながら、特許文献1に開示された延伸PTFE多孔質膜またはテープの製造方法では、触媒粒子を微粒にするためには大きな粉砕動力が必要となるばかりか、PTFEの平均孔径にあわせて触媒粒子径を調整する必要があり、先ず触媒粉体を準備するのに非常に多くのエネルギーを必要とし高コストになり、延伸時には触媒担持分布が生じ、排ガスと触媒の接触効率が低下するという課題がある。また、触媒濃度は0.1〜10質量パーセントの範囲内でしか適用できないため、触媒担持量を増加させるには複数の含浸工程が必要となり、製造コスト、製造時間が増大するという課題がある。更に、含浸により触媒を担持しているため、触媒スラリーにテープ状多孔質PTFE全体を含浸させる必要があり、廃棄する触媒粉末や溶媒が増えるという課題がある。 However, in the method for producing a stretched PTFE porous film or tape disclosed in Patent Document 1, not only a large crushing power is required to make the catalyst particles fine, but also the catalyst particle size is matched with the average pore size of the PTFE. First, it requires a large amount of energy to prepare the catalyst powder, resulting in high cost, a catalyst-supported distribution occurs during stretching, and the contact efficiency between the exhaust gas and the catalyst is reduced. .. Further, since the catalyst concentration can be applied only in the range of 0.1 to 10% by mass, a plurality of impregnation steps are required to increase the catalyst loading amount, and there is a problem that the production cost and the production time increase. Further, since the catalyst is supported by impregnation, it is necessary to impregnate the entire tape-shaped porous PTFE into the catalyst slurry, and there is a problem that the amount of catalyst powder and solvent to be discarded increases.

また、特許文献2に開示された化学的反応性基材の製造方法では、加熱・延伸膨張するエレメント(ペースト)に含まれる触媒粒子が原因でエレメントに欠点が生じ、また延伸膨張性が悪くなるという課題がある。また、触媒粒子が含まれるエレメント(ペースト)を延伸膨張すると、高延伸倍率を実現できないという課題がある。特にエレメント(ペースト)に欠点がある場合に延伸倍率が低くなり多孔質マトリックスの強度が不十分となるちという課題がある。 Further, in the method for producing a chemically reactive base material disclosed in Patent Document 2, defects occur in the element due to the catalyst particles contained in the element (paste) that heats and stretches and expands, and the stretch and expandability deteriorates. There is a problem. Further, when an element (paste) containing catalyst particles is stretched and expanded, there is a problem that a high stretching ratio cannot be realized. In particular, when the element (paste) has a defect, there is a problem that the draw ratio becomes low and the strength of the porous matrix becomes insufficient.

本開示は、上述する事情に鑑みてなされたもので、テフロン(登録商標)等のPTFE系の材料をろ材に採用したフィルタを低コストで製造し、かつガスとの高い接触効率を実現するフィルタの製造方法を提供することを目的とする。 This disclosure has been made in view of the above circumstances, and is a filter that uses a PTFE-based material such as Teflon (registered trademark) as a filter medium at low cost and realizes high contact efficiency with gas. It is an object of the present invention to provide the manufacturing method of.

上記目的を達成するため、少なくとも一実施形態に係るフィルタの製造方法は、
ろ材ごとに、触媒スラリーに含まれる有機溶媒/水系中の前記有機溶媒の濃度と前記触媒スラリーを前記ろ材に塗布したときに前記ろ材に担持される触媒の担持量との関係を導き出す関係導出ステップと、
前記関係導出ステップにおいて導き出された前記関係に基づいて前記ろ材に担持させる目標担持量から前記有機溶媒の濃度を決定する濃度決定ステップと、
前記濃度決定ステップにおいて決定された前記有機溶媒の濃度以上の前記触媒スラリーを製造するスラリー製造ステップと、
前記スラリー製造ステップにおいて製造された前記触媒スラリーを前記ろ材に塗布するスラリー塗布ステップと、
を有する。
In order to achieve the above object, the method for manufacturing a filter according to at least one embodiment is
For each filter medium, a relationship derivation step for deriving the relationship between the concentration of the organic solvent in the organic solvent / aqueous system contained in the catalyst slurry and the amount of the catalyst supported on the filter medium when the catalyst slurry is applied to the filter medium. When,
A concentration determination step of determining the concentration of the organic solvent from the target carrier amount to be supported on the filter medium based on the relationship derived in the relationship derivation step.
A slurry production step for producing the catalyst slurry having a concentration equal to or higher than the concentration of the organic solvent determined in the concentration determination step,
A slurry coating step of applying the catalyst slurry produced in the slurry manufacturing step to the filter medium, and a slurry coating step.
Have.

少なくとも一実施形態に係るフィルタの製造方法によれば、ろ材ごとに、触媒スラリーに含まれる有機溶媒/水系中の有機溶媒の濃度と触媒スラリーをろ材に塗布したときにろ材に担持される触媒の担持量との関係を導き出すので、はっ水性を有する材料、例えばテフロン等のPTFE系の材料を含むろ材を採用したフィルタを低コストで製造できる。また、ろ材上に触媒を均一に塗布できるので、ガスとの高い接触効率が実現できる。 According to the method for producing a filter according to at least one embodiment, for each filter medium, the concentration of the organic solvent contained in the catalyst slurry / the organic solvent in the aqueous system and the catalyst supported on the filter medium when the catalyst slurry is applied to the filter medium. Since the relationship with the supported amount is derived, a filter using a filter medium containing a water-repellent material, for example, a PTFE-based material such as Teflon can be manufactured at low cost. Further, since the catalyst can be uniformly applied on the filter medium, high contact efficiency with gas can be realized.

一実施形態に係るフィルタの製造方法を概略的に示すフローチャートである。It is a flowchart which shows roughly the manufacturing method of the filter which concerns on one Embodiment. 図1に示した関係導出ステップにおいて導き出される関係の一例を示す図である。It is a figure which shows an example of the relation which is derived in the relation derivation step shown in FIG. 有機溶媒濃度と脱硝反応速度定数比との関係を示す図である。It is a figure which shows the relationship between the organic solvent concentration and denitration reaction rate constant ratio. サンプル1、サンプル2及びサンプル3のフィルタの脱硝反応速度定数比を示す図である。It is a figure which shows the denitration reaction rate constant ratio of the filter of a sample 1, a sample 2 and a sample 3. サンプル1のフィルタを製造する過程でろ材に触媒スラリーを塗布した状態の表面画像を示す図である。It is a figure which shows the surface image of the state where the catalyst slurry was applied to the filter medium in the process of manufacturing the filter of sample 1. サンプル2のフィルタを製造する過程でろ材に触媒スラリーを塗布した状態の表面画像を示す図である。It is a figure which shows the surface image of the state where the catalyst slurry was applied to the filter medium in the process of manufacturing the filter of sample 2. サンプル3のフィルタを製造する過程でろ材に触媒スラリーを塗布した状態の表面画像を示す図である。It is a figure which shows the surface image of the state where the catalyst slurry was applied to the filter medium in the process of manufacturing the filter of sample 3.

以下、添付図面を参照して幾つかの実施形態に係るフィルタの製造方法について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。 Hereinafter, a method for manufacturing a filter according to some embodiments will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as embodiments or shown in the drawings are not intended to limit the scope of the present invention to this, but are merely explanatory examples. No.

ここで説明するフィルタは、一例として、バグフィルタとも称されるフィルタであって、例えば、石炭焚ボイラの排ガス処理装置、油焚ボイラの排ガス処理装置、一般廃棄物処理プラントの排ガス処理装置、又は、産業廃棄物焼却プラント排ガス処理装置(脱硫装置、脱硝装置又は除塵装置を含む)、セメントプラントや製鉄プラント排ガスなど煤塵を含む排ガスの除塵装置に用いられる。また、このフィルタはガスタービンの排ガス浄化システム、その他有毒ガス処理システムの除塵機能として、HEPAフィルタなどにも使用できる。 The filter described here is, for example, a filter also called a bag filter, for example, an exhaust gas treatment device for a coal-fired boiler, an exhaust gas treatment device for an oil-fired boiler, an exhaust gas treatment device for a general waste treatment plant, or an exhaust gas treatment device for a general waste treatment plant. , Industrial waste incineration plant Exhaust gas treatment equipment (including desulfurization equipment, denitration equipment or dust removal equipment), cement plant and steel plant It is used for exhaust gas removal equipment containing soot such as exhaust gas. In addition, this filter can also be used as a HEPA filter or the like as a dust removing function of an exhaust gas purification system of a gas turbine or another toxic gas treatment system.

また、ここで説明するフィルタは、ろ材(例えばろ布)に触媒(例えば、脱硝触媒、酸化触媒、ダイオキシン類分解触媒(DXNs分解触媒)等)を担持した触媒付きフィルタである。触媒付きフィルタは触媒を水に添加した触媒スラリーをろ材(ろ布)表面に均一に塗布することによって製造される。これまでろ材には主にガラス素材が用いられてきたが、ここで説明するろ材には、テフロン等のPTFE系の材料を含む素材が用いられる。また、PTFE系材質を含む素材ははっ水性を有することから、ここで説明する触媒スラリーには、触媒を有機溶媒/水系に添加したものが用いられる。 Further, the filter described here is a filter with a catalyst in which a catalyst (for example, a denitration catalyst, an oxidation catalyst, a dioxin decomposition catalyst (DXNs decomposition catalyst), etc.) is supported on a filter medium (for example, a filter cloth). A filter with a catalyst is manufactured by uniformly applying a catalyst slurry in which a catalyst is added to water on the surface of a filter medium (filter cloth). Until now, a glass material has been mainly used for the filter medium, but for the filter medium described here, a material containing a PTFE-based material such as Teflon is used. Further, since the material containing the PTFE-based material has water repellency, the catalyst slurry described here is used in which a catalyst is added to an organic solvent / water system.

図1は、一実施形態に係るフィルタの製造方法を概略的に示すフローチャートである。
図1に示すように、一実施形態に係るフィルタの製造方法は、関係導出ステップ(S11)、濃度決定ステップ(S12)、スラリー製造ステップ(S13)及びスラリー塗布ステップ(S14)を有する。
FIG. 1 is a flowchart schematically showing a method for manufacturing a filter according to an embodiment.
As shown in FIG. 1, the method for manufacturing a filter according to an embodiment includes a relationship derivation step (S11), a concentration determination step (S12), a slurry production step (S13), and a slurry application step (S14).

関係導出ステップ(S11)では、ろ材ごとに、触媒スラリーに含まれる有機溶媒/水系中の有機溶媒の濃度と触媒スラリーをろ材に塗布したときにろ材に担持される触媒の担持量との関係を導き出す。 In the relationship derivation step (S11), the relationship between the concentration of the organic solvent contained in the catalyst slurry / the organic solvent in the aqueous system and the amount of the catalyst supported on the filter medium when the catalyst slurry is applied to the filter medium is determined for each filter medium. derive.

触媒スラリーは、上述したように触媒を有機溶媒/水系に添加したものが用いられる。触媒は、上述したように、例えば、脱硝触媒、酸化触媒、ダイオキシン類分解触媒(DXNs分解触媒)等である。有機溶媒/水系中の有機溶媒は、例えば、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、ホルムアルデヒド、アセトアルデヒド、アセトン、メチルエチルケトン、ギ酸、又は酢酸である。有機溶媒/水系中の有機溶媒は、一種類に限られず、二種類以上を混合したものであってもよい。ろ材は、上述したように、例えば、テフロン等のPTFE系の材料を含む素材が用いられる。 As the catalyst slurry, a catalyst obtained by adding a catalyst to an organic solvent / water system as described above is used. As described above, the catalyst is, for example, a denitration catalyst, an oxidation catalyst, a dioxin decomposition catalyst (DXNs decomposition catalyst), or the like. Organic solvent / The organic solvent in the aqueous system is, for example, methanol, ethanol, propanol, butanol, ethylene glycol, formaldehyde, acetaldehyde, acetone, methyl ethyl ketone, formic acid, or acetic acid. The organic solvent in the organic solvent / aqueous system is not limited to one type, and may be a mixture of two or more types. As the filter medium, as described above, for example, a material containing a PTFE-based material such as Teflon is used.

図2は、図1に示した関係導出ステップ(S11)において導き出された関係の一例を示す図である。図2に示す例では、有機溶媒/水系中の有機溶媒はエタノールであり、触媒スラリーに含まれる有機溶媒/水系中の有機溶媒の濃度は、0wt%,5wt%,10wt%,20wt%,30wt%又は40wt%である。また、触媒スラリーの触媒濃度は例えば25wt%であるが、触媒濃度をこれに限る必要もなければ触媒濃度を一定にする必要もない。触媒スラリーをろ材に塗布したときに担持される触媒の担持量の単位はg/mである。また、ろ材の違いは、例えば、ろ材の素材に含まれるPTFE系材料の含有率の違いやろ材繊維の形状の違いとしてとらえることできるが、この関係においては、水平においた固体試料に液体、本実施形態では水(イオン交換水)を着滴させ、固体試料を徐々に傾けて固体試料に着滴した液体が滑り始める固体試料の傾斜角度(「転落角」又は「滑落角」と称される)によって特定される。 FIG. 2 is a diagram showing an example of the relationship derived in the relationship derivation step (S11) shown in FIG. In the example shown in FIG. 2, the organic solvent in the organic solvent / water system is ethanol, and the concentrations of the organic solvent / water system contained in the catalyst slurry are 0 wt%, 5 wt%, 10 wt%, 20 wt%, and 30 wt. % Or 40 wt%. Further, although the catalyst concentration of the catalyst slurry is, for example, 25 wt%, it is not necessary to limit the catalyst concentration to this or to keep the catalyst concentration constant. The unit of the amount of the catalyst supported when the catalyst slurry is applied to the filter medium is g / m 2 . In addition, the difference in the filter media can be regarded as, for example, the difference in the content of the PTFE-based material contained in the filter media material and the difference in the shape of the filter media fibers. In the embodiment, water (ion-exchanged water) is drip, and the solid sample is gradually tilted, and the liquid deposited on the solid sample begins to slide. The inclination angle of the solid sample (referred to as "falling angle" or "sliding angle"). ).

図2に示す例では、例えば、転落角が14度で特定されるろ材に有機溶媒/水系中の有機溶媒の濃度が20wt%の触媒スラリーを1回だけ塗布することによって110g/mの触媒がろ材に担持される。 In the example shown in FIG. 2, for example, a catalyst of 110 g / m 2 is applied to a filter medium having a falling angle of 14 degrees by applying a catalyst slurry having a concentration of an organic solvent in an organic solvent / aqueous system of 20 wt% only once. It is supported on the filter medium.

濃度決定ステップ(S12)では、関係導出ステップ(S11)において導き出された関係に基づいてろ材に担持させる目標担持量から有機溶媒の濃度を決定する。目標担持量は、一回の触媒スラリーの塗布によってろ材に担持させる触媒の担持量である。したがって、例えば、一回の触媒スラリーの塗布によってろ材に担持させる触媒担持量が110g/mのときに目標担持量は110g/mとなる。 In the concentration determination step (S12), the concentration of the organic solvent is determined from the target loading amount to be supported on the filter medium based on the relationship derived in the relationship derivation step (S11). The target carrier amount is the amount of the catalyst supported on the filter medium by applying the catalyst slurry once. Therefore, for example, when the amount of catalyst supported on the filter medium by applying the catalyst slurry once is 110 g / m 2 , the target amount of catalyst supported is 110 g / m 2 .

図2に示す例では、例えば、転落角が14度で特定されるろ材は、目標担持量が110g/mとすると有機溶媒の濃度を20wt%に決定する。 In the example shown in FIG. 2, for example, in the filter medium whose rolling angle is specified at 14 degrees, the concentration of the organic solvent is determined to be 20 wt% when the target loading amount is 110 g / m 2.

尚、触媒担持量Y[g/m]と転落角(滑落角)X[°]との間には「Y=A×sinX」の関係式が成立する。ここで、転落角X1[°]のときに目標担持量Y1[g/m]となるA(A=F(Z),Zは有機溶媒の濃度(wt%))を求めることで、有機溶媒の濃度を算出できる。 The relational expression of "Y = A × sinX" is established between the catalyst carrier amount Y [g / m 2] and the fall angle (sliding angle) X [°]. Here, by obtaining A (A = F (Z), Z is the concentration of the organic solvent (wt%)), which is the target loading amount Y1 [g / m 2] when the falling angle is X1 [°], it is organic. The concentration of the solvent can be calculated.

スラリー製造ステップ(S13)では、濃度決定ステップ(S12)において決定された有機溶媒の濃度以上の触媒スラリーを製造する。例えば、濃度決定ステップ(S12)において決定された有機溶媒の濃度以上の触媒スラリーは、有機溶媒、触媒及び水を混合することで製造される。 In the slurry production step (S13), a catalyst slurry having a concentration equal to or higher than the concentration of the organic solvent determined in the concentration determination step (S12) is produced. For example, the catalyst slurry having a concentration equal to or higher than the concentration of the organic solvent determined in the concentration determination step (S12) is produced by mixing the organic solvent, the catalyst and water.

図2に示す例において、転落角が14度で特定されるろ材に担持量が110g/m(目標担持量)の触媒を担持させるために、有機溶媒の濃度が20wt%以上の触媒スラリーを製造する。よって、スラリー製造ステップ(S13)で製造される触媒スラリーに含まれる有機溶媒の濃度は20wt%以上であれば、30wt%,40wt%であってもよい。有機溶媒の濃度を20wt%以上とするのは20w%以上であれば目標担持量以上の触媒の担持が可能であるからである。 In the example shown in FIG. 2, in order to support a catalyst having a loading amount of 110 g / m 2 (target loading amount) on a filter medium whose rolling angle is specified at 14 degrees, a catalyst slurry having an organic solvent concentration of 20 wt% or more is used. To manufacture. Therefore, the concentration of the organic solvent contained in the catalyst slurry produced in the slurry production step (S13) may be 30 wt% or 40 wt% as long as it is 20 wt% or more. The reason why the concentration of the organic solvent is 20 wt% or more is that if the organic solvent concentration is 20 w% or more, the catalyst can be supported in the target loading amount or more.

スラリー塗布ステップ(S14)では、スラリー製造ステップ(S13)において製造された触媒スラリーをろ材に塗布する。触媒スラリーの塗布は、例えば、スプレーノズルによって触媒スラリーをろ材に噴霧してもよいし、触媒スラリーにろ材を浸漬させてもよい。 In the slurry application step (S14), the catalyst slurry produced in the slurry production step (S13) is applied to the filter medium. The catalyst slurry may be applied, for example, by spraying the catalyst slurry onto the filter medium with a spray nozzle, or by immersing the filter medium in the catalyst slurry.

尚、触媒スラリーをろ材(ろ布)に塗布することでろ材に付着した触媒スラリーの付着エネルギーEは、下記の数式1で表すことができる。 The adhesion energy E of the catalyst slurry attached to the filter medium by applying the catalyst slurry to the filter medium (filter cloth) can be expressed by the following mathematical formula 1.

Figure 2021133317
E:付着エネルギー
r:接触半径
m:液滴の質量
g:重力加速度
X:転落角(滑落角)
Figure 2021133317
E: Adhesion energy r: Contact radius m: Droplet mass g: Gravity acceleration X: Fall angle (sliding angle)

上述した一実施形態に係るフィルタの製造方法によれば、ろ材ごとに、触媒スラリーに含まれる有機溶媒/水系中の有機溶媒の濃度と触媒スラリーをろ材に塗布したときにろ材に担持される触媒の担持量との関係を導き出すので、触媒スラリーに含まれる有機溶媒/水系中の有機溶媒の濃度を適切に設定することができ、はっ水性を有する材料、例えばテフロン等のPTFE系の材料を含むろ材を採用したフィルタを低コストで製造できる。また、ろ材上に触媒を均一に塗布できるので、ガスとの高い接触効率が実現できる。 According to the method for producing a filter according to the above-described embodiment, the concentration of the organic solvent contained in the catalyst slurry / the organic solvent in the aqueous system and the catalyst supported on the filter medium when the catalyst slurry is applied to the filter medium for each filter medium. Since the relationship with the amount carried is derived, the concentration of the organic solvent contained in the catalyst slurry / the organic solvent in the aqueous system can be appropriately set, and a water-repellent material, for example, a PTFE-based material such as Teflon can be used. A filter using a filter medium containing a filter medium can be manufactured at low cost. Further, since the catalyst can be uniformly applied on the filter medium, high contact efficiency with gas can be realized.

一実施形態に係るフィルタの製造方法では、有機溶媒/水系中の有機溶媒は、少なくとも表面張力が50mN/m以下である。表面張力が50mN/m以下の有機溶媒は、例えば、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、ホルムアルデヒド、アセトアルデヒド、アセトン、メチルエチルケトン、ギ酸、又は酢酸である。メタノールの表面張力は22.6mN/mであり、エタノールの表面張力は22.6mN/mである。また、プロパノールの表面張力は23.7mN/mであり、ブタノールの表面張力は25.4mN/mである。また、エチレングリコールの表面張力は48.4mN/mであり、ホルムアルデヒドの表面張力は27.4mN/mであり、アセトアルデヒドの表面張力は21.2mN/mである。アセトンの表面張力は23.3mN/mであり、メチルエチルケトンの表面張力は24.6mN/mである。ギ酸の表面張力は37.7mN/mであり、酢酸の表面張力は27.7mN/mである。これらの有機溶媒は水の表面張力よりも十分に小さく有意であり、水との親和性も期待できる。 In the method for producing a filter according to one embodiment, the organic solvent in the organic solvent / aqueous system has a surface tension of at least 50 mN / m or less. Organic solvents having a surface tension of 50 mN / m or less are, for example, methanol, ethanol, propanol, butanol, ethylene glycol, formaldehyde, acetaldehyde, acetone, methyl ethyl ketone, formic acid, or acetic acid. The surface tension of methanol is 22.6 mN / m, and the surface tension of ethanol is 22.6 mN / m. The surface tension of propanol is 23.7 mN / m, and the surface tension of butanol is 25.4 mN / m. The surface tension of ethylene glycol is 48.4 mN / m, the surface tension of formaldehyde is 27.4 mN / m, and the surface tension of acetaldehyde is 21.2 mN / m. The surface tension of acetone is 23.3 mN / m, and the surface tension of methyl ethyl ketone is 24.6 mN / m. The surface tension of formic acid is 37.7 mN / m, and the surface tension of acetic acid is 27.7 mN / m. These organic solvents are significantly smaller than the surface tension of water and are significant, and their affinity with water can be expected.

一実施形態に係るフィルタの製造方法のスラリー塗布ステップ(S14)では、スプレーノズルによって触媒スラリーをろ材に噴霧する(以下、スプレーノズルによって触媒スラリーをろ材に噴霧することを「スプレー噴霧」という)。 In the slurry coating step (S14) of the method for manufacturing a filter according to one embodiment, the catalyst slurry is sprayed onto the filter medium by a spray nozzle (hereinafter, spraying the catalyst slurry onto the filter medium by a spray nozzle is referred to as “spray spraying”).

このようにすれば、ろ材を触媒スラリーに浸漬させることで触媒スラリーをろ材に塗布するときよりも触媒スラリーの量が少なくて済むので、ろ材を触媒スラリーに浸漬させることで触媒スラリーをろ材に塗布するときよりも触媒スラリーの廃棄等に係るコストを低く抑えることができる。 In this way, the amount of the catalyst slurry can be reduced by immersing the filter medium in the catalyst slurry as compared with the case where the catalyst slurry is applied to the filter medium. Therefore, the catalyst slurry is applied to the filter medium by immersing the filter medium in the catalyst slurry. It is possible to keep the cost related to the disposal of the catalyst slurry lower than that of the case where the catalyst slurry is discarded.

図3Aは、有機溶媒濃度と脱硝反応速度定数比との関係を示す図であり、図3Bは、サンプル1、サンプル2及びサンプル3のフィルタの脱硝反応速度比を示す図である。サンプル1、サンプル2及びサンプル3のフィルタはいずれも同一のろ材に有機溶媒濃度が異なる触媒スラリーを塗布したものである。ろ材は転落角が14度で特定される材質(PTFE)である。触媒スラリーに含まれる触媒は脱硝反応触媒(V−Ti系脱硝触媒)であり、触媒スラリーの溶媒はエタノールと水の混合溶媒である。ろ材にはスプレーノズルによって触媒が塗布され、スプレーノズルのスプレー圧力は0.01〜0.2MPaである。ろ材に担持する触媒の担持量(目標担持量)はいずれも110g/mである。 FIG. 3A is a diagram showing the relationship between the organic solvent concentration and the denitration reaction rate constant ratio, and FIG. 3B is a diagram showing the denitration reaction rate ratios of the filters of Sample 1, Sample 2, and Sample 3. The filters of Sample 1, Sample 2, and Sample 3 are all obtained by applying catalyst slurries having different organic solvent concentrations to the same filter medium. The filter medium is a material (PTFE) whose falling angle is specified at 14 degrees. The catalyst contained in the catalyst slurry is a denitration reaction catalyst (V-Ti-based denitration catalyst), and the solvent of the catalyst slurry is a mixed solvent of ethanol and water. A catalyst is applied to the filter medium by a spray nozzle, and the spray pressure of the spray nozzle is 0.01 to 0.2 MPa. The supported amount of the catalyst supported on the filter medium (target supported amount) is 110 g / m 2 .

サンプル1のフィルタを製造する過程でろ材に塗布する触媒スラリーに含まれる有機溶媒濃度は20wt%であり一回の塗布によって完成できるので(図2参照)、サンプル1のフィルタはろ材に触媒スラリーを一回塗布することによって製作され、サンプル1には目標担持量(110g/m)の触媒が担持される。サンプル2及びサンプル3のフィルタを製造する過程でろ材に塗布する触媒スラリーに含まれる有機溶媒濃度はそれぞれ10wt%及び5wt%であり一回の塗布によって完成できないので(図2参照)、サンプル2及びサンプル3のフィルタはろ材に触媒スラリーを二回塗布することによって製作され、サンプル2には目標担持量を大きく超える担持量の触媒が担持される。 Since the concentration of the organic solvent contained in the catalyst slurry applied to the filter medium in the process of manufacturing the filter of Sample 1 is 20 wt% and can be completed by one application (see FIG. 2), the filter of Sample 1 has the catalyst slurry applied to the filter medium. It is produced by applying once, and the catalyst of the target loading amount (110 g / m 2 ) is supported on the sample 1. Since the concentrations of the organic solvent contained in the catalyst slurry applied to the filter medium in the process of producing the filters of Sample 2 and Sample 3 are 10 wt% and 5 wt%, respectively, and cannot be completed by one application (see FIG. 2), Sample 2 and Sample 3 and The filter of sample 3 is manufactured by applying the catalyst slurry to the filter medium twice, and the sample 2 is supported with a catalyst having a loading amount that greatly exceeds the target loading amount.

図3に示すように、サンプル1のフィルタの脱硝反応速度定数比を1.00とすると、サンプル2のフィルタの脱硝反応速度比は0.86、サンプル3のフィルタの脱硝反応速度比は0.73である。よって、サンプル1のフィルタの脱硝反応性能はサンプル3のフィルタの1.37倍(1.00/0.73)である。これによるとサンプル1のフィルタはサンプル3のフィルタよりも触媒担持量が少ないにもかかわらずサンプル2のフィルタよりも脱硝反応性能に優れている。 As shown in FIG. 3, assuming that the denitration reaction rate constant ratio of the filter of sample 1 is 1.00, the denitration reaction rate ratio of the filter of sample 2 is 0.86, and the denitration reaction rate ratio of the filter of sample 3 is 0. 73. Therefore, the denitration reaction performance of the filter of sample 1 is 1.37 times (1.00 / 0.73) that of the filter of sample 3. According to this, the filter of sample 1 is superior to the filter of sample 2 in denitration reaction performance even though the amount of catalyst supported is smaller than that of the filter of sample 3.

図4Aはサンプル1のフィルタを製造する過程で、ろ材に触媒スラリーを塗布した状態の表面画像を示す図であり、図4Bはサンプル2のフィルタを製造する過程(1回塗布後)で、ろ材に触媒スラリーを塗布した状態の表面画像である。また、図4Cはサンプル3のフィルタを製造する過程(1回塗布後)で、ろ材に触媒スラリーを塗布した状態の表面画像を示す図である。図4Aに示すように、サンプル1のフィルタは触媒スラリーが均等に分散している。そのため、触媒がろ材に均等に担持されていると考えられる。一方、図4B及び図4Cに示すように、サンプル2及び3のフィルタは触媒スラリーが凝集している。そのため触媒がろ材に均等に担持されていないと考えられる。よって、フィルタを製造する過程でろ材に触媒スラリーを一回で塗布可能な有機溶媒濃度の方がろ材に触媒スラリーを複数回塗布が必要な有機溶媒濃度よりも触媒スラリーが均等に担持され、接ガス面積も大きいため脱硝反応性能に優れている。 FIG. 4A is a diagram showing a surface image of a filter medium coated with a catalyst slurry in the process of manufacturing the filter of sample 1, and FIG. 4B is a diagram showing a surface image of the filter medium in the process of manufacturing the filter of sample 2 (after one coating). It is a surface image of a state in which a catalyst slurry is applied to. Further, FIG. 4C is a diagram showing a surface image of a state in which the catalyst slurry is applied to the filter medium in the process of manufacturing the filter of the sample 3 (after one application). As shown in FIG. 4A, the catalyst slurry is evenly dispersed in the filter of sample 1. Therefore, it is considered that the catalyst is evenly supported on the filter medium. On the other hand, as shown in FIGS. 4B and 4C, the catalyst slurry is aggregated in the filters of Samples 2 and 3. Therefore, it is considered that the catalyst is not evenly supported on the filter medium. Therefore, the organic solvent concentration at which the catalyst slurry can be applied to the filter medium at one time in the process of manufacturing the filter is more evenly supported and contacted than the organic solvent concentration at which the catalyst slurry can be applied to the filter medium multiple times. Since the gas area is large, it has excellent denitration reaction performance.

上記を鑑みて、一実施形態に係るフィルタの製造方法では、目標担持量は、フィルタの完成時の完成担持量であり、スラリーの塗布ステップにおける触媒スラリーの塗布回数は一回である。 In view of the above, in the filter manufacturing method according to one embodiment, the target supported amount is the completed supported amount at the time of completion of the filter, and the number of times the catalyst slurry is applied in the slurry application step is once.

このようにすれば、触媒スラリーに含まれる有機溶媒/水系中の有機溶媒の濃度が触媒担持量に対して適切となり、一回の触媒スラリーの塗布によって触媒をムラなくろ材(ろ布)に担持できる。また、触媒スラリーの塗布が一回で済むので、優れた性能のフィルタを低コストで製造できる。 In this way, the concentration of the organic solvent contained in the catalyst slurry / the organic solvent in the aqueous system becomes appropriate for the amount of the catalyst supported, and the catalyst is evenly supported on the filter medium (filter cloth) by applying the catalyst slurry once. can. Moreover, since the catalyst slurry needs to be applied only once, a filter having excellent performance can be manufactured at low cost.

また、触媒スラリーに含まれる有機溶媒/水系中の有機溶媒の濃度が適切となるので、有機溶媒を取り扱うときに必要となる排水、排気処理設備のコストも低減できる。 Further, since the concentration of the organic solvent contained in the catalyst slurry / the organic solvent in the water system is appropriate, the cost of wastewater and exhaust treatment equipment required when handling the organic solvent can be reduced.

また、触媒スラリーに含まれる有機溶媒/水系中の有機溶媒の濃度が適切となり、一回の触媒スラリーの塗布によって触媒をムラなくろ材(ろ布)に担持できるので、フィルタの差圧が低減され、触媒を反応に有効に利用できる。 In addition, the concentration of the organic solvent contained in the catalyst slurry / the organic solvent in the aqueous system becomes appropriate, and the catalyst can be supported evenly on the filter medium (filter cloth) by applying the catalyst slurry once, so that the differential pressure of the filter is reduced. , The catalyst can be effectively used for the reaction.

加えて、フィルタの差圧低減により、フィルタが用いられる集塵ブロアの動力の低減、逆洗回数の低減が可能となり、フィルタの寿命も延ばすことができる。 In addition, by reducing the differential pressure of the filter, it is possible to reduce the power of the dust collector blower in which the filter is used, reduce the number of backwashes, and extend the life of the filter.

他の一実施形態に係るフィルタの製造方法では、目標担持量は、フィルタの完成時の完成担持量未満であり、スラリーの塗布ステップにおける触媒のスラリーの塗布回数は少なくとも二回以上である。例えば、目標担持量をフィルタの完成時の完成担持量の半分以下とし、スラリーの塗布ステップにおける触媒スラリーの塗布回数を二回以上にできる。この場合において一回目に塗布する触媒スラリーに含まれる有機溶媒と二回目以降に塗布する触媒スラリーに含まれる有機溶媒とが同一種類のものでなくてもよい。また、一回目に塗布する触媒スラリーに含まれる有機溶媒/水系中の有機溶媒の濃度と二回目に塗布する触媒スラリーに含まれる有機溶媒/水系中の有機溶媒の濃度は同一の濃度でなくてもよい。 In the method for producing a filter according to another embodiment, the target supported amount is less than the completed supported amount at the time of completion of the filter, and the number of times the slurry of the catalyst is applied in the slurry application step is at least twice or more. For example, the target loading amount can be set to half or less of the completed loading amount at the time of completion of the filter, and the number of times of coating the catalyst slurry in the slurry coating step can be set to two or more times. In this case, the organic solvent contained in the catalyst slurry applied the first time and the organic solvent contained in the catalyst slurry applied the second and subsequent times do not have to be of the same type. In addition, the concentration of the organic solvent in the organic solvent / water system applied in the first application and the concentration of the organic solvent / organic solvent in the water system in the catalyst slurry to be applied in the second time are not the same. May be good.

このようにすれば、触媒スラリーの塗布回数が一回のときよりも触媒スラリーに含まれる有機溶媒/水系中の有機溶媒の濃度を低く抑えることができるので、触媒スラリーの塗布回数が一回のときよりも触媒スラリーの廃棄等にかかるコストを低く抑えることができる。 By doing so, the concentration of the organic solvent contained in the catalyst slurry / the organic solvent in the aqueous system can be suppressed to be lower than that when the catalyst slurry is applied once. It is possible to keep the cost of discarding the catalyst slurry lower than usual.

本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。 The present invention is not limited to the above-described embodiment, and includes a modified form of the above-described embodiment and a combination of these embodiments as appropriate.

例えば、水平に置いた固体試料に水滴を120μl着滴させ、固体試料を徐々に傾けて固体試料に着滴した液体が滑り始める固体試料の傾斜角度が5度以上25度以下によって特定されたろ材が用いられる。そして、触媒スラリーが含まれる有機溶媒/水系中の有機溶媒の濃度と触媒スラリーをろ材に塗布したときにろ材に担持される触媒の担持量との関係に基づいてろ材に触媒を100g/m担持させている。 For example, a filter medium specified by an inclination angle of 5 degrees or more and 25 degrees or less of a solid sample placed horizontally on which 120 μl of water droplets are dropped and the solid sample is gradually tilted so that the liquid deposited on the solid sample begins to slide. Is used. Then, 100 g / m 2 of the catalyst was added to the filter medium based on the relationship between the concentration of the organic solvent in the organic solvent / aqueous system containing the catalyst slurry and the amount of the catalyst supported on the filter medium when the catalyst slurry was applied to the filter medium. It is supported.

上記各実施形態に記載の内容は、例えば、以下のように把握される。 The contents described in each of the above embodiments are grasped as follows, for example.

(1)一の態様に係るフィルタの製造方法は、
ろ材ごとに、触媒スラリーに含まれる有機溶媒/水系中の前記有機溶媒の濃度と前記触媒スラリーを前記ろ材に塗布したときに前記ろ材に担持される触媒の担持量との関係を導き出す関係導出ステップ(S11)と、
前記関係導出ステップ(S11)において導きだされた前記関係に基づいて前記ろ材に担持させる目標担持量から前記有機溶媒の濃度を決定する濃度決定ステップ(S12)と、
前記濃度決定ステップ(S12)において決定された前記有機溶媒の濃度以上の前記触媒スラリーを製造するスラリー製造ステップ(S13)と、
前記スラリー製造ステップ(S13)において製造された前記触媒スラリーを前記ろ材に塗布するスラリー塗布ステップ(S14)と、
を有する。
(1) The method for manufacturing a filter according to one aspect is
For each filter medium, a relationship derivation step for deriving the relationship between the concentration of the organic solvent in the organic solvent / aqueous system contained in the catalyst slurry and the amount of the catalyst supported on the filter medium when the catalyst slurry is applied to the filter medium. (S11) and
A concentration determination step (S12) for determining the concentration of the organic solvent from the target carrier amount to be supported on the filter medium based on the relationship derived in the relationship derivation step (S11).
A slurry production step (S13) for producing the catalyst slurry having a concentration equal to or higher than the concentration of the organic solvent determined in the concentration determination step (S12).
A slurry coating step (S14) in which the catalyst slurry produced in the slurry manufacturing step (S13) is applied to the filter medium, and a slurry coating step (S14).
Have.

このような製造方法によれば、ろ材ごとに、触媒スラリーに含まれる有機溶媒/水系中の有機溶媒の濃度と触媒スラリーをろ材に塗布したときにろ材に担持される触媒の担持量との関係を導き出すので、触媒スラリーに含まれる有機溶媒/水系中の有機溶媒の濃度を適切に設定することができ、はっ水性を有する材料、例えばPTFE等のテフロン系の材料を含むろ材を採用したフィルタを低コストで製造できる。 According to such a production method, the relationship between the concentration of the organic solvent contained in the catalyst slurry / the organic solvent in the aqueous system and the amount of the catalyst supported on the filter medium when the catalyst slurry is applied to the filter medium for each filter medium Therefore, the concentration of the organic solvent contained in the catalyst slurry / the organic solvent in the aqueous system can be appropriately set, and a filter using a filter medium containing a water-repellent material, for example, a Teflon-based material such as PTFE. Can be manufactured at low cost.

(2)別の態様に係るフィルタの製造方法は、(1)に記載のフィルタの製造方法であって、
前記有機溶媒は、少なくとも表面張力が50mN/m以下である。
(2) The method for manufacturing a filter according to another aspect is the method for manufacturing a filter according to (1).
The organic solvent has a surface tension of at least 50 mN / m or less.

このような製造方法によれば、表面張力が50mN/m以下であり、水の表面張力より十分に小さく有意であり、水との親和性も期待できる。 According to such a production method, the surface tension is 50 mN / m or less, which is sufficiently smaller and significant than the surface tension of water, and affinity with water can be expected.

(3)更に別の態様に係るフィルタの製造方法は、(1)又は(2)に記載のフィルタの製造方法であって、
前記目標担持量は、前記フィルタの完成時の完成担持量であり、前記スラリー塗布ステップ(S14)における前記触媒スラリーの塗布回数は一回である。
(3) The method for manufacturing a filter according to still another aspect is the method for manufacturing a filter according to (1) or (2).
The target loading amount is the completed loading amount at the time of completion of the filter, and the number of times the catalyst slurry is applied in the slurry application step (S14) is once.

このような製造方法によれば、触媒スラリーに含まれる有機溶媒/水系中の有機溶媒の濃度が触媒担持量に対して適切となり、一回の触媒スラリーの塗布によって触媒をムラなくろ材(ろ布)に担持できる。また、触媒スラリーの塗布が一回で済むので、優れた性能のフィルタを低コストで製造できる。 According to such a production method, the concentration of the organic solvent contained in the catalyst slurry / the organic solvent in the aqueous system becomes appropriate for the amount of the catalyst supported, and the catalyst is evenly filtered by applying the catalyst slurry once. ) Can be supported. Moreover, since the catalyst slurry needs to be applied only once, a filter having excellent performance can be manufactured at low cost.

(4)更に別の態様に係るフィルタの製造方法は、(1)又は(2)に記載のフィルタの製造方法であって、
前記目標担持量は、前記フィルタの完成時の完成担持量未満であり、前記スラリー塗布ステップ(S14)における前記触媒スラリーの塗布回数は少なくとも二回以上である。
(4) The method for manufacturing a filter according to still another aspect is the method for manufacturing a filter according to (1) or (2).
The target loading amount is less than the completed loading amount at the time of completion of the filter, and the number of times the catalyst slurry is applied in the slurry application step (S14) is at least twice or more.

このような製造方法によれば、触媒スラリーの塗布回数が一回のときよりも触媒スラリーに含まれる有機溶媒の濃度を低く抑えることができるので、触媒スラリーの塗布回数が一回のときよりも触媒スラリーの廃棄等にかかるコストも低く抑えることができる。 According to such a manufacturing method, the concentration of the organic solvent contained in the catalyst slurry can be suppressed to be lower than that when the catalyst slurry is applied once, so that the concentration of the organic solvent is lower than when the catalyst slurry is applied once. The cost of disposing of the catalyst slurry can also be kept low.

(5)更に別の態様に係るフィルタの製造方法は、(1)から(4)のいずれか一つに記載のフィルタの製造方法であって、
前記スラリー塗布ステップ(S14)では、スプレーノズルによって前記触媒スラリーを前記ろ材に噴霧する。
(5) The method for manufacturing a filter according to still another aspect is the method for manufacturing a filter according to any one of (1) to (4).
In the slurry coating step (S14), the catalyst slurry is sprayed onto the filter medium by a spray nozzle.

このような製造方法によれば、ろ材を触媒スラリーに浸漬させることで触媒スラリーをろ材に塗布するときよりも触媒スラリーの量が少なくて済むので、ろ材を触媒スラリーに浸漬させることで触媒スラリーをろ材に塗布するときよりも触媒スラリーの廃棄等に係るコストも低く抑えることができる。 According to such a manufacturing method, the amount of the catalyst slurry can be reduced by immersing the filter medium in the catalyst slurry as compared with the case where the catalyst slurry is applied to the filter medium. Therefore, by immersing the filter medium in the catalyst slurry, the catalyst slurry can be obtained. It is possible to keep the cost related to the disposal of the catalyst slurry lower than when it is applied to the filter medium.

(6)更に別の態様に係るフィルタの製造方法は、(1)から(5)のいずれか一つに記載のフィルタの製造方法であって、
前記関係において前記ろ材は、水平に置いた固体試料に液体を着滴させ、前記固体試料を徐々に傾けて前記固体試料に着滴した前記液体が滑り始める前記固体試料の傾斜角度によって特定される。
(6) The method for manufacturing a filter according to still another aspect is the method for manufacturing a filter according to any one of (1) to (5).
In the above relationship, the filter medium is specified by the inclination angle of the solid sample in which a liquid is dropped on a solid sample placed horizontally and the solid sample is gradually tilted so that the liquid deposited on the solid sample starts to slide. ..

このような製造方法によれば、ろ材はろ材のはっ水性よって特定され、触媒スラリーに含まれる有機溶媒の濃度と触媒スラリーを塗布したときにろ材に担持される触媒の担持量をろ材のはっ水性に適応させることができる。 According to such a production method, the filter medium is specified by the water repellency of the filter medium, and the concentration of the organic solvent contained in the catalyst slurry and the amount of the catalyst supported on the filter medium when the catalyst slurry is applied are determined by the filter medium. It can be adapted to water repellency.

(7)一の態様に係るフィルタは、水平に置いた固体試料に液体を着滴させ、前記固体試料を徐々に傾けて前記固体試料に着滴した前記液体が滑り始める前記固体試料の傾斜角度によって特定されたろ材に、触媒スラリーに含まれる有機溶媒/水系中の前記有機溶媒の濃度と前記触媒スラリーを前記ろ材に塗布したときに前記ろ材に担持される触媒の担持量との関係に基づいて前記ろ材に担持させる目標担持量から前記有機溶媒の濃度を決定する。 (7) In the filter according to one aspect, a liquid is dropped on a solid sample placed horizontally, the solid sample is gradually tilted, and the liquid dropped on the solid sample starts to slide. The tilt angle of the solid sample. Based on the relationship between the concentration of the organic solvent in the organic solvent / aqueous system contained in the catalyst slurry and the amount of the catalyst supported on the filter medium when the catalyst slurry is applied to the filter medium. The concentration of the organic solvent is determined from the target carrying amount to be carried on the filter medium.

このような構成によれば、ろ材はろ材のはっ水性よって特定され、触媒スラリーに含まれる有機溶媒の濃度と触媒スラリーを塗布したときにろ材に担持される触媒の担持量をろ材のはっ水性に適応させることができる。また、触媒スラリーに含まれる有機溶媒/水系中の有機溶媒の濃度を適切に設定することができるので、はっ水性を有する材料、例えばPTFE等のテフロン系の材料を含むろ材を採用し、触媒スラリーが均等に担持され、接ガス面積が大きくなった、脱硝反応性能に優れたフィルタを低コストで製造できる。 According to such a configuration, the filter medium is specified by the water repellency of the filter medium, and the concentration of the organic solvent contained in the catalyst slurry and the amount of the catalyst supported on the filter medium when the catalyst slurry is applied are determined by the pressure of the filter medium. Can be adapted to aqueous. Further, since the concentration of the organic solvent contained in the catalyst slurry / the organic solvent in the aqueous system can be appropriately set, a water-repellent material, for example, a filter medium containing a Teflon-based material such as PTFE is adopted, and a catalyst is used. It is possible to manufacture a filter having excellent denitration reaction performance at low cost, in which the slurry is uniformly supported and the gas contact area is large.

(8)別の態様に係るフィルタは、
水平に置いた固体試料に水滴を120μl着滴させ、
前記固体試料を徐々に傾けて前記固体試料に着滴した前記水滴が滑り始める前記固体試料の傾斜角度が5°以上25°以下によって特定されたろ材に、
触媒スラリーに含まれる有機溶媒/水系中の前記有機溶媒の濃度と前記触媒スラリーを前記ろ材に塗布したときに前記ろ材に担持される触媒の担持量との関係に基づいて、
前記ろ材に触媒を100g/m担持させている。
(8) The filter according to another aspect is
Add 120 μl of water droplets to a horizontally placed solid sample.
On the filter medium specified by the inclination angle of the solid sample of 5 ° or more and 25 ° or less, the solid sample is gradually tilted and the water droplets adhering to the solid sample start to slide.
Based on the relationship between the concentration of the organic solvent in the organic solvent / aqueous system contained in the catalyst slurry and the amount of the catalyst supported on the filter medium when the catalyst slurry is applied to the filter medium.
A catalyst is supported on the filter medium at 100 g / m 2.

このような構成によれば、ガスとの高い接触効率を実現できる。 With such a configuration, high contact efficiency with gas can be realized.

(9)更に別の態様に係るフィルタは、上記(8)に記載のフィルタであって、
前記有機溶媒の表面張力が50mN/m以下である。
(9) The filter according to still another aspect is the filter according to the above (8).
The surface tension of the organic solvent is 50 mN / m or less.

このような構成によれば、有機溶媒の濃度が50mN/m以下で有り、水の表面張力より十分に小さく有意であり、水との親和性も期待できる。 According to such a configuration, the concentration of the organic solvent is 50 mN / m or less, which is sufficiently smaller than the surface tension of water and is significant, and affinity with water can be expected.

(10)更に別の態様に係るフィルタは、上記(8)に記載のフィルタであって、
前記有機溶媒がエタノールである。
(10) The filter according to still another aspect is the filter according to the above (8).
The organic solvent is ethanol.

このような構成によれば、有機溶媒がエタノールであり、他の有機溶媒を用いる場合に比べて安価なフィルタとすることができる。 According to such a configuration, the organic solvent is ethanol, and the filter can be inexpensive as compared with the case where other organic solvents are used.

S11 関係導出ステップ
S12 濃度決定ステップ
S13 スラリー製造ステップ
S14 スラリー塗布ステップ
S11 Relationship derivation step S12 Concentration determination step S13 Slurry production step S14 Slurry application step

Claims (9)

ろ材ごとに、触媒スラリーに含まれる有機溶媒/水系中の前記有機溶媒の濃度と前記触媒スラリーを前記ろ材に塗布したときに前記ろ材に担持される触媒の担持量との関係を導き出す関係導出ステップと、
前記関係導出ステップにおいて導き出された前記関係に基づいて前記ろ材に担持させる目標担持量から前記有機溶媒の濃度を決定する濃度決定ステップと、
前記濃度決定ステップにおいて決定された前記有機溶媒の濃度以上の前記触媒スラリーを製造するスラリー製造ステップと、
前記スラリー製造ステップにおいて製造された前記触媒スラリーを前記ろ材に塗布するスラリー塗布ステップと、
を有する、フィルタの製造方法。
For each filter medium, a relationship derivation step for deriving the relationship between the concentration of the organic solvent in the organic solvent / aqueous system contained in the catalyst slurry and the amount of the catalyst supported on the filter medium when the catalyst slurry is applied to the filter medium. When,
A concentration determination step of determining the concentration of the organic solvent from the target carrier amount to be supported on the filter medium based on the relationship derived in the relationship derivation step.
A slurry production step for producing the catalyst slurry having a concentration equal to or higher than the concentration of the organic solvent determined in the concentration determination step,
A slurry coating step of applying the catalyst slurry produced in the slurry manufacturing step to the filter medium, and a slurry coating step.
A method for manufacturing a filter.
前記有機溶媒は、少なくとも表面張力が50mN/m以下である、請求項1に記載のフィルタの製造方法。 The method for producing a filter according to claim 1, wherein the organic solvent has a surface tension of at least 50 mN / m or less. 前記目標担持量は、前記フィルタの完成時の完成担持量であり、前記スラリー塗布ステップにおける前記触媒スラリーの塗布回数は一回である、請求項1又は2に記載のフィルタの製造方法。 The method for manufacturing a filter according to claim 1 or 2, wherein the target loading amount is the completed loading amount at the time of completion of the filter, and the number of times the catalyst slurry is applied in the slurry application step is once. 前記目標担持量は、前記フィルタの完成時の完成担持量未満であり、前記スラリー塗布ステップにおける前記触媒スラリーの塗布回数は少なくとも二回以上である、請求項1又は2に記載のフィルタの製造方法。 The method for producing a filter according to claim 1 or 2, wherein the target loading amount is less than the completed loading amount at the time of completion of the filter, and the number of times the catalyst slurry is applied in the slurry application step is at least twice. .. 前記スラリー塗布ステップでは、スプレーノズルによって前記触媒スラリーを前記ろ材に噴霧する、請求項1から4のいずれか一項に記載のフィルタの製造方法。 The method for manufacturing a filter according to any one of claims 1 to 4, wherein in the slurry coating step, the catalyst slurry is sprayed onto the filter medium by a spray nozzle. 前記関係において前記ろ材は、水平に置いた固体試料に液体を着滴させ、前記固体試料を徐々に傾けて前記固体試料に着滴した前記液体が滑り始める前記固体試料の傾斜角度によって特定される、請求項1から5のいずれか一項に記載のフィルタの製造方法。 In the above relationship, the filter medium is specified by the inclination angle of the solid sample in which a liquid is dropped on a solid sample placed horizontally and the solid sample is gradually tilted so that the liquid deposited on the solid sample starts to slide. , The method for manufacturing a filter according to any one of claims 1 to 5. 水平に置いた固体試料に水滴を120μl着滴させ、
前記固体試料を徐々に傾けて前記固体試料に着滴した前記水滴が滑り始める前記固体試料の傾斜角度が5°以上25°以下によって特定されたろ材に、
触媒スラリーに含まれる有機溶媒/水系中の前記有機溶媒の濃度と前記触媒スラリーを前記ろ材に塗布したときに前記ろ材に担持される触媒の担持量との関係に基づいて、
前記ろ材に触媒を100g/m担持させたフィルタ。
Add 120 μl of water droplets to a horizontally placed solid sample.
On the filter medium specified by the inclination angle of the solid sample of 5 ° or more and 25 ° or less, the solid sample is gradually tilted and the water droplets adhering to the solid sample start to slide.
Based on the relationship between the concentration of the organic solvent in the organic solvent / aqueous system contained in the catalyst slurry and the amount of the catalyst supported on the filter medium when the catalyst slurry is applied to the filter medium.
A filter in which 100 g / m 2 of a catalyst is supported on the filter medium.
前記有機溶媒の表面張力が50mN/m以下である請求項7に記載のフィルタ。 The filter according to claim 7, wherein the surface tension of the organic solvent is 50 mN / m or less. 前記有機溶媒がエタノールである請求項7に記載のフィルタ。 The filter according to claim 7, wherein the organic solvent is ethanol.
JP2020031974A 2020-02-27 2020-02-27 Filter manufacturing method Active JP7369062B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020031974A JP7369062B2 (en) 2020-02-27 2020-02-27 Filter manufacturing method
CN202180016084.6A CN115151328A (en) 2020-02-27 2021-01-21 Method for manufacturing filter
PCT/JP2021/001944 WO2021171840A1 (en) 2020-02-27 2021-01-21 Method for producing filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020031974A JP7369062B2 (en) 2020-02-27 2020-02-27 Filter manufacturing method

Publications (2)

Publication Number Publication Date
JP2021133317A true JP2021133317A (en) 2021-09-13
JP7369062B2 JP7369062B2 (en) 2023-10-25

Family

ID=77490833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020031974A Active JP7369062B2 (en) 2020-02-27 2020-02-27 Filter manufacturing method

Country Status (3)

Country Link
JP (1) JP7369062B2 (en)
CN (1) CN115151328A (en)
WO (1) WO2021171840A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020520049A (en) * 2017-05-03 2020-07-02 メルク パテント ゲーエムベーハー Formulation of organic functional materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023161117A (en) * 2022-04-25 2023-11-07 三菱重工業株式会社 Manufacturing method for filter

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5891402A (en) * 1994-03-02 1999-04-06 W. L. Gore & Associates, Inc. Catalyst retaining apparatus and use in an ozone filter
JPH09206558A (en) * 1996-01-30 1997-08-12 Shinnitsuka Kosan Kk Device for removing harmful material in gas
JP3627449B2 (en) * 1997-05-30 2005-03-09 東洋紡績株式会社 Catalytic denitration filter bug and manufacturing method thereof
JP2000202342A (en) * 1999-01-13 2000-07-25 Cataler Corp Apparatus for coating, slurry to catalyst
JP2008043580A (en) 2006-08-18 2008-02-28 Mitsubishi Electric Corp Deodorizing filter and air cleaning device
JP5455407B2 (en) * 2009-03-25 2014-03-26 日本ゴア株式会社 Method for producing expanded polytetrafluoroethylene porous membrane or tape carrying catalyst particles and filter for removing ozone
JP2012130853A (en) 2010-12-21 2012-07-12 Mitsubishi Heavy Ind Ltd Bag filter, and exhaust gas treatment apparatus
CN102962057B (en) * 2012-11-26 2014-12-03 济南大学 Method for coating Ti-based denitration catalyst on honeycomb ceramic
CN103191603A (en) * 2013-04-09 2013-07-10 福州大学 Catalytic filtration material with denitration and dust removal functions and preparation method of catalytic filtration material
CN104030347B (en) * 2014-07-03 2015-08-05 重庆大学 A kind of TiO 2 sol and application type denitrating catalyst
CN104888841B (en) * 2015-05-26 2017-10-20 华东理工大学 A kind of preparation method of the integral catalyzer of molecular sieve coating
CN104998697B (en) * 2015-07-10 2017-07-18 上海纳米技术及应用国家工程研究中心有限公司 A kind of coating method of active coating of integral catalyst
JP2019171307A (en) 2018-03-29 2019-10-10 東レフィルム加工株式会社 Photocatalyst sheet
CN109261147B (en) * 2018-10-24 2021-05-28 无锡威孚环保催化剂有限公司 Pt-Pd single-coating catalyst for treating benzene substances and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020520049A (en) * 2017-05-03 2020-07-02 メルク パテント ゲーエムベーハー Formulation of organic functional materials
JP7330898B2 (en) 2017-05-03 2023-08-22 メルク パテント ゲーエムベーハー Formulation of organic functional material

Also Published As

Publication number Publication date
WO2021171840A1 (en) 2021-09-02
JP7369062B2 (en) 2023-10-25
CN115151328A (en) 2022-10-04

Similar Documents

Publication Publication Date Title
WO2021171840A1 (en) Method for producing filter
CN111939775B (en) Preparation method of solvent-resistant reverse osmosis composite membrane
Zhu et al. Perfluorinated superhydrophobic and oleophobic SiO2@ PTFE nanofiber membrane with hierarchical nanostructures for oily fume purification
JP6364125B2 (en) Method for producing catalyst fabric filter and catalyst fabric filter
US20220362746A1 (en) Integrated filter material and preparation method and application thereof
CN103949115A (en) Method for generating denitration catalyst on filter material in situ
CN109603533B (en) Ag and two-dimensional MXene modified high-temperature flue gas dedusting denitration demercuration catalytic membrane and preparation method thereof
CN109224874A (en) A kind of catalytic membrane and preparation method thereof for air cleaning
EP2275185A1 (en) Exhaust gas purifying filter
WO2016057361A1 (en) Non-extruded activated carbon honeycomb structures
EP3088451B1 (en) Plasma assisted hydrophilicity enhancement of polymer materials
CN107961619B (en) Preparation method of multifunctional membrane-covered filter material
CN106914150A (en) A kind of hydrophobic oleophobic method of modifying of porous organic film
Shen et al. Surface modification of PVDF membrane via deposition-grafting of UiO-66-NH2 and their application in oily water separations
CN112044175A (en) Composite catalytic filter material for degrading dioxin at low temperature and preparation method thereof
Pan et al. Interfacially polymerized thin-film composite membrane on UV-induced surface hydrophilic-modified polypropylene support for nanofiltration
JP2006212515A (en) Denitration catalyst, its manufacturing method and exhaust gas treatment method
US9890260B2 (en) Plasma assisted hydrophilicity enhancement of polymer materials
CN106731238A (en) A kind of production method of the polytetrafluoroethylfilter filter material with catalysis
US11813582B2 (en) Support-free adsorbents for CO2 capture from air
CN108889142A (en) A kind of polyvinyl alcohol-hydroxyethyl cellulose/polyacrylonitrile gas dehumidification membrane preparation method
JP2016104477A (en) Catalyst fiber structure
JPH07299319A (en) Deodorizing filter and its production
JP2002096434A (en) Toxic gas treatment sheet and method of manufacturing the same
CN113457469B (en) High-temperature-resistant PDMS/ionic liquid composite membrane and preparation method and application thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231013

R150 Certificate of patent or registration of utility model

Ref document number: 7369062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150