JP2021132472A - Control system and control method of energy storage facility - Google Patents

Control system and control method of energy storage facility Download PDF

Info

Publication number
JP2021132472A
JP2021132472A JP2020026847A JP2020026847A JP2021132472A JP 2021132472 A JP2021132472 A JP 2021132472A JP 2020026847 A JP2020026847 A JP 2020026847A JP 2020026847 A JP2020026847 A JP 2020026847A JP 2021132472 A JP2021132472 A JP 2021132472A
Authority
JP
Japan
Prior art keywords
power generation
power
facility
generation facility
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020026847A
Other languages
Japanese (ja)
Other versions
JP7307008B2 (en
Inventor
竜之佑 松本
Ryunosuke Matsumoto
竜之佑 松本
正人 村上
Masato Murakami
正人 村上
哲郎 中川
Tetsuro Nakagawa
哲郎 中川
康子 小嶋
Yasuko Kojima
康子 小嶋
博正 進
Hiromasa Shin
博正 進
道彦 犬飼
Michihiko Inukai
道彦 犬飼
直樹 浅野
Naoki Asano
直樹 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2020026847A priority Critical patent/JP7307008B2/en
Publication of JP2021132472A publication Critical patent/JP2021132472A/en
Application granted granted Critical
Publication of JP7307008B2 publication Critical patent/JP7307008B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

To maximize economical advantage of, for example, electric power supply to an external power system while securing an amount of power required in operating and stopping a main power generation facility.SOLUTION: A control system of energy storage facility includes: an atomic power generation facility 11; a photovoltaic power generation facility 12 and a wind turbine generator system 13 which generate electric power derived from renewable energy; a power storage facility 14 that stores the electric power generated by the photovoltaic power generation facility and the wind turbine generator system; and control means 16 that controls storage of the electric power in the power storage facility 14 in accordance with an operation status of the atomic power generation facility and weather so that the power storage facility 14 stores electric power of a requested power storage amount corresponding to a requested power amount requested by the atomic power generation facility, and further controls how much of the electric power stored in the power storage facility 14 is to be discharged to the atomic power generation facility 11 or an external power system in accordance with external factors including the status of the atomic power generation facility 11 and weather prediction.SELECTED DRAWING: Figure 2

Description

本発明の実施形態は、蓄エネルギ設備の制御システム及び蓄エネルギ設備の制御方法に関する。 An embodiment of the present invention relates to a control system for energy storage equipment and a control method for energy storage equipment.

国内の原子力発電プラントでは、東北地方太平洋沖地震後に制定された新規制基準により非常用電源の多重化が義務付けられ、それに対応すべく、国内の事業者は再稼働する原子力発電所に非常用電源設備を追設している。これらの非常用電源設備は外部電源喪失時に備え待機しており、待機中は定期的なサーベイランス試験を除き、これらの電源が使用されることはない。従って、これらの電源の追設はプラントの経済性が悪化する要因となっている。 At domestic nuclear power plants, the new regulatory standards established after the 2011 off the Pacific coast of Tohoku Earthquake require multiplexing of emergency power sources, and in response to this, domestic operators are required to use emergency power sources for restarting nuclear power plants. Equipment is being added. These emergency power supplies are on standby in case of loss of external power, and these power supplies are not used during standby except for regular surveillance tests. Therefore, the addition of these power sources is a factor that deteriorates the economic efficiency of the plant.

更に、国内の事業者は新規制基準に対応するだけでなく、原子力の自主的安全性向上と称して、新規制基準に対応した後も残るリスクに対し、新規制基準における安全対策に加え、自主的に安全対策を追及する義務を負っている。これらの活動もプラントの経済性が悪化する要因になっている。 Furthermore, domestic operators not only comply with the new regulatory standards, but also call it voluntary improvement of nuclear safety, and in addition to the safety measures under the new regulatory standards, for the risks that remain even after complying with the new regulatory standards. We are obliged to voluntarily pursue safety measures. These activities are also a factor in deteriorating the economic efficiency of the plant.

従って、再稼働若しくは新設する原子力発電プラントでは、安全性向上と経済性が両立する電源の需要が要請される。ここで、新規制基準に対応する電源は一般的に、設置コストが高く且つ通常時に発電が使用できる用途とはなっていないことから、売電によるコストの回収は見込めない。一方、自主的安全性向上に資する電源の場合には、新規制基準の縛りがないため、設置コストを安く抑え且つ通常時に売電を行うことで収益を上げることが可能になる。 Therefore, in a nuclear power plant that is restarted or newly constructed, there is a demand for a power source that has both improved safety and economic efficiency. Here, since the power source corresponding to the new regulatory standard generally has a high installation cost and is not used for power generation in normal times, it is not expected to recover the cost by selling the power. On the other hand, in the case of a power source that contributes to voluntary safety improvement, since there are no restrictions on the new regulatory standards, it is possible to raise profits by keeping the installation cost low and selling power at normal times.

なお、特許文献1には、原子力発電プラントの外部電源が喪失した場合でも、原子力発電プラントの発電を支障なく継続できる風力発電プラントの技術が提案されている。この技術では、風力発電装置を通常時には商用電力とし、外部電源喪失時等には蓄電池と併用して原子力発電プラントの非常用発電としている。 Note that Patent Document 1 proposes a technique for a wind power plant that can continue power generation of a nuclear power plant without any trouble even if the external power source of the nuclear power plant is lost. In this technology, the wind power generation device is normally used as commercial power, and when the external power source is lost, it is used in combination with a storage battery to generate emergency power in a nuclear power plant.

特開2004−44508号公報Japanese Unexamined Patent Publication No. 2004-44508

原子力発電プラントに対して制定された新規制基準で要求される非常用電源とは別に、自主的安全性向上に資する設備として、外部電源喪失時等に使用でき且つそれ以外では売電可能若しくは所内に電力を供給可能な補助電源を、原子力発電プラントの敷地内に設けることで、原子力発電プラントの安全性向上と経済性向上の両立を図ることが期待されている。 Apart from the emergency power supply required by the new regulatory standards established for nuclear power plants, it can be used as a facility that contributes to voluntary safety improvement when an external power source is lost, and can be sold or sold in the facility. It is expected that an auxiliary power source capable of supplying electric power to the nuclear power plant will be installed on the premises of the nuclear power plant to improve the safety and economic efficiency of the nuclear power plant.

また、上述のような新規制基準への対策として原子力発電プラントの再稼動に数千億円規模の投資が必要となっており、投資回収ができないとの判断から廃炉となる原子力発電プラントも増加している。しかしながら、原子力発電プラントの廃炉にも数千億円規模の費用が必要であり、事業者の経営を圧迫することが想定される。更に、廃炉には30年程度の工期が必要になることから、原子炉建屋が解体されるまでの間、原子炉建屋内の燃料プールに貯蔵された燃料の冷却に要する電源が必要になる。このため、廃炉プラントに対しても上記補助電源の有効な活用が求められる。 In addition, as a measure against the new regulatory standards mentioned above, it is necessary to invest hundreds of billions of yen to restart the nuclear power plant, and some nuclear power plants will be decommissioned because it is judged that the investment cannot be recovered. It has increased. However, the decommissioning of nuclear power plants also requires a cost of several hundred billion yen, which is expected to put pressure on the management of businesses. Furthermore, since decommissioning requires a construction period of about 30 years, a power source required for cooling the fuel stored in the fuel pool inside the reactor building is required until the reactor building is dismantled. .. Therefore, effective utilization of the above auxiliary power source is required for the decommissioning plant.

本発明の実施形態は、上述の事情を考慮してなされたものであり、主力発電設備の運転時及び停止時に必要な電力量を確保できると共に、外部電力系統への電力供給等による経済的メリットを最大化できる蓄エネルギ設備の制御システム及び制御方法を提供することを目的とする。 The embodiment of the present invention has been made in consideration of the above-mentioned circumstances, and can secure the required amount of electric power when the main power generation facility is operated and stopped, and has economic merits such as supplying electric power to an external power system. It is an object of the present invention to provide a control system and a control method of energy storage equipment capable of maximizing the above.

本発明の実施形態における蓄エネルギ設備の制御システムは、主力発電設備と、自然エネルギである再生可能エネルギに由来して発電する再エネ発電設備と、前記再エネ発電設備により発電された電力をエネルギとして蓄積する蓄エネルギ設備と、前記主力発電設備が要求する要求電力量に相当する要求エネルギ量を前記蓄エネルギ設備が蓄積するように、前記主力発電設備の運転状況及び天候に応じて前記蓄エネルギ設備へのエネルギの蓄積を制御し、更に、前記主力発電設備の状態及び天候予測を含む外部要因に応じて、前記蓄エネルギ設備に蓄積されたエネルギを前記主力発電設備または外部電力系統へどの程度放出させるかを制御する制御手段と、を有して構成されたことを特徴とするものである。 The control system for the energy storage equipment according to the embodiment of the present invention uses the main power generation equipment, the renewable energy power generation equipment that generates energy from the renewable energy that is natural energy, and the power generated by the renewable energy power generation equipment. According to the operating conditions and the weather of the main power generation equipment, the energy storage equipment is stored so that the energy storage equipment stores the required energy amount corresponding to the required power amount required by the main power generation equipment. How much energy is stored in the energy storage facility to the main power generation facility or the external power system according to external factors including the state of the main power generation facility and weather prediction, while controlling the energy storage in the facility. It is characterized in that it is configured to have a control means for controlling whether or not to release the energy.

本発明の実施形態における蓄エネルギ設備の制御方法は、主力発電設備と、自然エネルギである再生可能エネルギに由来して発電する再エネ発電設備と、前記再エネ発電設備により発電された電力をエネルギとして蓄積する蓄エネルギ設備と、をそれぞれ設置して準備し、前記主力発電設備が要求する要求電力量に相当する要求エネルギ量を前記蓄エネルギ設備が蓄積するように、前記主力発電設備の運転状況及び天候に応じて前記蓄エネルギ設備へのエネルギの蓄積を制御し、更に、前記主力発電設備の状態及び天候予測を含む外部要因に応じて、前記蓄エネルギ設備に蓄積されたエネルギを前記主力発電設備または外部電力系統へどの程度放出させるかを制御することを特徴とするものである。 The control method of the energy storage equipment according to the embodiment of the present invention is to use the main power generation equipment, the renewable energy power generation equipment that generates energy from the renewable energy that is natural energy, and the power generated by the renewable energy power generation equipment. The operating status of the main power generation equipment is such that the energy storage equipment is installed and prepared, and the energy storage equipment accumulates the required energy amount corresponding to the required power amount required by the main power generation equipment. And the energy storage in the energy storage facility is controlled according to the weather, and the energy stored in the energy storage facility is used for the main power generation according to the state of the main power generation facility and external factors including the weather prediction. It is characterized by controlling how much energy is released to equipment or an external power system.

本発明の実施形態によれば、主力発電設備の運転時及び停止時に必要な電力量を確保できると共に、外部電力系統への電力供給等による経済的メリットを最大化できる。 According to the embodiment of the present invention, it is possible to secure the required amount of electric power when the main power generation facility is operated and stopped, and to maximize the economic merit of supplying electric power to the external power system.

第1実施形態に係る蓄エネルギ設備の制御システムが適用される発電プラントの構成を示す概略縦断面図。The schematic vertical sectional view which shows the structure of the power plant to which the control system of the energy storage equipment which concerns on 1st Embodiment is applied. 図1の発電プラントを、制御システムの制御手段等と共に示す概略平面図。The schematic plan view which shows the power plant of FIG. 1 together with the control means of a control system. 天候が晴れの場合における太陽光発電設備の発電量と蓄電設備の蓄電量等との関係を示し、(A)が天候予測なしの場合を、(B)が天候予測ありの場合をそれぞれ示すグラフ。A graph showing the relationship between the amount of power generated by a photovoltaic power generation facility and the amount of electricity stored in a power storage facility when the weather is sunny, (A) showing the case without weather prediction, and (B) showing the case with weather prediction. .. 図1及び図2の原子力発電設備の運転中と停止中のそれぞれにおける外部電源喪失時等に要求される要求電力量を比較して示すグラフ。The graph which compares and shows the required electric energy required at the time of loss of an external power source, etc., when the nuclear power generation facilities of FIGS. 1 and 2 are in operation and stopped. 図2の制御手段が実行する蓄電設備等への制御手順を示すフローチャート。FIG. 5 is a flowchart showing a control procedure for a power storage facility or the like executed by the control means of FIG. 図1及び図2の原子力発電設備の運転中と停止中のそれぞれにおける要求電力量に相当する蓄電設備の要求蓄電量を決定する手順を示すフローチャート。FIG. 5 is a flowchart showing a procedure for determining a required power storage amount of the power storage equipment corresponding to the required power amount during operation and shutdown of the nuclear power generation equipment of FIGS. 1 and 2. 第2実施形態に係る蓄エネルギ設備の制御システムにおける制御手段が、外部電源喪失時等の非常時に電力を受電する電源を選択する等の手順を示すフローチャート。The flowchart which shows the procedure that the control means in the control system of the energy storage equipment which concerns on 2nd Embodiment selects the power source which receives electric power in an emergency such as loss of an external power source. 第3実施形態に係る蓄エネルギ設備の制御システムにおける制御手段が、原子力発電設備の停止時に電力を受電する電源を選択する手順を示すフローチャート。The flowchart which shows the procedure which the control means in the control system of the energy storage equipment which concerns on 3rd Embodiment selects the power source which receives electric power when the nuclear power generation equipment is stopped.

以下、本発明を実施するための形態を、図面に基づき説明する。
[A]第1実施形態(図1〜図6)
図1は、第1実施形態に係る蓄エネルギ設備の制御システムが適用される発電プラントの構成を示す概略縦断面図である。図1及び図2に示す発電プラント10は、メイン電源となる主力発電設備(本実施形態では原子力発電設備11)と、自然エネルギである再生可能エネルギに由来して発電しサブ電源となる再エネ発電設備(本実施形態では太陽光発電設備12及び風力発電設備13)と、再エネ発電設備にて発電された電力をエネルギとして蓄積する蓄エネルギ設備(本実施形態では蓄電設備14)と、モニタ装置15と、制御手段16と、を有して構成される。このうちのモニタ装置15及び制御手段16が、蓄エネルギ設備としての蓄電設備14の制御システム17を構成する。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
[A] First Embodiment (FIGS. 1 to 6)
FIG. 1 is a schematic vertical sectional view showing a configuration of a power plant to which a control system for energy storage equipment according to the first embodiment is applied. The power plant 10 shown in FIGS. 1 and 2 is a main power generation facility (nuclear power generation facility 11 in this embodiment) that serves as a main power source, and renewable energy that generates power from renewable energy that is a natural energy source and serves as a sub-power source. Power generation equipment (solar power generation equipment 12 and wind power generation equipment 13 in this embodiment), energy storage equipment that stores the power generated by the renewable energy power generation equipment as energy (storage equipment 14 in this embodiment), and a monitor. It is configured to include a device 15 and a control means 16. Of these, the monitor device 15 and the control means 16 constitute a control system 17 of the power storage equipment 14 as the energy storage equipment.

ここで、主力発電設備は、原子炉建屋18及びタービン建屋19を有する原子力発電設備11のほかに火力発電設備等であってもよい。また、再エネ発電設備は、原子力発電設備11の近傍に設置された太陽光発電設備12及び風力発電設備13のほかに、潮力発電設備や水力発電設備などを含めてもよい。また、蓄エネルギ設備は、再エネ発電設備(太陽光発電設備12、風力発電設備13)にて発電された電力を蓄積(蓄電)することで、再エネ発電設備による発電量の平準化を図るものである。この蓄エネルギ設備は、蓄電設備14のほかに、電力を水素により蓄える等のようなエネルギ貯蔵設備であってもよい。 Here, the main power generation facility may be a thermal power generation facility or the like in addition to the nuclear power generation facility 11 having the reactor building 18 and the turbine building 19. Further, the renewable energy power generation facility may include a tidal power generation facility, a hydroelectric power generation facility, and the like, in addition to the solar power generation facility 12 and the wind power generation facility 13 installed in the vicinity of the nuclear power generation facility 11. In addition, the energy storage facility aims to equalize the amount of power generated by the renewable energy power generation facility by accumulating (storing) the power generated by the renewable energy power generation facility (solar power generation facility 12, wind power generation facility 13). It is a thing. In addition to the power storage equipment 14, the energy storage equipment may be an energy storage equipment such as storing electric power with hydrogen.

太陽光発電設備12及び風力発電設備13により発電された電力と蓄電設備14にて蓄電された電力は、原子力発電設備11の外部電源喪失時などの非常時には原子力発電設備11へ供給され、原子力発電設備11の通常運転時または停止時には原子力発電設備11へ供給されるほか、外部電力系統へ供給されて売電される。なお、発電プラント10が災害時に避難所として使用される場合には、太陽光発電設備12、風力発電設備13及び蓄電設備14は避難所の電源として活用されてもよい。 The power generated by the solar power generation facility 12 and the wind power generation facility 13 and the power stored in the power storage facility 14 are supplied to the nuclear power generation facility 11 in an emergency such as when the external power source of the nuclear power generation facility 11 is lost, and the nuclear power generation is performed. In addition to being supplied to the nuclear power generation facility 11 during normal operation or shutdown of the facility 11, it is also supplied to the external power system and sold. When the power generation plant 10 is used as an evacuation center in the event of a disaster, the solar power generation facility 12, the wind power generation facility 13, and the power storage facility 14 may be used as a power source for the evacuation center.

モニタ装置15は、原子力発電設備11、太陽光発電設備12、風力発電設備13及び蓄電設備14の状態を監視する。つまり、モニタ装置15は、原子力発電設備11の運転及び停止を監視し、更に外部電源喪失などの非常事象の発生を監視する。また、モニタ装置15は、太陽光発電設備12、風力発電設備13のそれぞれの運転及び停止を監視すると共に、太陽光発電設備12、風力発電設備13のそれぞれの発電量を監視する。更に、モニタ装置15は、蓄電設備14に蓄電されている蓄電量を監視する。 The monitoring device 15 monitors the states of the nuclear power generation facility 11, the solar power generation facility 12, the wind power generation facility 13, and the power storage facility 14. That is, the monitor device 15 monitors the operation and stoppage of the nuclear power generation facility 11, and further monitors the occurrence of an emergency event such as the loss of an external power source. Further, the monitoring device 15 monitors the operation and stop of each of the photovoltaic power generation facility 12 and the wind power generation facility 13, and also monitors the amount of power generated by each of the photovoltaic power generation facility 12 and the wind power generation facility 13. Further, the monitor device 15 monitors the amount of electricity stored in the electricity storage facility 14.

制御手段16は、第1の機能として、原子力発電設備11が外部電源喪失時等の非常時に要求する要求電力量に相当する要求蓄電量を蓄電設備14が蓄電するように、原子力発電設備11の運転状況及び天候に応じて蓄電設備14への電力の蓄積(蓄電)を制御する。蓄電設備14に蓄電される蓄電量は図3に曲線Cで表示され、その最大蓄電量が直線Dで表示され、更に、原子力発電設備11における外部電源喪失時等の非常時に要求される要求電力量に相当する要求蓄電量が曲線Eで表示されている。蓄電設備14は、この要求蓄電量Eを確保する必要がある。 As a first function, the control means 16 of the nuclear power generation facility 11 so that the power storage facility 14 stores the required power storage amount corresponding to the required power amount required by the nuclear power generation facility 11 in an emergency such as when an external power source is lost. The storage (storage) of electric power in the power storage facility 14 is controlled according to the operating conditions and the weather. The amount of electricity stored in the electricity storage facility 14 is indicated by a curve C in FIG. 3, the maximum amount of electricity stored is indicated by a straight line D, and the required power required in an emergency such as when the external power source is lost in the nuclear power generation facility 11. The required electricity storage amount corresponding to the amount is displayed by the curve E. The power storage equipment 14 needs to secure this required power storage amount E.

原子力発電設備11の要求電力量は、図4に示すように、原子力発電設備11の運転時と停止時とで異なる。つまり、原子力発電設備11は、運転中と停止中とで、外部電源喪失時等の非常時に使用する負荷の量が異なる。原子力発電設備11の運転中の非常時に最優先される負荷は、緊急停止時の炉心の冷却に使用される機器であるが、停止中の非常時に最優先される負荷は、燃料プール内の燃料の冷却に使用する機器である。このことから、原子力発電所11の停止時には運転時に比べて一般的に負荷量が減少するため、原子力発電設備11の要求電力量は、原子力発電設備11の運転時に比べて停止時に低くなる。従って、原子力発電設備11の要求電力量に相当する蓄電設備14の要求蓄電量Eは、原子力発電設備11の運転時に比べて停止時に低く設定されることになる。 As shown in FIG. 4, the required electric energy of the nuclear power generation facility 11 differs between when the nuclear power generation facility 11 is in operation and when it is stopped. That is, the amount of load used by the nuclear power generation facility 11 differs between the operating state and the stopped state in an emergency such as when an external power source is lost. The highest priority load in an emergency during operation of the nuclear power generation facility 11 is the equipment used for cooling the core during an emergency stop, but the highest priority load in an emergency during an emergency is the fuel in the fuel pool. It is a device used for cooling. For this reason, since the load amount is generally reduced when the nuclear power plant 11 is stopped, the required electric energy of the nuclear power generation facility 11 is lower when the nuclear power plant 11 is stopped than when the nuclear power plant 11 is operated. Therefore, the required electricity storage amount E of the electricity storage facility 14 corresponding to the required electric energy of the nuclear power generation facility 11 is set lower when the nuclear power generation facility 11 is stopped than when it is in operation.

また、蓄電設備14に蓄電される電力は、太陽光発電設備12及び風力発電設備13により発電された電力であり、この太陽光発電設備12及び風力発電設備13は、天候(晴れ、曇り、雨、大気圧差など)により発電量が変化する。これらのことから、制御手段16は、原子力発電設備11の運転状況(運転、停止)及び天候に応じて蓄電設備14への蓄電量を制御して、蓄電設備14に要求蓄電量Eを確保させる。 The electric power stored in the power storage facility 14 is the power generated by the solar power generation facility 12 and the wind power generation facility 13, and the solar power generation facility 12 and the wind power generation facility 13 have weather (sunny, cloudy, rainy). , Atmospheric pressure difference, etc.) The amount of power generation changes. From these facts, the control means 16 controls the amount of electricity stored in the electricity storage facility 14 according to the operating status (operation, stoppage) and the weather of the nuclear power generation facility 11, and causes the electricity storage facility 14 to secure the required amount of electricity E. ..

また、制御手段16は、第2の機能として、原子力発電設備11の状態及び天候予測を含む外部要因に応じて、蓄電設備14に蓄電された電力を原子力発電設備11または外部電力系統へどの程度放出(供給)させるかを制御する。ここで、原子力発電設備11の状態は、原子力発電設備11の運転中、停止中、または外部電源喪失などの非常事象の発生などである。また、外部要因は、太陽光発電設備12及び風力発電設備13の発電量が変動する天候(晴れ、曇り、雨、大気圧差など)の予測のほか、1日の時間帯によって変化する電力需要の予測、1日の時間帯等により電気料金が変化する電力取引状況である。 Further, as a second function, the control means 16 transfers the electric power stored in the power storage facility 14 to the nuclear power generation facility 11 or the external power system according to external factors including the state of the nuclear power generation facility 11 and the weather prediction. Control whether to release (supply). Here, the state of the nuclear power generation facility 11 is an emergency event such as operation, stoppage, or loss of an external power source of the nuclear power generation facility 11. External factors include forecasts of weather (sunny, cloudy, rainy, atmospheric pressure difference, etc.) in which the amount of power generated by the photovoltaic power generation facility 12 and the wind power generation facility 13 fluctuates, as well as power demand that changes depending on the time of day. This is the power trading situation where the electricity price changes depending on the forecast of the day.

具体的に、制御手段16は、天候予測に応じて太陽光発電設備12及び風力発電設備13による発電量を予測する。この発電量が十分である場合に、制御手段16は、蓄電設備14から原子力発電設備11または外部電力系統へ、蓄電設備14の蓄電量が原子力発電設備11の要求電力量に相当する要求蓄電量Eを下回る程度になるまで蓄電電力を放出(供給)させる。蓄電設備14からの蓄電量を外部電力系統へ供給して売電させる場合、制御手段16は、蓄電設備14からの蓄電量の放出時期を、電力需要予測に基づき電力需要が多く電力が不足する時間帯で、且つ電力取引状況に基づき電気料金が高い時間帯に決定する。なお、上述の蓄電設備14からの蓄電電力の放出及び放出時期の決定は、制御手段16が具備する人工知能(AI)により実施されるのが好ましい。 Specifically, the control means 16 predicts the amount of power generated by the photovoltaic power generation facility 12 and the wind power generation facility 13 according to the weather prediction. When this power generation amount is sufficient, the control means 16 transfers the power storage amount from the power storage facility 14 to the nuclear power generation facility 11 or the external power system, and the power storage amount of the power storage facility 14 corresponds to the required power amount of the nuclear power generation facility 11. The stored power is released (supplied) until it falls below E. When the power storage amount from the power storage equipment 14 is supplied to the external power system to sell the power, the control means 16 determines the release timing of the power storage amount from the power storage equipment 14 based on the power demand forecast, and the power demand is large and the power is insufficient. Determine the time zone when the electricity rate is high based on the electricity transaction status. It is preferable that the discharge of the stored power from the power storage equipment 14 and the determination of the release timing are carried out by the artificial intelligence (AI) provided in the control means 16.

図3は、(A)が天候予測なしの場合、(B)が天候予測ありの場合のそれぞれ、太陽光発電設備12の発電量と蓄電設備14の蓄電量等との関係を示すグラフである。この図3では、太陽光発電設備12の発電電力量が曲線Aで表示され、使用電力量(電力需要量)が曲線Bで表示され、蓄電設備14の蓄電量が曲線Cで表示されている。蓄電設備14の要求蓄電量Eは、最大蓄電量Dよりも低く設定され、前述の如く原子力発電設備11の運転、停止により変化する。制御手段16が天候予測を実施しない場合には、図3(A)に示すように、蓄電設備14の要求蓄電量Eと蓄電量C及び発電電力量Aとで囲まれた領域(ハッチング領域)が外部電力系統へ供給し得る売電可能な範囲となる。 FIG. 3 is a graph showing the relationship between the amount of power generated by the photovoltaic power generation facility 12 and the amount of electricity stored in the power storage facility 14, respectively, when (A) has no weather prediction and (B) has weather prediction. .. In FIG. 3, the amount of power generated by the photovoltaic power generation facility 12 is displayed by a curve A, the amount of power used (power demand) is displayed by a curve B, and the amount of electricity stored by the power storage facility 14 is displayed by a curve C. .. The required storage amount E of the power storage facility 14 is set lower than the maximum storage amount D, and changes depending on the operation and stop of the nuclear power generation facility 11 as described above. When the control means 16 does not perform weather prediction, as shown in FIG. 3A, an area (hatched area) surrounded by the required electricity storage amount E, the electricity storage amount C, and the generated power amount A of the electricity storage facility 14. Is the range in which power can be sold that can be supplied to the external power system.

上述の売電可能な範囲を拡大させることで、売電による収益アップによって経済的メリットを増大させることが可能になる。例えば、太陽光発電設備12の場合で、日の出後に蓄電設備14への蓄電が十分に見込めるときには、図3(B)に示すように、日の出前に蓄電設備14に蓄電された蓄電電力を、蓄電量Cが要求蓄電量Eを下回る程度まで放出して売電することが可能になる。つまり、制御手段16は、天候予測に基づく太陽光発電設備12の発電量(発電電力量A)を予測し、これにより、日の出前に蓄電設備14の蓄電量Cが要求蓄電量Eに対して一時的に下回るように蓄電電力を放出させる。この場合でも、太陽光発電設備12による日の出後の発電によって蓄電設備14に蓄電がなされ、原子力発電設備11の外部電源喪失時等の非常時に要求される要求電力量Eを蓄電設備14が確保し、太陽光発電設備12により補うことが可能になる。 By expanding the above-mentioned range in which electricity can be sold, it is possible to increase economic merits by increasing profits from selling electricity. For example, in the case of the photovoltaic power generation equipment 12, when sufficient storage of electricity in the storage equipment 14 can be expected after sunrise, as shown in FIG. 3B, the stored power stored in the storage equipment 14 before sunrise is stored. It is possible to sell electricity by discharging the amount C to a extent that it is less than the required storage amount E. That is, the control means 16 predicts the power generation amount (power generation amount A) of the photovoltaic power generation facility 12 based on the weather prediction, whereby the power storage amount C of the power storage facility 14 with respect to the required power storage amount E before sunrise. The stored power is released so that it is temporarily lowered. Even in this case, the power storage facility 14 is charged with power generated after sunrise by the photovoltaic power generation facility 12, and the power storage facility 14 secures the required electric energy E required in an emergency such as when the external power source of the nuclear power generation facility 11 is lost. , It becomes possible to supplement with the solar power generation equipment 12.

このため、夜間に蓄電設備14に対して、蓄電量Cが要求蓄電量Eを下回る程度まで蓄電電力を放出させて、外部電力系統への売電量を増大させることが可能になる。このときの外部電力系統へ供給し得る売電可能な範囲を、図3(B)のハッチング領域に示す。 Therefore, it is possible to increase the amount of power sold to the external power system by discharging the stored power to the power storage facility 14 at night to the extent that the stored amount C is less than the required stored amount E. The range in which power can be sold that can be supplied to the external power system at this time is shown in the hatched area of FIG. 3 (B).

また、太陽光発電の導入拡大に伴い、昼間に電力供給が過剰になるが、夕方以降の電力需要が多くなる時間帯に電力が不足するという「ダックカーブ」と呼称される現象が生じる。現状では、昼間の電気料金が最も高額であるが、「ダックカーブ」現象下では逆転が生じ、昼間の電気料金が最も安価になり、夕方以降の電気料金が高額になる。従って、蓄電設備14の運用としては、昼間に蓄電し、夕方以降に放出(売電)するのが経済的メリットが大きい。制御手段16は、上述の事情を考慮した電力需要予測及び電力取引状況に応じて、蓄電設備14に蓄電された蓄電電力を、電力需要が多く且つ電気料金が高い時間帯(例えば夜間)に放出する。 In addition, with the expansion of the introduction of photovoltaic power generation, the power supply becomes excessive in the daytime, but a phenomenon called "duck curve" occurs in which the power is insufficient during the time when the power demand is high after the evening. At present, the daytime electricity rate is the highest, but under the "duck curve" phenomenon, a reversal occurs, the daytime electricity rate becomes the cheapest, and the electricity rate after the evening becomes high. Therefore, as for the operation of the power storage equipment 14, it is economically advantageous to store power in the daytime and release (sell power) after the evening. The control means 16 discharges the stored power stored in the power storage facility 14 during a time period (for example, at night) when the power demand is high and the electricity rate is high, in accordance with the power demand forecast and the power transaction status in consideration of the above circumstances. do.

更に、制御手段16は、第1の機能に属する機能として、まず図4に示すように、原子力発電設備11の運転状況(運転、停止)によって変化する原子力発電設備11の非常時(例えば外部電源喪失時など)に要求される要求電力量をそれぞれの運転状況毎に予め求める。次に、制御手段16は、原子力発電設備11の運転状況に応じた要求電力量Eに相当する要求蓄電量Eを蓄電設備14に、原子力発電設備11の運転状況毎に設定し蓄電させる。 Further, as a function belonging to the first function, the control means 16 first, as shown in FIG. 4, is an emergency (for example, an external power source) of the nuclear power generation facility 11 that changes depending on the operating status (operation, stop) of the nuclear power generation facility 11. The required amount of power required at the time of loss, etc.) is obtained in advance for each operating condition. Next, the control means 16 sets the required electricity storage amount E corresponding to the required electric energy E according to the operating condition of the nuclear power generation equipment 11 in the electricity storage equipment 14 for each operating condition of the nuclear power generation equipment 11 and stores the electricity.

例えば、蓄電設備14の要求蓄電量Eは、原子力発電設備11の停止中の方が運転中よりも少ない。従って、制御手段16は、原子力発電設備11が運転から停止に切り替わり、燃料が炉心から燃料プールに搬送された後に、蓄電設備14の要求蓄電量Eを、原子力発電設備11の運転中の要求蓄電量Eよりも低い原子力発電設備11停止中の要求蓄電量Eに変更させる。これにより、原子力発電設備11の停止中には、要求蓄電量が低くなった分の蓄電量を、外部電力系統へ供給して売電することが可能になる。 For example, the required storage amount E of the power storage facility 14 is smaller when the nuclear power generation facility 11 is stopped than when it is in operation. Therefore, in the control means 16, after the nuclear power generation facility 11 is switched from the operation to the stop and the fuel is transported from the core to the fuel pool, the required storage amount E of the power storage facility 14 is set to the required storage amount E during the operation of the nuclear power generation facility 11. The nuclear power generation facility 11 is changed to the required storage amount E when the nuclear power generation facility 11 is stopped, which is lower than the amount E. As a result, while the nuclear power generation facility 11 is stopped, it is possible to supply the amount of electricity stored as the required amount of electricity stored to the external power system and sell it.

上述のように構成された制御手段16の機能を、図5及び図6のフローチャートを用いて更に説明する。
図5に示すように、制御手段16は、夜間において、日の出後の天候予測に基づいて、太陽光発電設備12及び風力発電設備13の発電量を予測する(S1)。次に、制御手段16は、日の出後の天候が良い(例えば晴れ)か否かを判断し(S2)、晴れでない場合には、日の出後の蓄電設備14への蓄電量の増加が見込めないので、蓄電設備14に蓄電された蓄電量の夜間における使用(放出)を抑える(S3)。
The functions of the control means 16 configured as described above will be further described with reference to the flowcharts of FIGS. 5 and 6.
As shown in FIG. 5, the control means 16 predicts the amount of power generated by the photovoltaic power generation facility 12 and the wind power generation facility 13 at night based on the weather prediction after sunrise (S1). Next, the control means 16 determines whether or not the weather after sunrise is good (for example, sunny) (S2), and if it is not sunny, the amount of electricity stored in the power storage facility 14 after sunrise cannot be expected to increase. , The use (release) of the stored amount stored in the power storage facility 14 at night is suppressed (S3).

ステップS2において日の出後の天候が晴れである場合には、日の出後に蓄電設備14への蓄電が見込めので、制御手段16は、蓄電設備14に蓄電された蓄電電力を夜間に使用(放出)させる(S4)。ステップS4の結果、蓄電設備14では、日の出前の時点での蓄電量は、原子力発電設備11の外部電源喪失時等の非常時に備えておくべき要求電力量に相当する要求蓄電量Eを一時的に下回る蓄電量になる(S5)。 When the weather after sunrise is sunny in step S2, it is expected that the power storage equipment 14 will be charged after sunrise, so that the control means 16 uses (releases) the stored power stored in the power storage equipment 14 at night (release). S4). As a result of step S4, in the power storage equipment 14, the power storage amount before sunrise temporarily sets the required power storage amount E corresponding to the required power amount to be prepared in an emergency such as when the external power source of the nuclear power generation equipment 11 is lost. The amount of electricity stored is less than (S5).

次に、制御手段16は、日の出前に原子力発電設備11に外部電源喪失等の非常事象が発生したか否かを判断する(S6)。このステップS6で非常事象が発生していないと判断したときには、制御手段16は、日の出後に太陽光発電設備12及び風力発電設備13にて発電された電力を、蓄電設備14に蓄電させる(S7)。このステップS7により、蓄電設備14の蓄電量が要求蓄電量Eを上回る程度まで回復する。 Next, the control means 16 determines whether or not an emergency event such as a loss of an external power source has occurred in the nuclear power generation facility 11 before sunrise (S6). When it is determined in step S6 that no emergency event has occurred, the control means 16 stores the electric power generated by the solar power generation equipment 12 and the wind power generation equipment 13 in the power storage equipment 14 after sunrise (S7). .. By this step S7, the amount of electricity stored in the electricity storage equipment 14 is recovered to the extent that it exceeds the required amount of electricity stored E.

ステップS6において、制御手段16は、原子力発電設備11に非常事象が発生したと判断したときには、日の出前に、蓄電設備14に残存する蓄電量を原子力発電設備11へ非常時電源として供給する(S8)。引き続き制御手段16は、蓄電設備14における蓄電量がなくなる前に、日の出に伴い発電した太陽光発電設備12及び風力発電設備13の発電電力を非常時電源として原子力発電設備11へ供給する(S9)。 In step S6, when the control means 16 determines that an emergency event has occurred in the nuclear power generation equipment 11, the amount of electricity stored in the power storage equipment 14 is supplied to the nuclear power generation equipment 11 as an emergency power source before sunrise (S8). ). Subsequently, the control means 16 supplies the power generated by the photovoltaic power generation facility 12 and the wind power generation facility 13 generated at sunrise to the nuclear power generation facility 11 as an emergency power source before the storage amount in the power storage facility 14 is exhausted (S9). ..

図5に示す制御手順を実行する前または途中で、制御手段16は、図6に示すように、まず、原子力発電設備11の運転時を基準とした蓄電設備14の要求蓄電量Eと売電量を設定する(S11)。次に、制御手段16は、原子力発電設備11が現在運転中であるか否かを判断する(S12)。原子力発電設備11が運転中である場合に制御手段16は、蓄電設備14の要求蓄電量Eが、運転中の原子力発電設備11が外部電源喪失時などの非常時に要求する要求電力量に相当する要求蓄電量Eに確保されると判断する(S13)。 Before or during the execution of the control procedure shown in FIG. 5, the control means 16 first, as shown in FIG. 6, first, the required power storage amount E and the power sales amount of the power storage facility 14 based on the operation time of the nuclear power generation facility 11. Is set (S11). Next, the control means 16 determines whether or not the nuclear power generation facility 11 is currently in operation (S12). When the nuclear power generation facility 11 is in operation, the control means 16 corresponds to the required power storage amount E of the power storage facility 14 corresponding to the required power amount required by the operating nuclear power generation facility 11 in an emergency such as when the external power source is lost. It is determined that the required electricity storage amount E is secured (S13).

制御手段16は、ステップS12において原子力発電設備11が現在運転中ではなく停止中であると判断したときに、電力蓄電設備14の要求蓄電量Eと売電量の設定を、原子力発電設備11の停止中を基準としたものに変更する(S14)。これにより、制御手段16は、蓄電設備14の要求蓄電量Eが、停止中の原子力発電設備11が外部電源喪失時などの非常時に要求する要求電力量に相当した要求蓄電量Eに確保されると判断する(S15)。 When the control means 16 determines in step S12 that the nuclear power generation facility 11 is not currently in operation but is stopped, the control means 16 sets the required power storage amount E and the power sale amount of the power storage facility 14 and stops the nuclear power generation facility 11. Change to the one based on the inside (S14). As a result, the control means 16 secures the required power storage amount E of the power storage equipment 14 at the required power storage amount E corresponding to the required power amount E required by the stopped nuclear power generation equipment 11 in an emergency such as when the external power source is lost. (S15).

ステップS13とS15で確保される蓄電設備14の要求蓄電量Eは、原子力発電設備11の運転中の場合が停止中の場合に比べて大きく設定される(S16)。このため、太陽光発電設備12及び風力発電設備13による発電電力並びに蓄電設備14の蓄電電力を外部電力系統へ供給することによる売電量は、原子力発電設備11の停止中の方が運転中よりも大きくなる(S17)。 The required storage amount E of the power storage equipment 14 secured in steps S13 and S15 is set to be larger when the nuclear power generation equipment 11 is in operation than when it is stopped (S16). Therefore, the amount of electricity generated by supplying the power generated by the solar power generation facility 12 and the wind power generation facility 13 and the stored power of the power storage facility 14 to the external power system is higher when the nuclear power generation facility 11 is stopped than when it is in operation. It becomes larger (S17).

以上のように構成されたことから、本第1実施形態によれば、次の効果(1)〜(3)を奏する。
(1)図2に示すように、制御手段16は、原子力発電設備11が外部電源喪失時等の非常時に要求する要求電力量に相当する要求蓄電量Eを、蓄電設備14が蓄電することを前提としている。このため、原子力発電設備11は、外部電源喪失時などの非常時を含めた運転時及び停止時に必要な電力を蓄電設備14から確保でき、更に、太陽光発電設備12及び風力発電設備13から補うことができる。これにより、原子力発電設備11の安全性向上を実現できる。
Since it is configured as described above, according to the first embodiment, the following effects (1) to (3) are obtained.
(1) As shown in FIG. 2, the control means 16 causes the power storage equipment 14 to store the required power storage amount E corresponding to the required power amount required by the nuclear power generation equipment 11 in an emergency such as when the external power source is lost. It is assumed. Therefore, the nuclear power generation facility 11 can secure the electric power required for operation and stoppage including an emergency such as when the external power source is lost from the power storage facility 14, and further supplements from the solar power generation facility 12 and the wind power generation facility 13. be able to. As a result, the safety of the nuclear power generation facility 11 can be improved.

(2)図2及び図3に示すように、制御手段16は、原子力発電設備11の状態(運転、停止、非常事象発生)及び外部要因(天候予測、電力需要予測、電力取引状況)に応じて、蓄電設備14に蓄電された蓄電電力を、原子力発電設備11または外部電力系統へどの程度放出させるかを制御している。従って、例えば日の出後の天候予測が晴れである場合には、日の出後の太陽光発電設備12の発電電力を十分に見込め、この十分な発電電力を蓄電設備14に蓄電することができる。このため、蓄電設備14の蓄電量が日の出前に一時的に、原子力発電設備11の要求電力量に相当する要求蓄電量Eを下回る程度になるまで蓄電電力を放出して、外部電力系統へ供給(売電)することができる。これにより、安全性向上を保持しつつ、経済的メリットの最大化を実現できる。 (2) As shown in FIGS. 2 and 3, the control means 16 responds to the state of the nuclear power generation facility 11 (operation, stoppage, occurrence of an emergency event) and external factors (weather forecast, power demand forecast, power transaction status). Therefore, it controls how much the stored power stored in the power storage facility 14 is discharged to the nuclear power generation facility 11 or the external power system. Therefore, for example, when the weather forecast after sunrise is sunny, the generated power of the photovoltaic power generation facility 12 after sunrise can be sufficiently expected, and this sufficient generated power can be stored in the power storage facility 14. Therefore, the stored power is temporarily released before sunrise until the stored power of the power storage facility 14 becomes less than the required power storage amount E corresponding to the required power amount of the nuclear power generation facility 11 and supplied to the external power system. (Power sale) is possible. As a result, it is possible to maximize the economic merit while maintaining the improvement of safety.

(3)図4及び図5の示すように、制御手段16は、原子力発電設備11の運転状況(運転、停止)によって変化する原子力発電設備11の要求電力量に相当する蓄電設備14の要求蓄電量Eを、原子力発電設備11の運転状況に応じて変化させている。この蓄電設備14の要求蓄電量Eは、原子力発電設備11の停止中方が運転中よりも低く設定される。このため、制御手段16は、蓄電設備14の蓄電電力を、原子力発電設備11の停止時において運転中よりも多く外部電力系統へ供給して売電できるので、経済的メリットを増大させることができる。 (3) As shown in FIGS. 4 and 5, the control means 16 receives the required power storage of the power storage facility 14 corresponding to the required power amount of the nuclear power generation facility 11 that changes depending on the operating status (operation, stop) of the nuclear power generation facility 11. The amount E is changed according to the operating condition of the nuclear power generation facility 11. The required storage amount E of the power storage equipment 14 is set lower when the nuclear power generation equipment 11 is stopped than when it is in operation. Therefore, the control means 16 can supply more electricity stored in the electricity storage facility 14 to the external power system than during operation when the nuclear power generation facility 11 is stopped, and can increase the economic merit. ..

[B]第2実施形態(図7)
図7は、第2実施形態に係る蓄エネルギ設備の制御システムにおける制御手段が、外部電源喪失時等の非常時に電力を受電する電源を選択する等の手順を示すフローチャートである。この第2実施形態において第1実施形態と同様な部分については、第1実施形態と同一の符号を付すことにより説明を簡略化し、または省略する。
[B] Second embodiment (FIG. 7)
FIG. 7 is a flowchart showing a procedure in which the control means in the control system of the energy storage equipment according to the second embodiment selects a power source to receive electric power in an emergency such as when an external power source is lost. In this second embodiment, the same parts as those in the first embodiment are designated by the same reference numerals as those in the first embodiment to simplify or omit the description.

本第2実施形態における蓄エネルギ設備としての蓄電設備14の制御システム20(図2参照)が第1実施形態と異なる点は、原子力発電設備11が外部電源喪失時等の非常時に蓄電設備14に蓄電された蓄電電力を使用する際に、制御手段21(図2参照)が、使用先の負荷の優先順位に基づいて蓄電電力を放出させて使用させるよう構成された点である。なお、制御手段21は、上述の機能のほか、第1実施形態の制御手段16と同様な機能も果たす。 The difference between the control system 20 (see FIG. 2) of the power storage equipment 14 as the energy storage equipment in the second embodiment is that the nuclear power generation equipment 11 becomes the power storage equipment 14 in an emergency such as when an external power source is lost. When using the stored stored power, the control means 21 (see FIG. 2) is configured to discharge and use the stored power based on the priority of the load of the use destination. In addition to the above-mentioned functions, the control means 21 also has the same functions as the control means 16 of the first embodiment.

原子力発電設備11の外部電源喪失時などの非常時における蓄電設備14の使用用途は、炉心の冷却以外に、非常時に用いられるエリアへの照明や空調などのインフラへの給電などがある。このうちで最優先とされるものは炉心冷却である。蓄電設備14は、上述の非常時の期間が想定以上に長期に及ぶ場合であっても、太陽光発電設備12及び風力発電設備13から給電を受けることで蓄電電力が枯渇することがない。 In addition to cooling the core, the power storage equipment 14 is used in an emergency such as when the external power source of the nuclear power generation equipment 11 is lost, such as lighting an area used in an emergency and supplying power to infrastructure such as air conditioning. Of these, the highest priority is core cooling. Even if the above-mentioned emergency period is longer than expected, the power storage facility 14 does not run out of stored power by receiving power from the solar power generation facility 12 and the wind power generation facility 13.

その場合でも、炉心冷却以外の負荷への給電を遮断することで、蓄電設備14が電力枯渇するリスクを確実に減少させることが可能になる。この観点から制御手段21は、原子力発電設備14の外部電源喪失時等の非常時に使用される負荷に対して優先順位を設定し、この使用先の負荷の優先順位に基づいて蓄電設備14の蓄電電力を使用先負荷に順次供給することで、蓄電設備14の蓄電電力枯渇のリスクを低減させる。 Even in that case, by cutting off the power supply to the load other than the core cooling, it is possible to surely reduce the risk of the power storage equipment 14 running out of electric power. From this point of view, the control means 21 sets a priority for the load used in an emergency such as when the external power source of the nuclear power generation facility 14 is lost, and stores electricity in the power storage facility 14 based on the priority of the load at the destination. By sequentially supplying electric power to the load to be used, the risk of exhaustion of the stored electric power of the power storage equipment 14 is reduced.

次に、第2実施形態における制御手段21の非常時の制御手順を、図7に基づいて説明する。
まず、制御手段21は、原子力発電設備11が外部電源喪失時などの非常時であると判断する(S20)。このとき、制御手段21は、原子力発電設備11の非常用電源が使用可能であるか否かを判断し(S21)、使用可能であれば原子力発電設備11に対し非常用電源から受電させる(S22)。
Next, the emergency control procedure of the control means 21 in the second embodiment will be described with reference to FIG. 7.
First, the control means 21 determines that the nuclear power generation facility 11 is in an emergency such as when the external power source is lost (S20). At this time, the control means 21 determines whether or not the emergency power source of the nuclear power generation facility 11 can be used (S21), and if it can be used, causes the nuclear power generation facility 11 to receive power from the emergency power source (S22). ).

ステップS21において非常用電源の使用が不可能である場合に、制御手段21は、原子力発電設備11に対し太陽光発電設備12及び風力発電設備13からの受電を開始させる(S23)。このステップS23の後、制御手段21は、太陽光発電設備12及び風力発電設備13が現時点で発電可能であるか否かを常時判断し(S24)、発電可能である場合には、原子力発電設備11に対し太陽光発電設備12及び風力発電設備13からの受電を継続させる(S25)。 When the emergency power source cannot be used in step S21, the control means 21 causes the nuclear power generation facility 11 to start receiving power from the solar power generation facility 12 and the wind power generation facility 13 (S23). After this step S23, the control means 21 constantly determines whether or not the photovoltaic power generation facility 12 and the wind power generation facility 13 can generate power at the present time (S24), and if so, the nuclear power generation facility. 11 is continued to receive power from the solar power generation facility 12 and the wind power generation facility 13 (S25).

ステップS24において太陽光発電設備12及び風力発電設備13の発電が不可能になった場合に、制御手段21は、原子力発電設備11に対し蓄電設備14からの受電を開始させる(S26)。このとき、制御手段21は、現時点で蓄電設備14の蓄電量が原子力発電設備11への電力供給が必要な一定の蓄電量(例えば要求蓄電量E)以上であるか否かを判断する(S27)。 When the photovoltaic power generation equipment 12 and the wind power generation equipment 13 become unable to generate power in step S24, the control means 21 causes the nuclear power generation equipment 11 to start receiving power from the power storage equipment 14 (S26). At this time, the control means 21 determines whether or not the amount of electricity stored in the electricity storage facility 14 is equal to or greater than a certain amount of electricity required to supply power to the nuclear power generation facility 11 (for example, the required amount of electricity stored E) (S27). ).

ステップS27において蓄電設備14の蓄電量が一定の蓄電量以上であれば、制御手段21は、原子力発電設備11に対し蓄電設備14からの受電を継続させる(S28)。制御手段21は、ステップS27において蓄電設備14の蓄電量が一定の蓄電量未満であるときには、原子力発電設備11の外部電源喪失時などの非常時に使用される負荷に対し優先順位を設定し、この優先順位の高い使用先負荷に対して順次、蓄電設備14からの蓄電電力を受電させる(S29)。 If the amount of electricity stored in the electricity storage equipment 14 is equal to or greater than a certain amount of electricity in step S27, the control means 21 causes the nuclear power generation equipment 11 to continue receiving power from the electricity storage equipment 14 (S28). When the amount of electricity stored in the electricity storage facility 14 is less than a certain amount in step S27, the control means 21 sets a priority for the load used in an emergency such as when the external power source of the nuclear power generation facility 11 is lost. The stored power from the power storage equipment 14 is sequentially received from the destination load having a high priority (S29).

以上のように構成されたことから、本第2実施形態によれば、第1実施形態の効果(1)〜(3)と同様な効果を奏するほか、次の効果(4)を奏する。 Since it is configured as described above, according to the second embodiment, in addition to the same effects as the effects (1) to (3) of the first embodiment, the following effects (4) are obtained.

(4)制御手段21は、原子力発電設備14の外部電源喪失時等の非常時に使用される負荷に対して優先順位を設定し、この使用先の負荷の優先順位に基づいて蓄電設備14の蓄電電力を使用先負荷に順次供給している。この結果、蓄電設備14の蓄電量が、原子力発電設備11の外部電源喪失時などの非常時における最優先の負荷、例えば炉心冷却に使用される負荷への給電枯渇のリスクを回避して、最優先の負荷への長期間の給電を確実に実現できる。 (4) The control means 21 sets a priority for a load used in an emergency such as when the external power source of the nuclear power generation facility 14 is lost, and stores electricity in the power storage facility 14 based on the priority of the load at the destination. Electric power is sequentially supplied to the destination load. As a result, the amount of electricity stored in the electricity storage facility 14 avoids the risk of exhaustion of power supply to the load used for core cooling, for example, the load used for cooling the core, which is the highest priority load in an emergency such as when the external power source of the nuclear power generation facility 11 is lost. Long-term power supply to the priority load can be reliably realized.

[C]第3実施形態(図8)
図8は、第3実施形態に係る蓄エネルギ設備の制御システムにおける制御手段が、原子力発電設備の停止時に電力を受電する電源を選択する手順を示すフローチャートである。この第3実施形態において第1実施形態と同様な部分については、第1実施形態と同一の符号を付すことにより説明を簡略化し、または省略する。
[C] Third Embodiment (FIG. 8)
FIG. 8 is a flowchart showing a procedure in which the control means in the control system of the energy storage equipment according to the third embodiment selects a power source that receives electric power when the nuclear power generation equipment is stopped. In this third embodiment, the same parts as those in the first embodiment are designated by the same reference numerals as those in the first embodiment to simplify or omit the description.

本第3実施形態における蓄エネルギ設備としての蓄電設備14の制御システム30(図2参照)が第1実施形態と異なる点は、原子力発電設備11の停止時で且つこの原子力発電設備11が必要な電力を外部電力系統から購入して受電する際の購入費が高額な場合に、制御手段31(図2参照)が太陽光発電設備12及び風力発電設備13の発電量を天候予測に応じて予測し、この発電量の予測結果に基づいて蓄電設備14から蓄電電力を放出させるよう制御し、この放出した蓄電電力を原子力発電設備11に受電させるよう構成された点である。なお、制御手段31は、上記機能のほか、第1実施形態の制御手段16と同様な機能も果たす。 The difference between the control system 30 (see FIG. 2) of the power storage equipment 14 as the energy storage equipment in the third embodiment is that the nuclear power generation equipment 11 is required when the nuclear power generation equipment 11 is stopped. When the purchase cost when purchasing power from an external power system and receiving power is high, the control means 31 (see FIG. 2) predicts the amount of power generated by the solar power generation equipment 12 and the wind power generation equipment 13 according to the weather forecast. Then, based on the prediction result of the amount of power generation, the storage power is controlled to be discharged from the power storage equipment 14, and the discharged power storage power is received by the nuclear power generation equipment 11. In addition to the above functions, the control means 31 also has the same function as the control means 16 of the first embodiment.

原子力発電設備11は、通常運転時には、設備内で消費する電力量を差し引いた電力量を外部電力系統へ供給して売電している。これに対し、定期点検などの停止時には、原子力発電設備11は、運転時ほどではないものの、設備内で消費する電力量を受電する必要がある。原子力発電設備11の停止時に制御手段31は、原子力発電設備11に対し、太陽光発電設備12及び風力発電設備13から受電させる。太陽光発電設備12及び風力圧電設備13からの受電が不可能になったときに、制御手段31は原子力発電設備11に対し、外部電力系統または蓄電設備14から充電させる。蓄電設備14からの受電は、外部電力系統の電気料金が高額な場合に実施される。 During normal operation, the nuclear power generation facility 11 supplies the external power system with the amount of power obtained by subtracting the amount of power consumed in the facility and sells the power. On the other hand, when the periodic inspection or the like is stopped, the nuclear power generation facility 11 needs to receive the amount of electric power consumed in the facility, though not as much as during operation. When the nuclear power generation facility 11 is stopped, the control means 31 causes the nuclear power generation facility 11 to receive power from the solar power generation facility 12 and the wind power generation facility 13. When it becomes impossible to receive power from the photovoltaic power generation equipment 12 and the wind power piezoelectric equipment 13, the control means 31 causes the nuclear power generation equipment 11 to be charged from the external power system or the power storage equipment 14. The power reception from the power storage equipment 14 is carried out when the electricity charge of the external power system is high.

原子力発電設備11の蓄電設備14からの受電に際し、制御手段31は、天候を予測して太陽光発電設備12及び風力発電設備13の発電量を予測する。これは、例えば、太陽光発電設備12の日の出後の発電量を予測して、この日の出後の発電量が十分に見込める場合に、日の出前に原子力発電設備11が蓄電設備14から要求蓄電量Eを下回るほどの蓄電量を受電し得るようにするためである。 When receiving power from the power storage facility 14 of the nuclear power generation facility 11, the control means 31 predicts the weather and predicts the amount of power generated by the photovoltaic power generation facility 12 and the wind power generation facility 13. This is, for example, when the amount of power generated by the photovoltaic power generation facility 12 after sunrise is predicted and the amount of power generated after this sunrise can be sufficiently expected, the nuclear power generation facility 11 requests the amount of electricity stored from the power storage facility 14 before sunrise. This is so that the amount of electricity stored can be less than the above.

上述の制御手段31の制御手順を、図8を用いて説明する。
まず、制御手段31は、原子力発電設備11が停止時であると判断する(S30)。原子力発電設備11の停止時に制御手段31は、原子力発電設備11に対して太陽光発電設備12及び風力発電設備13から受電を開始させる(S31)。
The control procedure of the control means 31 described above will be described with reference to FIG.
First, the control means 31 determines that the nuclear power generation facility 11 is stopped (S30). When the nuclear power generation facility 11 is stopped, the control means 31 causes the nuclear power generation facility 11 to start receiving power from the solar power generation facility 12 and the wind power generation facility 13 (S31).

次に、制御手段31は、太陽光発電設備12及び風力発電設備13が現時点で発電可能であるか否かを常時判断する(S32)。太陽光発電設備12及び風力発電設備13が発電可能である場合に、制御手段31は原子力発電設備11に対し、太陽光発電設備12及び風力発電設備13からの受電を継続させる(S33)。 Next, the control means 31 constantly determines whether or not the photovoltaic power generation facility 12 and the wind power generation facility 13 can generate power at the present time (S32). When the photovoltaic power generation facility 12 and the wind power generation facility 13 can generate power, the control means 31 causes the nuclear power generation facility 11 to continue receiving power from the photovoltaic power generation facility 12 and the wind power generation facility 13 (S33).

ステップS32において太陽光発電設備12及び風力発電設備13の発電が不可能になった場合に、制御手段31は、外部電力系統から購入する電気料金が高額な時間帯であるか否かを判断する(S34)。このステップS34において電気料金が高額な時間帯でない場合に、制御手段31は、原子力発電設備11に対し外部電力系統から受電させる(S35)。 When the solar power generation facility 12 and the wind power generation facility 13 become unable to generate power in step S32, the control means 31 determines whether or not the electricity charge purchased from the external power system is in a high time zone. (S34). When the electricity charge is not high in the time zone in step S34, the control means 31 causes the nuclear power generation facility 11 to receive power from the external power system (S35).

ステップS34において電気料金が高額な時間帯である場合には、制御手段31は、原子力発電設備11に対し蓄電設備14から受電させる(S36)。この原子力発電設備11の蓄電設備14からの受電に際し、制御手段31は、天候予測に基づいて太陽光発電設備12及び風力発電設備13の発電量を予測し、例えば太陽光発電設備12の日の出後の発電量が十分に見込める場合に、日の出前に蓄電設備14から要求蓄電量Eを下回る蓄電電力を放出させて原子力発電設備11に受電させる。 When the electricity charge is high in the time zone in step S34, the control means 31 causes the nuclear power generation facility 11 to receive power from the power storage facility 14 (S36). When receiving power from the power storage facility 14 of the nuclear power generation facility 11, the control means 31 predicts the amount of power generated by the solar power generation facility 12 and the wind power generation facility 13 based on the weather prediction, for example, after sunrise of the solar power generation facility 12. When the amount of power generation is expected to be sufficient, the power storage facility 14 releases stored power that is less than the required storage amount E before sunrise, and causes the nuclear power generation facility 11 to receive power.

以上のように構成されたことから、本第3実施形態によれば、第1実施形態の効果(1)〜(3)と同様な効果を奏するほか、次の効果(5)を奏する。 Since it is configured as described above, according to the third embodiment, in addition to the same effects as the effects (1) to (3) of the first embodiment, the following effect (5) is obtained.

(5)原子力発電設備11の停止中に、この原子力発電設備11が外部電力系統から購入する電気料金が高額な場合、制御手段31は、蓄電設備14の蓄電電力を原子力発電設備11へ供給させて原子力発電設備11に受電させる。これにより、原子力発電設備11の経済的負担が低減されて、経済的メリットの最大化を図ることができる。 (5) If the electricity charge purchased by the nuclear power generation facility 11 from the external power system is high while the nuclear power generation facility 11 is stopped, the control means 31 causes the storage power of the power storage facility 14 to be supplied to the nuclear power generation facility 11. To receive power from the nuclear power generation facility 11. As a result, the economic burden on the nuclear power generation facility 11 can be reduced, and the economic merit can be maximized.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができ、また、それらの置き換えや変更は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention, and their replacements and changes can be made. Is included in the scope and gist of the invention, and is also included in the invention described in the claims and the equivalent scope thereof.

例えば、原子力発電設備を廃止(廃炉)する際に、廃炉作業時間が長期間に及ぶことから、この廃炉対象の原子力発電設備の燃料プールを長期間冷却するために、本実施形態における原子力発電設備の停止時の運用を、廃炉対象の原子力発電設備、太陽光発電設備、風力発電設備及び蓄電設備を含む発電プラントに適用してもよい。 For example, when the nuclear power generation facility is abolished (decommissioned), the decommissioning work time is long. Therefore, in order to cool the fuel pool of the nuclear power generation facility to be decommissioned for a long period of time, the present embodiment The operation when the nuclear power generation facility is stopped may be applied to a power plant including a nuclear power generation facility, a solar power generation facility, a wind power generation facility, and a power storage facility to be decommissioned.

11…原子力発電設備(主力発電設備)、12…太陽光発電設備(再エネ発電設備)、13…風力発電設備(再エネ発電設備)、14…蓄電設備(蓄エネルギ設備)、16…制御手段、17…制御システム、20…制御システム、21…制御手段、30…制御システム、31…制御手段、E…要求蓄電量(要求エネルギ量) 11 ... Nuclear power generation equipment (main power generation equipment), 12 ... Solar power generation equipment (renewable energy power generation equipment), 13 ... Wind power generation equipment (renewable energy power generation equipment), 14 ... Power storage equipment (energy storage equipment), 16 ... Control means , 17 ... Control system, 20 ... Control system, 21 ... Control means, 30 ... Control system, 31 ... Control means, E ... Required storage amount (required energy amount)

Claims (6)

主力発電設備と、
自然エネルギである再生可能エネルギに由来して発電する再エネ発電設備と、
前記再エネ発電設備により発電された電力をエネルギとして蓄積する蓄エネルギ設備と、
前記主力発電設備が要求する要求電力量に相当する要求エネルギ量を前記蓄エネルギ設備が蓄積するように、前記主力発電設備の運転状況及び天候に応じて前記蓄エネルギ設備へのエネルギの蓄積を制御し、更に、前記主力発電設備の状態及び天候予測を含む外部要因に応じて、前記蓄エネルギ設備に蓄積されたエネルギを前記主力発電設備または外部電力系統へどの程度放出させるかを制御する制御手段と、を有して構成されたことを特徴とする蓄エネルギ設備の制御システム。
Main power generation equipment and
Renewable energy power generation equipment that generates electricity from renewable energy, which is natural energy,
An energy storage facility that stores the electric power generated by the renewable energy power generation facility as energy, and an energy storage facility.
The storage of energy in the energy storage facility is controlled according to the operating conditions and the weather of the main power generation facility so that the energy storage facility accumulates the required energy amount corresponding to the required power amount required by the main power generation facility. Further, a control means for controlling how much energy stored in the energy storage facility is released to the main power generation facility or the external power system according to external factors including the state of the main power generation facility and weather prediction. A control system for energy storage equipment, characterized in that it is configured with and.
前記外部要因は、天候予測、電力需要予測及び電力取引状況であり、
前記制御手段は、前記天候予測に応じて再エネ発電設備の発電量を予測して、蓄エネルギ設備から、主力発電設備の要求電力量に相当する要求エネルギ量を下回る程度までエネルギを放出させ、この放出時期を、前記電力需要予測及び前記電力取引状況に応じて決定することを特徴とする請求項1に記載の蓄エネルギ設備の制御システム。
The external factors are weather forecasts, electricity demand forecasts, and electricity transaction status.
The control means predicts the amount of power generated by the renewable energy power generation facility according to the weather prediction, and releases energy from the energy storage facility to a level lower than the required energy amount corresponding to the required power amount of the main power generation facility. The control system for energy storage equipment according to claim 1, wherein the release time is determined according to the power demand forecast and the power transaction status.
前記制御手段は、主力発電設備が外部電源喪失時に蓄エネルギ設備に蓄積されたエネルギを使用する際には、使用先の負荷に対する優先順位に基づいてエネルギを放出し使用させるよう制御することを特徴とする請求項1または2に記載の蓄エネルギ設備の制御システム。 The control means is characterized in that when the main power generation facility uses the energy stored in the energy storage facility when the external power source is lost, the energy is released and used based on the priority with respect to the load of the user. The control system for energy storage equipment according to claim 1 or 2. 前記制御手段は、主力発電設備の運転状況によって変化する前記主力発電設備の要求電力量をそれぞれの運転状況毎に求め、前記主力発電設備の運転状況に応じた前記要求電力量に相当する要求エネルギ量を蓄エネルギ設備に蓄積させるよう制御することを特徴とする請求項1乃至3のいずれか1項に記載の蓄エネルギ設備の制御システム。 The control means obtains the required power amount of the main power generation facility, which changes depending on the operating state of the main power generation facility, for each operating state, and the required energy corresponding to the required power amount according to the operating state of the main power generation facility. The control system for an energy storage facility according to any one of claims 1 to 3, wherein the amount is controlled so as to be stored in the energy storage facility. 前記制御手段は、主力発電設備の停止時で且つこの主力発電設備が必要な電力を外部電力系統から購入する購入費が高額な場合に、再エネ発電設備の発電量を天候予測に応じて予測し、この予測結果に基づいて蓄エネルギ設備からのエネルギの放出を制御して前記主力発電設備に供給することを特徴とする請求項1乃至4のいずれか1項に記載の蓄エネルギ設備の制御システム。 The control means predicts the amount of power generated by the renewable energy power generation facility according to the weather forecast when the main power generation facility is stopped and the purchase cost of purchasing the power required by the main power generation facility from an external power system is high. The control of the energy storage facility according to any one of claims 1 to 4, wherein the release of energy from the energy storage facility is controlled based on the prediction result and supplied to the main power generation facility. system. 主力発電設備と、自然エネルギである再生可能エネルギに由来して発電する再エネ発電設備と、前記再エネ発電設備により発電された電力をエネルギとして蓄積する蓄エネルギ設備と、をそれぞれ設置して準備し、
前記主力発電設備が要求する要求電力量に相当する要求エネルギ量を前記蓄エネルギ設備が蓄積するように、前記主力発電設備の運転状況及び天候に応じて前記蓄エネルギ設備へのエネルギの蓄積を制御し、更に、前記主力発電設備の状態及び天候予測を含む外部要因に応じて、前記蓄エネルギ設備に蓄積されたエネルギを前記主力発電設備または外部電力系統へどの程度放出させるかを制御することを特徴とする蓄エネルギ設備の制御方法。
Prepare by installing the main power generation equipment, the renewable energy power generation equipment that generates power from renewable energy that is natural energy, and the energy storage equipment that stores the power generated by the renewable energy power generation equipment as energy. death,
The storage of energy in the energy storage facility is controlled according to the operating conditions and the weather of the main power generation facility so that the energy storage facility accumulates the required energy amount corresponding to the required power amount required by the main power generation facility. Further, it is possible to control how much the energy stored in the energy storage facility is released to the main power generation facility or the external power system according to the state of the main power generation facility and external factors including the weather prediction. A characteristic method for controlling energy storage equipment.
JP2020026847A 2020-02-20 2020-02-20 Control system and control method for energy storage equipment Active JP7307008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020026847A JP7307008B2 (en) 2020-02-20 2020-02-20 Control system and control method for energy storage equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020026847A JP7307008B2 (en) 2020-02-20 2020-02-20 Control system and control method for energy storage equipment

Publications (2)

Publication Number Publication Date
JP2021132472A true JP2021132472A (en) 2021-09-09
JP7307008B2 JP7307008B2 (en) 2023-07-11

Family

ID=77551369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020026847A Active JP7307008B2 (en) 2020-02-20 2020-02-20 Control system and control method for energy storage equipment

Country Status (1)

Country Link
JP (1) JP7307008B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188081A1 (en) * 2022-03-30 2023-10-05 日立Geニュークリア・エナジー株式会社 Power supply system and power supply method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005227017A (en) * 2004-02-10 2005-08-25 Toshiba Corp Dc power supply system for nuclear power plant
WO2012131867A1 (en) * 2011-03-28 2012-10-04 株式会社日立製作所 Demand/supply schedule control system for low-voltage grid, and demand/supply schedule control method for low-voltage grid
JP2018164334A (en) * 2017-03-24 2018-10-18 三菱重工業株式会社 Power plant and operation method for power plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005227017A (en) * 2004-02-10 2005-08-25 Toshiba Corp Dc power supply system for nuclear power plant
WO2012131867A1 (en) * 2011-03-28 2012-10-04 株式会社日立製作所 Demand/supply schedule control system for low-voltage grid, and demand/supply schedule control method for low-voltage grid
JP2018164334A (en) * 2017-03-24 2018-10-18 三菱重工業株式会社 Power plant and operation method for power plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188081A1 (en) * 2022-03-30 2023-10-05 日立Geニュークリア・エナジー株式会社 Power supply system and power supply method

Also Published As

Publication number Publication date
JP7307008B2 (en) 2023-07-11

Similar Documents

Publication Publication Date Title
US7456604B2 (en) Electric power control apparatus, power generation system and power grid system
JP4719709B2 (en) Disaster response power supply method and system
WO2013015256A1 (en) Power management system and management method
JP2010233353A (en) Power supply system and method
JP2007060826A (en) Operation system of electric power storing device
JP2013169068A (en) Power control system
Ma et al. Fuel cell backup power system for grid-service and micro-grid in telecommunication applications
Choobineh et al. Emergency electric service restoration in the aftermath of a natural disaster
JP4261409B2 (en) Power stable supply system and method
KR20140111118A (en) Solar-cell system having maximum power saving function and method thereof
JP5013891B2 (en) Grid interconnection device and grid interconnection system
JP5955581B2 (en) Electric power supply and demand control device and electric power supply and demand control method
JP2021132472A (en) Control system and control method of energy storage facility
JP2021022127A (en) Energy management system
JP2012060775A (en) Storage battery operation device
US20140306527A1 (en) Method for providing control power with an energy generator and an energy consumer
JP5243180B2 (en) Operation method of power generation with surface-derived power generation
KR20200103949A (en) Smart energy storage system suitable for solar power generation
JP2003061251A (en) Power supply system
Masrur et al. Optimal operation of resilient microgrids during grid outages
JP5948217B2 (en) Fuel cell operation control method and operation control system in an apartment house
KR101850426B1 (en) Electric power supply system using renewable energy and the method using hybrid
JP2014121151A (en) Power storage system and power supply system
Lehman et al. A photovoltaic/fuel cell power system for a remote telecommunications station
Sonoda et al. Development of containerized energy storage system with lithium-ion batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230629

R150 Certificate of patent or registration of utility model

Ref document number: 7307008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150