JP2021131683A - Programmable logic controller, electronic device, and contact surface selection method - Google Patents

Programmable logic controller, electronic device, and contact surface selection method Download PDF

Info

Publication number
JP2021131683A
JP2021131683A JP2020026230A JP2020026230A JP2021131683A JP 2021131683 A JP2021131683 A JP 2021131683A JP 2020026230 A JP2020026230 A JP 2020026230A JP 2020026230 A JP2020026230 A JP 2020026230A JP 2021131683 A JP2021131683 A JP 2021131683A
Authority
JP
Japan
Prior art keywords
housing
shape
programmable logic
logic controller
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020026230A
Other languages
Japanese (ja)
Inventor
太 下薗
Futoshi Shimozono
太 下薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2020026230A priority Critical patent/JP2021131683A/en
Publication of JP2021131683A publication Critical patent/JP2021131683A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Casings For Electric Apparatus (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Programmable Controllers (AREA)

Abstract

To control a temperature of an electronic device with a simple configuration.SOLUTION: A programmable logic controller includes a plurality of programmable logic controller units 2 each of which has an electronic circuit and a housing 20 for storing the electronic circuit and which are arranged with the surfaces of the housings 20 come into contact with each other. The contact surfaces of the contacting two housings of two adjacent programmable logic controller units 2 are respectively shaped in a first shape or a second shape different in thermal conductivity according to a relation of the temperatures of the contacting two programmable logic controller units 2.SELECTED DRAWING: Figure 2A

Description

本開示は、プログラマブルロジックコントローラ、電子装置および接触面の選択方法に関する。 The present disclosure relates to programmable logic controllers, electronic devices and methods of selecting contact surfaces.

プログラマブルロジックコントローラ(PLC)は、例えば、それぞれ電子回路を含む複数のプログラマブルロジックコントローラユニット(PLCユニット;PLC Unit)が隣接して配置される構成をとる。PLCなどの電子装置の小型化および高密度化に伴い、電子装置の放熱が問題となることがある。さらに、ある電子装置の近傍には、熱に弱い他の電子装置が配置されることがあり、ある電子装置の放熱が、他の電子装置に影響を与えてしまう可能性がある。 The programmable logic controller (PLC) has, for example, a configuration in which a plurality of programmable logic controller units (PLC units; PLC Units) including electronic circuits are arranged adjacent to each other. With the miniaturization and high density of electronic devices such as PLCs, heat dissipation of the electronic devices may become a problem. Further, another electronic device that is sensitive to heat may be arranged in the vicinity of a certain electronic device, and the heat dissipation of the certain electronic device may affect the other electronic device.

特許文献1は、放熱器などを筐体に接続して、電子装置で発生した熱を外部に放熱することを開示する。また、引用文献2は、内筐体と外筐体の間に断熱材を充填して、他の電子装置で発生した熱の影響を受けないようにすることを開示する。しかしながら、引用文献1、2の開示を上述した構成をとるPLCに適用すると、多くの放熱器または断熱材が必要となり、構造が複雑になり、PLCユニット1つあたりの体積が大きくなり、さらに、PLC全体の体積が大きくなってしまう。 Patent Document 1 discloses that a radiator or the like is connected to a housing to dissipate heat generated by an electronic device to the outside. Further, Cited Document 2 discloses that a heat insulating material is filled between the inner housing and the outer housing so as not to be affected by heat generated by other electronic devices. However, when the disclosures of References 1 and 2 are applied to a PLC having the above-described configuration, many radiators or heat insulating materials are required, the structure becomes complicated, the volume per PLC unit becomes large, and further. The volume of the entire PLC becomes large.

特開2005−19434号公報Japanese Unexamined Patent Publication No. 2005-19434 国際公開第2013/146286号International Publication No. 2013/146286

本開示は、上述の問題を解決するためになされたものであり、簡単な構成で電子装置の温度を制御することを目的とする。 The present disclosure has been made to solve the above-mentioned problems, and an object of the present disclosure is to control the temperature of an electronic device with a simple configuration.

上記目的を達成するため、本開示にかかるプログラマブルロジックコントローラは、電子回路と該電子回路を収容する筐体とをそれぞれ有し、筐体の面同士が接触した状態で配置される複数のプログラマブルロジックコントローラユニットを備える。隣接する2つのプログラマブルロジックコントローラユニットの接触する2つの筐体の接触面は、それぞれ、接触する2つのプログラマブルロジックコントローラユニットの温度の関係に応じて、伝熱性が異なる第1の形状または第2の形状をとる。 In order to achieve the above object, the programmable logic controller according to the present disclosure has an electronic circuit and a housing for accommodating the electronic circuit, and a plurality of programmable logics arranged in a state where the surfaces of the housing are in contact with each other. It is equipped with a controller unit. The contact surfaces of the two contacting housings of the two adjacent programmable logic controller units have a first shape or a second shape having different heat transfer properties depending on the temperature relationship between the two contacting programmable logic controller units. Take the shape.

上記構成によれば、接触する2つのプログラマブルロジックコントローラユニットの温度の関係に応じて、接触面が、伝熱性が異なる第1の形状または第2の形状をとる。従って、温度的に余裕のあるプログラマブルロジックコントローラユニットには熱が伝達され易い形状とし、熱的に余裕のないプログラマブルロジックコントローラユニットには、熱が伝達されにくい形状とするといった設定が可能となる。従って、簡単な構成で温度を制御することが可能となる。 According to the above configuration, the contact surface takes a first shape or a second shape having different heat transfer properties, depending on the temperature relationship between the two programmable logic controller units in contact with each other. Therefore, it is possible to set the shape so that heat can be easily transferred to the programmable logic controller unit having a sufficient temperature, and the shape can be made difficult to transfer heat to the programmable logic controller unit having no thermal margin. Therefore, it is possible to control the temperature with a simple configuration.

本開示の実施の形態1にかかるPLCの第1の構成を示す概略的な斜視図Schematic perspective view showing the first configuration of the PLC according to the first embodiment of the present disclosure. 図1に示すPLCユニットのX−Z断面図であり、左側部材LMと右側部材RMが結合している状態を示す図It is an XZ cross-sectional view of the PLC unit shown in FIG. 1, and is the figure which shows the state which the left side member LM and the right side member RM are connected. 図2Aに示すPLCユニットを構成する左側部材LMと右側部材RMが分離された状態を示す図FIG. 2 is a diagram showing a state in which the left side member LM and the right side member RM constituting the PLC unit shown in FIG. 2A are separated. 図2Bに示すPLCユニットの筐体の左側部材LMと右側部材RMとの組み合わせの第1の例を示す第1の図FIG. 1 is a first view showing a first example of a combination of the left side member LM and the right side member RM of the housing of the PLC unit shown in FIG. 2B. 図2Bに示すPLCユニットの筐体の左側部材LMと右側部材RMとの組み合わせの第2の例を示す第2の図FIG. 2B is a second diagram showing a second example of the combination of the left side member LM and the right side member RM of the housing of the PLC unit shown in FIG. 2B. 図2Bに示すPLCユニットの筐体の左側部材LMと右側部材RMとの組み合わせの第3の例を示す第3の図FIG. 3 is a third view showing a third example of the combination of the left side member LM and the right side member RM of the housing of the PLC unit shown in FIG. 2B. 図2Bに示す左側ユニットLUとしてのPLCユニットの筐体の右側部材RMと右側ユニットRUとしてのPLCユニットの筐体の左側部材LMとの第1の組み合わせを示す図FIG. 2B is a diagram showing a first combination of the right side member RM of the PLC unit housing as the left side unit LU and the left side member LM of the PLC unit housing as the right side unit RU. 図2Bに示す左側ユニットLUとしてのPLCユニットの筐体の右側部材RMと右側ユニットRUとしてのPLCユニットの筐体の左側部材LMとの第2の組み合わせを示す図FIG. 2B is a diagram showing a second combination of the right side member RM of the PLC unit housing as the left side unit LU and the left side member LM of the PLC unit housing as the right side unit RU. 図2Bに示す左側ユニットLUとしてのPLCユニットの筐体の右側部材RMと右側ユニットRUとしてのPLCユニットの筐体の左側部材LMとの第3の組み合わせを示す図FIG. 2B is a diagram showing a third combination of the right side member RM of the PLC unit housing as the left side unit LU and the left side member LM of the PLC unit housing as the right side unit RU. 実施の形態1にかかるPLCを構成する隣接する2個のPLCユニットの雰囲気温度および温度許容値の組み合わせに応じて伝熱および断熱のいずれが選択されるべきかを示す図The figure which shows whether heat transfer or heat insulation should be selected according to the combination of the atmospheric temperature and the temperature tolerance of two adjacent PLC units constituting the PLC which concerns on Embodiment 1. 本開示の実施の形態2にかかるPLCユニットの断面図Sectional drawing of PLC unit which concerns on Embodiment 2 of this disclosure 本開示の実施の形態3にかかるPLCの2個のPLCユニットの右側部材RMと左側部材LMの第1の断面図First sectional view of the right side member RM and the left side member LM of the two PLC units of the PLC according to the third embodiment of the present disclosure. 本開示の実施の形態3にかかるPLCの2個のPLCユニットの右側部材RMと左側部材LMの第2の断面図Second sectional view of the right side member RM and the left side member LM of the two PLC units of the PLC according to the third embodiment of the present disclosure. 本開示の実施の形態4にかかるPLCの第2の構成を示す概略的な斜視図Schematic perspective view showing a second configuration of the PLC according to the fourth embodiment of the present disclosure.

[実施の形態1]
以下、実施の形態1にかかるプログラマブルロジックコントローラ(PLC;Programmable Logic Controller)1を、図面を参照しつつ説明する。以下の実施の形態において、同一の構成部分には同一の符号を付す。また、各図には方向を示すために、互いに直交するX.Y,Z軸からなる座標軸を示す。ここで、X軸は、PLC1の水平方向の一辺と平行、Y軸を水平方向の他辺と平行、Z軸を鉛直方向とする。
[Embodiment 1]
Hereinafter, the programmable logic controller (PLC) 1 according to the first embodiment will be described with reference to the drawings. In the following embodiments, the same components are designated by the same reference numerals. In addition, in order to show the direction in each figure, X. A coordinate axis consisting of Y and Z axes is shown. Here, the X-axis is parallel to one side in the horizontal direction of the PLC1, the Y-axis is parallel to the other side in the horizontal direction, and the Z-axis is the vertical direction.

また、各図に示した各構成要素の形状、寸法およびその比率は例示である。また、「PLCユニット2〜2」など、添字を有する符号が付される構成要素のいずれかを特定せずに示すときには、添字を省略して「PLCユニット2」などと記載する。 Moreover, the shape, dimensions and their ratios of each component shown in each figure are examples. Further, when indicating without specifying any of the components to which the reference numerals having a subscript are attached, such as "PLC unit 2 1 to 2 n", the subscript is omitted and described as "PLC unit 2" or the like.

図1は、本開示の実施の形態1にかかるPLC1の第1の構成を示す概略的な斜視図である。図2A,図2Bは、PLCユニット2の構成をX−Z平面に平行な断面で例示する第1および第2の図である。図1に示すように、PLC1は、n個のコネクタ14〜14が取り付けられたマザーボード12、マザーボード12が取り付けられる取付板金10、および、コネクタ14〜14それぞれを介してマザーボード12に取り付けられて電気的に相互に接続される電子回路ユニットとしてのPLCユニット2〜2を備える。 FIG. 1 is a schematic perspective view showing a first configuration of PLC1 according to the first embodiment of the present disclosure. 2A and 2B are first and second views illustrating the configuration of the PLC unit 2 1 in a cross section parallel to the XZ plane. As shown in FIG. 1, PLC1 is, n pieces of the connector 14 1 to 14 n are motherboard 12 mounted, the mounting metal plate 10 motherboard 12 is attached, and, to the motherboard 12 via a connector 14 1 to 14 n respectively It includes PLC units 2 1 to 2 n as electronic circuit units that are attached and electrically interconnected.

なお、図1においては、nは5以上の整数である場合が示され、PLCユニット2〜2、コネクタ14〜14n−1およびPLCユニット2に接続される装置は省略されている。また、PLCユニット2,2は、PLCユニット2を手前側から奥側に見たときに、PLCユニット2が左側となり、PLCユニット2が右側となる。このように、左側にあるPLCユニット2を左側ユニットLUと記載し、右側にあるPLCユニット2を右側ユニットRUと記載することがある。 In FIG. 1, n is shown to be a integer of 5 or more, devices connected to the PLC unit 2 3 to 2 n, the connector 14 5 to 14 n-1 and PLC unit 2 is omitted .. Also, PLC unit 2 1, 2 2, when viewed in the back side of the PLC unit 2 from the front side, PLC unit 2 1 is the left side, the PLC unit 2 2 is right. As described above, the PLC unit 2 on the left side may be referred to as the left side unit LU, and the PLC unit 2 on the right side may be referred to as the right side unit RU.

図2Aに示すように、PLCユニット2は、中空の箱形といった並行多面体の形状をとり、電子回路部品206が取り付けられた電子回路基板204を収容する筐体20を備える。PLCユニット2〜2もまた、PLCユニット2と同様な筐体20を備える。 As shown in FIG. 2A, the PLC unit 2 1 has a parallel polyhedron shape such as a hollow box shape, and includes a housing 20 for accommodating the electronic circuit board 204 to which the electronic circuit component 206 is attached. The PLC units 2 2 to 2 n also include a housing 20 similar to the PLC unit 2 1.

電子回路部品206は、CPU(中央処理装置)、メモリ素子、発光素子、信号送受信用素子および電力制御素子またはこれらの組み合わせであって、マザーボード12から電力の供給を受けて動作する電子回路を構成する。電子回路は動作の際に電力を消費して発熱し、発熱部品の一例である。PLCユニット2〜2それぞれの電子回路は、PLCユニット2に接続される装置を制御する機能、電源を供給する機能、通信するための機能またはデータの入出力の機能などを実現する。 The electronic circuit component 206 is a CPU (central processing unit), a memory element, a light emitting element, a signal transmission / reception element, a power control element, or a combination thereof, and constitutes an electronic circuit that operates by receiving power from the motherboard 12. do. An electronic circuit is an example of a heat-generating component that consumes electric power to generate heat during operation. Each of the electronic circuits of the PLC units 2 1 to 2 n realizes a function of controlling a device connected to the PLC unit 2, a function of supplying power, a function of communicating, a function of inputting / outputting data, and the like.

電子回路の動作に伴う発熱により筐体20のなかの空間の空気が熱せられて雰囲気温度ATとなる。また、電子回路に許容される上限温度と雰囲気温度ATとの差を温度許容値TM、即ち、温度マージンと定義する。PLCユニット2それぞれの通常動作における雰囲気温度ATおよび温度許容値TMは、PLC1の試作段階において予め測定され、あるいは、PLC1の設計段階においてシミュレーションなどにより求められる。 The air in the space inside the housing 20 is heated by the heat generated by the operation of the electronic circuit, and becomes the atmospheric temperature AT. Further, the difference between the upper limit temperature allowed in the electronic circuit and the atmospheric temperature AT is defined as the temperature allowable value TM, that is, the temperature margin. The atmospheric temperature AT and the temperature tolerance TM in the normal operation of each of the PLC units 2 are measured in advance at the prototype stage of the PLC 1 or obtained by simulation or the like at the design stage of the PLC 1.

筐体20は、図2Aに示すように、2個の筐体部材200,202が、Y−Z平面に平行な結合面CSにおいて結合され、また、図2Bに示すように、結合された状態から分離されうる構成をとる。筐体部材200は、他の筐体20と接触する接触面となりうる側面SFを左側に有し、筐体部材202は他の筐体20と接触する接触面となりうる側面SFを右側に有する。図2A,図2Bには、概ね等しい形状および体積の2つの筐体部材200,202により筐体20が構成される場合が例示される。また、筐体20において左側にある筐体部材200などを左側部材LM(Left Member)と記載し、右側にある筐体部材202などを右側部材RM(Right Member)と記載することがある。 In the housing 20, as shown in FIG. 2A, two housing members 200 and 202 are connected on a bonding surface CS parallel to the YY plane, and as shown in FIG. 2B, the housing 20 is connected. It has a structure that can be separated from. The housing member 200 has a side surface SF that can be a contact surface with another housing 20 on the left side, and the housing member 202 has a side surface SF that can be a contact surface with another housing 20 on the right side. 2A and 2B illustrate a case where the housing 20 is composed of two housing members 200 and 202 having substantially the same shape and volume. Further, in the housing 20, the housing member 200 or the like on the left side may be described as the left side member LM (Left Member), and the housing member 202 or the like on the right side may be described as the right side member RM (Light Member).

PLCユニット2の筐体20の筐体部材202の側面SFは平面の第1の形状とされる。接触面として平面な側面SFを有する筐体部材202は、PLCユニット2と、その右側に配置されるPLCユニット2との間の伝熱を妨げず、これらの間の伝熱性を低くしない。 The side surface SF of the housing member 202 of the housing 20 of the PLC unit 2 1 has a first flat shape. The housing member 202 having a flat side surface SF as a contact surface does not hinder heat transfer between the PLC unit 2 1 and the PLC unit 2 2 arranged on the right side thereof, and does not lower the heat transfer property between them. ..

一方、PLCユニット2の筐体20の筐体部材200の側面SFには凸部CVと凹部CCとが設けられた第2の形状をとる。凸部CVは、図1に点線で示すように、他のPLCユニット2がPLCユニット2の左側にあると仮定したときに、PLCユニット2の筐体20の筐体部材200または筐体部材202と接触し、PLCユニット2,2の筐体20の位置関係を安定に保つ。 On the other hand, the side surface SF of the housing member 200 of the PLC unit 2 1 enclosure 20 takes the second shape and the convex portion CV and the recess CC is provided. Protrusions CV, as indicated by a dotted line in FIG. 1, the other when the PLC unit 2 0 is assumed to the left side of the PLC unit 2 1, the housing member 200 or housing of the PLC unit 2 0 enclosure 20 in contact with the body member 202, keeping stable the positional relationship between the PLC unit 2 0, 2 1 of the housing 20.

凹部CCは、PLCユニット2の筐体20の筐体部材200または筐体部材202との間に間隙Gを形成し、伝熱を妨げる。つまり、接触面として凸部CVと凹部CCとを含む側面SFを有する筐体部材200は、PLCユニット2と、その左側に配置されると仮定されるPLCユニット2との間の伝熱を妨げ、これらの間の伝熱性を低くする。 Recess CC is a gap G is formed between the housing member 200 or housing member 202 of the PLC unit 2 0 of the casing 20 prevents heat transfer. In other words, the housing member 200 having a side surface SF that includes a convex portion CV and concave CC as a contact surface, the heat transfer between the PLC unit 2 1, the PLC unit 2 0 which is assumed to be located on the left side And reduce the heat transfer between them.

PLCユニット2の筐体20を、左側部材LMの筐体部材200と右側部材RMの筐体部材202との組み合わせの他に、以下に示すような組み合わせの左側部材LMと右側部材RMとから構成しうる。図3A〜図3Cは、PLCユニット2の筐体20の左側部材LMと右側部材RMとの組み合わせを示す第1〜第3の図である。 The housing 20 of the PLC unit 2 is composed of the combination of the housing member 200 of the left side member LM and the housing member 202 of the right side member RM, as well as the combination of the left side member LM and the right side member RM as shown below. Can be done. 3A to 3C are the first to third views showing the combination of the left side member LM and the right side member RM of the housing 20 of the PLC unit 2.

図3Aに示すように、PLCユニット2の筐体20を、右側部材RMの筐体部材202と、左側部材LMの筐体部材210との第1の組み合わせにより構成しうる。筐体部材210の左側の側面SFは、筐体部材202の側面SFと同様に平面とされ、隣接する2個のPLCユニット2の間の伝熱を妨げず、これらの間の伝熱性を低くしない。 As shown in FIG. 3A, the housing 20 of the PLC unit 2 can be configured by the first combination of the housing member 202 of the right side member RM and the housing member 210 of the left side member LM. The left side surface SF of the housing member 210 is made flat like the side surface SF of the housing member 202, does not interfere with heat transfer between two adjacent PLC units 2, and has a low heat transfer property between them. do not.

また、図3Bに示すように、PLCユニット2の筐体20を、左側部材LMの筐体部材200と、右側部材RMの筐体部材212との第2の組み合わせにより構成しうる。筐体部材212の右側の側面SFは、筐体部材200の側面SFと同様に凸部CVと凹部CCとを含み、隣接する2個のPLCユニット2の間の伝熱を妨げ、これらの間の伝熱性を低くする。 Further, as shown in FIG. 3B, the housing 20 of the PLC unit 2 can be configured by a second combination of the housing member 200 of the left side member LM and the housing member 212 of the right side member RM. The side surface SF on the right side of the housing member 212 includes a convex portion CV and a concave portion CC, similarly to the side surface SF of the housing member 200, and hinders heat transfer between two adjacent PLC units 2, and between them. Reduces heat transfer.

また、図3Cに示すように、PLCユニット2の筐体20を、右側部材RMの筐体部材212と、左側部材LMの筐体部材210との第3の組み合わせにより構成しうる。筐体部材210の左側の側面SFは、筐体部材202の側面SFと同様に平面とされ、隣接する2個のPLCユニット2の間の伝熱を妨げず、これらの間の伝熱性を低くしない。 Further, as shown in FIG. 3C, the housing 20 of the PLC unit 2 can be configured by a third combination of the housing member 212 of the right side member RM and the housing member 210 of the left side member LM. The left side surface SF of the housing member 210 is made flat like the side surface SF of the housing member 202, does not interfere with heat transfer between two adjacent PLC units 2, and has a low heat transfer property between them. do not.

図4A〜図4Cは、左側ユニットLUとしてのPLCユニット2の筐体20の右側部材RMと、右側ユニットRUとしてのPLCユニット2の筐体20の左側部材LMとの第1〜第3の組み合わせを示す図である。図4Aに示す第1の組み合わせにおいて、PLCユニット2の筐体20は右側部材RMに筐体部材202を備え、PLCユニット2の筐体20は左側部材LMに筐体部材210を備える。この場合、筐体部材202,210の側面SFの形状はいずれも平面なので、これらの間に間隙Gは形成されない。従って、PLCユニット2,2の間の伝熱は妨げられず、これらの間の伝熱性は低くならず、これらの間で伝熱が生じる。 4A to 4C show the first to third parts RM of the right side member RM of the housing 20 of the PLC unit 2 1 as the left side unit LU and the left side member LM of the housing 20 of the PLC unit 2 2 as the right side unit RU. It is a figure which shows the combination of. In the first combination shown in FIG. 4A, the housing 20 of the PLC unit 2 1 includes the housing member 202 on the right side member RM, and the housing 20 of the PLC unit 2 2 includes the housing member 210 on the left side member LM. In this case, since the shapes of the side surface SFs of the housing members 202 and 210 are all flat, no gap G is formed between them. Therefore, heat transfer between the PLC unit 2 1, 2 2 are not hindered, heat transfer between them is not lower, heat transfer occurs between them.

図4Bに示す第2の組み合わせにおいて、PLCユニット2の筐体20は右側部材RMに筐体部材212を備え、PLCユニット2の筐体20は左側部材LMに筐体部材200を備える。この場合、筐体部材200,212の側面SFの凸部CV同士のみが接触し、これらの凹部CCの間には間隙Gが形成される。従って、PLCユニット2,2の間の伝熱は妨げられ、これらの間の伝熱性は低くなり、これらは断熱される。 In the second combination shown in FIG. 4B, the housing 20 of the PLC unit 2 1 includes the housing member 212 on the right side member RM, and the housing 20 of the PLC unit 2 2 includes the housing member 200 on the left side member LM. In this case, only the convex portions CVs of the side surface SFs of the housing members 200 and 212 come into contact with each other, and a gap G is formed between these concave portions CC. Therefore, heat transfer between the PLC unit 2 1, 2 2 is prevented, heat transfer between them is low, it is insulated.

図4Cに示す第3の組み合わせにおいて、PLCユニット2の筐体20は右側部材RMに筐体部材212を備え、PLCユニット2の筐体20は左側部材LMに筐体部材210を備える。この場合、筐体部材210の側面SFの平面と筐体部材212の側面SFの凸部CVとが接触する。一方、筐体部材210の側面SFと筐体部材212の側面SFの凹部CCとは接触せず、これらの間には、図4Bに示した組み合わせよりも狭い間隙Gが形成される。従って、PLCユニット2,2の間の伝熱性は、図4Aに示した組み合わせより低く、図4Bに示した場合より高くなる。つまり、これらの間は、図4Aに示した組み合わせより高い程度に断熱され、図4Bに示した組み合わせより低い程度に断熱される。 In the third combination shown in FIG. 4C, the housing 20 of the PLC unit 2 1 includes the housing member 212 on the right side member RM, and the housing 20 of the PLC unit 2 2 includes the housing member 210 on the left side member LM. In this case, the flat surface of the side surface SF of the housing member 210 and the convex portion CV of the side surface SF of the housing member 212 come into contact with each other. On the other hand, the side surface SF of the housing member 210 and the recess CC of the side surface SF of the housing member 212 do not come into contact with each other, and a gap G narrower than the combination shown in FIG. 4B is formed between them. Therefore, heat transfer between the PLC unit 2 1, 2 2, lower than the combinations shown in FIG. 4A, higher than the case shown in Figure 4B. That is, the space between them is insulated to a higher degree than the combination shown in FIG. 4A and to a lower degree than the combination shown in FIG. 4B.

なお、図示しないが、PLCユニット2の筐体20の右側部材RMに筐体部材202を備え、PLCユニット2の筐体20に左側部材LMに筐体部材200を備える組み合わせもあり得る。この場合には、図4Cに示した組み合わせにおいてと同様な理由および程度でPLCユニット2,2の間の伝熱は妨げられ、断熱される。 Although not shown, there may be a combination in which the right side member RM of the housing 20 of the PLC unit 2 1 is provided with the housing member 202, and the housing 20 of the PLC unit 2 2 is provided with the housing member 200 on the left side member LM. In this case, the heat transfer between the PLC unit 2 1, 2 2 for the same reason and extent when the combinations shown in FIG. 4C is prevented, is insulated.

図5は、隣接する左側ユニットLUおよび右側ユニットRUの筐体20の雰囲気温度LAT,RATと温度許容値LTM,RTMとの組み合わせに応じて、これら2個のPLCユニット2の間を伝熱とすべきか、断熱すべきかを示す図表である。それぞれの電子回路部品206が通常の動作を行っているPLCユニット2〜2のうち、隣接する2個のPLCユニット2i−1,2において予め予想される雰囲気温度ATと温度許容値TMとの間の関係を、図5に示すように分類できる。 FIG. 5 shows heat transfer between these two PLC units 2 according to the combination of the atmospheric temperatures LAT and LAT of the housings 20 of the adjacent left unit LU and right unit RU and the temperature tolerance LTM and RTM. It is a chart showing whether it should be insulated or insulated. Of the PLC units 2 1 to 2 n in which each electronic circuit component 206 is performing normal operation, the atmospheric temperature AT and the temperature tolerance expected in advance in the two adjacent PLC units 2 i-1 and 2 i. The relationship with TM can be classified as shown in FIG.

なお、i=2〜nであり、PLCユニット2i−1は左側ユニットLUであり、PLCユニット2は側面SFでPLCユニット2i-1に接触する右側ユニットRUである。また、図5において、左側ユニットLUの雰囲気温度ATを雰囲気温度LATと記載し、温度許容値TMを温度許容値LTMと記載する。同様に、右側ユニットRUの雰囲気温度ATを雰囲気温度RATと記載し、温度許容値TMを温度許容値RTMと記載する。 It should be noted that i = 2 to n, the PLC unit 2 i-1 is the left side unit LU, and the PLC unit 2 i is the right side unit RU that contacts the PLC unit 2 i-1 on the side surface SF. Further, in FIG. 5, the atmospheric temperature AT of the left unit LU is described as the atmospheric temperature LAT, and the temperature allowable value TM is described as the temperature allowable value LTM. Similarly, the atmospheric temperature AT of the right side unit RU is described as the atmospheric temperature RAT, and the temperature allowable value TM is described as the temperature allowable value RTM.

図5に示すように、左側ユニットLUの雰囲気温度LATが右側ユニットRUの雰囲気温度RATより高く、左側ユニットLUの温度許容値LTMが右側ユニットRUの温度許容値RTMより大きい場合がある(LAT>RAT,LTM>RTM)。この場合、左側ユニットLUから右側ユニットRUに熱が伝わりやすくなり、熱が伝わると、右側ユニットRUの雰囲気温度RATが高くなる。 As shown in FIG. 5, the atmospheric temperature LAT of the left unit LU may be higher than the atmospheric temperature LAT of the right unit RU, and the temperature permissible LTM of the left unit LU may be larger than the temperature permissible RTM of the right unit RU (LAT>. LAT, LTM> RTM). In this case, heat is easily transferred from the left side unit LU to the right side unit RU, and when the heat is transferred, the atmospheric temperature RAT of the right side unit RU becomes high.

従って、温度許容値LTMより元々、小さい温度許容値RTMがさらに小さくなり、右側ユニットRUの電子回路部品206の動作および動作に伴う発熱に余裕が小さくなる可能性が高い。以上の事情を考慮すると、左側ユニットLUと右側ユニットRUとの間は断熱されるべきであり、左側ユニットLUの筐体20の右側部材RMと右側ユニットRUの筐体20の左側部材LMと組み合わせは、図4Bに示した第2の組み合わせまたは図4Cに示した第3の組み合わせでなければならない。 Therefore, there is a high possibility that the temperature tolerance RTM, which is originally smaller than the temperature tolerance LTM, becomes smaller, and the margin for the operation of the electronic circuit component 206 of the right unit RU and the heat generated by the operation becomes smaller. Considering the above circumstances, the space between the left side unit LU and the right side unit RU should be insulated, and the right side member RM of the housing 20 of the left side unit LU and the left side member LM of the housing 20 of the right side unit RU are combined. Must be the second combination shown in FIG. 4B or the third combination shown in FIG. 4C.

また、図5に示すように、左側ユニットLUの雰囲気温度LATが右側ユニットRUの雰囲気温度RATより高く、左側ユニットLUの温度許容値LTMと右側ユニットRUの温度許容値RTMとが等しい場合がある(LAT>RAT,LTM=RTM)。この場合、左側ユニットLUから右側ユニットRUから熱が伝わりやすく、熱が伝わると、右側ユニットRUの雰囲気温度RATが高くなる。 Further, as shown in FIG. 5, the atmospheric temperature LAT of the left unit LU may be higher than the atmospheric temperature LAT of the right unit RU, and the temperature allowable value LTM of the left unit LU and the temperature allowable value RTM of the right unit RU may be equal to each other. (LAT> LAT, LTM = RTM). In this case, heat is easily transferred from the left side unit LU to the right side unit RU, and when the heat is transferred, the atmospheric temperature RAT of the right side unit RU becomes high.

従って、温度許容値LTMと元々は等しい温度許容値RTMを一方的に小さくすることとなり、右側ユニットRUの電子回路部品206の動作および動作に伴う発熱に余裕が小さくなる可能性が高い。以上の事情を考慮すると、左側ユニットLUと右側ユニットRUとの間は断熱されるべきであり、左側ユニットLUの筐体20の右側部材RMと右側ユニットRUの筐体20の左側部材LMと組み合わせは、図4Bに示した第2の組み合わせまたは図4Cに示した第3の組み合わせでなければならない。 Therefore, the temperature tolerance RTM that is originally equal to the temperature tolerance LTM is unilaterally reduced, and there is a high possibility that the operation of the electronic circuit component 206 of the right unit RU and the heat generation accompanying the operation have a small margin. Considering the above circumstances, the space between the left side unit LU and the right side unit RU should be insulated, and the right side member RM of the housing 20 of the left side unit LU and the left side member LM of the housing 20 of the right side unit RU are combined. Must be the second combination shown in FIG. 4B or the third combination shown in FIG. 4C.

また、図5に示すように、左側ユニットLUの雰囲気温度LATが右側ユニットRUの雰囲気温度RATより高く、左側ユニットLUの温度許容値LTMが右側ユニットRUの温度許容値RTMより小さい場合がある(LAT>RAT,LTM<RTM)。この場合にも、左側ユニットLUから右側ユニットRUから熱が伝わりやすく、熱が伝わると、右側ユニットRUの雰囲気温度RATが高くなり、左側ユニットLUの雰囲気温度LATは低くなる。 Further, as shown in FIG. 5, the atmospheric temperature LAT of the left unit LU may be higher than the atmospheric temperature LAT of the right unit RU, and the temperature allowable value LTM of the left unit LU may be smaller than the temperature allowable value RTM of the right unit RU (). LAT> LAT, LTM <RTM). Also in this case, heat is easily transferred from the left side unit LU to the right side unit RU, and when heat is transferred, the atmospheric temperature LAT of the right side unit RU becomes high, and the atmospheric temperature LAT of the left side unit LU becomes low.

従って、左側ユニットLUから右側ユニットRUへの伝熱が起こると、左側ユニットLUの電子回路部品206の動作および動作に伴う発熱の余裕が大きくなる。以上の事情を考慮すると、左側ユニットLUと右側ユニットRUとの間は伝熱可能な状態とされるべきであり、左側ユニットLUの筐体20の右側部材RMと右側ユニットRUの筐体20の左側部材LMと組み合わせは、図4Aに示した第1の組み合わせでなければならない。 Therefore, when heat transfer occurs from the left side unit LU to the right side unit RU, the operation of the electronic circuit component 206 of the left side unit LU and the margin of heat generated by the operation become large. Considering the above circumstances, heat transfer should be possible between the left side unit LU and the right side unit RU, and the right side member RM of the left side unit LU housing 20 and the right side unit RU housing 20 The combination with the left member LM must be the first combination shown in FIG. 4A.

また、図5に示すように、左側ユニットLUの雰囲気温度LATと右側ユニットRUの雰囲気温度RATとが等しい場合には(LAT=RAT)、左側ユニットLUと右側ユニットRUとの間で伝熱は生じない。この場合には、左側ユニットLUの筐体20の右側部材RMと右側ユニットRUの筐体20の左側部材LMと組み合わせは、図4A〜図4Cに示した第1〜第3の組み合わせのいずれでもよい。 Further, as shown in FIG. 5, when the atmospheric temperature LAT of the left side unit LU and the atmospheric temperature LAT of the right side unit RU are equal (LAT = LAT), the heat transfer between the left side unit LU and the right side unit RU is Does not occur. In this case, the combination of the right side member RM of the housing 20 of the left side unit LU and the left side member LM of the housing 20 of the right side unit RU may be any of the first to third combinations shown in FIGS. 4A to 4C. good.

また、図5に示すように、左側ユニットLUの雰囲気温度LATが右側ユニットRUの雰囲気温度RATより低く、左側ユニットLUの温度許容値LTMが右側ユニットRUの温度許容値RTMより大きい場合がある(LAT<RAT,LTM>RTM)。この場合には、右側ユニットRUから左側ユニットLUに熱が伝わりやすく、熱が伝わると、左側ユニットLUの雰囲気温度LATが高くなり、右側ユニットRUの雰囲気温度RATは低くなる。 Further, as shown in FIG. 5, the atmospheric temperature LAT of the left side unit LU may be lower than the atmospheric temperature LAT of the right side unit RU, and the temperature permissible value LTM of the left side unit LU may be larger than the temperature permissible value RTM of the right side unit RU (). LAT <LAT, LTM> RTM). In this case, heat is easily transferred from the right side unit RU to the left side unit LU, and when the heat is transferred, the atmospheric temperature LAT of the left side unit LU becomes high, and the atmospheric temperature LAT of the right side unit RU becomes low.

従って、右側ユニットRUから左側ユニットLUへの伝熱が起こると、右側ユニットRUの電子回路部品206の動作および動作に伴う発熱の余裕が大きくなる。以上の事情を考慮すると、左側ユニットLUと右側ユニットRUとの間は伝熱の状態とされるべきであり、左側ユニットLUの筐体20の右側部材RMと右側ユニットRUの筐体20の左側部材LMと組み合わせは、図4Aに示した第1の組み合わせでなければならない。 Therefore, when heat transfer occurs from the right side unit RU to the left side unit LU, the operation of the electronic circuit component 206 of the right side unit RU and the margin of heat generated by the operation become large. Considering the above circumstances, the heat transfer state should be established between the left side unit LU and the right side unit RU, and the right side member RM of the housing 20 of the left side unit LU and the left side of the housing 20 of the right side unit RU. The combination with the member LM must be the first combination shown in FIG. 4A.

また、図5に示すように、左側ユニットLUの雰囲気温度LATが右側ユニットRUの雰囲気温度RATより低く、左側ユニットLUの温度許容値LTMと右側ユニットRUの温度許容値RTMとが等しい場合がある(LAT<RAT,LTM=RTM)。この場合、右側ユニットRUから左側ユニットLUに熱が伝わりやすく、熱が伝わると、左側ユニットLUの雰囲気温度LATが高くなる。 Further, as shown in FIG. 5, the atmospheric temperature LAT of the left unit LU may be lower than the atmospheric temperature LAT of the right unit RU, and the temperature allowable value LTM of the left unit LU and the temperature allowable value RTM of the right unit RU may be equal to each other. (LAT <RAT, LTM = RTM). In this case, heat is easily transferred from the right side unit RU to the left side unit LU, and when the heat is transferred, the atmospheric temperature LAT of the left side unit LU becomes high.

従って、温度許容値RTMと元々は等しい温度許容値LTMを一方的に小さくすることとなり、左側ユニットLUの電子回路部品206の動作および動作に伴う発熱に余裕が小さくなる可能性が高い。以上の事情を考慮すると、左側ユニットLUと右側ユニットRUとの間は断熱されるべきであり、左側ユニットLUの筐体20の右側部材RMと右側ユニットRUの筐体20の左側部材LMと組み合わせは、図4Bに示した第2の組み合わせまたは図4Cに示した第3の組み合わせでなければならない。 Therefore, the temperature tolerance LTM, which is originally the same as the temperature tolerance RTM, is unilaterally reduced, and there is a high possibility that the operation of the electronic circuit component 206 of the left unit LU and the heat generation accompanying the operation have a small margin. Considering the above circumstances, the space between the left side unit LU and the right side unit RU should be insulated, and the right side member RM of the housing 20 of the left side unit LU and the left side member LM of the housing 20 of the right side unit RU are combined. Must be the second combination shown in FIG. 4B or the third combination shown in FIG. 4C.

また、図5に示すように、左側ユニットLUの雰囲気温度LATが右側ユニットRUの雰囲気温度RATより低く、左側ユニットLUの温度許容値LTMが右側ユニットRUの温度許容値RTMより小さい場合がある(LAT<RAT,LTM<RTM)。この場合、右側ユニットRUから左側ユニットLUに熱が伝わりやすくなり、熱が伝わると、左側ユニットLUの雰囲気温度LATが高くなる。 Further, as shown in FIG. 5, the atmospheric temperature LAT of the left side unit LU may be lower than the atmospheric temperature LAT of the right side unit RU, and the temperature permissible value LTM of the left side unit LU may be smaller than the temperature permissible value RTM of the right side unit RU (). LAT <RAT, LTM <RTM). In this case, heat is easily transferred from the right side unit RU to the left side unit LU, and when the heat is transferred, the atmospheric temperature LAT of the left side unit LU becomes high.

従って、温度許容値RTMより元々、小さい温度許容値LTMがさらに小さくなり、左側ユニットLUの電子回路部品206の動作および動作に伴う発熱に余裕が小さくなる可能性が高い。以上の事情を考慮すると、左側ユニットLUと右側ユニットRUとの間は断熱されるべきであり、左側ユニットLUの筐体20の右側部材RMと右側ユニットRUの筐体20の左側部材LMと組み合わせは、図4Bに示した第2の組み合わせまたは図4Cに示した第3の組み合わせでなければならない。 Therefore, there is a high possibility that the temperature tolerance LTM, which is originally smaller than the temperature tolerance RTM, becomes smaller, and the margin for the operation of the electronic circuit component 206 of the left unit LU and the heat generated by the operation becomes smaller. Considering the above circumstances, the space between the left side unit LU and the right side unit RU should be insulated, and the right side member RM of the housing 20 of the left side unit LU and the left side member LM of the housing 20 of the right side unit RU are combined. Must be the second combination shown in FIG. 4B or the third combination shown in FIG. 4C.

図5を参照して上述したように、左側ユニットLUと右側ユニットRUの雰囲気温度LAT,RATおよび温度許容値LTM,RTMの組み合わせに応じて、制御ユニットの側面SFの形状の組み合わせを、図4A〜図4Cに示したいずれかとすることにより、隣接するPLCユニット2の間の伝熱の方向を制御できる。 As described above with reference to FIG. 5, the combination of the shapes of the side SFs of the control unit is shown in FIG. 4A according to the combination of the atmospheric temperatures LAT and LAT of the left unit LU and the right unit RU and the temperature tolerances LTM and RTM. By any of the above shown in FIG. 4C, the direction of heat transfer between the adjacent PLC units 2 can be controlled.

PLCユニット2の間を移動した熱は、最終的には、筐体20の上下の外壁から、PLC1の外部の空気中、PLC1の周囲の他の装置などに放出され、PLC1が冷却される。あるいは、PLCユニット2の間を移動した熱は、筐体20の奥側の側面SFからマザーボード12および取付板金10に伝えられ、PLC1が冷却される。あるいは、PLCユニット2の周囲に他の装置があるときには、PLCユニット2の間を移動した熱は、他の装置、PLC1が配設された建物の壁面などに伝えられ、PLC1が冷却される。 The heat transferred between the PLC units 2 is finally released from the upper and lower outer walls of the housing 20 to the air outside the PLC 1 and other devices around the PLC 1 to cool the PLC 1. Alternatively, the heat transferred between the PLC units 2 is transferred from the side surface SF on the back side of the housing 20 to the motherboard 12 and the mounting sheet metal 10, and the PLC 1 is cooled. Alternatively, when there is another device around the PLC unit 2, the heat transferred between the PLC units 2 is transferred to the other device, the wall surface of the building in which the PLC1 is arranged, or the like, and the PLC1 is cooled.

PLCユニット2の間の伝熱の方向を制御することにより、PLCユニット2〜2全体の表面から、これらの電子回路基板204の電子回路部品206に生じた熱を放出できるので、特定のPLCユニット2の温度が上昇してしまうという不具合を防止できる。従って、必要最小限のPLCユニット2の筐体20の表面積で、PLCユニット2の自然空冷が可能になる。また、放熱の問題を解消できると、体積の大幅な増加なしに、PLC1の大規模化および多機能化も達成できる。 By controlling the direction of heat transfer between the PLC units 2, the heat generated in the electronic circuit component 206 of these electronic circuit boards 204 can be released from the surface of the entire PLC units 2 1 to 2 n, so that it is specific. It is possible to prevent a problem that the temperature of the PLC unit 2 rises. Therefore, the PLC unit 2 can be naturally air-cooled with the minimum required surface area of the housing 20 of the PLC unit 2. Further, if the problem of heat dissipation can be solved, the PLC1 can be increased in scale and multifunctional without a significant increase in volume.

なお、図4Aに示した筐体部材202,210を金属材料で構成すると、筐体20の側面SFの熱抵抗は低く抑えられるので、左側ユニットLUと右側ユニットRUとの間で容易に熱が移動する。例えば、筐体部材202,210を樹脂材料で構成すると、これらの間の熱伝導率は、約0.3W/mkとなる。 When the housing members 202 and 210 shown in FIG. 4A are made of a metal material, the thermal resistance of the side surface SF of the housing 20 can be suppressed to a low level, so that heat can be easily generated between the left side unit LU and the right side unit RU. Moving. For example, when the housing members 202 and 210 are made of a resin material, the thermal conductivity between them is about 0.3 W / mk.

一方、筐体部材202,210を金属材料で構成すると、これらの間の熱伝導率は10倍以上となり、筐体部材202,210の材料が鉄だと、これらの間の熱伝導率は約50W/mkであり、アルミだと約200W/mkである。従って、筐体部材202,210の材料は金属であることが好ましい。また、筐体部材202,210を含む筐体20の放熱効果を高めるためには、筐体部材202,210にアルマイト処理、塗装、サンドブラストなどの熱輻射率を高める加工を表面に施すことが好ましい。 On the other hand, when the housing members 202 and 210 are made of a metal material, the thermal conductivity between them becomes 10 times or more, and when the material of the housing members 202 and 210 is iron, the thermal conductivity between them is about. It is 50 W / mk, and about 200 W / mk for aluminum. Therefore, the material of the housing members 202 and 210 is preferably metal. Further, in order to enhance the heat dissipation effect of the housing 20 including the housing members 202 and 210, it is preferable that the housing members 202 and 210 are subjected to processing such as alumite treatment, painting and sandblasting to increase the heat emissivity. ..

反対に、図4Bに示した筐体部材200,212を金属材料で構成すると、左側ユニットLUと右側ユニットRUとの凸部CVの間で容易に熱が移動してしまう。従って、断熱を意図して用いる筐体部材200,212の材料が金属であることは好ましくなく、これらの材料は樹脂であることが望ましい。 On the contrary, when the housing members 200 and 212 shown in FIG. 4B are made of a metal material, heat is easily transferred between the convex portion CV of the left side unit LU and the right side unit RU. Therefore, it is not preferable that the materials of the housing members 200 and 212 used for the purpose of heat insulation are metals, and it is desirable that these materials are resins.

以上説明したように、PLC1によれば、マザーボード12に取り付けるPLCユニット2の筐体20の側面SFの形状の組み合わせを、隣接するPLCユニット2の筐体20の中の雰囲気温度ATおよび温度許容値TMの組み合わせに応じて選択することができる。従って、PLC1によれば、機能に応じてPLCユニット2それぞれの発熱量がさまざまであっても、体積の大幅な増加なしに、PLCユニット2を効果的に冷却できる。 As described above, according to the PLC 1, the combination of the shapes of the side SFs of the housing 20 of the PLC unit 2 attached to the motherboard 12 is the atmospheric temperature AT and the temperature tolerance in the housing 20 of the adjacent PLC unit 2. It can be selected according to the combination of TMs. Therefore, according to the PLC 1, even if the calorific value of each of the PLC units 2 varies depending on the function, the PLC unit 2 can be effectively cooled without a significant increase in volume.

なお、図1には、PLCユニット2〜2を、隣接するPLCユニット2の筐体20の側面SF同士を接触するように1列に配置する場合を示したが、PLCユニット2〜2を、2列以上に配置したり、2次元的または3次元的な様々な配列に配置したりしてもよい。また、図1には、PLC1のPLCユニット2の筐体20が同じ形状をとる場合を例示したが、筐体20の形状は必ずしも同じでなくてよく、PLCユニット2の機能、電子回路基板204、電子回路部品206などに応じて、それぞれの高さ、幅などが異なる様々な形状をとってよい。 In FIG. 1, the PLC unit 2 1 to 2 n, adjacent shows the case that arranged in a row so as to contact the side surface SF each other of the casing 20 PLC unit 2, PLC unit 2 1 - 2 n may be arranged in two or more columns, or may be arranged in various two-dimensional or three-dimensional arrangements. Further, FIG. 1 illustrates a case where the housing 20 of the PLC unit 2 of the PLC 1 has the same shape, but the shape of the housing 20 does not necessarily have to be the same, and the functions of the PLC unit 2 and the electronic circuit board 204 , The height, width, and the like may be different depending on the electronic circuit component 206 and the like.

なお、本開示において、雰囲気温度が等しい或いは温度許容値が等しいとは厳格に一致することを意味しない。接触している2つの筐体20間の熱抵抗、各筐体20の熱容量などに基づいて定められる基準値よりも雰囲気温度の差の絶対値が小さい場合には、実質的に等しいと見なすことができる。同様に、基準値よりも温度許容値の差の絶対値が小さい場合には、実質的に等しいと見なすことができる。 In addition, in this disclosure, it does not mean that the atmospheric temperature is equal or the temperature tolerance is equal. If the absolute value of the difference in ambient temperature is smaller than the reference value determined based on the thermal resistance between the two housings 20 in contact, the heat capacity of each housing 20, etc., it shall be regarded as substantially equal. Can be done. Similarly, if the absolute value of the difference in temperature tolerance is smaller than the reference value, it can be considered to be substantially equal.

なお、図5に示す温度条件の全てを、全てのPLCが満たすことが望ましいが、必須ではなく、一部の接触面が一部の温度条件を満たしている場合でも有効である。 It is desirable that all PLCs satisfy all of the temperature conditions shown in FIG. 5, but it is not essential, and it is effective even when some contact surfaces satisfy some temperature conditions.

例えば、隣接する第1と第2の筐体の接触面が第1の形状又は第2の形状をとり、第1の形状が第2の形状よりも断熱性が高い、ときに、
1)第1の筐体の雰囲気温度ATが第2の筐体の雰囲気温度ATよりも高く、第2の筐体の温度許容値TMが第1の筐体の温度許容値TMよりも高い場合に、接触面が第2の形態をとるだけでも有効であり、
2)第1の筐体の雰囲気温度ATが第2の筐体の雰囲気温度ATよりも高く、第1の筐体の温度許容値TMが第2の筐体の温度許容値TMよりも高い場合に、第1の形態をとるだけでも有効であり、
3)また、第1の筐体の温度許容値TMと第2の筐体の温度許容値TMが実質的に等しい場合には、第1の形態をとるだけでも有効である。
For example, when the contact surfaces of adjacent first and second housings have a first shape or a second shape, and the first shape has higher heat insulating properties than the second shape, sometimes
1) When the atmospheric temperature AT of the first housing is higher than the atmospheric temperature AT of the second housing, and the temperature permissible value TM of the second housing is higher than the temperature permissible value TM of the first housing. In addition, it is effective even if the contact surface takes the second form.
2) When the atmospheric temperature AT of the first housing is higher than the atmospheric temperature AT of the second housing, and the temperature permissible value TM of the first housing is higher than the temperature permissible value TM of the second housing. In addition, it is effective just to take the first form,
3) Further, when the temperature permissible value TM of the first housing and the temperature permissible value TM of the second housing are substantially equal, it is effective to take only the first form.

上述の複数のPLCユニットの接触面の形態を実現するために、接触して配置される第1のユニットと第2のユニットの接触面の形態を選択及び設定する際には、第1と第2のユニットの雰囲気温度の大小関係と、第1と第2のユニットの温度許容値の大小関係と、に基づいて、伝熱性が異なる第1の形状または第2の形状の一方に選択する選択方法を採用する。 In order to realize the form of the contact surface of the plurality of PLC units described above, when selecting and setting the form of the contact surface of the first unit and the second unit arranged in contact with each other, the first and the first Selection to select one of the first shape and the second shape having different heat transfer properties based on the magnitude relation of the atmospheric temperature of the two units and the magnitude relation of the temperature tolerance of the first and second units. Adopt the method.

[実施の形態2]
以下、本開示の実施の形態2を説明する。図6は、本開示の実施の形態2にかかるPLCユニット2の断面図である。図6に示すように、実施の形態2にかかるPLCユニット2の筐体20は、図2Aに示した筐体20の筐体部材200,202を、筐体部材230,232に置換した構成をとる。
[Embodiment 2]
Hereinafter, a second embodiment of the present disclosure will be described. FIG. 6 is a cross-sectional view of the PLC unit 2 according to the second embodiment of the present disclosure. As shown in FIG. 6, the housing 20 of the PLC unit 2 according to the second embodiment has a configuration in which the housing members 200 and 202 of the housing 20 shown in FIG. 2A are replaced with housing members 230 and 232. Take.

筐体部材230,232の結合面CSの付近において、筐体部材232側に爪構造234が設けられ,筐体部材230側に爪構造234を受け入れる孔236が設けられ、これらは結合構造として機能する。筐体部材230,232を結合面CSで突き合わせ、爪構造234と孔236とを嵌合させることより、筐体部材230,232は結合し、筐体20を構成する。なお、爪構造234および孔236を、筐体部材230,232の結合面CSの付近に、これらを充分に強固に結合させるために必要な数だけ設けることができる。 A claw structure 234 is provided on the housing member 232 side and a hole 236 for receiving the claw structure 234 is provided on the housing member 230 side in the vicinity of the joint surface CS of the housing members 230 and 232, and these function as a coupling structure. do. By abutting the housing members 230 and 232 with the joint surface CS and fitting the claw structure 234 and the hole 236, the housing members 230 and 232 are combined to form the housing 20. It should be noted that the claw structures 234 and holes 236 can be provided in the vicinity of the joint surfaces CS of the housing members 230 and 232 in the number necessary to sufficiently and firmly bond them.

図2A,図2B,図3A〜図3Cに示した筐体20の筐体部材200,202,210,212のいずれにも、爪構造234または孔236を設けられる。従って、これらに結合用の構成要素を設けることにより、図4A〜図4Cに示した筐体部材200,202,210,212の様々な組み合わせを容易に実現し、これらの間を強固に結合できる。 The claw structure 234 or the hole 236 is provided in any of the housing members 200, 202, 210, and 212 of the housing 20 shown in FIGS. 2A, 2B, and 3A to 3C. Therefore, by providing the components for coupling to these, various combinations of the housing members 200, 202, 210, and 212 shown in FIGS. 4A to 4C can be easily realized, and these can be firmly coupled. ..

[実施の形態3]
以下、本開示の実施の形態3を説明する。図7は、本開示の実施の形態3にかかるPLC1の2個のPLCユニット2の右側部材RMと左側部材LMの第1の断面図である。図7に示すように、実施の形態3にかかるPLC1は、図4Aに示した左側ユニットLUの筐体部材202と右側ユニットRUの筐体部材210との間に、サーマルインターフェースマテリアル(TIM;Thermal Interface Material)222を両面に配置した板金220を挟んだ構成をとる。
[Embodiment 3]
Hereinafter, a third embodiment of the present disclosure will be described. FIG. 7 is a first cross-sectional view of the right side member RM and the left side member LM of the two PLC units 2 of the PLC 1 according to the third embodiment of the present disclosure. As shown in FIG. 7, the PLC1 according to the third embodiment has a thermal interface material (TIM; Thermal) between the housing member 202 of the left side unit LU and the housing member 210 of the right side unit RU shown in FIG. 4A. The interface material) 222 is arranged on both sides of the sheet metal 220.

量産に向いたPLC1の筐体20においては、筐体20の表面の加工精度を上げるより、図7に示したように、伝熱性材料としてのTIM222を両面に配置した厚さtが1〜2mm程度の板金220を挟みこむ方が好ましいことがある。板金220の上下に、部材224を設け、部材224は、板金220が筐体20の間を滑落したり、これらの間でずれたりすることを防止する。 In the housing 20 of the PLC1 suitable for mass production, in order to improve the processing accuracy of the surface of the housing 20, as shown in FIG. 7, the thickness t in which TIM222 as a heat conductive material is arranged on both sides is 1 to 2 mm. It may be preferable to sandwich the sheet metal 220 of the degree. Members 224 are provided above and below the sheet metal 220, and the member 224 prevents the sheet metal 220 from sliding down between the housings 20 or slipping between them.

TIM222は、エラストマー、シリコンシートなどであって、ジェルまたはシート状の形態をとり、隣接する2個の筐体20の側面SFにおいて、加工精度に起因する微少な凹凸を埋めうる。板金220の材料を鉄、アルミニウムなどの金属とすると、図7に示した構成は、このように、コストを抑えつつ2個の筐体20の間の熱抵抗を低くするために役立つ。 The TIM222 is an elastomer, a silicon sheet, or the like, and has a gel or sheet-like form, and can fill minute irregularities due to processing accuracy on the side surface SFs of two adjacent housings 20. Assuming that the material of the sheet metal 220 is a metal such as iron or aluminum, the configuration shown in FIG. 7 is useful for reducing the thermal resistance between the two housings 20 while suppressing the cost in this way.

なお、上述したように、板金220の厚さtは、1〜2mm程度であり、PLCユニット2〜2全体の幅に比べるとごく薄く、PLC1のサイズを大幅に増やすことはないにもかかわらず、筐体20の間の熱抵抗を低下させる効果が非常に大きい。なお、板金220を挿入してもPLC1の体積を大きくしたくないときには、筐体20の側面SFの厚さをt/2ずつ薄くすればよい。 As described above, the thickness t of the sheet metal 220 is about 1 to 2 mm, which is very thin compared to the width of the entire PLC unit 2 1 to 2 n, and the size of the PLC 1 is not significantly increased. Regardless, the effect of reducing the thermal resistance between the housings 20 is very large. If the volume of the PLC1 is not to be increased even if the sheet metal 220 is inserted, the thickness of the side surface SF of the housing 20 may be reduced by t / 2.

図8は、本開示の実施の形態3にかかるPLC1の2個のPLCユニット2の第2の断面図である。図3Bに示したように、筐体20を筐体部材200,212から構成するときには、これらの間の熱抵抗は、断熱のために高いことが望ましい。 FIG. 8 is a second cross-sectional view of the two PLC units 2 of the PLC 1 according to the third embodiment of the present disclosure. As shown in FIG. 3B, when the housing 20 is composed of housing members 200 and 212, it is desirable that the thermal resistance between them is high for heat insulation.

一方、図3Cに示したように、筐体20を筐体部材210,212から構成するときには、これらの間の熱抵抗は高い必要がない可能性があり、反対に、熱抵抗が低いことが望ましいことがある。従って、このような場合には、図8に示すように、筐体部材210と212との間に、板金220およびTIM222を挟み込むことが望ましいことがありうる。 On the other hand, as shown in FIG. 3C, when the housing 20 is composed of housing members 210 and 212, the thermal resistance between them may not need to be high, and conversely, the thermal resistance may be low. It may be desirable. Therefore, in such a case, as shown in FIG. 8, it may be desirable to sandwich the sheet metal 220 and the TIM 222 between the housing member 210 and 212.

[実施の形態4]
以下、本開示の実施の形態4を説明する。図9は、本開示の実施の形態4にかかるPLC1の第2の構成を示す概略的な斜視図である。なお、図9においては、PLCユニット2以外のPLCユニット2を省略する。
[Embodiment 4]
Hereinafter, a fourth embodiment of the present disclosure will be described. FIG. 9 is a schematic perspective view showing a second configuration of the PLC 1 according to the fourth embodiment of the present disclosure. In FIG. 9, the PLC unit 2 other than the PLC unit 2 1 is omitted.

図9に示すように、第2の構成をとるPLC1においては、PLCユニット2,2の間に、図7に示した板金220およびTIM222が挟み込まれる。板金220は、PLCユニット2の放熱器として作用する取付板金10に、PLCユニット2の外側において取り付けられる。 As shown in FIG. 9, in the PLC1 to take a second configuration, between the PLC unit 2 1, 2 2, the sheet metal 220 and TIM222 shown in FIG. 7 are sandwiched. The sheet metal 220 is attached to the mounting sheet metal 10 that acts as a radiator of the PLC unit 2 on the outside of the PLC unit 2.

第2の構成をとるPLC1においては、PLCユニット2それぞれの電子回路部品206などで生じた熱は、他のPLCユニット2に伝わるよりも、板金220を介して取付板金10に多く伝わる。従って、PLCユニット2それぞれで生じた熱を、取付板金10からPLC1の外部に効率的に放出できる。なお、PLCユニット2同士の間でも熱は伝わるので、第2の構成をとるPLC1においても、PLCユニット2の熱上昇を、実施の形態1などにおいて説明したように、複数のPLCユニット2全体で平均化できる。 In the PLC 1 having the second configuration, the heat generated in the electronic circuit components 206 of each of the PLC units 2 is transferred to the mounting sheet metal 10 through the sheet metal 220 more than it is transferred to the other PLC units 2. Therefore, the heat generated in each of the PLC units 2 can be efficiently released from the mounting sheet metal 10 to the outside of the PLC 1. Since heat is also transferred between the PLC units 2, even in the PLC 1 having the second configuration, the heat rise of the PLC unit 2 is caused by the entire plurality of PLC units 2 as described in the first embodiment and the like. Can be averaged.

図9に示したPLC1の第2の構成は、複数のPLCユニット2に、両側のPLCユニット2の雰囲気温度ATおよび温度許容値TMの問題により、これらのいずれにも熱を移動させることができない状態にあるものがあるとき有効である。つまり、このような状態にあるPLCユニット2に板金220およびTIM222を取り付け、板金220を取付板金10に取り付けることにより、このような状態にあるPLCユニット2を効率的に冷却できる。従って、第2の構成をとるPLC1によれば、体積の大幅な増加なしに、PLC1の温度上昇による寿命の短縮を防止でき、また、温度上昇に起因する誤動作を防ぐことができる。 In the second configuration of PLC1 shown in FIG. 9, heat cannot be transferred to a plurality of PLC units 2 due to problems of the atmospheric temperature AT and the temperature tolerance TM of the PLC units 2 on both sides. It is effective when there is something in the state. That is, by attaching the sheet metal 220 and TIM222 to the PLC unit 2 in such a state and attaching the sheet metal 220 to the mounting sheet metal 10, the PLC unit 2 in such a state can be efficiently cooled. Therefore, according to the PLC1 having the second configuration, it is possible to prevent the life of the PLC1 from being shortened due to the temperature rise without significantly increasing the volume, and it is possible to prevent a malfunction due to the temperature rise.

なお、図9には、板金220を取付板金10に取り付ける場合を示したが、マザーボード12が放熱器に取り付けられているとき、または、マザーボード12が充分な放熱性を有するときには、板金220をマザーボード12に取り付けてもよい。また、上述したように、2個のPLCユニット2同士の間の全てに板金220およびTIM222を挟み込む必要はなく、他のPLCユニット2に熱を伝えることが困難なPLCユニット2にのみ、板金220およびTIM222を取り付ければよい。 Note that FIG. 9 shows a case where the sheet metal 220 is attached to the mounting sheet metal 10, but when the motherboard 12 is attached to the radiator or when the motherboard 12 has sufficient heat dissipation, the sheet metal 220 is attached to the motherboard. It may be attached to 12. Further, as described above, it is not necessary to sandwich the sheet metal 220 and the TIM 222 in all of the two PLC units 2, and only the PLC unit 2 in which it is difficult to transfer heat to the other PLC units 2 has the sheet metal 220. And TIM222 may be attached.

上記実施の形態においては、1つの筐体が2つの筐体部品から構成される例を説明した。この開示はこれに限定されない。複数種の筐体を用意し、筐体の組み合わせを変更することにより、上述の関係を達成してもよい。 In the above embodiment, an example in which one housing is composed of two housing components has been described. This disclosure is not limited to this. The above relationship may be achieved by preparing a plurality of types of housings and changing the combination of housings.

また、筐体20の側面SFの形状の組み合わせによる伝熱方向の制御を、PLCについて説明したが、以上説明した複数のユニットの間の伝熱の制御は、PLC以外でも、接触した状態で列状に配置された複数のユニットを含む電子装置に適用可能である。例えば、複数の電源ユニットを含む電源装置、複数のサーバユニットを含むサーバ装置、複数の通信ユニットを含む通信装置等の熱対策に適用可能である。 Further, the control of the heat transfer direction by the combination of the shapes of the side surface SFs of the housing 20 has been described for the PLC, but the control of the heat transfer between the plurality of units described above is performed in a contact state other than the PLC. It can be applied to an electronic device including a plurality of units arranged in a shape. For example, it can be applied to thermal countermeasures for a power supply device including a plurality of power supply units, a server device including a plurality of server units, a communication device including a plurality of communication units, and the like.

本開示のいくつかの実施の形態を説明したが、これらの実施の形態は、例として提示したものであり、開示の範囲を限定することは意図していない。これら新規な実施の形態は、その他の様々な形態で実施されることが可能であり、開示の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施の形態及びその変形は、開示の範囲に含まれるとともに、特許請求の範囲とその均等の範囲に含まれる。 Although some embodiments of the present disclosure have been described, these embodiments are presented as examples and are not intended to limit the scope of the disclosure. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the disclosure. These embodiments and variations thereof are included in the scope of disclosure, as well as in the claims and their equivalents.

1 PLC、10 取付板金、14 コネクタ、12 マザーボード、2 PLCユニット、20,22 筐体、200,202,210,212,230,232 筐体部材、204 電子回路基板、206 電子回路部品、220 板金、222 TIM、234 爪構造、236 孔、CV 凸部、CC 凹部、CS 結合面、LU 左側ユニット、LM 左側部材、RU 右側ユニット、RM 右側部材、AT,LAT,RAT 雰囲気温度、TM,LTM,RTM 温度許容値、SF 側面。 1 PLC, 10 mounting sheet metal, 14 connectors, 12 motherboards, 2 PLC units, 20, 22 enclosures, 200, 202, 210, 212, 230, 232 enclosure members, 204 electronic circuit boards, 206 electronic circuit parts, 220 sheet metal 222 TIM, 234 claw structure, 236 holes, CV convex part, CC concave part, CS joint surface, LU left side unit, LM left side member, RU right side unit, RM right side member, AT, LAT, LAT atmospheric temperature, TM, LTE, RTM temperature tolerance, SF side.

Claims (15)

電子回路と該電子回路を収容する筐体とをそれぞれ有し、前記筐体の面同士が接触した状態で配置される複数のプログラマブルロジックコントローラユニットを備え、
隣接する2つの前記プログラマブルロジックコントローラユニットの接触する2つの筐体の接触面は、それぞれ、前記接触する2つの前記プログラマブルロジックコントローラユニットの温度の関係に応じて、伝熱性が異なる第1の形状または第2の形状をとる、
プログラマブルロジックコントローラ。
It has an electronic circuit and a housing for accommodating the electronic circuit, and includes a plurality of programmable logic controller units arranged in a state where the surfaces of the housing are in contact with each other.
The contact surfaces of the two contacting housings of the two adjacent programmable logic controller units have a first shape or a first shape having different heat transfer properties depending on the temperature relationship between the two contacting programmable logic controller units. Take the second shape,
Programmable logic controller.
前記第1の形状は前記第2の形状よりも断熱性が高く、
第1の筐体と第2の筐体とが接触しており、前記第1の筐体の雰囲気温度が前記第2の筐体の雰囲気温度よりも高く、前記第2の筐体の温度許容値が前記第1の筐体の温度許容値よりも高い場合に、前記第1の筐体の接触面と前記第2の筐体の接触面とは、前記第2の形態をとる、
請求項1に記載のプログラマブルロジックコントローラ。
The first shape has higher heat insulating properties than the second shape.
The first housing and the second housing are in contact with each other, the atmospheric temperature of the first housing is higher than the atmospheric temperature of the second housing, and the temperature tolerance of the second housing is allowed. When the value is higher than the temperature permissible value of the first housing, the contact surface of the first housing and the contact surface of the second housing take the second form.
The programmable logic controller according to claim 1.
前記第1の形状は前記第2の形状よりも断熱性が高く、
第1の筐体と第2の筐体とが接触しており、前記第1の筐体の雰囲気温度が前記第2の筐体の雰囲気温度よりも高く、前記第1の筐体の温度許容値が前記第2の筐体の温度許容値よりも高い場合に、前記第1の筐体の接触面と前記第2の筐体の接触面とは、前記第1の形態をとる、
請求項1又は2に記載のプログラマブルロジックコントローラ。
The first shape has higher heat insulating properties than the second shape.
The first housing and the second housing are in contact with each other, the atmospheric temperature of the first housing is higher than the atmospheric temperature of the second housing, and the temperature tolerance of the first housing is allowed. When the value is higher than the temperature permissible value of the second housing, the contact surface of the first housing and the contact surface of the second housing take the first form.
The programmable logic controller according to claim 1 or 2.
前記第1の形状は前記第2の形状よりも断熱性が高く、
第1の筐体と第2の筐体とが接触しており、前記第1の筐体の温度許容値と前記第2の筐体の温度許容値が実質的に等しい場合に、前記第1の筐体の接触面と前記第2の筐体の接触面とは、前記第1の形態をとる、
請求項1、2又は3に記載のプログラマブルロジックコントローラ。
The first shape has higher heat insulating properties than the second shape.
When the first housing and the second housing are in contact with each other and the temperature tolerance of the first housing and the temperature tolerance of the second housing are substantially equal to each other, the first housing is described. The contact surface of the housing and the contact surface of the second housing take the first form.
The programmable logic controller according to claim 1, 2 or 3.
複数の前記プログラマブルロジックコントローラユニットの前記筐体は、2つの筐体部材が結合されて構成され、
接触する2つの前記筐体を構成する前記筐体部材の2つの前記接触面それぞれは、接触する2つの前記プログラマブルロジックコントローラユニットの温度の関係に応じて、伝熱性が異なる第1の形状または第2の形状をとる、
請求項1から4のいずれか1項に記載のプログラマブルロジックコントローラ。
The housing of the plurality of programmable logic controller units is configured by combining two housing members.
Each of the two contact surfaces of the housing member constituting the two contacting housings has a first shape or a first shape having different heat transfer properties depending on the temperature relationship between the two contacting programmable logic controller units. Takes the shape of 2,
The programmable logic controller according to any one of claims 1 to 4.
前記筐体を構成する2つの前記筐体部材は、互いを結合させる結合構造を備える、
請求項5に記載のプログラマブルロジックコントローラ。
The two housing members constituting the housing have a coupling structure that connects them to each other.
The programmable logic controller according to claim 5.
前記第1の形状をとる接触面は平面であり、
前記第2の形状をとる接触面は凹な部分を含む、
請求項1から6のいずれか1項に記載のプログラマブルロジックコントローラ。
The contact surface having the first shape is a flat surface.
The contact surface having the second shape includes a concave portion.
The programmable logic controller according to any one of claims 1 to 6.
前記第1の形状をとる接触面を有する前記筐体は金属で構成される、
請求項1から7のいずれか1項に記載のプログラマブルロジックコントローラ。
The housing having the contact surface having the first shape is made of metal.
The programmable logic controller according to any one of claims 1 to 7.
前記第2の形状をとる接触面を有する前記筐体は、前記第1の形状をとる接触面を有する前記筐体の材料より伝熱性が低い材料で構成される、
請求項1から8のいずれか1項に記載のプログラマブルロジックコントローラ。
The housing having the contact surface having the second shape is made of a material having a lower heat transfer property than the material of the housing having the contact surface having the first shape.
The programmable logic controller according to any one of claims 1 to 8.
2つの前記第1の形状をとる前記接触面の間に板金が配置されている、
請求項1から9のいずれか1項に記載のプログラマブルロジックコントローラ。
A sheet metal is arranged between the two contact surfaces having the first shape.
The programmable logic controller according to any one of claims 1 to 9.
前記第2の形状をとる前記接触面と接触する前記第1の形状をとる接触面に板金が結合されている、
請求項1から10のいずれか1項に記載のプログラマブルロジックコントローラ。
A sheet metal is bonded to the contact surface having the first shape, which is in contact with the contact surface having the second shape.
The programmable logic controller according to any one of claims 1 to 10.
前記板金は、前記第1の形状の前記接触面と接触する伝熱性材料を備える、
請求項10または11に記載のプログラマブルロジックコントローラ。
The sheet metal comprises a heat transfer material that comes into contact with the contact surface of the first shape.
The programmable logic controller according to claim 10 or 11.
前記板金が結合される放熱器をさらに備える、
請求項10から12のいずれか1項に記載のプログラマブルロジックコントローラ。
A radiator to which the sheet metal is bonded is further provided.
The programmable logic controller according to any one of claims 10 to 12.
電子回路と該電子回路を収容する筐体とをそれぞれ有する複数の電子回路ユニットを備え、
隣接する前記電子回路ユニット同士は接触して配置され、
接触する前記電子回路ユニットの接触面は、接触する2つの前記電子回路ユニットの間の温度の関係に応じて、伝熱性が異なる第1の形状または第2の形状をとる、
電子装置。
A plurality of electronic circuit units each having an electronic circuit and a housing for accommodating the electronic circuit are provided.
The adjacent electronic circuit units are arranged in contact with each other.
The contact surface of the electronic circuit unit in contact has a first shape or a second shape having different heat transfer properties depending on the temperature relationship between the two electronic circuit units in contact.
Electronic device.
発熱部品を内蔵し、互いに接した状態で配置される複数のユニットの接触面の形態の選択方法であって、
接触して配置する第1のユニットと第2のユニットの接触面の形態を、
前記第1と第2のユニットの雰囲気温度の大小関係と、前記第1と第2のユニットの温度許容値の大小関係と、に基づいて、伝熱性が異なる第1の形状または第2の形状の一方に選択する、
選択方法。
It is a method of selecting the form of the contact surface of a plurality of units that have built-in heat generating parts and are arranged in contact with each other.
The form of the contact surface between the first unit and the second unit that are arranged in contact with each other
The first shape or the second shape having different heat transfer properties based on the magnitude relationship between the atmospheric temperatures of the first and second units and the magnitude relationship between the temperature tolerances of the first and second units. Choose one,
How to choose.
JP2020026230A 2020-02-19 2020-02-19 Programmable logic controller, electronic device, and contact surface selection method Pending JP2021131683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020026230A JP2021131683A (en) 2020-02-19 2020-02-19 Programmable logic controller, electronic device, and contact surface selection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020026230A JP2021131683A (en) 2020-02-19 2020-02-19 Programmable logic controller, electronic device, and contact surface selection method

Publications (1)

Publication Number Publication Date
JP2021131683A true JP2021131683A (en) 2021-09-09

Family

ID=77551017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020026230A Pending JP2021131683A (en) 2020-02-19 2020-02-19 Programmable logic controller, electronic device, and contact surface selection method

Country Status (1)

Country Link
JP (1) JP2021131683A (en)

Similar Documents

Publication Publication Date Title
US4771365A (en) Passive cooled electronic chassis
CN111477597B (en) Electronic equipment
CN108697030B (en) Electronic device for a motor vehicle
WO2020059240A1 (en) Electronic control device
JP2021039966A (en) Electrical device and electronic control device
US9338876B2 (en) Automation device having a heatsink
JP2014135418A (en) On-vehicle electronic control device
US11262815B2 (en) Heat sink system with broad compatibility capacity
JP2021131683A (en) Programmable logic controller, electronic device, and contact surface selection method
JP2010175948A (en) Parallel optical transmission apparatus
JP2014002971A (en) Contact device, socket device, and electronic device
JP2008103577A (en) Heat dissipating structure for power module, and motor controller equipped with the same
JP2022166864A (en) Interposer assembly and electronic component
JP2021150074A (en) Electronic apparatus and stacking connector
JP2016152234A (en) Electronic module
JP2003188563A (en) Electronic control device
JP7372810B2 (en) electronic control unit
JP7454048B2 (en) electronic control unit
JP6419398B1 (en) Information processing device
KR102642224B1 (en) Heat sink and electronics unit
US12035509B2 (en) Assembly with a heat sink core element forming a supporting structure
JP2006135202A (en) Heat radiating structure for electronic appliance
JP2022165571A (en) Electronic apparatus and electronic apparatus housing body
US20210410323A1 (en) Assembly with a heat sink core element forming a supporting structure
WO2023021969A1 (en) Electronic device and control apparatus