JP2021127392A - Ground improvement method - Google Patents

Ground improvement method Download PDF

Info

Publication number
JP2021127392A
JP2021127392A JP2020023003A JP2020023003A JP2021127392A JP 2021127392 A JP2021127392 A JP 2021127392A JP 2020023003 A JP2020023003 A JP 2020023003A JP 2020023003 A JP2020023003 A JP 2020023003A JP 2021127392 A JP2021127392 A JP 2021127392A
Authority
JP
Japan
Prior art keywords
component
ground improvement
water
soil
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020023003A
Other languages
Japanese (ja)
Other versions
JP7265498B2 (en
Inventor
聡之 島田
Satoyuki Shimada
聡之 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2020023003A priority Critical patent/JP7265498B2/en
Priority to PCT/JP2021/003903 priority patent/WO2021161868A1/en
Publication of JP2021127392A publication Critical patent/JP2021127392A/en
Application granted granted Critical
Publication of JP7265498B2 publication Critical patent/JP7265498B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/06Calcium compounds, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/08Aluminium compounds, e.g. aluminium hydroxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/10Cements, e.g. Portland cement
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

To provide a ground improvement method whereby it becomes possible to improve the compressive strength of soil cement even when a soil comprising an acidic soil containing an organic substance such as humic acid, fulvic acid, humin and bitumen is used.SOLUTION: A ground improvement method comprises mixing a soil having an organic substance fraction of 30% or more as determined by an ignition loss method with a hydraulic powder, water and a component (A) mentioned below, wherein the component (A) is mixed in an amount of 0.5 to 10 mass% relative to the amount of the hydraulic powder. The component (A): at least one compound which serves as a supply source capable of releasing an aluminum ion and/or a calcium ion and a chloride ion in water (excluding the hydraulic powder).SELECTED DRAWING: None

Description

本発明は、地盤の改良工法、地盤改良用添加剤組成物、及び地盤改良体に関する。 The present invention relates to a ground improvement method, an additive composition for ground improvement, and a ground improvement body.

建造物を建設する基礎を地盤改良する方法として、コンクリート製又は鋼管製の地盤改良コラムを地盤に打ち込む地盤改良工法や、地盤を掘削しながらセメントミルクなどのセメント系固化材を注入し、掘削土と前記セメントミルクとが混じり合って形成されるコラム状の地盤改良体を地盤中に直接形成する地盤改良工法が知られている。 As a method of improving the ground of the foundation for constructing a building, there is a ground improvement method in which a concrete or steel pipe ground improvement column is driven into the ground, or a cement-based solidifying material such as cement milk is injected while excavating the ground to excavate soil. A ground improvement method is known in which a column-shaped ground improvement body formed by mixing and the cement milk is directly formed in the ground.

セメント系固化材を土と添加混合により地盤の改質を行う地盤改良では、混合する土壌の性質、地盤改良を行う工法の種類などを考慮して、適切な固化材、配合比、添加剤などを選定することが望まれる。特に混合する土壌が腐植酸等の有機物を多く含む酸性土の場合、有機物がセメント表面に吸着することでセメントの水和反応が阻害されるためにセメント固化材を用いても望ましい強度が得られず、地盤改良が困難な場合がある。 In ground improvement, which modifies the ground by adding and mixing cement-based solidifying material with soil, appropriate solidifying material, compounding ratio, additives, etc. are taken into consideration, such as the nature of the soil to be mixed and the type of construction method for ground improvement. It is desirable to select. In particular, when the soil to be mixed is acidic soil containing a large amount of organic substances such as humic acid, the hydration reaction of the cement is hindered by the adsorption of the organic substances on the cement surface, so that the desired strength can be obtained even if a cement solidifying material is used. However, it may be difficult to improve the ground.

特許文献1には、土壌にポルトランドセメントを配して該土壌を固化する土質改良工法において、土壌に散布されたポルトランドセメントに対し、塩化ナトリウム20〜30重量部、塩化マグネシウム20〜30重量部、塩化カリウム35〜45重量部、塩化カルシウム5〜15重量部及びクエン酸4〜8重量部からなる無機塩類を主成分とする添加剤を水溶液の状態で、前記ポルトランドセメント100重量部に対し前記添加剤の固形分が0.1〜1重量部の割合になるように添加して、土壌とともに攪拌混合して上部から加圧し該土壌を固化することを特徴とする土質改良工法が開示されている。
特許文献2には、工事対象地盤から掘削された現場発生土に、木質系チップ材、及びセメント並びに水1000重量部に対して、塩化カルシウム20〜40重量部、塩化マグネシウム30〜50重量部、塩化アルミニウム15〜30重量部、塩化コバルト0.1〜3重量部を含有する硬化剤水溶液を添加、混合した後、この混合物を掘削された工事対象地盤に補填することを特徴とする工法が開示されている。
Patent Document 1 describes 20 to 30 parts by weight of sodium chloride and 20 to 30 parts by weight of magnesium chloride with respect to the Portorand cement sprayed on the soil in the soil improvement method of arranging Portorand cement on the soil and solidifying the soil. An additive containing 35 to 45 parts by weight of potassium chloride, 5 to 15 parts by weight of calcium chloride and 4 to 8 parts by weight of citric acid as main components is added to 100 parts by weight of the Portoland cement in the state of an aqueous solution. A soil improvement method is disclosed, in which the solid content of the agent is added so as to be 0.1 to 1 part by weight, the soil is stirred and mixed together, and the soil is pressurized from above to solidify the soil. ..
In Patent Document 2, 20 to 40 parts by weight of calcium chloride and 30 to 50 parts by weight of magnesium chloride are described in the soil generated at the site excavated from the ground to be constructed, with respect to 1000 parts by weight of wood chip material, cement and water. A construction method characterized by adding and mixing an aqueous hardener containing 15 to 30 parts by weight of aluminum chloride and 0.1 to 3 parts by weight of cobalt chloride and then supplementing this mixture to the excavated ground to be constructed is disclosed. Has been done.

特開昭60−229984号公報Japanese Unexamined Patent Publication No. 60-229984 特開2006−169065号公報Japanese Unexamined Patent Publication No. 2006-169065

本発明は、フミン酸、フルボ酸、ヒューミン、ビチューメンなどの有機物を含む酸性土の土壌を用いた場合でもソイルセメントの圧縮強度を高めることができる、地盤の改良工法を提供する。 The present invention provides a ground improvement method capable of increasing the compressive strength of soil cement even when using acidic soil containing organic substances such as humic acid, fulvic acid, humin, and bitumen.

本発明は、強熱減量法によって求められる有機質分量が30%以上である土壌に、水硬性粉体と、水と、下記の(A)成分とを混合する、地盤の改良工法であって、(A)成分を水硬性粉体に対して0.5質量%以上10質量%以下となるように混合する、地盤の改良工法に関する。
(A)成分:水中で、アルミニウムイオン及び/又はカルシウムイオンと、塩化物イオンとを放出する供給源となる1種以上の化合物(但し、水硬性粉体は除く)
The present invention is a ground improvement method in which a water-hard powder, water, and the following component (A) are mixed in soil having an organic mass of 30% or more required by the ignition loss method. The present invention relates to a ground improvement method in which the component (A) is mixed so as to be 0.5% by mass or more and 10% by mass or less with respect to the water-hard powder.
Component (A): One or more compounds serving as a source for releasing aluminum ions and / or calcium ions and chloride ions in water (excluding water-hard powder)

また本発明は、前記(A)成分を含有する、地盤改良用添加剤であって、前記地盤の土壌が強熱減量法によって求められる有機質分量が30%以上である土壌に用いられる地盤改良用添加剤組成物に関する。 The present invention is an additive for ground improvement containing the component (A), and is used for soil improvement in which the amount of organic matter required by the ignition loss method is 30% or more. Regarding additive composition.

また本発明は、強熱減量法によって求められる有機質分量が30%以上である土壌、水硬性粉体、水、及び前記(A)成分を含有する地盤改良体であって、(A)成分を水硬性粉体に対して0.5質量%以上10質量%以下で含有する地盤改良体に関する。 Further, the present invention is a ground improvement body containing soil, a water-hard powder, water, and the above-mentioned component (A) having an organic content of 30% or more required by the ignition loss method, wherein the component (A) is used. The present invention relates to a ground improvement body containing 0.5% by mass or more and 10% by mass or less with respect to the water-hard powder.

本発明によれば、フミン酸、フルボ酸、ヒューミン、ビチューメンなどの有機物を含む酸性土の土壌を用いた場合でもソイルセメントの圧縮強度を高めることができる、地盤の改良工法が提供される。 According to the present invention, there is provided a ground improvement method capable of increasing the compressive strength of soil cement even when using acidic soil containing organic substances such as humic acid, fulvic acid, humin, and bitumen.

〔地盤の改良工法〕
本発明の地盤の改良工法は、土壌が、強熱減量法によって求められる有機質分量が30%以上である土壌であっても効果が発現する。
また本発明の地盤の改良工法は、土壌が、強熱減量法によって求められる有機質分量が30%以上である土壌であり、地盤工学会基準JGS0211-2009で規定される方法によって測定される土懸濁液のpHが6以下である土壌であっても効果が発現する。
[Ground improvement method]
The ground improvement method of the present invention is effective even if the soil has an organic matter content of 30% or more required by the ignition loss method.
Further, in the ground improvement method of the present invention, the soil is soil in which the organic content required by the ignition loss method is 30% or more, and the soil suspension is measured by the method specified by the Japanese Geotechnical Society Standard JGS0211-2009. The effect is exhibited even in soil where the pH of the turbid liquid is 6 or less.

本発明が効果を発現するメカニズムは定かではないが以下のように推定される。土壌に水硬性粉体に加えて、アルミニウムイオン及び/又はカルシウムイオンを供給すると、水硬性粉体の水和反応を促進させ、ソイルセメントの強度向上に寄与することが知られているが、アルミニウムイオン及び/又はカルシウムイオンを過剰に加えると異常水和(急激に水和が進行し、擬凝結する)を起こし強度低下を引き起こす。そのため、通常は、アルミニウムイオン及び/又はカルシウムイオンを多量に添加することは行われなかった。しかしながら、本発明では、フミン酸、フルボ酸、ヒューミン、ビチューメンなどの有機物を含む酸性土の土壌を対象としており、当該土壌に、水硬性粉体に加えて、アルミニウムイオン及び/又はカルシウムイオンを多量に供給すると、水硬性粉体の水和反応を阻害する有機物が多量供給したアルミニウムイオン及び/又はカルシウムイオンと錯体を形成し、そのことにより有機物がセメント表面に吸着しなくなり水和阻害を緩和させ、ソイルセメントの強度向上が可能であることを、本発明者は見出した。同時に塩化物イオンが存在することでその効果をより促進する効果があることも本発明者は見出した。 The mechanism by which the present invention exerts its effect is not clear, but it is presumed as follows. It is known that supplying aluminum ions and / or calcium ions to the soil in addition to the hydraulic powder promotes the hydration reaction of the hydraulic powder and contributes to the improvement of the strength of soil cement. Excessive addition of ions and / or calcium ions causes abnormal hydration (rapid hydration progresses and pseudo-coagulation) and causes a decrease in strength. Therefore, usually, a large amount of aluminum ion and / or calcium ion was not added. However, the present invention targets soils of acidic soil containing organic substances such as humic acid, fulvic acid, humin, and bitumen, and a large amount of aluminum ions and / or calcium ions are added to the soil in addition to the water-hard powder. When supplied to, a large amount of organic substances that inhibit the hydration reaction of the water-hard powder form a complex with the supplied aluminum ions and / or calcium ions, which prevents the organic substances from adsorbing on the cement surface and alleviates the hydration inhibition. , The present inventor has found that it is possible to improve the strength of soil cement. At the same time, the present inventor has also found that the presence of chloride ions has the effect of further promoting the effect.

土壌は、強熱減量法によって求められる有機質分量が30%以上、好ましくは35%以上、より好ましくは40%以上、そして、好ましくは90%以下、より好ましくは80%以下であるものである。ここで、強熱減量法とは日本工学規格JISA1226:2009で規定される方法である。
また土壌に含まれる有機質としては、フミン酸、ヒューミン、ビチューメン、フルボ酸から選ばれる1種以上の有機物が挙げられる。
The soil has an organic content of 30% or more, preferably 35% or more, more preferably 40% or more, and preferably 90% or less, more preferably 80% or less, which is determined by the ignition loss method. Here, the ignition loss method is a method specified in the Japanese engineering standard JIS A1226: 2009.
Examples of the organic matter contained in the soil include one or more kinds of organic matter selected from humic acid, humin, bitumen, and fulvic acid.

土壌は、地盤工学会基準JGS0211-2009で規定される方法によって測定される土懸濁液のpHが好ましくは6以下、より好ましくは5.5以下、更に好ましくは5以下の酸性土であってよい。 The soil is an acidic soil having a pH of the soil suspension measured by the method specified by the Japanese Geotechnical Society Standard JGS0211-2009, preferably 6 or less, more preferably 5.5 or less, still more preferably 5 or less. good.

本発明に用いられる水硬性粉体は、水和反応により硬化する物性を有する粉体のことであり、セメント等が挙げられる(但し、後述する(B)成分を除く)。水硬性粉体は、酸性土を含むソイルセメントの強度向上の観点から、好ましくはセメント、例えば、普通ポルトランドセメント等のポルトランドセメント、ビーライトセメント、中庸熱セメント、早強セメント、超早強セメント、耐硫酸塩セメント等のセメントである。また水硬性粉体は、セメント等に高炉スラグ、製鋼スラグ、フライアッシュ、シリカフュームなどのポゾラン作用及び/又は潜在水硬性を有する粉体や、石粉(炭酸カルシウム粉末)等が添加された高炉スラグセメント、製鋼スラグセメント、フライアッシュセメント、シリカフュームセメント等でもよい。水硬性粉体は、普通ポルトランドセメント、高炉スラグセメント、及び製鋼スラグセメントから選ばれる1種以上が好ましい。 The hydraulic powder used in the present invention is a powder having a physical property that is cured by a hydration reaction, and examples thereof include cement (however, the component (B) described later is excluded). From the viewpoint of improving the strength of soil cement containing acidic soil, the water-hard powder is preferably cement, for example, Portland cement such as ordinary Portland cement, belite cement, moderate heat cement, fast-strength cement, ultra-fast-strength cement, etc. Cement such as sulfate-resistant cement. The hydraulic powder is a blast furnace slag cement in which blast furnace slag, steelmaking slag, fly ash, silica fume and other pozzolanic and / or latent hydraulic powders and stone powder (calcium carbonate powder) are added to cement and the like. , Steelmaking slag cement, fly ash cement, silica fume cement and the like may be used. The hydraulic powder is preferably one or more selected from ordinary Portland cement, blast furnace slag cement, and steelmaking slag cement.

なお、本発明では、水硬性粉体の量は、水和反応により硬化する物性を有する粉体の量であるが、水硬性粉体が、ポゾラン作用を有する粉体、潜在水硬性を有する粉体、及び石粉(炭酸カルシウム粉末)から選ばれる粉体を含む場合、本発明では、それらの量も水硬
性粉体の量に算入する(但し、後述する(B)成分の量は除かれる)。
In the present invention, the amount of the water-hard powder is the amount of the powder having physical properties to be cured by the hydration reaction, but the water-hard powder is a powder having a pozolan action or a powder having latent water hardness. When powders selected from body and stone powder (calcium carbonate powder) are included, in the present invention, those amounts are also included in the amount of water-hard powder (however, the amount of component (B) described later is excluded). ..

本発明の(A)成分は、水中で、アルミニウムイオン及び/又はカルシウムイオンと、塩化物イオンとを放出する供給源となる1種以上の化合物である。但し(A)成分からは、水硬性粉体は除かれる。
アルミニウムイオンを放出する供給源となる化合物としては、酸性土を含むソイルセメントの強度向上の観点から、塩化アルミニウム、硫酸アルミニウム、乳酸アルミニウム、ミョウバン、及び硝酸アルミニウムから選ばれる1種以上が挙げられる。
カルシウムイオンを放出する供給源となる化合物としては、酸性土を含むソイルセメントの強度向上の観点から、塩化カルシウム、硝酸カルシウム、チオシアン酸カルシウムから選ばれる1種以上が挙げられる。
塩化物イオンを放出する供給源となる化合物としては、酸性土を含むソイルセメントの強度向上の観点から、塩化アルミニウム、塩化カルシウム、塩化ナトリウム、塩化カリウムから選ばれる1種以上が挙げられる。
The component (A) of the present invention is one or more compounds serving as a source for releasing aluminum ions and / or calcium ions and chloride ions in water. However, the hydraulic powder is excluded from the component (A).
Examples of the compound serving as a source for releasing aluminum ions include one or more selected from aluminum chloride, aluminum sulfate, aluminum lactate, alum, and aluminum nitrate from the viewpoint of improving the strength of soil cement containing acidic soil.
Examples of the compound serving as a supply source for releasing calcium ions include one or more selected from calcium chloride, calcium nitrate, and calcium thiocyanate from the viewpoint of improving the strength of soil cement containing acidic soil.
Examples of the compound serving as a source for releasing chloride ions include one or more selected from aluminum chloride, calcium chloride, sodium chloride, and potassium chloride from the viewpoint of improving the strength of soil cement containing acidic soil.

(A)成分は、酸性土を含むソイルセメントの強度向上の観点から、下記(A1)成分又は(A2)成分であることが好ましい。
(A1)成分:20℃における水への溶解度が20g/100ml以上であるカルシウム塩化物塩もしくはアルミニウム塩化物塩から選ばれる1種以上の化合物
(A2)成分:(A21)アルカリ金属塩化物塩、及びアルカリ土類金属塩化物塩から選ばれる1種以上の化合物(以下、(A21)成分という)と、(A22)20℃における水への溶解度が20g/100ml以上であるアルミニウム塩(但し、(A21)成分を除く、以下、(A22)成分という)
The component (A) is preferably the following component (A1) or component (A2) from the viewpoint of improving the strength of the soil cement containing acidic soil.
(A1) component: One or more compounds selected from calcium chloride salt or aluminum chloride salt having a solubility in water at 20 ° C. of 20 g / 100 ml or more (A2) component: (A21) alkali metal chloride salt, And one or more compounds selected from alkaline earth metal chloride salts (hereinafter referred to as (A21) component), and (A22) aluminum salts having a solubility in water at 20 ° C. of 20 g / 100 ml or more (however, (However, Excluding A21) component, hereinafter referred to as (A22) component)

(A1)成分は、酸性土を含むソイルセメントの強度向上の観点から、塩化カルシウム、塩化アルミニウムから選ばれる1種以上が挙げられる The component (A1) may be one or more selected from calcium chloride and aluminum chloride from the viewpoint of improving the strength of soil cement containing acidic soil.

(A2)成分中、酸性土を含むソイルセメントの強度向上の観点から、(A21)成分は、塩化ナトリウム、塩化カリウム、塩化カルシウムから選ばれる1種以上が挙げられ、安全性の観点から、好ましくは塩化ナトリウム、塩化カルシウムから選ばれる1種以上である。
(A2)成分中、酸性土を含むソイルセメントの強度向上の観点から、(A22)成分は、乳酸アルミニウム、ミョウバン、硫酸アルミニウム、硝酸アルミニウムから選ばれる1種以上が挙げられ、ソイルセメントの強度向上の観点から、好ましくはミョウバン、及び硫酸アルミニウムから選ばれる1種以上である。
Among the components (A2), one or more selected from sodium chloride, potassium chloride, and calcium chloride can be mentioned as the component (A21) from the viewpoint of improving the strength of soil cement containing acidic soil, which is preferable from the viewpoint of safety. Is one or more selected from sodium chloride and calcium chloride.
From the viewpoint of improving the strength of soil cement containing acidic soil among the components (A2), the component (A22) includes one or more selected from aluminum lactate, alum, aluminum sulfate, and aluminum nitrate, and improves the strength of soil cement. From the viewpoint of, preferably one or more selected from alum and aluminum sulfate.

本発明の地盤の改良工法では、土壌に、水硬性粉体を、水硬性粉体/土壌の質量比が、ソイルセメントの混合性の観点から、好ましくは0.01以上、より好ましくは0.1以上、更に好ましくは0.25以上、そして、ソイルセメントの施工性の観点から、好ましくは0.6以下、より好ましくは0.5以下、更に好ましくは0.45以下で混合する。 In the ground improvement method of the present invention, the water-hard powder is added to the soil, and the weight ratio of the water-hard powder / soil is preferably 0.01 or more, more preferably 0. 1 or more, more preferably 0.25 or more, and from the viewpoint of workability of soil cement, preferably 0.6 or less, more preferably 0.5 or less, still more preferably 0.45 or less.

本発明の地盤の改良工法では、ソイルセメントの施工性の観点から、水硬性粉体と水とを、水/水硬性粉体の質量比が、好ましくは40質量%以上、より好ましくは50質量%以上、更に好ましくは60質量%以上、そして、好ましくは150質量%以下、より好ましくは120質量%以下、より更に好ましくは100質量%以下で混合する。この質量比は、(水の量/水硬性粉体の量)×100で算出される。 In the ground improvement method of the present invention, from the viewpoint of workability of soil cement, the mass ratio of water / water-hard powder is preferably 40% by mass or more, more preferably 50% by mass of water-hard powder and water. % Or more, more preferably 60% by mass or more, and preferably 150% by mass or less, more preferably 120% by mass or less, still more preferably 100% by mass or less. This mass ratio is calculated by (amount of water / amount of hydraulic powder) × 100.

本発明の地盤の改良工法では、酸性土を含むソイルセメントの強度向上の観点から、(A)成分を、水硬性粉体に対して、0.5質量%以上、好ましくは1.0質量%以上、より好ましくは2.0質量%以上、更に好ましくは3.0質量%以上、そして、10質量%以下、好ましくは8.0質量%以下、より好ましくは6.0質量%以下で混合する。 In the ground improvement method of the present invention, from the viewpoint of improving the strength of the soil cement containing acidic soil, the component (A) is added to the water-hard powder in an amount of 0.5% by mass or more, preferably 1.0% by mass. As described above, the mixture is more preferably 2.0% by mass or more, further preferably 3.0% by mass or more, and 10% by mass or less, preferably 8.0% by mass or less, more preferably 6.0% by mass or less. ..

本発明の地盤の改良工法では、(A)成分として(A1)成分を用いる場合、酸性土を含むソイルセメントの強度向上の観点から、(A1)成分を、水硬性粉体に対して、好ましくは0.5質量%以上、より好ましくは1.0質量%以上、更に好ましくは2.0質量%以上、より更に好ましくは3.0質量%以上、そして、好ましくは10質量%以下、より好ましくは8.0質量%以下、更に好ましくは6.0質量%以下で混合する。 In the ground improvement method of the present invention, when the component (A1) is used as the component (A), the component (A1) is preferably used with respect to the water-hard powder from the viewpoint of improving the strength of the soil cement containing acidic soil. Is 0.5% by mass or more, more preferably 1.0% by mass or more, still more preferably 2.0% by mass or more, still more preferably 3.0% by mass or more, and preferably 10% by mass or less, more preferably. Is mixed in an amount of 8.0% by mass or less, more preferably 6.0% by mass or less.

本発明の地盤の改良工法では、(A)成分として(A2)成分を用いる場合、酸性土を含むソイルセメントの強度向上の観点から、(A2)成分((A21)成分と(A22)成分の合計)を、水硬性粉体に対して、好ましくは0.5質量%以上、より好ましくは1.0質量%以上、より好ましくは2.0質量%以上、更に好ましくは3.0質量%以上、そして、好ましくは10質量%以下、より好ましくは8.0質量%以下で混合する。
本発明の地盤の改良工法では、(A)成分として(A2)成分を用いる場合、酸性土を含むソイルセメントの強度向上の観点から、(A21)成分を、水硬性粉体に対して、好ましくは0.25質量%以上、より好ましくは0.5質量%以上、更に好ましくは1.0質量%以上、より更に好ましくは2.0質量%以上、そして、好ましくは6.0質量%以下、より好ましくは5.0質量%以下、更に好ましくは4.0質量%以下で、(A22)成分を、水硬性粉体に対して、好ましくは0.25質量%以上、より好ましくは0.5質量%以上、更に好ましくは1.0質量%以上、より更に好ましくは2.0質量%以上、そして、好ましくは6.0質量%以下、より好ましくは5.0質量%以下、更に好ましくは4.0質量%以下で混合する。
本発明の地盤の改良工法では、(A)成分として(A2)成分を用いる場合、酸性土を含むソイルセメントの強度向上の観点から、(A21)成分と(A22)成分を、(A21)成分と(A22)成分との質量比(A21)/(A22)が、好ましくは0.1以上、より好ましくは0.5以上、更に好ましくは1.0以上、そして、好ましくは10以下、より好ましくは5.0以下、更に好ましくは3.0以下、より更に好ましくは2.0以下となるように混合する。
In the ground improvement method of the present invention, when the component (A2) is used as the component (A), from the viewpoint of improving the strength of the soil cement containing acidic soil, the component (A2) (component (A21) and component (A22)) Total) is preferably 0.5% by mass or more, more preferably 1.0% by mass or more, more preferably 2.0% by mass or more, still more preferably 3.0% by mass or more, based on the water-hard powder. , And preferably 10% by mass or less, more preferably 8.0% by mass or less.
In the ground improvement method of the present invention, when the component (A2) is used as the component (A), the component (A21) is preferably used with respect to the water-hard powder from the viewpoint of improving the strength of the soil cement containing acidic soil. Is 0.25% by mass or more, more preferably 0.5% by mass or more, still more preferably 1.0% by mass or more, still more preferably 2.0% by mass or more, and preferably 6.0% by mass or less. More preferably 5.0% by mass or less, further preferably 4.0% by mass or less, the component (A22) is preferably 0.25% by mass or more, more preferably 0.5% by mass, based on the water-hard powder. Mass% or more, more preferably 1.0% by mass or more, still more preferably 2.0% by mass or more, and preferably 6.0% by mass or less, more preferably 5.0% by mass or less, still more preferably 4 Mix at 0.0% by mass or less.
In the ground improvement method of the present invention, when the component (A2) is used as the component (A), the component (A21) and the component (A22) are combined with the component (A21) from the viewpoint of improving the strength of the soil cement containing acidic soil. The mass ratio (A21) / (A22) of and the component (A22) is preferably 0.1 or more, more preferably 0.5 or more, still more preferably 1.0 or more, and preferably 10 or less, more preferably. Is 5.0 or less, more preferably 3.0 or less, and even more preferably 2.0 or less.

本発明の地盤の改良工法では、更に(B)成分として、酸性土を含むソイルセメントの強度向上の観点から、無水石膏、二水石膏、半水石膏および硫酸ナトリウムから選ばれる少なくとも1種以上の化合物を混合することが好ましい。
本発明の地盤の改良工法では、(B)成分を用いる場合、ソイルセメントの初期強度向上の観点から、(B)成分を、水硬性粉体に対して、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1.0質量%以上、より更に好ましくは3.0質量%以上、より更に好ましくは5.0質量%以上、より更に好ましくは7.0質量%以上、そして、好ましくは30質量%以下、より好ましくは20質量%以下、更に好ましくは10質量%以下で混合する。
In the ground improvement method of the present invention, at least one or more selected from anhydrous gypsum, dihydrate gypsum, hemihydrate gypsum and sodium sulfate as the component (B) from the viewpoint of improving the strength of soil cement containing acidic soil. It is preferable to mix the compounds.
In the ground improvement method of the present invention, when the component (B) is used, the component (B) is preferably 0.1% by mass or more with respect to the water-hard powder from the viewpoint of improving the initial strength of the soil cement. More preferably 0.5% by mass or more, still more preferably 1.0% by mass or more, still more preferably 3.0% by mass or more, still more preferably 5.0% by mass or more, still more preferably 7.0% by mass. % Or more, preferably 30% by mass or less, more preferably 20% by mass or less, still more preferably 10% by mass or less.

本発明の地盤の改良工法では、更にソイルセメントの流動性向上の観点から、セメント分散剤を混合してもよい。セメント分散剤としては、ポリカルボン酸系分散剤、及びナフタレンスルホン酸ホルムアルデヒド縮合物系分散剤から選ばれる1種以上が好ましい。 In the ground improvement method of the present invention, a cement dispersant may be mixed from the viewpoint of further improving the fluidity of the soil cement. As the cement dispersant, one or more selected from a polycarboxylic acid-based dispersant and a naphthalene sulfonic acid formaldehyde condensate-based dispersant are preferable.

本発明の地盤の改良工法は、表層改良工法、深層改良工法、鋼管杭工法、シールド工法などの工法に適用できる。例えば、深層改良工法では、高圧噴射工法、TRD工法、SMW工法などに適用できる。 The ground improvement method of the present invention can be applied to a method such as a surface layer improvement method, a deep layer improvement method, a steel pipe pile method, and a shield method. For example, the deep layer improvement method can be applied to the high pressure injection method, the TRD method, the SMW method, and the like.

本発明の地盤の改良工法では、土壌と、水硬性粉体、(A)成分と、任意に(B)成分と、水とを、下記(I)の方法で土壌と混合することが、地盤改良体の均一性の観点から好ましい。
<方法(I)>
水と、水硬性粉体と、(A)成分と、任意に(B)成分とを含有するスラリーであって、(A)成分を水硬性粉体に対して0.5質量%以上10質量%以下含有するスラリーを、土壌と混合する方法。
In the ground improvement method of the present invention, the soil, the water-hard powder, the component (A), optionally the component (B), and water can be mixed with the soil by the method (I) below. It is preferable from the viewpoint of uniformity of the improved product.
<Method (I)>
A slurry containing water, a water-hard powder, a component (A), and optionally a component (B), wherein the component (A) is 0.5% by mass or more and 10% by mass with respect to the water-hard powder. A method of mixing a slurry containing% or less with soil.

以下、方法(I)について説明する。
方法(I)では、土壌1mあたりのスラリーの混合量が酸性土を含むソイルセメントの強度向上の観点から、150kg以上800kg以下であることが好ましい。
また、方法(I)では、酸性土を含むソイルセメントの強度向上の観点から、ソイルセメント中の水硬性粉体/土壌の質量比が0.01以上0.6以下であることが好ましい。
また、方法(I)では、スラリーの調製に用いる水は、真水、海水の何れも用いることが出来る。スラリーの水の少なくとも一部が海水であってもよい。
The method (I) will be described below.
In the method (I), the mixing amount of the slurry per 1 m 3 of soil is preferably 150 kg or more and 800 kg or less from the viewpoint of improving the strength of the soil cement containing acidic soil.
Further, in the method (I), from the viewpoint of improving the strength of the soil cement containing acidic soil, the mass ratio of the water-hard powder / soil in the soil cement is preferably 0.01 or more and 0.6 or less.
Further, in the method (I), either fresh water or seawater can be used as the water used for preparing the slurry. At least part of the water in the slurry may be seawater.

水と水硬性粉体と(A)成分と任意に(B)成分とを混合してスラリーを調製する具体的な方法は、セメントミルクなどの水硬性組成物を調製する公知の方法に準じてよい。 A specific method for preparing a slurry by mixing water, a hydraulic powder, a component (A), and an optional component (B) is based on a known method for preparing a hydraulic composition such as cement milk. good.

方法(I)では、施工性の観点から、スラリーにおける水/水硬性粉体の質量比は、好ましくは40質量%以上、より好ましくは50質量%以上、更に好ましくは60質量%以上、そして、好ましくは150質量%以下、より好ましくは120質量%以下、より更に好ましくは100質量%以下である。 In the method (I), from the viewpoint of workability, the mass ratio of water / water-hard powder in the slurry is preferably 40% by mass or more, more preferably 50% by mass or more, still more preferably 60% by mass or more, and It is preferably 150% by mass or less, more preferably 120% by mass or less, and even more preferably 100% by mass or less.

スラリーを地盤に注入する具体的な方法は、公知の地盤改良工法に準じてよい。
スラリーを地盤に注入する方法として、例えば、噴射撹拌工法(一相流方式、二相流方式、三相流方式)や機械撹拌工法(CDM工法など)、さらに地中連続壁工法(SMW工法、TRD工法など)などが挙げられる。さらに水硬性粉体に(A)成分と任意に(B)成分とをドライブレンドした系では、粉体混合方式のDJM(Dry Jet Mixing)工法やスタビライザなどを使用した浅層改良などにも使用できる。
The specific method for injecting the slurry into the ground may be based on a known ground improvement method.
As a method of injecting the slurry into the ground, for example, an injection stirring method (one-phase flow method, two-phase flow method, three-phase flow method), a mechanical stirring method (CDM method, etc.), and an underground continuous wall method (SMW method, SMW method, etc.) TRD method, etc.). Furthermore, in a system in which the component (A) and the component (B) are optionally dry-blended into a hydraulic powder, it is also used for the DJM (Dry Jet Mixing) method of powder mixing method and shallow layer improvement using a stabilizer or the like. can.

方法(I)では、混合性の観点から、土壌1mあたりのスラリーの混合量が、好ましくは150kg以上、より好ましくは200kg以上、更に好ましくは250kg以上、そして、ソイルセメントの施工性の観点から、好ましくは800kg以下、より好ましくは500kg以下、更に好ましくは400kg以下である。 In the method (I), from the viewpoint of mixability, the mixing amount of the slurry per 1 m 3 of soil is preferably 150 kg or more, more preferably 200 kg or more, further preferably 250 kg or more, and from the viewpoint of workability of soil cement. , Preferably 800 kg or less, more preferably 500 kg or less, still more preferably 400 kg or less.

スラリーと土壌の混合物は、公知の地盤改良工法に準じて固化させる。 The mixture of slurry and soil is solidified according to a known ground improvement method.

本発明の地盤の改良工法である、方法(I)のより具体的な例として、下記の工程1〜3を有する地盤の改良工法が挙げられる。
<工程1>
水と、水硬性粉体と、(A)成分と、任意に(B)成分とを混合してスラリーを調製する工程であって、(A)成分を水硬性粉体に対して0.5質量%以上10質量%以下となるように混合してスラリーを調製する工程
<工程2>
工程1で得られたスラリーを地盤に注入してスラリーと土壌とを混合して混合物を得る工程であって、土壌1mあたりのスラリーの混合量が150kg以上800kg以下であり、混合物中の水硬性粉体/土壌の質量比が0.01以上0.6以下である工程
<工程3>
工程2で得られたスラリーと土壌の混合物を固化させる工程
As a more specific example of the method (I), which is the ground improvement method of the present invention, there is a ground improvement method having the following steps 1 to 3.
<Step 1>
A step of preparing a slurry by mixing water, a water-hard powder, a component (A), and an optional component (B), wherein the component (A) is 0.5 with respect to the water-hard powder. Step of preparing a slurry by mixing so as to be by mass% or more and 10% by mass or less <Step 2>
In the step of injecting the slurry obtained in step 1 into the ground and mixing the slurry and soil to obtain a mixture, the mixing amount of the slurry per 1 m 3 of soil is 150 kg or more and 800 kg or less, and water in the mixture. Step where the mass ratio of hard powder / soil is 0.01 or more and 0.6 or less <Step 3>
Step of solidifying the mixture of slurry and soil obtained in step 2

〔地盤改良用添加剤組成物〕
本発明の地盤改良用添加剤組成物は、(A)成分を含有する、地盤改良用添加剤組成物であって、前記地盤の土壌が強熱減量法によって求められる有機質分量が30%以上である土壌に用いられる地盤改良用添加剤組成物である。
本発明の地盤改良用添加剤組成物は、更に(B)成分を含有することができる。本発明の地盤改良用添加剤組成物は、(A)成分、及び(B)成分からなるものであってもよい。
[Additive composition for ground improvement]
The ground improvement additive composition of the present invention is a ground improvement additive composition containing the component (A), and the amount of organic matter required for the soil of the ground by the ignition loss method is 30% or more. An additive composition for ground improvement used in a certain soil.
The ground improvement additive composition of the present invention can further contain the component (B). The ground improvement additive composition of the present invention may consist of the component (A) and the component (B).

かかる地盤改良用添加剤組成物は、地盤改良のために土壌と混合される地盤改良材、例えばセメントミルクなどの水硬性組成物に用いられる添加剤組成物である。
本発明の地盤改良用添加剤組成物の使用量は、地盤改良材の種類、土壌(地盤)の種類などを考慮して設定できるが、本発明の地盤の改良工法や本発明の地盤改良体で述べた量となることが好ましい。本発明の地盤の改良工法で述べた事項は、適宜、本発明の地盤改良用添加剤組成物に適用することができる。
Such a ground improvement additive composition is an additive composition used for a ground improvement material to be mixed with soil for ground improvement, for example, a hydraulic composition such as cement milk.
The amount of the additive composition for ground improvement of the present invention to be used can be set in consideration of the type of ground improvement material, the type of soil (ground), etc., but the ground improvement method of the present invention and the ground improvement body of the present invention can be set. It is preferable that the amount is as described in. The matters described in the ground improvement method of the present invention can be appropriately applied to the ground improvement additive composition of the present invention.

〔地盤改良用スラリー〕
本発明の地盤改良用スラリーは、水と、水硬性粉体と、(A)成分とを含有する地盤改良用スラリーであって、(A)成分を水硬性粉体に対して0.5質量%以上10質量%以下で含有し、前記地盤の土壌が強熱減量法によって求められる有機質分量が30%以上である土壌に用いられる地盤改良用スラリーである。当該スラリーは、水/水硬性粉体の質量比が好ましくは40質量%以上150質量%以下である。本発明の地盤改良用スラリーは、水と、水硬性粉体と、本発明の地盤改良用添加剤組成物とを混合してなる地盤改良用スラリーであってよい。本発明の地盤改良用スラリーは、本発明の地盤の改良工法に好ましく用いられる。また、本発明の地盤改良用スラリーは、更に(B)を含有することができる。本発明の地盤の改良工法、地盤改良用添加剤組成物で述べた事項は、適宜、本発明の地盤改良用スラリーに適用することができる。
[Slurry for ground improvement]
The ground improvement slurry of the present invention is a ground improvement slurry containing water, a water-hard powder, and a component (A), and the component (A) is 0.5% by mass with respect to the water-hard powder. This is a ground improvement slurry used for soil containing% or more and 10% by mass or less and having an organic content of 30% or more determined by the ignition loss method. The slurry has a water / hydraulic powder mass ratio of preferably 40% by mass or more and 150% by mass or less. The ground improvement slurry of the present invention may be a ground improvement slurry obtained by mixing water, a water-hard powder, and the ground improvement additive composition of the present invention. The ground improvement slurry of the present invention is preferably used in the ground improvement method of the present invention. In addition, the ground improvement slurry of the present invention can further contain (B). The matters described in the ground improvement method and the ground improvement additive composition of the present invention can be appropriately applied to the ground improvement slurry of the present invention.

本発明の地盤改良用スラリーは、地盤改良のために土壌と混合される地盤改良用のスラリー、例えばセメントミルクなどの水硬性組成物である。
本発明の地盤改良用スラリーの使用量は、地盤改良用スラリーの組成、土壌(地盤)の種類などを考慮して設定できるが、本発明の地盤の改良工法や本発明の地盤改良体で述べた量となることが好ましい。
本発明の地盤改良用スラリーは、酸性土を含むソイルセメントの強度向上の観点から、土壌1mあたり好ましくは150kg以上、より好ましくは200kg以上、更に好ましくは250kg以上、そして、好ましくは800kg以下、より好ましくは500kg以下、更に好ましくは400kg以下で土壌と混合して用いられる。また、本発明の地盤改良用スラリーは、該スラリー中の水硬性粉体と土壌とが、水硬性粉体/土壌の質量比が好ましくは0.01以上、より好ましくは0.1以上、更に好ましくは0.25以上、そして、好ましくは0.6以下、より好ましくは0.5以下、更に好ましくは0.45以下で土壌と混合して用いられる。
The ground improvement slurry of the present invention is a ground improvement slurry that is mixed with soil for ground improvement, for example, a hydraulic composition such as cement milk.
The amount of the ground improvement slurry used of the present invention can be set in consideration of the composition of the ground improvement slurry, the type of soil (ground), etc., but will be described in the ground improvement method of the present invention and the ground improvement body of the present invention. It is preferable that the amount is large.
From the viewpoint of improving the strength of soil cement containing acidic soil, the ground improvement slurry of the present invention preferably contains 150 kg or more, more preferably 200 kg or more, still more preferably 250 kg or more, and preferably 800 kg or less per 1 m 3 of soil. It is more preferably 500 kg or less, still more preferably 400 kg or less, and is used by mixing with soil. Further, in the ground improvement slurry of the present invention, the mass ratio of the water-hard powder / soil in the slurry is preferably 0.01 or more, more preferably 0.1 or more, and further. It is preferably mixed with soil at 0.25 or more, preferably 0.6 or less, more preferably 0.5 or less, still more preferably 0.45 or less.

〔地盤改良体〕
本発明の地盤改良体は、強熱減量法によって求められる有機質分量が30%以上である土壌、水硬性粉体、水、及び(A)成分を含有する地盤改良体であって、(A)成分を水硬性粉体に対して0.5質量%以上10質量%以下で含有する地盤改良体である。この地盤改良体は、酸性土を含むソイルセメントの強度向上の観点から、好ましくは水硬性粉体/土壌の質量比が0.01以上0.6以下である。この地盤改良体は、前記土壌と、水と、水硬性粉体と、(A)成分とを含有するスラリーを硬化させてなる地盤改良体であってよい。
本発明の地盤改良体は、前記土壌と、本発明の地盤改良用スラリーとを混合してなる、地盤改良体であってよい。
[Ground improvement body]
The ground improvement body of the present invention is a ground improvement body containing soil, a water-hard powder, water, and a component (A) having an organic content of 30% or more required by the ignition loss method, and is (A). It is a ground improvement body containing 0.5% by mass or more and 10% by mass or less of the components with respect to the water-hard powder. From the viewpoint of improving the strength of soil cement containing acidic soil, this ground improvement body preferably has a water-hard powder / soil mass ratio of 0.01 or more and 0.6 or less. The ground improvement body may be a ground improvement body obtained by curing a slurry containing the soil, water, hydraulic powder, and the component (A).
The ground improvement body of the present invention may be a ground improvement body formed by mixing the soil and the ground improvement slurry of the present invention.

本発明の地盤の改良工法、地盤改良用添加剤組成物、地盤改良用スラリーで述べた事項は、本発明の地盤改良体に適宜適用することができる。本発明の地盤改良体は、更に(B)成分を含有することができる。
本発明の地盤改良体における、水硬性粉体、(A)成分、(B)成分、土壌などの具体例、好ましい態様や、各質量比などの量的な規定も、それぞれ、本発明の地盤の改良工法、地盤改良用添加剤組成物、地盤改良用スラリーと同じである。
The matters described in the ground improvement method of the present invention, the additive composition for ground improvement, and the slurry for ground improvement can be appropriately applied to the ground improvement body of the present invention. The ground improvement body of the present invention can further contain the component (B).
Specific examples of the water-hard powder, the component (A), the component (B), the soil, etc. in the ground improvement body of the present invention, preferred embodiments, and quantitative provisions such as mass ratios of the present invention are also provided. It is the same as the improvement method, the additive composition for ground improvement, and the slurry for ground improvement.

<配合成分>
以下の実施例、比較例、参考例で用いた成分を以下に示す。
(A)成分
(A1)成分
・塩化カルシウム:富士フィルム和光純薬株式会社製、20℃における水への溶解度74.5g/100ml
・塩化アルミニウム:富士フィルム和光純薬株式会社製、20℃における水への溶解度45.8g/100ml
(A2)成分
(A21)成分
・塩化ナトリウム:富士フィルム和光純薬株式会社製
・塩化カルシウム:富士フィルム和光純薬株式会社製
(A22)成分
・硫酸アルミニウム:富士フィルム和光純薬株式会社製、20℃における水への溶解度87g/100ml
・乳酸アルミニウム:富士フィルム和光純薬株式会社製、20℃における水への溶解度30.8g/100ml
・ミョウバン:富士フィルム和光純薬株式会社製、20℃における水への溶解度40.9g/100ml
<Ingredients>
The components used in the following examples, comparative examples, and reference examples are shown below.
(A) Ingredient (A1) Ingredient-Calcium chloride: Wako Pure Chemical Industries, Ltd., solubility in water at 20 ° C. 74.5 g / 100 ml
-Aluminum chloride: manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., solubility in water at 20 ° C. 45.8 g / 100 ml
(A2) Ingredients (A21) Ingredients-Sodium chloride: Fuji Film Wako Pure Chemical Industries, Ltd.-Calcium chloride: Fuji Film Wako Pure Chemical Industries, Ltd. (A22) Ingredients-Aluminum sulfate: Fuji Film Wako Pure Chemical Industries, Ltd., 20 Solubility in water at ° C 87g / 100ml
-Aluminum lactate: manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., solubility in water at 20 ° C, 30.8 g / 100 ml
-Alum: Wako Pure Chemical Industries, Ltd., Wako Pure Chemical Industries, Ltd., solubility in water at 20 ° C, 40.9 g / 100 ml

(B)成分
・無水石膏:サンエス石膏株式会社製
・二水石膏:富士フィルム和光純薬株式会社製
(B) Ingredients ・ Anhydrous gypsum: manufactured by Sanes Gypsum Co., Ltd. ・ Nisui Gypsum: manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.

水硬性粉体
・普通ポルトランドセメント:太平洋セメント株式会社製
Hydraulic powder / ordinary Portland cement: Made by Taiheiyo Cement Co., Ltd.

土壌は、表1に示す泥炭、スミクレー泥水を用いた。泥炭、スミクレー泥水の有機質分量は、日本工学規格JIS A1226:2009で規定される方法によって測定した。また泥炭、スミクレー泥水の土懸濁液のpHは、地盤工学会基準JGS0211-2009で規定される方法によって測定した。泥炭の土懸濁液のpHは4.2、スミクレー泥水の土懸濁液のpHは7であった。 As the soil, peat and smikley muddy water shown in Table 1 were used. The organic content of peat and smikley muddy water was measured by the method specified in Japanese Industrial Standard JIS A1226: 2009. The pH of the soil suspension of peat and smikley muddy water was measured by the method specified by the Japanese Geotechnical Society standard JGS0211-2009. The pH of the peat soil suspension was 4.2, and the pH of the smikley muddy water soil suspension was 7.

Figure 2021127392
Figure 2021127392

<実施例、比較例及び参考例>
表1の土壌を用いてソイルセメントを調製し、ソイルセメントに対する評価を以下のように行った。結果を表2、表3に示す。
<Examples, Comparative Examples and Reference Examples>
Soil cement was prepared using the soil shown in Table 1, and the soil cement was evaluated as follows. The results are shown in Tables 2 and 3.

(1)ソイルセメントの調製
まず、セメントミルクを次の手順で調製した。500mlプラスチックカップ(500mLディスポカップ、ニッコー・ハンセン株式会社)内で水硬性粉体と(A)成分と、(B)成分を混合した。その混合物に水を加えハンドミキサーにて1分間混練してセメントスラリーを調製した。
セメントスラリーを調製するための水は上水道水を用いた。水硬性粉体と水は、水/水硬性粉体の質量比が60質量%となるように用いた。
(A)成分、(B)成分は、水硬性粉体に対する添加量が表2、3の通りとなるように用いた。
その後、別の500mlプラスチックカップ内に、土壌を投入し、セメントスラリーを、表2、3に記載の注入量となるように投入し(水硬性粉体/土壌の質量比=0.38)、ハンドミキサーにて3分間撹拌してソイルセメントを調製した。攪拌後、振動を与えて上面を均し、ラップフィルムで封をして所定時間まで22℃で静置した。
(1) Preparation of soil cement First, cement milk was prepared by the following procedure. The water-hard powder, the component (A), and the component (B) were mixed in a 500 ml plastic cup (500 mL disposable cup, Nikko Hansen Co., Ltd.). Water was added to the mixture and kneaded with a hand mixer for 1 minute to prepare a cement slurry.
Tap water was used as the water for preparing the cement slurry. The water-hard powder and water were used so that the mass ratio of water / water-hard powder was 60% by mass.
The components (A) and (B) were used so that the amounts added to the hydraulic powder were as shown in Tables 2 and 3.
Then, the soil was poured into another 500 ml plastic cup, and the cement slurry was charged so as to have the injection amount shown in Tables 2 and 3 (water-hard powder / soil mass ratio = 0.38). Soil cement was prepared by stirring with a hand mixer for 3 minutes. After stirring, the upper surface was leveled by applying vibration, sealed with a wrap film, and allowed to stand at 22 ° C. for a predetermined time.

(2)評価
調製したソイルセメントを用いて得た地盤改良体の強度を次の方法で評価した。ソイルセメントを、型枠(直径50mm×高さ100mm)に充填した。充填は、テーブルバイブレータで30秒の2層詰めとした。供試体は2本作製した。前記で得た供試体の硬化体(地盤改良体)の20℃気中7日強度を、一軸圧縮試験機により測定した。表2、3には、2本の供試体の強度の平均値を7日強度として示した。
(2) Evaluation The strength of the ground improvement body obtained by using the prepared soil cement was evaluated by the following method. Soil cement was filled in a mold (diameter 50 mm × height 100 mm). Filling was done with a table vibrator for 30 seconds in two layers. Two specimens were prepared. The strength of the cured product (ground improvement product) of the specimen obtained above in air at 20 ° C. for 7 days was measured by a uniaxial compression tester. Tables 2 and 3 show the average value of the intensities of the two specimens as the intensities for 7 days.

Figure 2021127392
Figure 2021127392

表2中、7日強度が0と表記されている比較例は、ソイルセメントが硬化しないことにより型枠から脱型できなかったため、強度を測定しなかった。 In the comparative example in which the 7-day strength was described as 0 in Table 2, the strength was not measured because the soil cement could not be removed from the mold because it did not harden.

Figure 2021127392
Figure 2021127392

表2中、有機物を含む酸性土の土壌である泥炭に、水硬性粉体のみで(A)成分を混合しない比較例1では、ソイルセメントを硬化させることができないが、泥炭に、水硬性粉体と(A)成分を特定量混合した本発明の実施例1〜12では、ソイルセメントを硬化させることが出来ることが分かる。
また表3の結果から、有機物を含まない土壌であるスミクレー泥水に、水硬性粉体と(A)成分を添加しても、ソイルセメントの7日強度を向上させることはなく、本発明の地盤の改良工法は、特定の土壌に対してだけ、効果があることが分かる。

In Table 2, in Comparative Example 1 in which the component (A) is not mixed with the peat which is the soil of acidic soil containing organic substances only with the hydraulic powder, the soil cement cannot be hardened, but the peat is mixed with the hydraulic powder. It can be seen that the soil cement can be hardened in Examples 1 to 12 of the present invention in which the body and the component (A) are mixed in a specific amount.
Further, from the results in Table 3, even if the hydraulic powder and the component (A) were added to the smikley muddy water, which is a soil containing no organic substances, the 7-day strength of the soil cement was not improved, and the ground of the present invention was found. It can be seen that the improved construction method of is effective only for specific soils.

Claims (15)

強熱減量法によって求められる有機質分量が30%以上である土壌に、水硬性粉体と、水と、下記の(A)成分とを混合する、地盤の改良工法であって、(A)成分を水硬性粉体に対して0.5質量%以上10質量%以下となるように混合する、地盤の改良工法。
(A)成分:水中で、アルミニウムイオン及び/又はカルシウムイオンと、塩化物イオンとを放出する供給源となる1種以上の化合物(但し、水硬性粉体は除く)
This is a ground improvement method in which water-hard powder, water, and the following component (A) are mixed in soil with an organic content of 30% or more required by the ignition loss method. Is mixed so as to be 0.5% by mass or more and 10% by mass or less with respect to the water-hard powder, which is a method for improving the ground.
Component (A): One or more compounds serving as a source for releasing aluminum ions and / or calcium ions and chloride ions in water (excluding water-hard powder)
前記土壌が、地盤工学会基準JGS0211-2009で規定される方法によって測定される土懸濁液のpHが6以下である、請求項1に記載の地盤の改良工法。 The ground improvement method according to claim 1, wherein the pH of the soil suspension measured by the method specified by the Japanese Geotechnical Society Standard JGS0211-2009 is 6 or less. (A)成分が、下記(A1)成分、及び、(A2)成分からなる成分から選ばれる1種以上の化合物である、請求項1又は2に記載の地盤の改良工法。
(A1)成分:20℃における水への溶解度が20g/100ml以上であるカルシウム塩化物塩もしくはアルミニウム塩化物塩から選ばれる1種以上の化合物
(A2)成分:(A21)アルカリ金属塩化物塩、及びアルカリ土類金属塩化物塩から選ばれる1種以上の化合物(以下、(A21)成分という)と、(A22)20℃における水への溶解度が20g/100ml以上であるアルミニウム塩(但し、(A21)成分を除く、以下、(A22)成分という)
The ground improvement method according to claim 1 or 2, wherein the component (A) is one or more compounds selected from the following component (A1) and the component (A2).
(A1) component: One or more compounds selected from calcium chloride salt or aluminum chloride salt having a solubility in water at 20 ° C. of 20 g / 100 ml or more (A2) component: (A21) alkali metal chloride salt, And one or more compounds selected from alkaline earth metal chloride salts (hereinafter referred to as (A21) component), and (A22) aluminum salts having a solubility in water at 20 ° C. of 20 g / 100 ml or more (however, (However, Excluding A21) component, hereinafter referred to as (A22) component)
前記土壌と、水硬性粉体と、水と、(A1)成分を混合する、請求項3に記載の地盤の改良工法。 The ground improvement method according to claim 3, wherein the soil, the hydraulic powder, water, and the component (A1) are mixed. (A1)成分が塩化カルシウム及び塩化アルミニウムから選ばれる1種以上である、請求項4に記載の地盤の改良工法。 The ground improvement method according to claim 4, wherein the component (A1) is at least one selected from calcium chloride and aluminum chloride. (A1)成分を、水硬性粉体に対して、0.5質量%以上10質量%以下で混合する、請求項4又は5に記載の地盤の改良工法。 The ground improvement method according to claim 4 or 5, wherein the component (A1) is mixed with the hydraulic powder in an amount of 0.5% by mass or more and 10% by mass or less. 前記土壌と、水硬性粉体と、水と、(A2)成分を混合する、請求項3に記載の地盤の改良工法。 The ground improvement method according to claim 3, wherein the soil, the hydraulic powder, water, and the component (A2) are mixed. (A21)成分が、塩化ナトリウム、塩化カリウム及び塩化カルシウムから選ばれる1種以上であり、(A22)成分が、乳酸アルミニウム、ミョウバン、及び硫酸アルミニウムから選ばれる1種以上である、請求項7に記載の地盤の改良工法。 According to claim 7, the component (A21) is one or more selected from sodium chloride, potassium chloride and calcium chloride, and the component (A22) is one or more selected from aluminum lactate, alum, and aluminum sulfate. The described ground improvement method. (A2)成分を、水硬性粉体に対して、0.5質量%以上10質量%以下で混合する、請求項7又は8に記載の地盤の改良工法。 The ground improvement method according to claim 7 or 8, wherein the component (A2) is mixed with the hydraulic powder in an amount of 0.5% by mass or more and 10% by mass or less. (A21)成分と(A22)成分の質量比(A21)/(A22)が0.1以上10以下である、請求項7〜9の何れか1項に記載の地盤の改良工法。 The ground improvement method according to any one of claims 7 to 9, wherein the mass ratio (A21) / (A22) of the component (A21) to the component (A22) is 0.1 or more and 10 or less. 更に(B)無水石膏、二水石膏、半水石膏および硫酸ナトリウムから選ばれる少なくとも1種以上の化合物(以下、(B)成分という)を混合する、請求項1〜10の何れか1項に記載の地盤の改良工法。 Further, according to any one of claims 1 to 10, at least one compound (hereinafter referred to as (B) component) selected from (B) anhydrous gypsum, dihydrate gypsum, hemihydrate gypsum and sodium sulfate is mixed. The described ground improvement method. (B)成分を、水硬性粉体に対して、0.1質量%以上30質量%以下で混合する、請求項11に記載の地盤の改良工法。 The ground improvement method according to claim 11, wherein the component (B) is mixed with the hydraulic powder in an amount of 0.1% by mass or more and 30% by mass or less. 水硬性粉体が、普通ポルトランドセメント、高炉スラグセメント、及び製鋼スラグセメントから選ばれる1種以上である、請求項1〜12の何れか1項に記載の地盤の改良工法。 The ground improvement method according to any one of claims 1 to 12, wherein the hydraulic powder is one or more selected from ordinary Portland cement, blast furnace slag cement, and steelmaking slag cement. 下記の(A)成分を含有する、地盤改良用添加剤組成物であって、前記地盤の土壌が強熱減量法によって求められる有機質分量が30%以上である土壌に用いられる地盤改良用添加剤組成物。
(A)成分:水中で、アルミニウムイオン及び/又はカルシウムイオンと、塩化物イオンとを放出する供給源となる1種以上の化合物(但し、水硬性粉体を除く)
An additive composition for ground improvement containing the following component (A), which is used for soil in which the amount of organic matter required by the ignition loss method is 30% or more. Composition.
Component (A): One or more compounds serving as a source for releasing aluminum ions and / or calcium ions and chloride ions in water (excluding water-hard powder)
強熱減量法によって求められる有機質分量が30%以上である土壌、水硬性粉体、水、及び下記の(A)成分を含有する地盤改良体であって、(A)成分を水硬性粉体に対して0.5質量%以上10質量%以下で含有する地盤改良体。
(A)成分:水中で、アルミニウムイオン及び/又はカルシウムイオンと、塩化物イオンとを放出する供給源となる1種以上の化合物(但し、水硬性粉体を除く)

A ground improvement body containing soil, water-hard powder, water, and the following component (A) having an organic content of 30% or more required by the ignition loss method, and the component (A) is the water-hard powder. A ground improvement body containing 0.5% by mass or more and 10% by mass or less.
Component (A): One or more compounds serving as a source for releasing aluminum ions and / or calcium ions and chloride ions in water (excluding water-hard powder)

JP2020023003A 2020-02-14 2020-02-14 Ground improvement method Active JP7265498B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020023003A JP7265498B2 (en) 2020-02-14 2020-02-14 Ground improvement method
PCT/JP2021/003903 WO2021161868A1 (en) 2020-02-14 2021-02-03 Soil improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020023003A JP7265498B2 (en) 2020-02-14 2020-02-14 Ground improvement method

Publications (2)

Publication Number Publication Date
JP2021127392A true JP2021127392A (en) 2021-09-02
JP7265498B2 JP7265498B2 (en) 2023-04-26

Family

ID=77292709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020023003A Active JP7265498B2 (en) 2020-02-14 2020-02-14 Ground improvement method

Country Status (2)

Country Link
JP (1) JP7265498B2 (en)
WO (1) WO2021161868A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7381642B2 (en) 2022-03-28 2023-11-15 太平洋セメント株式会社 Solidification treatment method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364911A (en) * 1976-11-22 1978-06-09 Onoda Cement Co Ltd Method of solidifying and stabilizing peaty soil
JPS58138778A (en) * 1982-02-12 1983-08-17 Yoshio Taguchi Soil hardening agnet
JPS61243885A (en) * 1985-04-22 1986-10-30 Kazuhiko Kishigami Solidifying agent
JPH10245555A (en) * 1997-02-28 1998-09-14 Mitsubishi Materials Corp Cemental solidifier for organic soil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364911A (en) * 1976-11-22 1978-06-09 Onoda Cement Co Ltd Method of solidifying and stabilizing peaty soil
JPS58138778A (en) * 1982-02-12 1983-08-17 Yoshio Taguchi Soil hardening agnet
JPS61243885A (en) * 1985-04-22 1986-10-30 Kazuhiko Kishigami Solidifying agent
JPH10245555A (en) * 1997-02-28 1998-09-14 Mitsubishi Materials Corp Cemental solidifier for organic soil

Also Published As

Publication number Publication date
JP7265498B2 (en) 2023-04-26
WO2021161868A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
JP6693770B2 (en) Ground improvement material and ground improvement method using the same
JP2008037891A (en) Method for preparing soil cement slurry
JP6529821B2 (en) Powder stabilization agent for ground stabilization, ground stabilization material, and ground stabilization method using the same
JP7265498B2 (en) Ground improvement method
JP6498716B2 (en) Ground improvement method
JP6487133B1 (en) Ground improvement method
JP7299869B2 (en) Ground improvement method
JP2007321005A (en) Cement-based solidifying material, and conditioning method of ground by using the solidifying material
JP2004211382A (en) Soil improving method
JP6497990B2 (en) Liquid admixture for ground stabilization, ground stabilization material, and ground stabilization method using the same
JP2007217255A (en) Method of preparing soil cement slurry
JP6578316B2 (en) Ground improvement method
JP6776391B2 (en) Ground improvement materials, cement milk, and ground improvement methods
JP6755828B2 (en) Ground improvement method
JP4375663B2 (en) Cement composition for jet grouting method and jet grouting method
JP4043763B2 (en) Soil solidifying agent
JPH1017864A (en) Compounding ingredient for soil improvement
JPH07206495A (en) Cement admixture for grouting method and its grouting method
JP6924738B2 (en) Additives for soil cement
JP7326384B2 (en) Ground improvement method
JP7339126B2 (en) Additive for hydraulic composition for spraying
WO2022176977A1 (en) Site improvement method
JP4462980B2 (en) Ground improvement method
WO2022196727A1 (en) Method for improving ground
JP2017137398A (en) Soil improvement material and soil improvement method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220922

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230220

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230220

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230302

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230414

R151 Written notification of patent or utility model registration

Ref document number: 7265498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151