JP2021125851A - 収音装置、収音プログラム及び収音方法 - Google Patents

収音装置、収音プログラム及び収音方法 Download PDF

Info

Publication number
JP2021125851A
JP2021125851A JP2020020077A JP2020020077A JP2021125851A JP 2021125851 A JP2021125851 A JP 2021125851A JP 2020020077 A JP2020020077 A JP 2020020077A JP 2020020077 A JP2020020077 A JP 2020020077A JP 2021125851 A JP2021125851 A JP 2021125851A
Authority
JP
Japan
Prior art keywords
target area
sound
microphone array
microphone
extracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020020077A
Other languages
English (en)
Other versions
JP6885483B1 (ja
Inventor
一浩 片桐
Kazuhiro Katagiri
一浩 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2020020077A priority Critical patent/JP6885483B1/ja
Application granted granted Critical
Publication of JP6885483B1 publication Critical patent/JP6885483B1/ja
Publication of JP2021125851A publication Critical patent/JP2021125851A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Circuit For Audible Band Transducer (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Abstract

【課題】非目的エリア音の到来方向に関わらず目的エリア音のみを収音する収音装置、収音プログラム及び収音方法を提供する。
【解決手段】収音装置は、複数のマイクロホンアレイの入力信号についてビームフォーマによって目的方向信号を取得し、2つのマイクロホンアレイの組み合わせで形成されるマイクロホンアレイセットを3つ以上設定し、それぞれのマイクロホンアレイセットの目的方向信号に基づいてスペクトル減算処理により目的エリア音を抽出する手段と、それぞれのマイクロホンアレイセットを用いて抽出された目的エリア音を比較した結果に基づき、それぞれのマイクロホンアレイセットを用いて抽出された目的エリア音から1つの出力信号を生成して出力する。
【選択図】図1

Description

この発明は、収音装置、収音プログラム及び収音方法に関し、例えば、特定のエリアの音を強調し、それ以外のエリアの音を抑制するシステムに適用し得る。
複数の音源が存在する環境下において、ある特定方向の音のみ分離し収音する技術として、マイクロホンアレイを用いたビームフォーマ(Beam Former;以下「BF」とも呼ぶ)がある。BFとは、各マイクロホンに到達する信号の時間差を利用して指向性を形成する技術である(非特許文献1参照)。
従来、BFは、加算型と減算型の大きく2つの種類に分けられる。特に減算型BFは、加算型即に比べ、少ないマイクロホン数で指向性を形成できるという利点がある。
図11は、マイクロホンMの数が2個の場合の減算型BF200に係る構成を示すブロック図である。
図12は、2個のマイクロホンM1、M2を用いた減算型BF200により形成される指向性フィルタの例について示した説明図である。
減算型BF200は、まず遅延器210により目的とする方向に存在する音(以下、「目的音」と呼ぶ)が各マイクロホンM1、M2に到来する信号の時間差を算出し、遅延を加えることにより目的音の位相を合わせる。上述の時間差は以下の(1)式により算出することができる。
ここで、dはマイクロホンM1、M2間の距離、cは音速、τは遅延量である。またθは、各マイクロホンM(M1、M2)を結んだ直線に対する垂直方向から目的方向への角度である。
また、ここで、死角がマイクロホンM1とM2の中心に対し、マイクロホンM1の方向に存在する場合、遅延器210は、マイクロホンM1の入力信号x(t)に対し遅延処理を行う。その後、減算型BF200では、以下の(2)式に従い処理(減算処理)を行う。
減算型BF200の処理は周波数領域でも同様に行うことができ、その場合(2)式は以下の(3)のように変更される。
Figure 2021125851
ここでθ=±π/2の場合、減算型BF200により形成される指向性は図12(a)に示すように、カージオイド型の単一指向性となる。また、「θ=0、π」の場合、減算型BF200により形成される指向性は、図12(b)のような8の字型の双指向性となる。
以下では、入力信号から単一指向性を形成するフィルタを「単一指向性フィルタ」と呼び、双指向性を形成するフィルタを双指向性フィルタと呼ぶものとする。
また、減算器220では、スペクトル減算法(Spectral Subtraction;以下、単に、「SS」とも呼ぶ)を用いることで、双指向性の死角に強い指向性を形成することもできる。SSによる指向性は、以下の(4)式に従い全周波数、もしくは指定した周波数帯域で形成される。
以下の(4)式では、マイクロホンM1の入力信号Xを用いているが、マイクロホンM2の入力信号Xでも同様の効果を得ることができる。ここでβは、SSの強度を調節するための係数である。また、減算器220では、減算時に値がマイナスになった場合は、0または元の値を小さくした値に置き換えるフロアリング処理を行う。以上のような減算型BF200の処理方式では、双指向性の特性によって目的方向以外に存在する音(以下、「非目的音」と呼ぶ)を抽出し、抽出した非目的音の振幅スペクトルを入力信号の振幅スペクトルから減算することで、目的音を強調することができる。
Figure 2021125851
ある特定のエリア内に存在する音(以下、「目的エリア音」と呼ぶ)だけを収音したい場合、減算型BFを用いるだけでは、そのエリアの周囲に存在する音源の音(以下、「非目的エリア音」と呼ぶ)も収音してしまう可能性がある。そこで、特許文献1では、複数のマイクロホンアレイを用い、それぞれ別々の方向から目的エリアへ指向性を向け、指向性を目的エリアで交差させることで目的エリア音を収音する手法(以下、「エリア収音」と呼ぶ)を提案している。エリア収音では、まず各マイクロホンアレイのBF出力に含まれる目的エリア音の振幅スペクトルの比率を推定し、それを補正係数とする。
例えば、2つのマイクロホンアレイを使用する場合、目的エリア音振幅スペクトルの補正係数は、以下の(5)式及び(6)式の組み合わせ、又は以下の(7)式及び(8)式の組み合わせにより算出することができる。ここで、Y1k(n)は第1のマイクロホンアレイのBF出力の振幅スペクトルであり、Y2k(n)は第2のマイクロホンアレイのBF出力の振幅スペクトルであり、Nは周波数ビンの総数であり、kは周波数である。また、ここで、α(n)、α(n)は各BF出力に対する振幅スペクトル補正係数である。さらに、ここで、modeは最頻値を表し、medeianは中央値を表している。
Figure 2021125851
以上の処理により、減算器220は、振幅スペクトル補正係数α(n)、α(n)を求め、求めた補正係数により各BF出力を補正し、SSすることで、目的エリア方向に存在する非目的エリア音を抽出する。さらに、減算器220は、抽出した非目的エリア音を各BFの出力からSSすることにより目的エリア音を抽出することができる。
減算型BF200は、第1のマイクロホンアレイからみた目的エリア方向に存在する非目的エリア音N(n)を抽出際、例えば、(9)式に示すように、第1のマイクロホンアレイのBF出力Y(n)から第2のマイクロホンアレイのBF出力Y(n)に振幅スペクトル補正係数αを掛けたものをSSする。減算型BF200は、同様に、以下の(10)式に従い、第2のマイクロホンアレイからみた目的エリア方向に存在する非目的エリア音N(n)を抽出する。
その後、減算型BF200は、以下の(11)式、又は(12)式に従い、各BF出力から非目的エリア音をSSして目的エリア音を抽出する。なお、以下の(11)式は、第1のマイクロホンアレイを基準として、目的エリア音を抽出する場合の処理を示している。また、以下の(12)式は、第2のマイクロホンアレイを基準として目的エリア音を抽出する場合の処理を示している。ここでγ(n)、γ(n)は、SS時の強度を変更するための係数である。
Figure 2021125851
従来のエリア収音処理では、目的エリア音を抽出するために、(4)式と(11)及び(12)式で非線形処理であるSSを行っているため、高雑音環境下ではミュージカルノイズと呼ばれる不快な異音が発生する恐れがある。
そこで、特許文献2の記載技術では、入力信号に目的エリア音が存在している区間と存在していない区間を判定し、目的エリア音が存在していない区間ではエリア収音処理した音を出力しないことにより、ミュージカルノイズなどの異音を抑えている。
特許文献2の記載技術では、目的エリア音が存在しているかどうかを判定するために、まず(13)式に従い入力信号と目的エリア音を抽出した出力(以後、「エリア音出力」と呼ぶ)間の振幅スペクトル比R(=エリア音出力/入力信号)を算出する。
また、目的エリア内に音源が存在する場合、入力信号Xとエリア音出力Zには目的エリア音が共通に含まれるため、目的エリア音成分の振幅スペクトル比は1に近い値となる。逆に、非目的エリア音成分は、エリア音出力では抑圧されているため、振幅スペクトル比は小さい値となる。その他の背景雑音成分に関してもエリア収音処理では複数回のSSを行うため、専用の雑音抑圧処理を事前にしなくてもある程度抑圧され、振幅スペクトル比は小さい値となる。逆に、目的エリア音が存在しない場合、エリア音出力には、入力信号と比べて消し残りの弱い雑音しか含まれていないため、振幅スペクトル比は全体域で小さい値となる。
特許文献2の記載技術では、この特徴により、(14)式に従い各周波数で求めた振幅スペクトル比の平均値Uを取ると、目的エリア音が存在するときと存在しないときとで大きな差が生まれることになる。ここでmとnは、それぞれ処理帯域(周波数帯域)の上限と下限であり、例えば音声情報が十分に含まれる100Hzから6kHzとする。
そして、特許文献2の記載技術では、平均パワースペクトル比を予め設定した閾値で判定し、目的エリア音が存在しないと判定された場合は、エリア音出力データを出力せずに無音、もしくは入力信号のゲインを小さくした音を出力する。
Figure 2021125851
特開2014−072708号公報 特開2016−127457号公報
浅野太著、"音響テクノロジーシリーズ16 音のアレイ信号処理−音源の定位・追跡と分離−"、日本音響学会編、コロナ社、2011年2月25日発行
特許文献1に記載された収音方式では、2つのマイクロホンアレイを収音したいエリアの正面の左右に設置し、マイクロホンアレイ間の距離及び角度を調節すれば、任意のエリア内に存在する音を収音することができる。
しかしながら、特許文献1の記載技術を用いて収音する場合、収音エリアは上下方向に指向性が広がっているため、目的エリア音の上下方向に雑音源が存在する場合には、その雑音も収音してしまうことになる。目的エリア音の上下方向に雑音源がある場合とは、例えば、目的エリアの真上にスピーカなどの音源がある場合である。また、特許文献1に記載された収音方式では、上下方向の指向性は、マイクロホンアレイが設置してある高さから離れるに従い徐々に広がる性質があるため、スピーカが真上になくても収音してしまう可能性がある。
一方、特許文献2の記載技術のように、入力と出力の振幅スペクトル比により、目的エリア音が存在するかどうかを判定する場合は、目的エリア上空のスピーカから再生される音量が小さければ収音されない。しかしながら、特許文献2の記載技術を適用したとしても、駅構内のように大音量のアナウンス(非目的エリア音)が流れている環境では、当該アナウンスの音を収音してしまう恐れがある。
以上のような問題に鑑みて、非目的エリア音の到来方向に関わらず目的エリア音のみを収音する収音装置、収音プログラム、及び収音方法が望まれている。
第1の本発明の収音装置は、(1)複数のマイクロホンアレイから供給される入力信号のそれぞれについて、ビームフォーマによって目的エリアが存在する目的エリア方向へ指向性を形成して、前記マイクロホンアレイごとに前記目的エリア方向からの目的方向信号を取得する指向性形成手段と、(2)2つの前記マイクロホンアレイの組み合わせで形成されるマイクロホンアレイセットを3つ以上設定し、それぞれの前記マイクロホンアレイセットについて、それぞれの前記マイクロホンアレイの前記目的方向信号をスペクトル減算することで前記目的エリア方向に存在する非目的エリア音を抽出し、抽出した前記非目的エリア音をいずれかの前記目的方向信号からスペクトル減算することにより目的エリア音を抽出する目的エリア音抽出手段と、(3)それぞれの前記マイクロホンアレイセットを用いて抽出された前記目的エリア音を比較した結果に基づき、それぞれの前記マイクロホンアレイセットを用いて抽出された前記目的エリア音から1つの出力信号を生成して出力する出力手段とを有することを特徴とする。
第2の本発明の収音プログラムは、コンピュータを、(1)複数のマイクロホンアレイから供給される入力信号のそれぞれについて、ビームフォーマによって目的エリアが存在する目的エリア方向へ指向性を形成して、前記マイクロホンアレイごとに前記目的エリア方向からの目的方向信号を取得する指向性形成手段と、(2)2つの前記マイクロホンアレイの組み合わせで形成されるマイクロホンアレイセットを3つ以上設定し、それぞれの前記マイクロホンアレイセットについて、それぞれの前記マイクロホンアレイの前記目的方向信号をスペクトル減算することで前記目的エリア方向に存在する非目的エリア音を抽出し、抽出した前記非目的エリア音をいずれかの前記目的方向信号からスペクトル減算することにより目的エリア音を抽出する目的エリア音抽出手段と、(3)それぞれの前記マイクロホンアレイセットを用いて抽出された前記目的エリア音を比較した結果に基づき、それぞれの前記マイクロホンアレイセットを用いて抽出された前記目的エリア音から1つの出力信号を生成して出力する出力手段として機能させることを特徴とする。
第3の本発明は、収音装置が行う収音方法において、(1)前記収音装置は、指向性形成手段、目的エリア音抽出手段、及び出力手段を有し、(2)前記指向性形成手段は、複数のマイクロホンアレイから供給される入力信号のそれぞれについて、ビームフォーマによって目的エリアが存在する目的エリア方向へ指向性を形成して、前記マイクロホンアレイごとに前記目的エリア方向からの目的方向信号を取得し、(3)前記目的エリア音抽出手段は、2つの前記マイクロホンアレイの組み合わせで形成されるマイクロホンアレイセットを3つ以上設定し、それぞれの前記マイクロホンアレイセットについて、それぞれの前記マイクロホンアレイの前記目的方向信号をスペクトル減算することで前記目的エリア方向に存在する非目的エリア音を抽出し、抽出した前記非目的エリア音をいずれかの前記目的方向信号からスペクトル減算することにより目的エリア音を抽出し、(4)前記出力手段は、それぞれの前記マイクロホンアレイセットを用いて抽出された前記目的エリア音を比較した結果に基づき、それぞれの前記マイクロホンアレイセットを用いて抽出された前記目的エリア音から1つの出力信号を生成して出力することを特徴とする。
本発明によれば、非目的エリア音の到来方向に関わらず目的エリア音のみを収音することができる。
第1の実施形態に係る収音装置の機能的構成を示すブロック図である。 第1の実施形態に係る目的エリア周辺(マイクロホンアレイ装置を含む)の斜視図である。 第1の実施形態に係るマイクロホンアレイ装置(マイクロホンアレイ)の構成について示した図である。 第1の実施形態に係る目的エリア周辺(マイクロホンアレイ装置を含む)を上方向から見た図である。 第1の実施形態に係る目的エリア周辺(マイクロホンアレイ装置を含む)を左方向から見た図である。 第1の実施形態に係る収音装置のハードウェア構成の例について示したブロック図である。 第2の実施形態に係る収音装置の構成を示すブロック図である。 第2の実施形態に係るマイクロホンアレイ装置(マイクロホンアレイ)の構成について示した図である。 第3の実施形態に係る収音装置の構成を示すブロック図である。 第2の実施形態の変形例に係るマイクロホンアレイ装置の構成例について示した図である。 従来の減算型BFの構成を示すブロック図である。 従来の減算型BFにより形成される指向性フィルタの例について示した説明図である。
(A)第1の実施形態
以下、本発明による収音装置、収音プログラム及び収音方法の第1の実施形態について図面を参照して説明する。
(A−1)第1の実施形態の構成
図1は、第1の実施形態に係る収音装置10の機能的構成を示すブロック図である。
収音装置10は、複数のマイクロホンアレイを備えるマイクロホンアレイ装置MEを用いて、目的エリアの音源からの目的エリア音を収音する目的エリア音収音処理を行う。この実施形態では、4つのマイクロホンアレイMA(MAL、MAR、MAU、MAB)を有しているものとする。
次に、マイクロホンアレイ装置MEの構成について図2、図3を用いて説明する。
図2は、マイクロホンアレイ装置MEを構成する各マイクロホンアレイの配置構成及び目的エリアの設定(設計)について示した図である。
図2では、マイクロホンアレイ装置MEを構成するマイクロホンアレイが配置された目的エリア周辺を斜め上方向からみた図(斜視図)となっている。
図2に示すように、マイクロホンアレイMAL、MAR、MAU、MABは、目的エリアが存在する空間の任意の位置に配置される。目的エリアに対するマイクロホンアレイの位置は、各マイクロホンアレイの指向性が目的エリアでのみ重なればどこでも良い。
この実施形態では、図2に示す通り、収音装置10により収音対象となる目的エリア(収音エリア)は任意の空間内の平面DH上に設定されているものとする。図2では、平面DH上に設定された目的エリアにTAという符号を付し、目的エリアの中心位置にPCという符号を付している。
図2では、目的エリア周辺の空間について平面DHに設定された原点P0を基準とする座標系が設定されている。図2では、図2の方向から見て右方向が+X方向、左方向が−X方向、手前側の方向が−Y方向、奥側の方向が+Y方向、上方向が+Z方向、下方向が−Z方向となっている。以下では、目的エリア周辺の空間を示す場合(X、Y、Z)の形式で示すものとする。
ここでは、図2に示すように、目的エリアの中心位置PCは、原点P0から+X方向(図2の方から見て右側)に配置されているものとする。また、ここでは、図2に示すように、マイクロホンアレイMALは原点P0から−Y方向(図2の方から見て手前側)、マイクロホンアレイMARは原点P0から+Y方向(図2の方から見て奥側)、マイクロホンアレイMAUは原点P0から+Z方向(図2の方から見て上側)、マイクロホンアレイMADは原点P0から−Z方向(図2の方から見て下側)にそれぞれ配置されているものとする。
図3は、目的エリアTAの中心位置から原点P0への方向(−X方向;以下、「正面方向」とも呼ぶ)を見た場合における各マイクロホンアレイの配置構成について示した図である。
図2、図3に示すように、マイクロホンアレイMAL、MAR、MAU、MABは、指向性が目的エリアTAでのみ重なるように配置されている。また、図2、図3に示すように、各マイクロホンアレイMAは2つ以上のマイクロホンMから構成され、各マイクロホンMにより音響信号を収音する。
この実施形態では、図3に示すように、収音装置10は、目的エリアTA(中心位置PC)から見て左右方向(水平方向)に配置されたマイクロホンアレイMAL、MARの組と、目的エリアTA(中心位置PC)から見て上下方向(垂直方向)に配置されたマイクロホンアレイMAU、MABの組とで分けて目的エリアTAに対する収音処理を行うものとする。以下では、説明を簡易とするため、収音処理において組(セット;組み合わせ)として扱われる2つのマイクロホンアレイを「マイクロホンアレイセット」と呼ぶものとする。この実施形態では、マイクロホンアレイMAL、MARの組をマイクロホンアレイセットMSLRと呼び、マイクロホンアレイMAU、MABの組をマイクロホンアレイセットMSUBと呼ぶものとする。
この実施形態では、各マイクロホンアレイに、音響信号を収音する2つのマイクロホンM1、M2が配置されるものとして説明する。すなわち、この実施形態において、各マイクロホンアレイMAは、2chマイクロホンアレイを構成しているものとする。2個のマイクロホンM1、M2の間の距離は限定されないものであるが、この実施形態の例では、2個のマイクロホンM1、M2の間の距離は3cmとする。
この実施形態では、マイクロホンアレイMAL、MARは、平面DH上で、指向性が目的エリアTAでのみ重なるように配置されていればどこでも良く、例えば目的エリアTAを挟んで対向に配置しても良い。
図4は目的エリアTA(中心位置PC)周辺を上方向(+Z方向)から見た場合の図である。
図5は、目的エリアTA(中心位置PC)周辺を、中心位置PCから見て左方向(−Y方向)から見た場合の図である。図4、図5では、各マイクロホンアレイから正面方向(マイクロホンM1、M2を結ぶ線と直交する方向;指向性の方向)に直線(点線の矢印)を付している。
ここでは、図4、図5に示すように、各マイクロホンアレイから正面方向に延びる直線(点線の矢印)は、目的エリアTAの中心位置PCで交差するように調整されているものとする。
次に、図1を用いて、収音装置10の内部構成について説明する。
図1に示すように、収音装置10は、信号入力部11、入力レベル補正部12、指向性形成部13、空間座標データ記憶部14、遅延補正部15、補正係数算出部16、目的エリア音抽出部17、及び目的エリア音選択部18を有している。
そして、信号入力部11、指向性形成部13、遅延補正部15、補正係数算出部16、目的エリア音抽出部17は、それぞれ2つのマイクロホンアレイセットMSLR、MSUBに対応する処理を行う構成要素を有している。具体的には、信号入力部11、指向性形成部13、遅延補正部15、補正係数算出部16、目的エリア音抽出部17は、それぞれ信号入力処理部111(111A、111B)、指向性形成処理部131(131A、131B)、遅延補正処理部151(151A、151B)、補正係数算出処理部161(161A、161B)、及び目的エリア音抽出処理部171(171A、171B)を有している。
ここでは、信号入力処理部111A、指向性形成処理部131A、遅延補正処理部151A、補正係数算出処理部161A、目的エリア音抽出処理部171Aは、それぞれマイクロホンアレイセットMSLRに対応する処理を行う構成要素であるものとする。また、ここでは、信号入力処理部111B、指向性形成処理部131B、遅延補正処理部151B、補正係数算出処理部161B、目的エリア音抽出処理部171Bは、それぞれマイクロホンアレイセットMSUBに対応する処理を行う構成要素であるものとする。
次に、図2を用いて、収音装置10のハードウェア構成について説明する。
図2は、収音装置10のハードウェア構成の例について示したブロック図である。
収音装置10は、全てハードウェア(例えば、専用チップ等)により構成するようにしてもよいし一部又は全部についてソフトウェア(プログラム)として構成するようにしてもよい。収音装置10は、例えば、プロセッサ及びメモリを有するコンピュータにプログラム(実施形態の収音プログラムを含む)をインストールすることにより構成するようにしてもよい。
図2では、収音装置10を、ソフトウェア(コンピュータ)を用いて構成する際のハードウェア構成の例について示している。
図2に示す収音装置10は、ハードウェア的な構成要素として、プログラム(実施形態の収音プログラムを含む)がインストールされたコンピュータ200を有している。また、コンピュータ200は、収音プログラム専用のコンピュータとしてもよいし、他の機能のプログラムと共用される構成としてもよい。
図2に示すコンピュータ200は、プロセッサ201、一次記憶部202、及び二次記憶部203を有している。一次記憶部202は、プロセッサ201の作業用メモリ(ワークメモリ)として機能する記憶手段であり、例えば、DRAM(Dynamic Random Access Memory)等の高速動作するメモリを適用することができる。二次記憶部203は、OS(Operating System)やプログラムデータ(実施形態に係る収音プログラムのデータを含む)等の種々のデータを記録する記憶手段であり、例えば、FLASHメモリやHDD等の不揮発性メモリを適用することができる。この実施形態のコンピュータ200では、プロセッサ201が起動する際、二次記憶部203に記録されたOSやプログラム(実施形態に係る収音プログラムを含む)を読み込み、一次記憶部202上に展開して実行する。
なお、コンピュータ200の具体的な構成は図2の構成に限定されないものであり、種々の構成を適用することができる。例えば、一次記憶部202が不揮発メモリ(例えば、FLASHメモリ等)であれば、二次記憶部203については除外した構成としてもよい。
(A−2)第1の実施形態の動作
次に、以上のような構成を有する第1の実施形態の収音装置10の動作を説明する。
信号入力部11は、各マイクロホンアレイで収音した音響信号をアナログ信号からデジタル信号に変換し入力する処理を行う。信号入力部11は、その後、例えば高速フーリエ変換を用いて入力信号(デジタル信号)を、時間領域から周波数領域へ変換する。
上述の通り、信号入力処理部111AがマイクロホンアレイセットMSLR(マイクロホンアレイMAL、MAR)の信号処理を行い、信号入力処理部111BがマイクロホンアレイセットMSUB(マイクロホンアレイMAU、MAB)の信号処理を行う。以下では、各マイクロホンアレイにおいて、マイクロホンM1、M2の周波数領域の入力信号を、それぞれX、Xとして説明する。
入力レベル補正部12は、マイクロホンアレイMAL、MAR、MAU、MABから供給された各入力信号のレベルが全て同じ大きさになるように補正する。入力レベル補正部12は、例えば、例えば空間座標データ記憶部14から目的エリアの中心位置PCと各マイクロホンアレイとの距離を取得し、各マイクロホンアレイの距離の差から、各マイクロホンアレイの距離減衰を算出し、最も目的エリアの中心位置TCに近いマイクロホンアレイを目的エリア音を基準として設定し、他のマイクロホンアレイの入力信号を基準のマイクロホンアレイと合わせるように補正するようにしてもよい。もしくは、予め目的エリアTAの中心位置PCに図示しないスピーカを設置し、その図示しないスピーカからホワイトノイズを再生して各マイクロホンアレイで収録し、各マイクロホンアレイで収録されるホワイトノイズのレベル差を算出(各マイクロホンアレイで収録されるホワイトノイズのレベルを比較)し、最も大きなホワイトノイズのレベルが収録されたマイクロホンアレイを基準として、他のマイクロホンアレイの入力信号のレベルを補正するようにしてもよい。なお、目的エリアTAの中心位置PCから全てのマイクロホンアレイが等距離にある場合は、入力レベル補正部12の処理を省略するようにしてもよい。
指向性形成部13は、マイクロホンアレイ毎に入力信号に対し、(4)式に従いBFにより目的エリア方向に指向性を形成する。上述の通り、指向性形成処理部131AがマイクロホンアレイセットMSLR(マイクロホンアレイMAL、MAR)の信号処理を行い、指向性形成処理部131BがマイクロホンアレイセットMSUB(マイクロホンアレイMAU、MAB)の信号処理を行う。
以下では、各マイクロホンアレイセットにおいて、任意の一方のマイクロホンアレイのBF出力をY1k(n)とし、他方のマイクロホンアレイのBF出力をY2k(n)として各式が適用されるものとして説明する。例えば、マイクロホンアレイMAL、MARのBF出力の振幅スペクトルを、それぞれY1k(n)、Y2k(n)として各式に適用し、マイクロホンアレイMAU、MABのBF出力の振幅スペクトルを、それぞれY1k(n)、Y2k(n)として各式に適用するようにしてもよい。
空間座標データ記憶部14は、全ての目的エリアと各マイクロホンアレイを構成するマイクロホンの位置情報を保持する。
遅延補正部15は、目的エリアTA(中心位置PC)と各マイクロホンアレイの距離の違いにより発生する遅延を算出し、補正する。遅延補正部15は、まず空間座標データ記憶部14から目的エリアTAの位置(中心位置PC)と各マイクロホンアレイの位置を取得し、各マイクロホンアレイへの目的エリア音の到達時間の差を算出する。次に、遅延補正部15は、最も目的エリアから遠い位置に配置されたマイクロホンアレイを基準として、全てのマイクロホンアレイに目的エリア音が同時に到達するように遅延を加える。上述の通り、遅延補正処理部151AがマイクロホンアレイセットMSLR(マイクロホンアレイMAL、MAR)の信号処理を行い、遅延補正処理部151BがマイクロホンアレイセットMSUB(マイクロホンアレイMAU、MAB)の信号処理を行う。なお、目的エリアTAの中心位置PCから全てのマイクロホンアレイが等距離にある場合は、遅延補正部15の処理を省略するようにしてもよい。
補正係数算出部16は、各マイクロホンアレイセットについて、各BF出力に含まれる目的エリア音成分の振幅スペクトルを同じにするための補正係数を算出する。補正係数算出部16は、「(5)式、(6)式」または「(7)式、(8)式」に従い補正係数を算出する。なお、ここでは、マイクロホンアレイMAL、MARのBF出力に対する補正係数をα(n)、α(n)として説明する。また、ここでは、マイクロホンアレイMAU、MABのBF出力に対する補正係数を、α(n)、α(n)として説明する。例えば、マイクロホンアレイセットMSLRにおいて、主マイクロホンアレイ(目的エリア音の抽出処理の際に基準となるマイクロホンアレイ)がマイクロホンアレイMALに設定される場合は、「(6)式、(8)式」により振幅スペクトル補正係数α(n)が算出され、必要に応じて「(5)式、(7)式」によりα(n)が算出される。
また、ここでは、マイクロホンアレイセットMSLR、MSUBのそれぞれについて、いずれかのマイクロホンアレイが主マイクロホンアレイとして設定されているものとする。なお、収音装置10において、マイクロホンアレイセットから主マイクロホンアレイを選択する処理の具体的な手法については限定されないものである。さらに、上述の通り、補正係数算出部16では、補正係数算出処理部161AがマイクロホンアレイセットMSLR(マイクロホンアレイMAL、MAR)に係る処理を行い、補正係数算出処理部161BがマイクロホンアレイセットMSUB(マイクロホンアレイMAU、MAB)に係る処理を行う。
目的エリア音抽出部17は、マイクロホンアレイセットMSLR、MSUBのそれぞれについて、主マイクロホンアレイ(目的エリア音の抽出処理の際に基準となるマイクロホンアレイ)を基準として目的エリア音を抽出する。
例えば、マイクロホンアレイセットMSLRにおいて、主マイクロホンアレイがマイクロホンアレイMALに設定される場合、目的エリア音抽出部17は、補正係数算出部16で算出した補正係数α(n)により各BF出力を(9)式に従いSSし、目的エリア方向に存在する非目的エリア音を抽出する。さらに、目的エリア音抽出部17は、抽出した非目的エリア音を各BFの出力から(11)式に従いSSすることにより目的エリア音を抽出する。また、例えば、マイクロホンアレイセットMSLRにおいて、主マイクロホンアレイがマイクロホンアレイMARに設定される場合、目的エリア音抽出部17は、補正係数α(n)により各BF出力を(10)式に従い目的エリア方向に存在する非目的エリア音を抽出する。さらに、目的エリア音抽出部17は、抽出した非目的エリア音を各BFの出力から(12)式に従い目的エリア音を抽出する。
なお、上述の通り、目的エリア音抽出部17では、目的エリア音抽出処理部171AがマイクロホンアレイセットMSLR(マイクロホンアレイMAL、MAR)の信号処理を行い、目的エリア音抽出処理部171BがマイクロホンアレイセットMSUB(マイクロホンアレイMAU、MAB)の信号処理を行う。
目的エリア音選択部18は、目的エリア音抽出部17Aで抽出された目的エリア音と、目的エリア音抽出部17Bで抽出された目的エリア音を比較し、いずれかの目的エリア音を選択して最終的な目的エリア音(出力信号)として出力する出力手段である。目的エリア音選択部18が、2つの目的エリア音からいずれかを選択する方法については限定されないものであるが、例えば、平均振幅スペクトルに基づいて選択するようにしてもよい。例えば、目的エリア音選択部18は、2つの目的エリア音についてそれぞれ平均振幅スペクトルを算出して値を比較し、値が小さい方を最終的に選択して出力するようにしてもよい。
(A−3)第1の実施形態の効果
第1の実施形態によれば、以下のような効果を奏することができる。
第1の実施形態の収音装置10では、目的エリア正面の左右方向に設置したマイクロホンアレイMAL、MAR(マイクロホンアレイセットMSLR)と、上下方向に設置したマイクロホンアレイMAU、MUB(マイクロホンアレイセットMSUB)のそれぞれで目的エリア音を抽出し、抽出した目的エリア音の内、音量レベルが小さい方(平均振幅スペクトルが小さい方)を選択して出力している。これにより、第1の実施形態の収音装置10では、目的エリアの上下左右方向に非目的エリア音が存在しても収音せず、空中に浮かんだ目的エリア内の音を安定的に収音することができる。
また、これにより、第1の実施形態の収音装置10では、雑音混入による不快感の低減や、音声認識率の向上が期待できる。上下と左右それぞれのマイクロホンアレイの組合せで抽出した目的エリア音を選択することは、上下および左右のマイクロホンアレイによる2つの収音エリアが重なった部分を収音していることになる。つまり、第1の実施形態の収音装置10では、マイクロホンアレイの設置位置と角度を変更することにより、任意の空中に浮かんだエリア内の音を収音することが可能となる。
例えば、目的エリアの上方向の天井に大音量でアナウンス等の音が再生されるスピーカが配置されている場合、左右のマイクロホンアレイMAL、MAR(マイクロホンアレイセットMSLR)で抽出した目的エリア音にスピーカ音が含まれるが、上下のマイクロホンアレイMAU、MUB(マイクロホンアレイセットMSUB)で抽出した目的エリア音には含まれない。この場合、スピーカ音が含まれる分、左右のマイクロホンアレイで抽出した目的エリア音の方が、上下のマイクロホンアレイで抽出した目的エリア音よりも音量レベルが大きい。つまり、第1の実施形態の収音装置10では、音量レベルが小さい上下のマイクロホンアレイで抽出した目的エリア音を選択すれば、その目的エリア音にはスピーカ音は含まれないことになる。さらに、目的エリア外で人が話している場合、第1の実施形態の収音装置10では左右のマイクロホンアレイで抽出した目的エリア音が選択され、目的エリア外の人の声は収音しない。
(B)第2の実施形態
以下、本発明による収音装置、収音プログラム及び収音方法の第2の実施形態について図面を参照して説明する。
(B−1)第2の実施形態の構成
図7は、第2の実施形態の収音装置10Aの全体構成を示すブロック図である。図7では、上述の図1と同一又は対応する部分に、同一又は対応する符号を付している。以下では、第2の実施形態について第1の実施形態との差異を中心に説明する。
第2の実施形態の収音装置10Aでは、信号入力部11、入力レベル補正部12、指向性形成部13、遅延補正部15、補正係数算出部16、目的エリア音抽出部17、及び目的エリア音選択部18が、それぞれ信号入力部11A、入力レベル補正部12A、指向性形成部13A、遅延補正部15A、補正係数算出部16A、目的エリア音抽出部17A、及び目的エリア音選択部18Aに置き換わっている。また、第2の実施形態の収音装置10Aでは、組合せ選択部19が加わっている。
図8は、第2の実施形態において、目的エリアTAの中心位置から原点P0への方向を見た場合における各マイクロホンアレイの配置構成について示した図である。
第2の実施形態においてマイクロホンアレイ装置MEを構成する各マイクロホンアレイの物理的な構成(数や配置位置等)は第1の実施形態と同様であるが、収音装置10Aにおいて処理されるマイクロホンアレイセットの構成(論理的構成)が異なる。
第1の実施形態では、左右方向(水平方向)に配置されたマイクロホンアレイMAL、MARの組合せのマイクロホンアレイセットMSLRと、上下方向(垂直方向)に配置されたマイクロホンアレイMAU、MABの組合せのマイクロホンアレイセットMSUBを論理的に構成していたが、第2の実施形態では対角上(斜め方向)のマイクロホンアレイの組合せのマイクロホンアレイセットが加わっている。具体的には、第2の実施形態では、図8に示す通り、対角上のマイクロホンアレイの組合せのマイクロホンアレイセットとして、マイクロホンアレイMAU、MALの組合せのマイクロホンアレイセットMSUL、マイクロホンアレイMAL、MABの組合せのマイクロホンアレイセットMSLB、マイクロホンアレイMAB、MARの組合せのマイクロホンアレイセットMSBR、及びマイクロホンアレイMAR、MAUの組合せのマイクロホンアレイセットMSRUが加わっている。
すなわち、第2の実施形態の収音装置10Aでは、6つのマイクロホンアレイセットMSLR、MSUB、MSUL、MSLB、MSBR、MSRUが設定可能であるものとする。
ところで、非目的エリア音が目的エリアTA(中心位置PC)の上下方向と左右方向どちらにも存在し、音量が大きい場合、上下・左右どちらかのマイクロホンアレイを使用して目的エリア音を抽出しても、どちらにも非目的エリア音が混入する恐れがある。そこで、第2の実施形態の収音装置10Aでは、上下・左右のマイクロホンアレイの組合せだけでなく、対角上にあるマイクロホンアレイの組合せ(上述の6つのマイクロホンアレイセット)も用いて目的エリア音を抽出して比較し、最も抽出される目的エリア音の音量レベルが小さいものを最終的に出力するものとして選択するものとする。
なお、第1の実施形態ではマイクロホンアレイセットごとに処理する構成要素を分離して図示していたが、第2の実施形態の収音装置10Aでは省略して説明している。収音装置10、10Aにおいて、マイクロホンアレイセットごとに処理する構成要素を分離する構成(ソフトウェア的又はハードウェア的に分離して構成)とするようにしてもよいし一体として構成するようにしてもよい。
(B−2)第2の実施形態の動作
次に、以上のような構成を有する第2の実施形態の収音装置10Aの動作を説明する。
以下では、第2の実施形態の収音装置10Aの動作について、第1の実施形態との差異を中心に説明する。
信号入力部11Aは、各マイクロホンアレイで収音した音響信号をアナログ信号からデジタル信号に変換し入力信号として出力する処理を行う。
組合せ選択部19は、上述の6つのマイクロホンアレイセットMSLR、MSUB、MSUL、MSLB、MSBR、MSRU(マイクロホンアレイの組合せ)の中から所定のルールに基づきM個(2以上でマイクロホンアレイセットの最大数以下の整数;ここでは2以上6以下の整数)選択する。なお、組合せ選択部19において、選択されるM個のマイクロホンアレイセットの組合せは、予め設定された内容としてもよいし、時系列に応じて内容を変更するようにしてもよい。
具体的には、例えば、組合せ選択部19に、予めマイクロホンアレイの設置環境を考慮し、スピーカなどの非目的エリア音が混入し難いM個の組合せ(マイクロホンアレイセット)を設定(例えば、オペレータや設計者等により設定)しておくようにしてもよい。
また、例えば、組合せ選択部19は、最初は全てのマイクロホンアレイセットを選択し、目的エリア音選択部18Aで選択されたマイクロホンアレイセットの情報をもとに、各マイクロホンアレイセットを評価し、その後は評価の高い上位3つのマイクロホンアレイセットを選択するようにしてもよい。
さらに、例えば、組合せ選択部19は、目的エリア音選択部18Aで最終的に選択されるマイクロホンアレイセットにおいて偏りがある場合(例えば、2つのマイクロホンアレイセットが選択される確率が全体の5割以上を占めるなど)、その良く選択される(高頻度で選択される)マイクロホンアレイセットについては固定的に選択し、もう1つは残りのマイクロホンアレイセットからランダムに選択するようにしてもよい。
以下では、組合せ選択部19により直近に選択されたマイクロホンアレイセットを「選択マイクロホンアレイセット」と呼ぶものとする。
入力レベル補正部12Aは、マイクロホンアレイMAL、MAR、MAU、MABから供給された各入力信号のレベルが全て同じ大きさになるように補正する。
指向性形成部13Aは、マイクロホンアレイMAL、MAR、MAU、MABのそれぞれについてBFにより目的エリア方向に指向性を形成する(BF出力を生成する)。第2の実施形態では、第1の実施形態と同様に、各マイクロホンアレイセットにおいて、任意の一方のマイクロホンアレイのBF出力をY1k(n)とし、他方のマイクロホンアレイのBF出力をY2k(n)として各式が適用されるものとして説明する。
遅延補正部15Aは、第1の実施形態と同様に、各マイクロホンアレイのBF出力について目的エリアTA(中心位置PC)と各マイクロホンアレイの距離の違いにより発生する遅延を算出し、補正する。
補正係数算出部16Aは、選択マイクロホンアレイセットのそれぞれについて、第1の実施形態と同様に各BF出力に含まれる目的エリア音成分の振幅スペクトルを同じにするための補正係数を算出する。収音装置10Aでは、各マイクロホンアレイセットについて、第1の実施形態と同様にいずれかのマイクロホンアレイが主マイクロホンアレイとして設定されているものとする。
目的エリア音抽出部17Aは、選択マイクロホンアレイセットのそれぞれについて、第1の実施形態と同様に主マイクロホンアレイを基準として目的エリア音を抽出する。
目的エリア音選択部18Aは、目的エリア音抽出部17で抽出された目的エリア音のそれぞれ(各選択マイクロホンアレイセットを用いて抽出された目的エリア音)を比較して、いずれかの目的エリア音を選択して最終的な目的エリア音(出力信号)として出力する。目的エリア音選択部18Aが、複数の目的エリア音からいずれかの目的エリア音を選択する処理自体は、第1の実施形態と同様の方式を適用するようにしてもよい。また、目的エリア音選択部18Aは、目的エリア音の選択結果(いずれのマイクロホンアレイセットの目的エリア音を選択したかの情報)を、組合せ選択部19にフィードバックする。なお、目的エリア音選択部18Aは、組合せ選択部19の処理で必要な場合、目的エリア音抽出部17で抽出された目的エリア音を比較した結果(例えば、評価結果の順位)も組合せ選択部19にフィードバックするようにしてもよい。
(B−3)第2の実施形態の効果
第2の実施形態によれば、第1の実施形態の効果に加えて以下のような効果を奏することができる。
第2の実施形態の収音装置10Aでは、第1の実施形態と比較して、対角上のマイクロホンアレイの組合せ(マイクロホンアレイセット)で抽出した目的エリア音を加えた候補の中から、最も平均振幅スペクトルが小さいものを選択して出力している。これにより、第2の実施形態の収音装置10Aでは、上述の通り、より安定的に非目的エリア音の混入を抑えつつ目的エリア音の収音を行うことができる。例えば、第2の実施形態の収音装置10Aでは、収音エリアの周囲に非目的エリア音が複数存在している環境下でも、非目的エリア音の混入を抑えることができる。
(C)第3の実施形態
以下、本発明による収音装置、収音プログラム及び収音方法の第3の実施形態について図面を参照して説明する。
(C−1)第3の実施形態の構成
図9は、第3の実施形態の収音装置10Bの全体構成を示すブロック図である。図9では、上述の図1と同一又は対応する部分に、同一又は対応する符号を付している。以下では、第3の実施形態について第1の実施形態との差異を中心に説明する。
第3の実施形態の収音装置10Bでは、目的エリア音選択部18が、周波数別目的エリア音選択部20に置き換わっている点で第1の実施形態と異なっている。
(C−2)第3の実施形態の動作
次に、以上のような構成を有する第3の実施形態の収音装置10Bの動作を説明する。
以下では、第3の実施形態の収音装置10Bの動作について、第1の実施形態との差異を中心に説明する。
上述の通り、第3の実施形態の収音装置10Bでは、周波数別目的エリア音選択部20のみが第1の実施形態と異なっているので、ここでは周波数別目的エリア音選択部20の動作についてのみについて説明する。
第1の実施形態の目的エリア音選択部18は、平均振幅スペクトルに基づいて、目的エリア音抽出部17Aで抽出された目的エリア音と目的エリア音抽出部17Bで抽出された目的エリア音とのいずれかを選択して出力していた。これに対して第3の実施形態の周波数別目的エリア音選択部20は、周波数毎に目的エリア音抽出部17Aで抽出された目的エリア音の成分と、目的エリア音抽出部17Bで抽出された目的エリア音の成分とを比較して、周波数毎にいずれかの目的エリア音の成分を選択し、選択した各周波数の成分を集合して1つの目的エリア音(出力信号)を生成して出力する。
周波数別目的エリア音選択部20が、2つの目的エリア音の成分からいずれかを選択する方法については限定されないものであるが、例えば、2つの目的エリア音の成分(比較する対象となる周波数の成分)の値(パワー)に基づいて選択するようにしてもよい。例えば、周波数別目的エリア音選択部20は、2つの目的エリア音の成分のうち値が小さい方を最終的に選択して出力するようにしてもよい。
(C−3)第3の実施形態の効果
第3の実施形態によれば、以下のような効果を奏することができる。
第3の実施形態の収音装置10Bでは、目的エリア正面の左右方向に設置したマイクロホンアレイMAL、MAR(マイクロホンアレイセットMSLR)と、上下方向に設置したマイクロホンアレイMAU、MUB(マイクロホンアレイセットMSUB)のそれぞれで目的エリア音を抽出し、抽出した目的エリア音の内、周波数毎に振幅スペクトルが小さい方を選択して出力している。これにより、第2の実施形態の収音装置10Bでは、例えば、目的エリアの上下左右方向に非目的エリア音が存在しても収音せず、空中に浮かんだエリア内の音を収音することができる。
(D)他の実施形態
本発明は、上記の各実施形態に限定されるものではなく、以下に例示するような変形実施形態も挙げることができる。
(D−1)第2の実施形態のマイクロホンアレイ装置MEでは、図2、図3に示すように、目的エリア正面の左右方向に設置したマイクロホンアレイMAL、MARと、上下方向に設置したマイクロホンアレイMAU、MUBを用いてエリア収音を行っていた。言い換えると第2の実施形態のマイクロホンアレイ装置MEでは、4つのマイクロホンアレイを原点P0を中心として十字型状に配置してマイクロホンアレイセットを形成していたが、図10に示すように原点P0を中心として格子状に配置してマイクロホンアレイセットを形成するようにしてもよい。
図10は、第2の実施形態の変形例において目的エリアTAの中心位置から原点P0への方向(−X方向;正面方向)を見た場合における各マイクロホンアレイの配置構成について示した図である。
図10に示すマイクロホンアレイ装置MEは、目的エリアTA(中心位置PC)から見て原点P0の右斜め上に配置されたマイクロホンアレイMARUと、原点P0の右斜め下に配置されたマイクロホンアレイMARBと、原点P0の左斜め下に配置されたマイクロホンアレイMALBと、原点P0の左斜め上に配置されたマイクロホンアレイMALUとを有している。
そして、図10に示すマイクロホンアレイ装置MEを適用した場合、第2の実施形態の収音装置10Aでは、マイクロホンアレイMALU、MARUの組み合わせのマイクロホンアレイセットMS_LU_RU、マイクロホンアレイMARU、MARBの組み合わせのマイクロホンアレイセットMS_RU_RB、マイクロホンアレイMARB、MALBの組み合わせのマイクロホンアレイセットMS_RB_LB、マイクロホンアレイMALB、MALUの組み合わせのマイクロホンアレイセットMS_LU_LB、マイクロホンアレイMALU、MARBの組み合わせのマイクロホンアレイセットMS_LU_RB、マイクロホンアレイMARU、MALBの組み合わせのマイクロホンアレイセットMS_RU_LBが形成(設定)されることになる。
(D−2)上記の各実施形態ではマイクロホンアレイ装置MEに4つのマイクロホンアレイを配置する例について示したが、マイクロホンアレイ装置MEに備えるマイクロホンアレイの数は3以上であればよい。マイクロホンアレイ装置MEに3以上のマイクロホンアレイが配置されていれば、組み合わせにより2つ以上(3つ)のマイクロホンアレイセットを構成することができる。言い換えると、マイクロホンアレイ装置MEには、2以上のマイクロホンアレイセットを形成することができるだけのマイクロホンが配置されていればよい。例えば、図2、図3に示すマイクロホンアレイ装置MEにおいて、下側のマイクロホンアレイMABを除外した構成としてもよい。
(D−3)第2の実施形態の収音装置10Aにおいて、第3の実施形態と同様に対角上のマイクロホンアレイを組み合わせたマイクロホンアレイセットも加えて処理可能とするようにしてもよい。すなわち、第2の実施形態と第3の実施形態とを組み合わせた収音装置を構成するようにしてもよい。
10…収音装置、11…信号入力部、12…入力レベル補正部、13…指向性形成部、14…空間座標データ記憶部、15…遅延補正部、16…補正係数算出部、17…目的エリア音抽出部、18…目的エリア音選択部、111、111A、111B…信号入力処理部、131、131A、131B…指向性形成処理部、151、151A、151B…遅延補正処理部、161、161A、161B…補正係数算出処理部、171、171A、171B…目的エリア音抽出処理部、ME…マイクロホンアレイ装置、MA、MAL、MAR、MAU、MAB…マイクロホンアレイ、MS、MSLR、MSUB…マイクロホンアレイセット、M、M1、M2…マイクロホン。

Claims (6)

  1. 複数のマイクロホンアレイから供給される入力信号のそれぞれについて、ビームフォーマによって目的エリアが存在する目的エリア方向へ指向性を形成して、前記マイクロホンアレイごとに前記目的エリア方向からの目的方向信号を取得する指向性形成手段と、
    2つの前記マイクロホンアレイの組み合わせで形成されるマイクロホンアレイセットを3つ以上設定し、それぞれの前記マイクロホンアレイセットについて、それぞれの前記マイクロホンアレイの前記目的方向信号をスペクトル減算することで前記目的エリア方向に存在する非目的エリア音を抽出し、抽出した前記非目的エリア音をいずれかの前記目的方向信号からスペクトル減算することにより目的エリア音を抽出する目的エリア音抽出手段と、
    それぞれの前記マイクロホンアレイセットを用いて抽出された前記目的エリア音を比較した結果に基づき、それぞれの前記マイクロホンアレイセットを用いて抽出された前記目的エリア音から1つの出力信号を生成して出力する出力手段と
    を有することを特徴とする収音装置。
  2. 前記出力手段は、それぞれの前記マイクロホンアレイセットを用いて抽出された前記目的エリア音から、最も音量レベルの低い前記目的エリア音を選択し、出力信号として出力することを特徴とする請求項1に記載の収音装置。
  3. 前記出力手段は、それぞれの前記マイクロホンアレイセットを用いて抽出された前記目的エリア音について周波数毎に成分の値を比較して選択し、選択した周波数ごとの成分に基づいて出力信号を生成することを特徴とする請求項1に記載の収音装置。
  4. 前記出力手段は、それぞれの前記マイクロホンアレイセットを用いて抽出された前記目的エリア音について周波数毎に最も値の低い成分を選択することを特徴とする請求項3に記載の収音装置。
  5. コンピュータを、
    複数のマイクロホンアレイから供給される入力信号のそれぞれについて、ビームフォーマによって目的エリアが存在する目的エリア方向へ指向性を形成して、前記マイクロホンアレイごとに前記目的エリア方向からの目的方向信号を取得する指向性形成手段と、
    2つの前記マイクロホンアレイの組み合わせで形成されるマイクロホンアレイセットを3つ以上設定し、それぞれの前記マイクロホンアレイセットについて、それぞれの前記マイクロホンアレイの前記目的方向信号をスペクトル減算することで前記目的エリア方向に存在する非目的エリア音を抽出し、抽出した前記非目的エリア音をいずれかの前記目的方向信号からスペクトル減算することにより目的エリア音を抽出する目的エリア音抽出手段と、
    それぞれの前記マイクロホンアレイセットを用いて抽出された前記目的エリア音を比較した結果に基づき、それぞれの前記マイクロホンアレイセットを用いて抽出された前記目的エリア音から1つの出力信号を生成して出力する出力手段と
    して機能させることを特徴とする収音プログラム。
  6. 収音装置が行う収音方法において、
    前記収音装置は、指向性形成手段、目的エリア音抽出手段、及び出力手段を有し、
    前記指向性形成手段は、複数のマイクロホンアレイから供給される入力信号のそれぞれについて、ビームフォーマによって目的エリアが存在する目的エリア方向へ指向性を形成して、前記マイクロホンアレイごとに前記目的エリア方向からの目的方向信号を取得し、
    前記目的エリア音抽出手段は、2つの前記マイクロホンアレイの組み合わせで形成されるマイクロホンアレイセットを3つ以上設定し、それぞれの前記マイクロホンアレイセットについて、それぞれの前記マイクロホンアレイの前記目的方向信号をスペクトル減算することで前記目的エリア方向に存在する非目的エリア音を抽出し、抽出した前記非目的エリア音をいずれかの前記目的方向信号からスペクトル減算することにより目的エリア音を抽出し、
    前記出力手段は、それぞれの前記マイクロホンアレイセットを用いて抽出された前記目的エリア音を比較した結果に基づき、それぞれの前記マイクロホンアレイセットを用いて抽出された前記目的エリア音から1つの出力信号を生成して出力する
    ことを特徴とする収音方法。
JP2020020077A 2020-02-07 2020-02-07 収音装置、収音プログラム及び収音方法 Active JP6885483B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020020077A JP6885483B1 (ja) 2020-02-07 2020-02-07 収音装置、収音プログラム及び収音方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020020077A JP6885483B1 (ja) 2020-02-07 2020-02-07 収音装置、収音プログラム及び収音方法

Publications (2)

Publication Number Publication Date
JP6885483B1 JP6885483B1 (ja) 2021-06-16
JP2021125851A true JP2021125851A (ja) 2021-08-30

Family

ID=76310138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020020077A Active JP6885483B1 (ja) 2020-02-07 2020-02-07 収音装置、収音プログラム及び収音方法

Country Status (1)

Country Link
JP (1) JP6885483B1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10215497A (ja) * 1996-11-27 1998-08-11 Fujitsu Ltd マイクロホンシステム
JP2014072708A (ja) * 2012-09-28 2014-04-21 Oki Electric Ind Co Ltd 収音装置及びプログラム
JP2014110613A (ja) * 2012-12-04 2014-06-12 Oki Electric Ind Co Ltd マイクロホンアレイ選択装置、マイクロホンアレイ選択プログラム及び収音装置
US20190377056A1 (en) * 2018-06-12 2019-12-12 Kaam Llc. Direction of Arrival Estimation of Acoustic-Signals From Acoustic Source Using Sub-Array Selection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10215497A (ja) * 1996-11-27 1998-08-11 Fujitsu Ltd マイクロホンシステム
JP2014072708A (ja) * 2012-09-28 2014-04-21 Oki Electric Ind Co Ltd 収音装置及びプログラム
JP2014110613A (ja) * 2012-12-04 2014-06-12 Oki Electric Ind Co Ltd マイクロホンアレイ選択装置、マイクロホンアレイ選択プログラム及び収音装置
US20190377056A1 (en) * 2018-06-12 2019-12-12 Kaam Llc. Direction of Arrival Estimation of Acoustic-Signals From Acoustic Source Using Sub-Array Selection

Also Published As

Publication number Publication date
JP6885483B1 (ja) 2021-06-16

Similar Documents

Publication Publication Date Title
JP5482854B2 (ja) 収音装置及びプログラム
JP6065030B2 (ja) 収音装置、プログラム及び方法
JP6065028B2 (ja) 収音装置、プログラム及び方法
JP6187626B1 (ja) 収音装置及びプログラム
JP5772151B2 (ja) 音源分離装置、プログラム及び方法
JP6540730B2 (ja) 収音装置、プログラム及び方法、並びに、判定装置、プログラム及び方法
JP6131989B2 (ja) 収音装置、プログラム及び方法
JP6943120B2 (ja) 収音装置、プログラム及び方法
JP6436180B2 (ja) 収音装置、プログラム及び方法
JP2016163135A (ja) 収音装置、プログラム及び方法
JP6885483B1 (ja) 収音装置、収音プログラム及び収音方法
JP6879340B2 (ja) 収音装置、収音プログラム、及び収音方法
JP6822505B2 (ja) 収音装置、収音プログラム及び収音方法
JP6908142B1 (ja) 収音装置、収音プログラム、及び収音方法
JP6241520B1 (ja) 収音装置、プログラム及び方法
JP6624256B1 (ja) 収音装置、プログラム及び方法
JP6065029B2 (ja) 収音装置、プログラム及び方法
JP7158976B2 (ja) 収音装置、収音プログラム及び収音方法
JP6725014B1 (ja) 収音装置、収音プログラム及び収音方法
JP6923025B1 (ja) 収音装置、プログラム及び方法
JP6863004B2 (ja) 収音装置、プログラム及び方法
JP6624255B1 (ja) 収音装置、プログラム及び方法
JP7207170B2 (ja) 収音装置、収音プログラム、収音方法、及び収音システム
JP6729744B1 (ja) 収音装置、収音プログラム及び収音方法
JP6669219B2 (ja) 収音装置、プログラム及び方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210426

R150 Certificate of patent or registration of utility model

Ref document number: 6885483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150