JP2021125409A - Heat conductive structure and battery including the same - Google Patents

Heat conductive structure and battery including the same Download PDF

Info

Publication number
JP2021125409A
JP2021125409A JP2020019259A JP2020019259A JP2021125409A JP 2021125409 A JP2021125409 A JP 2021125409A JP 2020019259 A JP2020019259 A JP 2020019259A JP 2020019259 A JP2020019259 A JP 2020019259A JP 2021125409 A JP2021125409 A JP 2021125409A
Authority
JP
Japan
Prior art keywords
heat conductive
heat
conductive structure
battery
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020019259A
Other languages
Japanese (ja)
Other versions
JP7402705B2 (en
Inventor
佳樹 平田
Yoshiki Hirata
佳樹 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2020019259A priority Critical patent/JP7402705B2/en
Publication of JP2021125409A publication Critical patent/JP2021125409A/en
Application granted granted Critical
Publication of JP7402705B2 publication Critical patent/JP7402705B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a heat conductive structure that can adapt to various forms of a heat source, has excellent heat conduction characteristics, and enables easy and accurate contact with the heat source, and a battery provided with the heat conductive structure.SOLUTION: A heat conductive structure 1 according to the present invention includes a plurality of long heat conductive members 10, and a fixing member 20 that fixes at least one end of both ends of the heat conductive member 10 in the length direction, and has a recess 25 or a through hole into which the end is inserted, and the heat conductive member 10 includes a cushion member 11 that is more flexible than the heat conductive member 10, and a heat conductive sheet 13 that has higher heat conductivity than the cushion member 11 and covers the outer surface of the cushion member 11, and the fixing member 20 fixes the plurality of heat conductive members 10 at predetermined intervals T in the width direction of the heat conductive members 10. There is also provided a battery 90 including the heat conductive structure.SELECTED DRAWING: Figure 1

Description

本発明は、熱伝導構造体およびそれを備えるバッテリーに関する。 The present invention relates to a heat conductive structure and a battery including the same.

自動車、航空機、船舶あるいは家庭用若しくは業務用電子機器の制御システムは、より高精度かつ複雑化してきており、それに伴って、回路基板上の小型電子部品の集積密度が増加の一途を辿っている。この結果、回路基板周辺の発熱による電子部品の故障や短寿命化を解決することが強く望まれている。 Control systems for automobiles, aircraft, ships, or household or commercial electronic devices are becoming more accurate and complex, and the density of small electronic components on circuit boards is increasing. .. As a result, it is strongly desired to solve the failure and shortening of the life of electronic components due to heat generation around the circuit board.

回路基板からの速やかな放熱を実現するには、従来から、回路基板自体を放熱性に優れた材料で構成し、ヒートシンクを取り付け、あるいは冷却ファンを駆動するといった手段を単一で若しくは複数組み合わせて行われている。これらの内、回路基板自体を放熱性に優れた材料、例えばダイヤモンド、窒化アルミニウム(AlN)、立方晶窒化ホウ素(cBN)等から構成する方法は、回路基板のコストを極めて高くしてしまう。また、冷却ファンの配置は、ファンという回転機器の故障、故障防止のためのメンテナンスの必要性や設置スペースの確保が難しいという問題を生じる。これに対して、放熱フィンは、熱伝導性の高い金属(例えば、アルミニウム)を用いた柱状あるいは平板状の突出部位を数多く形成することによって表面積を大きくして放熱性をより高めることのできる簡易な部材であるため、放熱部品として汎用的に用いられている(特許文献1を参照)。 In order to realize quick heat dissipation from the circuit board, conventionally, the circuit board itself is made of a material having excellent heat dissipation, a heat sink is attached, or a cooling fan is driven by a single means or a combination of multiple means. It is done. Of these, a method in which the circuit board itself is made of a material having excellent heat dissipation, for example, diamond, aluminum nitride (AlN), cubic boron nitride (cBN), etc., makes the cost of the circuit board extremely high. In addition, the arrangement of the cooling fan causes problems such as failure of the rotating device called the fan, maintenance necessity for preventing the failure, and difficulty in securing the installation space. On the other hand, the heat radiating fin is a simple one that can increase the surface area and further improve the heat radiating property by forming a large number of columnar or flat plate-shaped projecting portions using a metal having high thermal conductivity (for example, aluminum). Since it is a member, it is widely used as a heat-dissipating component (see Patent Document 1).

ところで、現在、世界中で、地球環境への負荷軽減を目的として、従来からのガソリン車あるいはディーゼル車を徐々に電気自動車に転換しようとする動きが活発化している。特に、フランス、オランダ、ドイツをはじめとする欧州諸国の他、中国でも、電気自動車の普及に力を入れている。電気自動車の普及には、高性能バッテリーの開発の他、多数の充電スタンドの設置などが必要となる。特に、リチウム系の自動車用バッテリーの充放電機能を高めるための技術開発が重要である。上記自動車バッテリーは、摂氏60度以上の高温下では充放電の機能を十分に発揮できないことが良く知られている。このため、先に説明した回路基板と同様、バッテリーにおいても、放熱性を高めることが重要視されている。 By the way, at present, there are active movements around the world to gradually convert conventional gasoline-powered vehicles or diesel-powered vehicles to electric vehicles for the purpose of reducing the burden on the global environment. In particular, in addition to European countries such as France, the Netherlands, and Germany, China is also focusing on the spread of electric vehicles. In order to popularize electric vehicles, it is necessary to develop high-performance batteries and install a large number of charging stations. In particular, it is important to develop technology to enhance the charge / discharge function of lithium-based automobile batteries. It is well known that the above-mentioned automobile battery cannot fully exert its charge / discharge function at a high temperature of 60 degrees Celsius or higher. For this reason, it is important to improve the heat dissipation of the battery as well as the circuit board described above.

バッテリーの速やかな放熱を実現するには、アルミニウム等の熱伝導性に優れた金属製の筐体に水冷パイプを配置し、当該筐体にバッテリーセルを多数配置し、バッテリーセル(以後、単に「セル」ともいう。)と筐体の底面との間に密着性のゴムシートを挟んだ構造が採用されている。このような構造のバッテリーでは、セルは、ゴムシートを通じて筐体に伝熱して、水冷によって効果的に除熱される。 In order to quickly dissipate heat from the battery, a water-cooled pipe is placed in a metal housing with excellent thermal conductivity such as aluminum, and a large number of battery cells are placed in the housing. A structure in which an adhesive rubber sheet is sandwiched between the "cell") and the bottom surface of the housing is adopted. In a battery having such a structure, the cell transfers heat to the housing through a rubber sheet and is effectively removed by water cooling.

特開2008−243999Japanese Patent Application Laid-Open No. 2008-24399

しかし、上述のような従来のバッテリーにおいて、ゴムシートは、アルミニウムやグラファイトと比べて熱伝導性が低いため、セルから筐体に効率よく熱を移動させることが難しい。また、液状のゴム組成物を硬化させてゴムシートを形成する場合には、バッテリーからゴムシートを剥がすのに労力を要すると共に、ゴムシートの残留物が残ってしまう。このため、ゴムシートのような熱伝導構造体をバッテリー内から取り出し、さらに別の熱伝導構造体を搭載することを容易にすることも要求される。ゴムシートに代えてグラファイト等のスペーサを挟む方法も考えられるが、複数のセルの下面が平らではなく段差を有することから、セルとスペーサとの間に隙間が生じ、伝熱効率が低下する。かかる一例にもみられるように、セルは種々の形態(段差等の凹凸あるいは表面状態を含む)をとり得ることから、セルの種々の形態に順応可能であって高い伝熱効率を実現することの要望が高まっている。また、熱伝導構造体をバッテリー内部に組み込む際の位置を正確にする必要性もある。上述した要求は、セルのみならず、回路基板、電子部品あるいは電子機器本体のような他の熱源にも通じる。 However, in the conventional battery as described above, since the rubber sheet has lower thermal conductivity than aluminum or graphite, it is difficult to efficiently transfer heat from the cell to the housing. Further, when the liquid rubber composition is cured to form a rubber sheet, it takes a lot of labor to peel off the rubber sheet from the battery, and a residue of the rubber sheet remains. Therefore, it is also required to facilitate taking out a heat conductive structure such as a rubber sheet from the inside of the battery and mounting another heat conductive structure. A method of sandwiching a spacer such as graphite instead of the rubber sheet is also conceivable, but since the lower surfaces of the plurality of cells are not flat and have steps, a gap is generated between the cells and the spacer, and the heat transfer efficiency is lowered. As seen in such an example, since the cell can take various forms (including unevenness such as a step or a surface state), there is a demand for adapting to various forms of the cell and realizing high heat transfer efficiency. Is increasing. It is also necessary to accurately position the heat conductive structure when it is incorporated inside the battery. The above requirements extend not only to cells, but also to other heat sources such as circuit boards, electronic components or electronic device bodies.

本発明は、上記課題に鑑みてなされたものであり、熱源の種々の形態に順応可能であって、熱伝導特性に優れ、熱源に対して容易かつ正確に接触させる作業を可能とする熱伝導構造体、および当該熱伝導構造体を備えるバッテリーを提供することを目的とする。 The present invention has been made in view of the above problems, and is adaptable to various forms of a heat source, has excellent heat conduction characteristics, and enables easy and accurate contact with the heat source. It is an object of the present invention to provide a structure and a battery including the heat conductive structure.

(1)上記目的を達成するための一実施形態に係る熱伝導構造体は、複数の長尺状の熱伝導部材と、前記熱伝導部材の長さ方向の両端部の内の少なくとも一方の端部を固定する部材であって、前記端部を挿入する凹部若しくは貫通孔を有する固定部材とを備え、
前記熱伝導部材には、弾性変形可能なクッション部材と、前記クッション部材より熱伝導性が高く、かつ前記クッション部材の外側の面を覆っている熱伝導シートと、を備え、
前記固定部材には、前記熱伝導部材の幅方向に所定の間隔をおいて、複数の前記熱伝導部材を固定している。
(2)別の実施形態に係る熱伝導構造体において、好ましくは、前記固定部材は、前記熱伝導部材の長さ方向の両端部を固定していても良い。
(3)別の実施形態に係る熱伝導構造体において、好ましくは、前記固定部材は、前記熱伝導部材の厚さ方向両側から挟み込む部材でも良い。
(4)別の実施形態に係る熱伝導構造体において、好ましくは、前記固定部材の前記凹部若しくは前記貫通孔は、前記熱伝導部材の前記端部を圧縮変形させた状態で固定していても良い。
(5)別の実施形態に係る熱伝導構造体において、好ましくは、前記固定部材は、前記複数の熱伝導部材の内の一部の前記熱伝導部材の長さ方向の前記端部を固定する個別部材を複数連結していても良い。
(6)別の実施形態に係る熱伝導構造体において、好ましくは、前記熱伝導シートは、前記クッション部材の長さ方向にスパイラル状に巻回しながら進行する部材でも良い。
(7)別の実施形態に係る熱伝導構造体において、好ましくは、前記クッション部材は、その長さ方向に貫通する貫通路を備えていても良い。
(8)別の実施形態に係る熱伝導構造体において、好ましくは、前記クッション部材は、前記熱伝導シートの裏面に沿ってスパイラル状に巻回しているスパイラル状クッション部材であっても良い。
(9)上記目的を達成するための一実施形態に係るバッテリーは、冷却剤を流す構造を持つ筐体内に、複数のバッテリーセルを備えたバッテリーであって、前記バッテリーセルと前記筐体との間に、上述のいずれかの熱伝導構造体を備える。
(10)別の実施形態に係るバッテリーは、好ましくは、複数の前記バッテリーセルの内、温度のより高い前記バッテリーセルに前記熱伝導部材を密集させていても良い。
(1) The heat conductive structure according to the embodiment for achieving the above object includes a plurality of elongated heat conductive members and at least one end of both ends in the length direction of the heat conductive member. It is a member for fixing the portion, and includes a fixing member having a recess or a through hole into which the end portion is inserted.
The heat conductive member includes a cushion member that can be elastically deformed, and a heat conductive sheet that has higher heat conductivity than the cushion member and covers the outer surface of the cushion member.
A plurality of the heat conductive members are fixed to the fixing member at predetermined intervals in the width direction of the heat conductive member.
(2) In the heat conductive structure according to another embodiment, preferably, the fixing member may fix both ends of the heat conduction member in the length direction.
(3) In the heat conductive structure according to another embodiment, preferably, the fixing member may be a member sandwiched from both sides in the thickness direction of the heat conductive member.
(4) In the heat conductive structure according to another embodiment, preferably, the recess or the through hole of the fixing member is fixed in a state where the end portion of the heat conduction member is compressed and deformed. good.
(5) In the heat conductive structure according to another embodiment, preferably, the fixing member fixes the end portion of a part of the plurality of heat conductive members in the length direction. A plurality of individual members may be connected.
(6) In the heat conductive structure according to another embodiment, preferably, the heat conductive sheet may be a member that advances while spirally winding in the length direction of the cushion member.
(7) In the heat conductive structure according to another embodiment, preferably, the cushion member may include a gangway that penetrates in the length direction thereof.
(8) In the heat conductive structure according to another embodiment, preferably, the cushion member may be a spiral cushion member that is spirally wound along the back surface of the heat conductive sheet.
(9) The battery according to the embodiment for achieving the above object is a battery having a plurality of battery cells in a housing having a structure for flowing a cooling agent, and the battery cells and the housing. In between, any of the heat conductive structures described above is provided.
(10) In the battery according to another embodiment, preferably, the heat conductive member may be densely packed in the battery cell having a higher temperature among the plurality of battery cells.

本発明によれば、熱源の種々の形態に順応可能であって、熱伝導特性に優れ、熱源に対して容易かつ正確に接触させる作業を可能とする熱伝導構造体、および当該熱伝導構造体を備えるバッテリーを提供できる。 According to the present invention, a heat conductive structure that can adapt to various forms of a heat source, has excellent heat conduction characteristics, and enables easy and accurate contact with the heat source, and the heat conduction structure. Can provide a battery with.

図1は、第1実施形態に係る熱伝導構造体の平面図、正面図および右側面を示す。FIG. 1 shows a plan view, a front view, and a right side surface of the heat conductive structure according to the first embodiment. 図2は、図1の熱伝導構造体に備えられる熱伝導部材の製造工程を段階的に示す。FIG. 2 shows the manufacturing process of the heat conductive member provided in the heat conductive structure of FIG. 1 step by step. 図3は、図2の工程を経て製造された熱伝導部材を固定部材に固定する状況を分解斜視図により示す。FIG. 3 is an exploded perspective view showing a situation in which the heat conductive member manufactured through the process of FIG. 2 is fixed to the fixing member. 図4は、第2実施形態に係る熱伝導構造体の製造状況と、固定部材の構成要素であって熱伝導部材の両端に取り付ける個別部材の分解拡大斜視図と、個別部材を熱伝導部材の両端に取り付けた状態のD−D線断面図と、を示す。FIG. 4 shows a manufacturing situation of the heat conductive structure according to the second embodiment, an exploded enlarged perspective view of individual members which are components of the fixing member and are attached to both ends of the heat conductive member, and the individual members of the heat conductive member. A cross-sectional view taken along the line DD of the state of being attached to both ends is shown. 図5は、図4の製造工程を経て完成した熱伝導構造体の平面図を示す。FIG. 5 shows a plan view of the heat conductive structure completed through the manufacturing process of FIG. 図6は、変形例1に係る熱伝導構造体の個別部材に熱伝導部材の端部を挿入する状況と、当該状況の後に図4と同様にD−D線で切断した際の断面図を示す。FIG. 6 shows a situation in which the end portion of the heat conductive member is inserted into the individual member of the heat conductive structure according to the first modification, and a cross-sectional view when the heat conductive member is cut along the DD line as in FIG. 4 after the situation. show. 図7は、変形例2に係る熱伝導構造体に備えられる熱伝導部材の製造工程を段階的に示す。FIG. 7 shows the manufacturing process of the heat conductive member provided in the heat conductive structure according to the modified example 2 step by step. 図8は、変形例3に係る熱伝導構造体に備えられる熱伝導部材の製造工程を示す。FIG. 8 shows a manufacturing process of a heat conductive member provided in the heat conductive structure according to the modified example 3. 図9は、一実施形態に係るバッテリー内部の平面図および矢印Gの方向から見た左側面図を示す。FIG. 9 shows a plan view of the inside of the battery according to the embodiment and a left side view seen from the direction of the arrow G. 図10は、図9のバッテリー内部を含めたバッテリー全体のH−H線断面図および一部Jのセル搭載前後の変化を拡大して示す。FIG. 10 shows an enlarged cross-sectional view of the entire battery including the inside of the battery of FIG. 9 and a change before and after mounting the cell of a part J.

次に、本発明の各実施形態について、図面を参照して説明する。なお、以下に説明する各実施形態は、特許請求の範囲に係る発明を限定するものではなく、また、各実施形態の中で説明されている諸要素及びその組み合わせの全てが本発明の解決手段に必須であるとは限らない。 Next, each embodiment of the present invention will be described with reference to the drawings. It should be noted that each of the embodiments described below does not limit the invention according to the claims, and all of the elements and combinations thereof described in each embodiment are the means for solving the present invention. Is not always required.

1.熱伝導構造体
(第1実施形態)
図1は、第1実施形態に係る熱伝導構造体の平面図、正面図および右側面を示す。図2は、図1の熱伝導構造体に備えられる熱伝導部材の製造工程を段階的に示す。図3は、図2の工程を経て製造された熱伝導部材を固定部材に固定する状況を分解斜視図により示す。図1は、固定部材に固定されている熱伝導部材の端部を透過的に示している。図2は、熱伝導部材の一端面(A)を拡大して示している。
1. 1. Thermally conductive structure (first embodiment)
FIG. 1 shows a plan view, a front view, and a right side surface of the heat conductive structure according to the first embodiment. FIG. 2 shows the manufacturing process of the heat conductive member provided in the heat conductive structure of FIG. 1 step by step. FIG. 3 is an exploded perspective view showing a situation in which the heat conductive member manufactured through the process of FIG. 2 is fixed to the fixing member. FIG. 1 transparently shows the end portion of the heat conductive member fixed to the fixing member. FIG. 2 shows an enlarged view of one end surface (A) of the heat conductive member.

第1実施形態に係る熱伝導構造体1は、複数の長尺状の熱伝導部材10と、熱伝導部材10の長さ方向の両端部を固定する部材であって当該両端部をそれぞれ挿入する凹部25を有する2つの固定部材20と、を備える。固定部材20は、熱伝導部材10の幅方向に所定の間隔Tをおいて、複数の熱伝導部材10を固定している。すなわち、複数の熱伝導部材10は、2本の固定部材20を連結している。本願では、長尺状の熱伝導部材10の両端部を結ぶ方向を「長さ方向」と、複数の熱伝導部材10を間隔Tおきに並べる方向を「幅方向」と、当該幅方向と上記長さ方向に対して直角の方向を「厚さ方向」と、称する。なお、この実施形態では、熱伝導部材10の数は、18本であるが、2〜17本あるいは19本以上でも良い。 The heat conductive structure 1 according to the first embodiment is a member that fixes a plurality of long heat conductive members 10 and both ends of the heat conductive member 10 in the length direction, and inserts the both ends, respectively. It includes two fixing members 20 having recesses 25. The fixing member 20 fixes a plurality of heat conductive members 10 at predetermined intervals T in the width direction of the heat conductive member 10. That is, the plurality of heat conductive members 10 connect the two fixing members 20. In the present application, the direction connecting both ends of the elongated heat conductive member 10 is the "length direction", the direction in which the plurality of heat conductive members 10 are arranged at intervals of T is the "width direction", and the width direction and the above. The direction perpendicular to the length direction is referred to as the "thickness direction". In this embodiment, the number of the heat conductive members 10 is 18, but it may be 2 to 17 or 19 or more.

熱伝導部材10は、弾性変形可能なクッション部材11と、クッション部材11より熱伝導性が高く、かつクッション部材11の外側の面を覆っている熱伝導シート13と、を備える。 The heat conductive member 10 includes a cushion member 11 that can be elastically deformed, and a heat conductive sheet 13 that has higher thermal conductivity than the cushion member 11 and covers the outer surface of the cushion member 11.

<クッション部材>
クッション部材11の重要な機能は、変形容易性と、回復力である。回復力は、弾性変形性による。変形容易性は、後述する熱源の一例であるバッテリーセル(単に「セル」ともいう)が熱伝導部材10の厚さ方向の一方から接触した際に、セルあるいはセル群の端面形状に追従するために必要な特性である。回復力は、セルを熱伝導部材10から除去した際、あるいはセルの質量が小さくなってきた際に、熱伝導部材10を元の形状に戻すのに必要である。リチウムイオンバッテリーなどの半固形物、液体的性状も持つ内容物などを変形しやすいパッケージに収めてあるようなセルの場合には、設計寸法的にも不定形または寸法精度があげられない場合が多い。このため、クッション部材11の変形容易性や追従力を保持するための回復力の保持は重要である。
<Cushion member>
The important functions of the cushion member 11 are easiness of deformation and resilience. Resilience depends on elastic deformability. Deformability is because the battery cell (also simply referred to as “cell”), which is an example of a heat source described later, follows the end face shape of the cell or cell group when it comes into contact with the heat conductive member 10 from one of the thickness directions. It is a characteristic required for. Resilience is required to restore the heat conductive member 10 to its original shape when the cell is removed from the heat conductive member 10 or when the mass of the cell becomes smaller. In the case of a cell in which semi-solid materials such as lithium-ion batteries and contents that also have liquid properties are contained in a easily deformable package, the design dimensions may be irregular or the dimensional accuracy may not be improved. many. Therefore, it is important to maintain the deformability of the cushion member 11 and the resilience for maintaining the following force.

この実施形態では、クッション部材11は、クッション部材11の長さ方向に貫通する貫通路12を備える筒状クッション部材である。クッション部材11は、複数のセルの下端部が平坦でない場合でも、熱伝導シート13と当該下端部との接触を良好にする。さらに、貫通路12は、クッション部材11の変形を容易にし、加えて熱伝導構造体1の軽量化に寄与し、また、熱伝導シート13とセルの下端部との接触を高める機能を有する。クッション部材11は、セルとバッテリーの底部との間にあってクッション性を発揮させる機能の他に、セルから熱伝導シート13に加わる荷重によって熱伝導シート13が破損等しないようにする保護部材としての機能も有する。 In this embodiment, the cushion member 11 is a tubular cushion member provided with a gangway 12 penetrating the cushion member 11 in the length direction. The cushion member 11 improves the contact between the heat conductive sheet 13 and the lower end portions even when the lower end portions of the plurality of cells are not flat. Further, the gangway 12 has a function of facilitating the deformation of the cushion member 11, contributing to the weight reduction of the heat conductive structure 1, and enhancing the contact between the heat conductive sheet 13 and the lower end of the cell. The cushion member 11 has a function of being located between the cell and the bottom of the battery to exert cushioning properties, and also as a protective member for preventing the heat conductive sheet 13 from being damaged by a load applied from the cell to the heat conductive sheet 13. Also has.

この実施形態では、クッション部材11は、熱伝導シート13に比べて低熱伝導性の部材である。なお、貫通路12は、断面円形状に形成されているが、貫通路12の断面形状は円に限定されず、例えば、多角形、楕円形、半円形、頂点が丸みを帯びた略多角形等であっても良い。また、貫通路12は、例えば、断面円形状が上下または左右に2つに分割された2つの断面半円形状の貫通路等、複数の貫通路から構成されていても良い。クッション部材11は、貫通路12に代えて、クッション部材11の両端部の内の少なくとも一方を閉じた凹部を備えていても良い。また、クッション部材11は、貫通路12または上記凹部を備えない柱状の部材でも良い。 In this embodiment, the cushion member 11 is a member having a lower thermal conductivity than the heat conductive sheet 13. The gangway 12 is formed in a circular cross section, but the cross section of the gangway 12 is not limited to a circle. For example, a polygon, an ellipse, a semicircle, or a substantially polygon with rounded vertices. Etc. may be used. Further, the gangway 12 may be composed of a plurality of gangways, for example, two gangways having a semicircular cross section whose cross-sectional circular shape is divided into two vertically or horizontally. Instead of the gangway 12, the cushion member 11 may include recesses in which at least one of both ends of the cushion member 11 is closed. Further, the cushion member 11 may be a columnar member having no through-passage 12 or the recess.

クッション部材11は、好ましくは、シリコーンゴム、ウレタンゴム、イソプレンゴム、エチレンプロピレンゴム、天然ゴム、エチレンプロピレンジエンゴム、ニトリルゴム(NBR)あるいはスチレンブタジエンゴム(SBR)等の熱硬化性エラストマー; ウレタン系、エステル系、スチレン系、オレフィン系、ブタジエン系、フッ素系等の熱可塑性エラストマー、あるいはそれらの複合物等を含むように構成される。クッション部材11は、熱伝導シート13を伝わる熱によって溶融あるいは分解等せずにその形態を維持できる程度の耐熱性の高い材料から構成されるのが好ましい。この実施形態では、クッション部材11は、より好ましくは、ウレタン系エラストマー中にシリコーンを含浸したもの、あるいはシリコーンゴムにより構成される。クッション部材11は、その熱伝導性を少しでも高めるために、ゴム中にAlN、cBN、hBN、ダイヤモンドの粒子等に代表されるフィラーを分散して構成されていても良い。クッション部材11は、その内部に気泡を含むものの他、気泡を含まないものでも良い。また、「クッション部材」は、柔軟性に富み、熱源の表面に密着可能に弾性変形可能な部材を意味し、かかる意味では「ゴム状弾性体」と読み替えることもできる。さらに、クッション部材11の変形例としては、上記ゴム状弾性体ではなく、金属を用いて構成することもできる。例えば、クッション部材11は、バネ鋼で構成することも可能である。さらに、クッション部材11として、コイルバネを配置することも可能である。また、スパイラル状に巻いた金属をバネ鋼にしてクッション部材として熱伝導シート13の環状裏面に配置しても良い。また、クッション部材11は、樹脂やゴム等から形成されたスポンジあるいはソリッド(スポンジのような多孔質ではない構造のもの)で構成することも可能である。 The cushion member 11 is preferably a thermosetting elastomer such as silicone rubber, urethane rubber, isoprene rubber, ethylene propylene rubber, natural rubber, ethylene propylene diene rubber, nitrile rubber (NBR) or styrene butadiene rubber (SBR); urethane-based , Ester-based, styrene-based, olefin-based, butadiene-based, fluorine-based and other thermoplastic elastomers, or composites thereof. The cushion member 11 is preferably made of a material having high heat resistance that can maintain its shape without being melted or decomposed by the heat transmitted through the heat conductive sheet 13. In this embodiment, the cushion member 11 is more preferably made of a urethane-based elastomer impregnated with silicone or silicone rubber. The cushion member 11 may be configured by dispersing a filler typified by AlN, cBN, hBN, diamond particles, or the like in rubber in order to increase its thermal conductivity as much as possible. The cushion member 11 may contain air bubbles or may not contain air bubbles. Further, the "cushion member" means a member that is highly flexible and can be elastically deformed so as to be in close contact with the surface of a heat source, and in this sense, it can be read as a "rubber-like elastic body". Further, as a modification of the cushion member 11, a metal may be used instead of the rubber-like elastic body. For example, the cushion member 11 can also be made of spring steel. Further, a coil spring can be arranged as the cushion member 11. Further, the spirally wound metal may be made of spring steel and arranged on the annular back surface of the heat conductive sheet 13 as a cushion member. Further, the cushion member 11 can be made of a sponge or a solid (a non-porous structure such as a sponge) formed of resin, rubber or the like.

<熱伝導シート>
熱伝導シート13は、好ましくはクッション部材11より熱伝導性が高く、かつクッション部材11の外側の面を覆っている。熱伝導シート13は、この実施形態では、クッション部材11の長さ方向にスパイラル状に巻回しながら進行する部材であり、クッション部材11の外側面を覆っている。熱伝導シート13は、クッション部材11の外側面のみならず、クッション部材11の両端面の内の少なくとも一端面を覆っていても良い。熱伝導シート13は、好ましくは、クッション部材11と接着層または粘着層を介して固定されている。ただし、熱伝導シート13は、クッション部材11の外側面では何らの接着層および粘着層を介して固定されておらず、クッション部材11の両端で嵌め込みあるいは接着されていても良い。
<Heat conduction sheet>
The heat conductive sheet 13 preferably has higher heat conductivity than the cushion member 11 and covers the outer surface of the cushion member 11. In this embodiment, the heat conductive sheet 13 is a member that advances while spirally winding in the length direction of the cushion member 11 and covers the outer surface of the cushion member 11. The heat conductive sheet 13 may cover not only the outer surface of the cushion member 11 but also at least one end surface of both end surfaces of the cushion member 11. The heat conductive sheet 13 is preferably fixed to the cushion member 11 via an adhesive layer or an adhesive layer. However, the heat conductive sheet 13 is not fixed on the outer surface of the cushion member 11 via any adhesive layer and adhesive layer, and may be fitted or adhered to both ends of the cushion member 11.

熱伝導シート13は、好ましくは炭素を含むシート、または炭素フィラーと樹脂とを含むシートである。樹脂を合成繊維とすることもでき、その場合には、好適に、アラミド繊維を用いることもできる。熱伝導シート13は、その大部分若しくは全てを炭素で構成したシートでも良い。かかるシートは、例えば、シート状の樹脂を焼成等により炭化することによって得ることができる。本願でいう「炭素」は、グラファイト、グラファイトより結晶性の低いカーボンブラック、膨張黒鉛、ダイヤモンド、ダイヤモンドに近い構造を持つダイヤモンドライクカーボン等の炭素(元素記号:C)から成る如何なる構造のものも含むように広義に解釈される。熱伝導シート13は、メッシュ状に編んだカーボンファイバーであっても良く、さらには混紡してあっても混編みしてあっても良い。なお、炭素フィラーは、グラファイト繊維、カーボン粒子あるいはカーボンファイバーといった各種フィラーも含むように解釈される。熱伝導シート13は、この実施形態では、樹脂に、グラファイト繊維やカーボン粒子を配合分散した材料を硬化させた薄いシートとすることができる。 The heat conductive sheet 13 is preferably a sheet containing carbon or a sheet containing a carbon filler and a resin. The resin can be a synthetic fiber, and in that case, an aramid fiber can be preferably used. The heat conductive sheet 13 may be a sheet in which most or all of the heat conductive sheet 13 is made of carbon. Such a sheet can be obtained, for example, by carbonizing a sheet-shaped resin by firing or the like. The term "carbon" as used in the present application includes any structure composed of carbon (element symbol: C) such as graphite, carbon black having lower crystallinity than graphite, expanded graphite, diamond, and diamond-like carbon having a structure similar to diamond. Is interpreted in a broad sense. The heat conductive sheet 13 may be carbon fiber knitted in a mesh shape, and may be blended or knitted. The carbon filler is interpreted to include various fillers such as graphite fibers, carbon particles, and carbon fibers. In this embodiment, the heat conductive sheet 13 can be a thin sheet obtained by curing a material obtained by blending and dispersing graphite fibers and carbon particles in a resin.

熱伝導シート13に樹脂を含む場合には、当該樹脂が熱伝導シート13の全質量に対して50質量%を超えていても、あるいは50質量%以下であっても良い。すなわち、熱伝導シート13は、熱伝導に大きな支障が無い限り、樹脂を主材とするか否かを問わない。樹脂としては、例えば、熱可塑性樹脂を好適に使用できる。熱可塑性樹脂としては、熱源の一例であるセルからの熱を伝導する際に溶融しない程度の高融点を備える樹脂が好ましく、例えば、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリアミドイミド(PAI)、芳香族ポリアミド(アラミド繊維)等を好適に挙げることができる。樹脂は、熱伝導シート13の成形前の状態において、炭素フィラーの隙間に、例えば粒子状あるいは繊維状に分散している。熱伝導シート13は、炭素フィラー、樹脂の他、熱伝導をより高めるためのフィラーとして、Al、AlNあるいはダイヤモンドを分散していても良い。また、樹脂に代えて、樹脂よりも柔軟なエラストマーを用いても良い。熱伝導シート13は、また、上述のような炭素に代えて若しくは炭素と共に、金属および/またはセラミックスを含むシートとすることができる。金属としては、アルミニウム、銅、それらの内の少なくとも1つを含む合金などの熱伝導性の比較的高いものを選択できる。また、セラミックスとしては、Al、AlN、cBN、hBNなどの熱伝導性の比較的高いものを選択できる。 When the heat conductive sheet 13 contains a resin, the resin may exceed 50% by mass or 50% by mass or less with respect to the total mass of the heat conductive sheet 13. That is, the heat conductive sheet 13 may or may not use resin as the main material as long as the heat conduction is not significantly hindered. As the resin, for example, a thermoplastic resin can be preferably used. As the thermoplastic resin, a resin having a high melting point that does not melt when conducting heat from a cell, which is an example of a heat source, is preferable. For example, polyphenylene sulfide (PPS), polyetheretherketone (PEEK), and polyamideimide are preferable. (PAI), aromatic polyamide (aramid fiber) and the like can be preferably mentioned. The resin is dispersed in the gaps between the carbon fillers, for example, in the form of particles or fibers in the state before molding of the heat conductive sheet 13. In addition to the carbon filler and the resin, the heat conductive sheet 13 may be dispersed with Al 2 O 3 , Al N or diamond as a filler for further enhancing the heat conduction. Further, instead of the resin, an elastomer that is more flexible than the resin may be used. The heat conductive sheet 13 can also be a sheet containing metals and / or ceramics in place of or with carbon as described above. As the metal, those having relatively high thermal conductivity such as aluminum, copper, and alloys containing at least one of them can be selected. Further, as the ceramics, ceramics having relatively high thermal conductivity such as Al 2 O 3 , AlN, cBN, and hBN can be selected.

熱伝導シート13は、導電性に優れるか否かは問わない。熱伝導シート13の熱伝導率は、好ましくは10W/mK以上である。この実施形態では、熱伝導シート13は、好ましくは、グラファイト、またはグラファイトと樹脂との複合体であるが、熱伝導性と導電性に優れた材料、例えば、アルミニウム、アルミニウム合金、銅あるいはステンレススチールの帯状の板でも良い。熱伝導シート13は、可撓性または湾曲性(若しくは屈曲性)に優れるシートであるのが好ましく、その厚さに制約はないが、0.02〜3mmが好ましく、0.03〜0.5mmがより好ましい。ただし、熱伝導シート13の熱伝導率は、その厚さが増加するほど低下するため、シートの強度、可撓性および熱伝導性を総合的に考慮して、その厚さを決定するのが好ましい。 It does not matter whether the heat conductive sheet 13 is excellent in conductivity or not. The thermal conductivity of the heat conductive sheet 13 is preferably 10 W / mK or more. In this embodiment, the heat conductive sheet 13 is preferably graphite or a composite of graphite and resin, but is made of a material having excellent heat conductivity and conductivity, for example, aluminum, aluminum alloy, copper or stainless steel. A strip-shaped plate may be used. The heat conductive sheet 13 is preferably a sheet having excellent flexibility or flexibility (or flexibility), and the thickness thereof is not limited, but 0.02 to 3 mm is preferable, and 0.03 to 0.5 mm is preferable. Is more preferable. However, since the thermal conductivity of the heat conductive sheet 13 decreases as the thickness increases, it is necessary to determine the thickness by comprehensively considering the strength, flexibility and heat conductivity of the sheet. preferable.

<固定部材>
固定部材20は、この実施形態では、熱伝導部材10の厚さ方向両側から挟み込む部材である。固定部材20は、熱伝導部材10の厚さ方向の一方から熱伝導部材10に接触させる第1分割部材21と、当該厚さ方向の他方から熱伝導部材10接触させる第2分割部材22とを備えている。第1分割部材21と第2分割部材22とは、接着、嵌め込み等の如何なる方法で合体していても良い。熱伝導構造体1の一構成要素である熱伝導部材10は、2つの固定部材20の厚さ方向のいずれの面よりも内側にあるため、熱伝導構造体1を平面上に静置した際に、当該平面に接触せずに宙に浮いた状態となる。ただし、熱伝導部材10は、固定部材20の厚さ方向のいずれかの面と面一となるように、固定部材20に固定されていても良い。この実施形態では、固定部材20は、第1分割部材21と第2分割部材22とが完全に分離可能な部材である。しかし、固定部材20は、第1分割部材21と第2分割部材22とが一部で連結されていて、それらを開閉可能な部材であっても良い。さらには、固定部材20は、熱伝導部材10の厚さ方向両側から挟み込む部材ではなく、凹部25を備えた一体の柱状部材でも良い。
<Fixing member>
In this embodiment, the fixing member 20 is a member that sandwiches the heat conductive member 10 from both sides in the thickness direction. The fixing member 20 includes a first divided member 21 that contacts the heat conductive member 10 from one side in the thickness direction of the heat conductive member 10 and a second divided member 22 that contacts the heat conductive member 10 from the other side in the thickness direction. I have. The first dividing member 21 and the second dividing member 22 may be united by any method such as adhesion and fitting. Since the heat conductive member 10 which is one component of the heat conductive structure 1 is inside the surface of the two fixing members 20 in the thickness direction, when the heat conductive structure 1 is placed on a flat surface, it is allowed to stand still. In addition, it floats in the air without touching the plane. However, the heat conductive member 10 may be fixed to the fixing member 20 so as to be flush with any surface of the fixing member 20 in the thickness direction. In this embodiment, the fixing member 20 is a member in which the first dividing member 21 and the second dividing member 22 are completely separable. However, the fixing member 20 may be a member in which the first dividing member 21 and the second dividing member 22 are partially connected and can be opened and closed. Further, the fixing member 20 may not be a member sandwiched from both sides in the thickness direction of the heat conductive member 10, but may be an integral columnar member provided with a recess 25.

固定部材20の材料は、特に制約はなく、例えば、金属、樹脂、セラミックス、炭素、木材、ガラスまたはこれらの内の2以上の複合物である。固定部材20は、複数の熱伝導部材10を固定すると共に、熱伝導構造体1を熱源の存在する所定の場所に、正確かつ容易に配置するのに役立つ。熱伝導部材10同士の間隔Tは、全ての隣り合う一対の熱伝導部材10において同一の距離であっても良く、あるいは異なる距離であっても良い。固定部材20には、熱伝導部材10の端部を挿入する凹部25に代えて、熱伝導部材10の長さ方向に貫通する貫通孔を備えても良い。その場合には、熱伝導部材10は、その長さ方向の少なくとも一端が固定部材20を貫通して、固定部材20に保持される。凹部25および上記貫通孔と熱伝導部材10とは、嵌め込み、接着等のいずれの固定方法で固定されていても良い。 The material of the fixing member 20 is not particularly limited, and is, for example, metal, resin, ceramics, carbon, wood, glass, or a composite of two or more of these. The fixing member 20 is useful for fixing the plurality of heat conductive members 10 and accurately and easily arranging the heat conductive structure 1 in a predetermined place where a heat source exists. The distance T between the heat conductive members 10 may be the same distance or different distances in all the pair of adjacent heat conductive members 10. The fixing member 20 may be provided with a through hole penetrating in the length direction of the heat conductive member 10 instead of the recess 25 into which the end portion of the heat conductive member 10 is inserted. In that case, at least one end of the heat conductive member 10 in the length direction penetrates the fixing member 20 and is held by the fixing member 20. The recess 25, the through hole, and the heat conductive member 10 may be fixed by any fixing method such as fitting or adhesion.

<製造工程>
熱伝導構造体1は、一例ではあるが、図2に示す工程にて熱伝導部材10の製造後、図3に示すように熱伝導部材10を固定部材20に固定することによって製造可能である。以下、例示的な製造工程について説明する。
<Manufacturing process>
Although the heat conductive structure 1 is an example, it can be manufactured by fixing the heat conductive member 10 to the fixing member 20 as shown in FIG. 3 after manufacturing the heat conductive member 10 in the step shown in FIG. .. Hereinafter, an exemplary manufacturing process will be described.

まず、長尺状で貫通孔12を有するクッション部材11を用意し、その外側面に、帯状の熱伝導シート13をスパイラル状に巻く。クッション部材11の外側面あるいは熱伝導シート13の裏面(貼り付け面)の内の少なくともいずれか一方の面に、接着剤が塗布されているのが好ましい。以上の工程にて、クッション部材11の外側面に熱伝導シート13をスパイラル状に巻いた形態の熱伝導部材10が完成する。 First, a long cushion member 11 having a through hole 12 is prepared, and a band-shaped heat conductive sheet 13 is spirally wound around the outer surface thereof. It is preferable that the adhesive is applied to at least one of the outer surface of the cushion member 11 and the back surface (pasting surface) of the heat conductive sheet 13. Through the above steps, the heat conductive member 10 in which the heat conductive sheet 13 is spirally wound around the outer surface of the cushion member 11 is completed.

次に、固定部材20を2個用意する。固定部材20は、それぞれ、第1分割部材21と第2分割部材22とを備える。第1分割部材21は、凹部25を構成する半割状の溝部26を、熱伝導部材10の本数分だけ備える。同様に、第2分割部材22は、凹部25を構成する半割状の溝部27を、熱伝導部材10の本数分だけ備える。第1分割部材21と第2分割部材22とを、溝部26,27同士を合わせるように合体すると、凹部25が形成される。 Next, two fixing members 20 are prepared. The fixing member 20 includes a first dividing member 21 and a second dividing member 22, respectively. The first dividing member 21 includes half-split groove portions 26 constituting the recess 25 as many as the number of heat conductive members 10. Similarly, the second dividing member 22 includes half-split groove portions 27 constituting the recess 25 as many as the number of the heat conductive members 10. When the first dividing member 21 and the second dividing member 22 are united so as to align the grooves 26 and 27 with each other, a recess 25 is formed.

熱伝導部材10を固定部材20にて固定するには、まず、2つの第2分割部材22を一定の距離だけ離して静置する。次に、複数の熱伝導部材10の両端部を各第2分割部材22の溝部27に嵌め込む。最後に、2つの第1分割部材21を用意して、それぞれを第2分割部材22の上から被せて固定部材20とする。以上の工程にて、熱伝導構造体1が完成する。 In order to fix the heat conductive member 10 with the fixing member 20, first, the two second divided members 22 are allowed to stand at a certain distance. Next, both ends of the plurality of heat conductive members 10 are fitted into the grooves 27 of each of the second divided members 22. Finally, two first dividing members 21 are prepared and each of them is covered over the second dividing member 22 to form a fixing member 20. Through the above steps, the heat conductive structure 1 is completed.

なお、先に、第1分割部材21と第2分割部材22とを合体して固定部材20を製造して凹部25を形成した後、熱伝導部材10の一端を一方の固定部材20の凹部25に挿入し、最後に、熱伝導部材10の他端を他方の固定部材20の凹部25に挿入しても良い。 First, the first dividing member 21 and the second dividing member 22 are combined to manufacture the fixing member 20 to form the recess 25, and then one end of the heat conductive member 10 is formed into the recess 25 of one of the fixing members 20. And finally, the other end of the heat conductive member 10 may be inserted into the recess 25 of the other fixing member 20.

(第2実施形態)
次に、第2実施形態に係る熱伝導構造体について説明する。第1実施形態と共通する部分については同じ符号を付して重複した説明を省略する。
(Second Embodiment)
Next, the heat conductive structure according to the second embodiment will be described. The same reference numerals are given to the parts common to the first embodiment, and duplicate description will be omitted.

図4は、第2実施形態に係る熱伝導構造体の製造状況と、固定部材の構成要素であって熱伝導部材の両端に取り付ける個別部材の分解拡大斜視図と、個別部材を熱伝導部材の両端に取り付けた状態のD−D線断面図と、を示す。図5は、図4の製造工程を経て完成した熱伝導構造体の平面図を示す。図4および図5は、固定部材に固定されている熱伝導部材の端部を透過的に示している。 FIG. 4 shows a manufacturing situation of the heat conductive structure according to the second embodiment, an exploded enlarged perspective view of individual members which are components of the fixing member and are attached to both ends of the heat conductive member, and the individual members of the heat conductive member. A cross-sectional view taken along the line DD of the state of being attached to both ends is shown. FIG. 5 shows a plan view of the heat conductive structure completed through the manufacturing process of FIG. 4 and 5 transparently show the ends of the heat conductive member fixed to the fixing member.

第2実施形態に係る熱伝導構造体1は、第1実施形態と異なり、1本の熱伝導部材10に対して個別に固定される個別部材30を複数着脱可能な固定部材20aを備える。このような構成によれば、熱伝導部材10の両端部に個別部材30を取り付けたユニット35を複数本用意して、それらを合体させて所望の長さの熱伝導構造体1を構成できる。 Unlike the first embodiment, the heat conductive structure 1 according to the second embodiment includes a fixing member 20a to which a plurality of individual members 30 individually fixed to one heat conductive member 10 can be attached and detached. According to such a configuration, a plurality of units 35 having individual members 30 attached to both ends of the heat conductive member 10 can be prepared and combined to form a heat conductive structure 1 having a desired length.

熱伝導構造体1の固定部材30は、複数の熱伝導部材10の内の一部(ここでは1本)の熱伝導部材10の長さ方向の端部を固定する個別部材30を複数連結可能である。固定部材20aを熱伝導部材10の長さ方向一端にのみ固定したい場合には、個別部材30を、熱伝導部材10の長さ方向一端にのみ固定しても良い。このように、1本の熱伝導部材10と、1個若しくは2個の個別部材30とを合体させた構成体を、ここでは、熱伝導部材ユニット(単に、「ユニット」とも称する。)35と称する。熱伝導ユニット35を矢印Bで示すように合体すると、所望の長さの熱伝導構造体1が完成する。 The fixing member 30 of the heat conductive structure 1 can connect a plurality of individual members 30 for fixing the end portions of the heat conductive member 10 in a part (here, one) of the plurality of heat conductive members 10 in the length direction. Is. When it is desired to fix the fixing member 20a only to one end in the length direction of the heat conductive member 10, the individual member 30 may be fixed only to one end in the length direction of the heat conductive member 10. In this way, the structure in which one heat conductive member 10 and one or two individual members 30 are united is referred to as a heat conductive member unit (simply also referred to as “unit”) 35 here. Refer to. When the heat conductive units 35 are united as shown by arrows B, the heat conductive structure 1 having a desired length is completed.

個別部材30は、熱伝導部材10の端部を固定するための凹部25を備える。なお、凹部25は、熱伝導部材10の長さ方向に個別部材30を貫通する貫通孔でも良い。領域Cの分解拡大斜視図に示すように、個別部材30は、好ましくは、2つに分割可能な部材であって、第1分割個別部材31と、第2分割個別部材32とを備える。第1分割個別部材31は、凹部25を構成する半割状の溝部26を備える。同様に、第2分割個別部材32は、凹部25を構成する半割状の溝部27を備える。熱伝導部材10をその端部の厚さ方向両側から第1分割個別部材31と第2分割個別部材32によって挟み込むことで、個別部材30を熱伝導部材10の端部に固定できる。第1分割個別部材31と第2分割個別部材32とは、接着、嵌め込み等の如何なる方式で合体できても良い。この実施形態において、個別部材30は、第1分割個別部材31と第2分割個別部材32とが完全に分離可能な部材である。しかし、個別部材30は、第1分割個別部材31と第2分割個別部材32とが一部で連結されていて、それらを開閉可能な部材であっても良い。さらには、個別部材30は、熱伝導部材10の厚さ方向両側から挟み込む部材ではなく、凹部25を備えた一体のブロック状の部材でも良い。 The individual member 30 includes a recess 25 for fixing the end portion of the heat conductive member 10. The recess 25 may be a through hole that penetrates the individual member 30 in the length direction of the heat conductive member 10. As shown in the exploded enlarged perspective view of the region C, the individual member 30 is preferably a member that can be divided into two, and includes a first divided individual member 31 and a second divided individual member 32. The first divided individual member 31 includes a half-split groove portion 26 that constitutes the recess 25. Similarly, the second division individual member 32 includes a half-split groove portion 27 constituting the recess 25. By sandwiching the heat conductive member 10 between the first divided individual member 31 and the second divided individual member 32 from both sides in the thickness direction of the end portion, the individual member 30 can be fixed to the end portion of the heat conductive member 10. The first divided individual member 31 and the second divided individual member 32 may be combined by any method such as adhesion and fitting. In this embodiment, the individual member 30 is a member in which the first divided individual member 31 and the second divided individual member 32 are completely separable. However, the individual member 30 may be a member in which the first divided individual member 31 and the second divided individual member 32 are partially connected and can be opened and closed. Further, the individual member 30 may not be a member sandwiched from both sides in the thickness direction of the heat conductive member 10, but may be an integral block-shaped member provided with the recess 25.

個別部材30は、別の個別部材30と連結するための連結部40,50を備える。連結部40および連結部50は、個別部材30の幅方向両側にそれぞれ備えられている。この結果、個別部材30の連結部40を、別の個別部材30の連結部50に連結できる。第1分割個別部材31は、連結部40を構成する半割状の連結エレメント41を備える。第2分割個別部材32は、連結部40を構成する半割状の連結エレメント42を備える。また、第1分割個別部材31は、連結部50を構成する半割状の連結エレメント51を備える。第2分割個別部材32は、連結部50を構成する半割状の連結エレメント52を備える。第1分割個別部材31と第2分割個別部材32とを合体すると、連結エレメント41と連結エレメント42とが合体して連結部40が形成される。同様に、連結エレメント51と連結エレメント52とが合体して連結部50が形成される。 The individual member 30 includes connecting portions 40 and 50 for connecting to another individual member 30. The connecting portion 40 and the connecting portion 50 are provided on both sides of the individual member 30 in the width direction. As a result, the connecting portion 40 of the individual member 30 can be connected to the connecting portion 50 of another individual member 30. The first divided individual member 31 includes a half-split connecting element 41 constituting the connecting portion 40. The second divided individual member 32 includes a half-split connecting element 42 constituting the connecting portion 40. Further, the first divided individual member 31 includes a half-split connecting element 51 constituting the connecting portion 50. The second divided individual member 32 includes a half-split connecting element 52 constituting the connecting portion 50. When the first divided individual member 31 and the second divided individual member 32 are combined, the connecting element 41 and the connecting element 42 are combined to form the connecting portion 40. Similarly, the connecting element 51 and the connecting element 52 are united to form the connecting portion 50.

D−D断面図に示すように、個別部材30は、厚さL1の第1分割個別部材31と、厚さL2の第2分割個別部材32とを合体して成る。この実施形態では、L1=L2である。しかし、L1>L2またはL1<L2でも良い。熱伝導部材10の厚さ方向の最下面と、第2分割個別部材32の第1分割個別部材31と反対側に位置する最外面との距離L3は、L2>L3が成り立つ限り、如何なる大きさでも良い。しかし、L3はゼロに限りなく近い距離か、あるいはゼロであるのが好ましい。L3は、熱伝導構造体1をバッテリー内に配置した際に、熱伝導部材10がバッテリーの底部(通常、冷却剤によって冷やされている部分)から浮いている距離に相当する。L3が小さいほど、底部と反対側からセルを熱伝導部材10の上に載せた際に、熱伝導部材10をセルと底部との間に挟み込みやすくなる。これについては、後述する。 As shown in the DD cross-sectional view, the individual member 30 is formed by combining the first divided individual member 31 having a thickness L1 and the second divided individual member 32 having a thickness L2. In this embodiment, L1 = L2. However, L1> L2 or L1 <L2 may be used. The distance L3 between the lowermost surface of the heat conductive member 10 in the thickness direction and the outermost surface of the second divided individual member 32 located on the opposite side of the first divided individual member 31 is of any size as long as L2> L3 holds. But it's okay. However, L3 is preferably at a distance as close to zero as possible, or at zero. L3 corresponds to the distance at which the heat conductive member 10 floats from the bottom of the battery (usually, the portion cooled by the coolant) when the heat conductive structure 1 is arranged in the battery. The smaller L3 is, the easier it is for the heat conductive member 10 to be sandwiched between the cell and the bottom when the cell is placed on the heat conductive member 10 from the side opposite to the bottom. This will be described later.

この実施形態では、連結部40および連結エレメント41,42は、熱伝導構造体1の平面図において共に略T字形状を有する。すなわち、連結部40および連結エレメント41,42は、ハンマーヘッドのような形状を有している。連結エレメント41は、ネック部41aと、ネック部41aよりも大きな体積のヘッド部41bとを連接している。同様に、連結エレメント42は、ネック部42aと、ネック部42aよりも大きな体積のヘッド部42bとを連接している。ネック部41aとネック部42aとの合体によって形成されるネック部と、ヘッド部41bとヘッド部42bとの合体によって形成されるヘッド部とは、同じ厚さ(=L1+L2)である。なお、連結部40の形態は、上記ハンマーヘッドの形態に限定されず、例えば、ネック部のみの形態でも良い。 In this embodiment, the connecting portion 40 and the connecting elements 41 and 42 both have a substantially T-shape in the plan view of the heat conductive structure 1. That is, the connecting portion 40 and the connecting elements 41 and 42 have a shape like a hammer head. The connecting element 41 connects the neck portion 41a and the head portion 41b having a volume larger than that of the neck portion 41a. Similarly, the connecting element 42 connects the neck portion 42a and the head portion 42b having a volume larger than that of the neck portion 42a. The neck portion formed by the union of the neck portion 41a and the neck portion 42a and the head portion formed by the union of the head portion 41b and the head portion 42b have the same thickness (= L1 + L2). The form of the connecting portion 40 is not limited to the form of the hammer head, and may be, for example, a form of only the neck portion.

また、連結部50および連結エレメント51,52は、熱伝導構造体1の平面図において共に略T字形状の空隙部である。すなわち、連結部50および連結エレメント51,52は、ハンマーヘッドのような形状の凹部である。連結エレメント51は、ネック部51aと、ネック部51aよりも大きな体積のヘッド部51bとを連接している。同様に、連結エレメント52は、ネック部52aと、ネック部52aよりも大きな体積のヘッド部52bとを連接している。ネック部51aとネック部52aとの合体によって形成されるネック部と、ヘッド部51bとヘッド部52bとの合体によって形成されるヘッド部とは、同じ厚さ(=L1+L2)である。なお、連結部50の形態は、上記ハンマーヘッドの形態に限定されず、例えば、ネック部のみの形態でも良い。 Further, the connecting portion 50 and the connecting elements 51 and 52 are both substantially T-shaped gap portions in the plan view of the heat conductive structure 1. That is, the connecting portion 50 and the connecting elements 51 and 52 are recesses shaped like a hammer head. The connecting element 51 connects the neck portion 51a and the head portion 51b having a volume larger than that of the neck portion 51a. Similarly, the connecting element 52 connects the neck portion 52a and the head portion 52b having a volume larger than that of the neck portion 52a. The neck portion formed by the union of the neck portion 51a and the neck portion 52a and the head portion formed by the union of the head portion 51b and the head portion 52b have the same thickness (= L1 + L2). The form of the connecting portion 50 is not limited to the form of the hammer head, and may be, for example, a form of only the neck portion.

(変形例1)
次に、変形例1に係る熱伝導構造体について説明する。先に説明した各実施形態と共通する部分については同じ符号を付して重複した説明を省略する。
(Modification example 1)
Next, the heat conductive structure according to the first modification will be described. The parts common to each of the above-described embodiments are designated by the same reference numerals, and duplicated description will be omitted.

図6は、変形例1に係る熱伝導構造体の個別部材に熱伝導部材の端部を挿入する状況と、当該状況の後に図4と同様にD−D線で切断した際の断面図を示す。図6では、熱伝導部材の端部から延出する部分を点線にしている。 FIG. 6 shows a situation in which the end portion of the heat conductive member is inserted into the individual member of the heat conductive structure according to the first modification, and a cross-sectional view when the heat conductive member is cut along the DD line as in FIG. 4 after the situation. show. In FIG. 6, the portion extending from the end portion of the heat conductive member is shown as a dotted line.

変形例1に係る熱伝導構造体1は、個別部材30の凹部25の形状を直方体にして、熱伝導部材10の円筒状の端部を直方体に変形させて凹部25に挿入している点を除き、先に説明した第2実施形態に係る熱伝導構造体1と共通する。円筒形の熱伝導部材10の端部を、矢印Eの方向に、直方体形状の凹部25内部に押し込むと、当該端部は凹部25の形状に合わせて変形する(矢印Fで示す断面図を参照)。この結果、熱伝導部材10の形態は、個別部材30に挿入された端部を直方体にし、それ以外の部分を円筒形状とした形態となる。このように、固定部材30の凹部25は、熱伝導部材10の端部を圧縮変形させた状態で固定していても良い。なお、凹部25は、熱伝導部材10の長さ方向に個別部材30を貫通する貫通孔でも良い。距離L1,L2,L3については、第2実施形態に係る熱伝導構造体1における距離L1,L2,L3と同様である。なお、直方体形状の凹部25は、第1実施形態における固定部材20に用いても良い。 The heat conductive structure 1 according to the first modification has a rectangular parallelepiped shape of the recess 25 of the individual member 30, and the cylindrical end of the heat conductive member 10 is deformed into a rectangular parallelepiped and inserted into the recess 25. Except for this, it is common with the heat conductive structure 1 according to the second embodiment described above. When the end of the cylindrical heat conductive member 10 is pushed into the rectangular parallelepiped recess 25 in the direction of arrow E, the end is deformed according to the shape of the recess 25 (see the cross-sectional view shown by arrow F). ). As a result, the form of the heat conductive member 10 is such that the end portion inserted into the individual member 30 is a rectangular parallelepiped, and the other portion is a cylindrical shape. In this way, the recess 25 of the fixing member 30 may be fixed in a state where the end portion of the heat conductive member 10 is compressed and deformed. The recess 25 may be a through hole that penetrates the individual member 30 in the length direction of the heat conductive member 10. The distances L1, L2, and L3 are the same as the distances L1, L2, and L3 in the heat conductive structure 1 according to the second embodiment. The rectangular parallelepiped recess 25 may be used for the fixing member 20 in the first embodiment.

(変形例2)
次に、変形例2に係る熱伝導構造体について説明する。先に説明した各実施形態および変形例1と共通する部分については同じ符号を付して重複した説明を省略する。
(Modification 2)
Next, the heat conductive structure according to the second modification will be described. The same reference numerals are given to the parts common to each of the above-described embodiments and the first modification, and duplicate description will be omitted.

図7は、変形例2に係る熱伝導構造体に備えられる熱伝導部材の製造工程を段階的に示す。 FIG. 7 shows the manufacturing process of the heat conductive member provided in the heat conductive structure according to the modified example 2 step by step.

変形例2に係る熱伝導構造体1は、熱伝導部材10aを、長尺状のクッション部材11の外側面を熱伝導シート13aにて筒状に覆った部材とする点を除き、先に説明した各実施形態および変形例1に係る熱伝導構造体1と共通する。すなわち、熱伝導シート13aは、略長方形のシートであり、クッション部材11の外側面をスパイラル状に巻回するのではなく、筒状に覆っている。以下、熱伝導部材10aの例示的な製造工程について説明する。 The heat conductive structure 1 according to the second modification will be described above except that the heat conductive member 10a is a member in which the outer surface of the elongated cushion member 11 is tubularly covered with the heat conductive sheet 13a. It is common with the heat conductive structure 1 according to each of the above-described embodiments and the first modification. That is, the heat conductive sheet 13a is a substantially rectangular sheet, and covers the outer surface of the cushion member 11 in a tubular shape instead of winding it in a spiral shape. Hereinafter, an exemplary manufacturing process of the heat conductive member 10a will be described.

まず、長尺状で貫通孔12を有するクッション部材11を用意し、その外側面に、長方形の熱伝導シート13aを筒状に巻く。クッション部材11の外側面あるいは熱伝導シート13aの裏面(貼り付け面)の内の少なくともいずれか一方の面に、接着剤が塗布されているのが好ましい。以上の工程にて、クッション部材11の外側面に熱伝導シート13aを筒状に巻いた形態の熱伝導部材10aが完成する。 First, a long cushion member 11 having a through hole 12 is prepared, and a rectangular heat conductive sheet 13a is wound around the outer surface of the cushion member 11 in a tubular shape. It is preferable that the adhesive is applied to at least one of the outer surface of the cushion member 11 and the back surface (pasting surface) of the heat conductive sheet 13a. Through the above steps, the heat conductive member 10a in the form of a tubular heat conductive sheet 13a wound around the outer surface of the cushion member 11 is completed.

(変形例3)
次に、変形例3に係る熱伝導構造体について説明する。先に説明した各実施形態および各変形例と共通する部分については同じ符号を付して重複した説明を省略する。
(Modification example 3)
Next, the heat conductive structure according to the modified example 3 will be described. The same reference numerals are given to the parts common to each of the above-described embodiments and modifications, and duplicate description will be omitted.

図8は、変形例3に係る熱伝導構造体1に備えられる熱伝導部材の製造工程を示す。 FIG. 8 shows a manufacturing process of the heat conductive member provided in the heat conductive structure 1 according to the modified example 3.

変形例3に係る熱伝導構造体1は、熱伝導部材10bを、熱伝導シート13の裏側に、シート状のクッション部材61を積層した積層体60をスパイラル状に巻いた形態を有する点を除き、先に説明した各実施形態および各変形例に係る熱伝導構造体1と共通する。熱伝導部材10bにおけるクッション部材61は、熱伝導シート13の裏面に沿ってスパイラル状に巻回しているスパイラル状クッション部材である。以下、熱伝導部材10bの例示的な製造工程について説明する。 The heat conductive structure 1 according to the third modification has a form in which the heat conductive member 10b is spirally wound with a laminated body 60 in which a sheet-shaped cushion member 61 is laminated on the back side of the heat conductive sheet 13. , It is common with the heat conductive structure 1 according to each embodiment and each modification described above. The cushion member 61 in the heat conductive member 10b is a spiral cushion member that is spirally wound along the back surface of the heat conductive sheet 13. Hereinafter, an exemplary manufacturing process of the heat conductive member 10b will be described.

まず、略同等の幅を持つ熱伝導シート13およびクッション部材61の二層からなる積層体60を製造する。積層体60は、細長く、かつ厚さの薄いベルト形状の部材である。次に、積層体60をスパイラル状(コイル状と称しても良い)に、一方向に進行するように巻回する。こうして、積層体60をスパイラル状に巻回した細長い形状の熱伝導部材10bが完成する。熱伝導部材10bは、その長さ方向に貫通する貫通路12を有する。変形例3においても、クッション部材61は、その長さ方向に貫通する貫通路12を備えることになる。 First, a laminated body 60 composed of two layers of a heat conductive sheet 13 and a cushion member 61 having substantially the same width is manufactured. The laminated body 60 is an elongated and thin belt-shaped member. Next, the laminated body 60 is wound in a spiral shape (may be referred to as a coil shape) so as to proceed in one direction. In this way, the elongated heat conductive member 10b in which the laminated body 60 is wound in a spiral shape is completed. The heat conductive member 10b has a gangway 12 penetrating in the length direction thereof. Also in the modified example 3, the cushion member 61 is provided with a gangway 12 penetrating in the length direction thereof.

2.バッテリー
次に、一実施形態に係るバッテリーについて説明する。
2. Battery Next, the battery according to the embodiment will be described.

図9は、一実施形態に係るバッテリー内部の平面図および矢印Gの方向から見た左側面図を示す。なお、図9では、バッテリーの筐体は省略されている。図10は、図9のバッテリー内部を含めたバッテリー全体のH−H線断面図および一部Jのセル搭載前後の変化を拡大して示す。 FIG. 9 shows a plan view of the inside of the battery according to the embodiment and a left side view seen from the direction of the arrow G. In FIG. 9, the battery housing is omitted. FIG. 10 shows an enlarged cross-sectional view of the entire battery including the inside of the battery of FIG. 9 and a change before and after mounting the cell of a part J.

この実施形態に係るバッテリー90は、冷却剤85を流す構造を持つ筐体80内に、複数のセル70を備えたバッテリーである。セル70と筐体80との間には、上述のいずれかの熱伝導構造体1を備える。バッテリー90は、例えば、電気自動車用のバッテリーである。バッテリー90は、一方に開口する有底型の筐体80を備える。筐体80は、好ましくは、アルミニウム若しくはアルミニウム基合金から成る。セル70は、筐体80の内部81に配置される。セル70の上方には、電極71が突出している。複数のセル70は、好ましくは、筐体11内において、その両側からネジ等を利用して圧縮する方向に力を与えられている(不図示)。セル70の数は、この実施形態では、9個である。しかし、セル70の数は、2〜8個または10個以上でも良い。 The battery 90 according to this embodiment is a battery having a plurality of cells 70 in a housing 80 having a structure for flowing a coolant 85. One of the above-mentioned heat conductive structures 1 is provided between the cell 70 and the housing 80. The battery 90 is, for example, a battery for an electric vehicle. The battery 90 includes a bottomed housing 80 that opens to one side. The housing 80 is preferably made of aluminum or an aluminum-based alloy. The cell 70 is arranged inside 81 of the housing 80. An electrode 71 projects above the cell 70. The plurality of cells 70 are preferably subjected to a force in the housing 11 in the direction of compression by using screws or the like from both sides thereof (not shown). The number of cells 70 is 9 in this embodiment. However, the number of cells 70 may be 2 to 8 or 10 or more.

筐体80の底部82には、冷却剤85の一例である冷却水を流すために、1または複数の水冷パイプ83が備えられている。「冷却剤」は、「冷却媒体」と称しても良い。セル70は、底部82との間に、熱伝導構造体1を挟むようにして、筐体80の内部81に配置されている。このような構造のバッテリー90では、セル70は、熱伝導構造体1を通じて筐体80に伝熱して、水冷によって効果的に除熱される。なお、冷却剤85は、冷却水に限定されず、液体窒素、エタノール等の有機溶剤も含むように解釈される。冷却剤85は、冷却に用いられる状況下にて、液体であるとは限らず、気体あるいは固体でも良い。 The bottom 82 of the housing 80 is provided with one or more water cooling pipes 83 for flowing cooling water, which is an example of the coolant 85. The "cooling agent" may be referred to as a "cooling medium". The cell 70 is arranged inside the housing 80 so as to sandwich the heat conductive structure 1 with the bottom portion 82. In the battery 90 having such a structure, the cell 70 transfers heat to the housing 80 through the heat conductive structure 1 and is effectively removed by water cooling. The coolant 85 is not limited to cooling water, but is interpreted to include an organic solvent such as liquid nitrogen and ethanol. The coolant 85 is not limited to a liquid under the conditions used for cooling, and may be a gas or a solid.

熱伝導構造体1の複数の熱伝導部材10上から複数のセル70を載せると、熱伝導部材10は、矢印Iで示すように筐体80の底部82に向かって撓み、底部82に接触する。熱伝導部材10が確実に底部82に接触するには、熱伝導部材10と底部82との隙間(前述のT3に相当)はゼロ、または限りなくゼロに近い方が良い。これによって、セル70の熱は、熱伝導部材10の熱伝導シート13、底部82を経由して、冷却剤85へと伝わる。この結果、セル70は速やかに除熱される。ただし、固定部材20の熱伝導率が熱伝導部材10の熱伝導率に近い場合、例えば、固定部材20がグラファイト、グラファイトと樹脂の複合体、アルミニウム等の高熱伝導性の金属、あるいは当該金属フィラー、炭素フィラー、セラミックスフィラーを分散させた樹脂から成る場合には、上記隙間は、熱伝導部材10が底部82に接触しない距離であっても許容される。 When a plurality of cells 70 are placed on the plurality of heat conductive members 10 of the heat conductive structure 1, the heat conductive member 10 bends toward the bottom 82 of the housing 80 and comes into contact with the bottom 82 as shown by an arrow I. .. In order for the heat conductive member 10 to reliably contact the bottom portion 82, the gap between the heat conductive member 10 and the bottom portion 82 (corresponding to T3 described above) should be zero or as close to zero as possible. As a result, the heat of the cell 70 is transferred to the coolant 85 via the heat conductive sheet 13 and the bottom 82 of the heat conductive member 10. As a result, the cell 70 is quickly deheated. However, when the thermal conductivity of the fixing member 20 is close to the thermal conductivity of the heat conductive member 10, for example, the fixing member 20 is made of graphite, a composite of graphite and resin, a highly thermally conductive metal such as aluminum, or the metal filler. In the case of a resin in which a carbon filler and a ceramics filler are dispersed, the gap is allowed even at a distance where the heat conductive member 10 does not contact the bottom portion 82.

熱伝導構造体1を構成する複数の熱伝導部材10の上から複数のセル70を載せると、熱伝導部材10は、その厚さ(=d)をkd(0<k<1)に減少するように圧縮される。隣り合う熱伝導部材10の間の距離(=T)は、t(<T)に減少する。tは、隣り合う熱伝導部材10が圧縮されても、互いに接触しないような距離であるのが望ましい。ただし、tは、隣り合う熱伝導部材10が圧縮された際に互いに接触可能な距離であっても良い。また、元々の熱伝導部材10の幅(=d)は、D(>d)に増大する。この実施形態では、熱伝導部材10は、円筒形状であるため、厚さと幅は同一若しくは同一に近い部材である。しかし、熱伝導部材10は、三角以上の角を有する多角形の端面をもつ筒状体でも良い。また、熱伝導部材10は、楕円形の端面をもつ筒状体でも良い。そのような場合、熱伝導部材10の厚さと幅は、同一でなくとも良い。 When a plurality of cells 70 are placed on the plurality of heat conductive members 10 constituting the heat conductive structure 1, the thickness (= d) of the heat conductive member 10 is reduced to kd (0 <k <1). Is compressed so that. The distance (= T) between the adjacent heat conductive members 10 decreases to t (<T). It is desirable that t is a distance so that the adjacent heat conductive members 10 do not come into contact with each other even if they are compressed. However, t may be a distance that allows the adjacent heat conductive members 10 to come into contact with each other when compressed. Further, the width (= d) of the original heat conductive member 10 increases to D (> d). In this embodiment, since the heat conductive member 10 has a cylindrical shape, the thickness and width are the same or close to the same. However, the heat conductive member 10 may be a tubular body having a polygonal end face having an angle of a triangle or more. Further, the heat conductive member 10 may be a tubular body having an elliptical end face. In such a case, the thickness and width of the heat conductive member 10 do not have to be the same.

隣り合う熱伝導部材10の間の距離Tは、熱伝導構造体1において全て同一の距離であることを要しない。例えば、バッテリー90は、複数のセル70の内、温度のより高いセル70に熱伝導部材10を密集させていても良い。すなわち、温度のより高いセル70に接触する複数の熱伝導部材10の間の隙間Tは、他の隙間Tよりも小さくても良い。これによって、より温度の高いセル70からの除熱を高めることができる。この実施形態では、熱伝導構造体1を構成する18本の熱伝導部材10の列の内、当該列の端から9本目および10本目の熱伝導部材10同士の隙間Tを、他の隙間Tより狭くするのが好ましい。また、当該列の端から8本目、9本目、10本目、11本目の熱伝導部材10の各隙間Tを、他の隙間Tより狭くすることもできる。このように、熱伝導部材10のならんでいる列のほぼ中央領域の隙間Tをより狭くすると、複数のセル70のならんでいる列の中央領域が放熱性の乏しい状況下であっても、除熱しやすくなる。なお、熱伝導部材10同士の最も狭い隙間Tは、上記中央領域に限定されず、上記中央領域以外の場所にあっても良い。 The distance T between the adjacent heat conductive members 10 does not have to be the same in the heat conductive structure 1. For example, in the battery 90, the heat conductive members 10 may be densely packed in the cell 70 having a higher temperature among the plurality of cells 70. That is, the gap T between the plurality of heat conductive members 10 in contact with the cell 70 having a higher temperature may be smaller than the other gaps T. This makes it possible to increase the heat removal from the higher temperature cell 70. In this embodiment, among the rows of 18 heat conductive members 10 constituting the heat conductive structure 1, the gap T between the 9th and 10th heat conductive members 10 from the end of the row is the other gap T. It is preferable to make it narrower. Further, each gap T of the 8th, 9th, 10th, and 11th heat conductive members 10 from the end of the row can be made narrower than the other gaps T. In this way, if the gap T in the substantially central region of the row of the heat conductive members 10 is narrowed, even if the central region of the row of the plurality of cells 70 has poor heat dissipation, it can be removed. It becomes easier to heat. The narrowest gap T between the heat conductive members 10 is not limited to the central region, and may be located in a location other than the central region.

3.その他の実施形態
上述のように、本発明の好適な各実施形態について説明したが、本発明は、これらに限定されることなく、種々変形して実施可能である。
3. 3. Other Embodiments As described above, the preferred embodiments of the present invention have been described, but the present invention is not limited to these, and can be implemented in various modifications.

クッション部材11,61は、熱伝導構造体1の使用に従って、弾性変形しにくくなる場合がある。本願では、その場合であっても、クッション部材11,61は、弾性的に元の形態に戻ろうとする性質を持っている限り、「弾性変形可能なクッション部材」に相当すると解釈される。固定部材20,20aへの熱伝導部材10,10a,10bの固定方法は、熱伝導部材10,10a,10bを、凹部25あるいは貫通孔に挿入し、接着固定し、圧縮保持する等のいかなる方法でも良い。熱伝導部材10,10a,10bを自由に動かないように規制できれば良い。 The cushion members 11 and 61 may be less likely to be elastically deformed with the use of the heat conductive structure 1. In the present application, even in that case, the cushion members 11 and 61 are interpreted as corresponding to the "elastically deformable cushion member" as long as they have the property of elastically returning to the original form. The method of fixing the heat conductive members 10, 10a, 10b to the fixing members 20, 20a is any method such as inserting the heat conductive members 10, 10a, 10b into the recess 25 or the through hole, adhesively fixing, and compressing and holding. But it's okay. It suffices if the heat conductive members 10, 10a and 10b can be regulated so as not to move freely.

固定部材20,20aは、熱伝導部材10,10a,10bの少なくとも一端を固定できれば、両端を固定し、あるいは両端に加えて別の位置を固定する部材でも良い。また、熱伝導部材10,10a,10bは、その長さ方向の一端を、2以上の固定部材20で固定しても良い。個別部材30は、2本以上の熱伝導部材10,10a,10bを固定する部材でも良い。 The fixing members 20 and 20a may be members that fix both ends or fix other positions in addition to both ends as long as at least one end of the heat conductive members 10, 10a and 10b can be fixed. Further, the heat conductive members 10, 10a and 10b may be fixed at one end in the length direction by two or more fixing members 20. The individual member 30 may be a member for fixing two or more heat conductive members 10, 10a, 10b.

熱伝導部材10bにおけるスパイラル状クッション部材61は、熱伝導シート13の幅と同一に限定されず、熱伝導シート13の幅に対して大きくても、あるいは小さくても良い。熱伝導構造体1は、セル70同士の隙間、および/またはセル70と筐体80の内部81の内側面との隙間、に配置されていても良い。 The spiral cushion member 61 in the heat conductive member 10b is not limited to the same width as the heat conductive sheet 13, and may be larger or smaller than the width of the heat conductive sheet 13. The heat conductive structure 1 may be arranged in the gap between the cells 70 and / or in the gap between the cell 70 and the inner side surface of the inner 81 of the housing 80.

また、上述の各実施形態の複数の構成要素は、互いに組み合わせ不可能な場合を除いて、自由に組み合わせ可能である。例えば、変形例1〜3の各構造は、第1実施形態または第2実施形態に係る熱伝導構造体1のいずれにも用いることができる。バッテリー90は、第1実施形態および第2実施形態(変形例1〜3の内の1つ若しくは2以上を用いた形態も含む)のいずれの形態の熱伝導構造体1を搭載していても良い。 Further, the plurality of components of each of the above-described embodiments can be freely combined except when they cannot be combined with each other. For example, each of the structures of Modifications 1 to 3 can be used for any of the heat conductive structures 1 according to the first embodiment or the second embodiment. The battery 90 may be equipped with the heat conductive structure 1 of any of the first embodiment and the second embodiment (including a form using one or two or more of the first to third embodiments). good.

本発明に係る熱伝導構造体は、例えば、自動車用バッテリーの他、自動車、工業用ロボット、発電装置、PC、家庭用電化製品などの各種電子機器にも利用することができる。また、本発明に係るバッテリーは、自動車用のバッテリー以外に、家庭用の充放電可能なバッテリー、PC等の電子機器用のバッテリーにも利用できる。 The heat conductive structure according to the present invention can be used not only for automobile batteries, but also for various electronic devices such as automobiles, industrial robots, power generation devices, PCs, and household electric appliances. Further, the battery according to the present invention can be used not only as a battery for automobiles but also as a rechargeable battery for home use and a battery for electronic devices such as PCs.

1・・・熱伝導構造体、10,10a,10b・・・熱伝導部材、11・・・クッション部材、12・・・貫通路、13,13a・・・熱伝導シート、20,20a・・・固定部材、25・・・凹部、30・・・個別部材、61・・・クッション部材(スパイラル状クッション部材)、70・・・セル(バッテリーセル)、80・・・筐体、85・・・冷却剤、90・・・バッテリー、T・・・間隔。 1 ... Heat conductive structure, 10, 10a, 10b ... Heat conductive member, 11 ... Cushion member, 12 ... Through path, 13, 13a ... Heat conductive sheet, 20, 20a ... -Fixing member, 25 ... concave, 30 ... individual member, 61 ... cushion member (spiral cushion member), 70 ... cell (battery cell), 80 ... housing, 85 ... -Cushion, 90 ... Battery, T ... Interval.

Claims (10)

複数の長尺状の熱伝導部材と、
前記熱伝導部材の長さ方向の両端部の内の少なくとも一方の端部を固定する部材であって、前記端部を挿入する凹部若しくは貫通孔を有する固定部材と、
を備え、
前記熱伝導部材は、弾性変形可能なクッション部材と、前記クッション部材より熱伝導性が高く、かつ前記クッション部材の外側の面を覆っている熱伝導シートと、を備え、
前記固定部材は、前記熱伝導部材の幅方向に所定の間隔をおいて、複数の前記熱伝導部材を固定していることを特徴とする熱伝導構造体。
With multiple long heat conductive members,
A member for fixing at least one end of both ends in the length direction of the heat conductive member, and a fixing member having a recess or a through hole into which the end is inserted.
With
The heat conductive member includes a cushion member that can be elastically deformed, and a heat conductive sheet that has higher heat conductivity than the cushion member and covers the outer surface of the cushion member.
The fixing member is a heat conductive structure characterized in that a plurality of the heat conductive members are fixed at predetermined intervals in the width direction of the heat conductive member.
前記固定部材は、前記熱伝導部材の長さ方向の両端部を固定していることを特徴とする請求項1に記載の熱伝導構造体。 The heat conductive structure according to claim 1, wherein the fixing member fixes both ends of the heat conductive member in the length direction. 前記固定部材は、前記熱伝導部材の厚さ方向両側から挟み込む部材であることを特徴とする請求項1または2に記載の熱伝導構造体。 The heat conductive structure according to claim 1 or 2, wherein the fixing member is a member sandwiched from both sides in the thickness direction of the heat conductive member. 前記固定部材の前記凹部若しくは前記貫通孔は、前記熱伝導部材の前記端部を圧縮変形させた状態で固定していることを特徴とする請求項1から3のいずれか1項に記載の熱伝導構造体。 The heat according to any one of claims 1 to 3, wherein the recess or the through hole of the fixing member is fixed in a state where the end portion of the heat conductive member is compressed and deformed. Conductive structure. 前記固定部材は、前記複数の熱伝導部材の内の一部の前記熱伝導部材の長さ方向の前記端部を固定する個別部材を複数連結していることを特徴とする請求項1から4のいずれか1項に記載の熱伝導構造体。 Claims 1 to 4 are characterized in that the fixing member connects a plurality of individual members for fixing the end portion in the length direction of a part of the plurality of heat conductive members. The heat conductive structure according to any one of the above. 前記熱伝導シートは、前記クッション部材の長さ方向にスパイラル状に巻回しながら進行する部材であることを特徴とする請求項1から5のいずれか1項に記載の熱伝導構造体。 The heat conductive structure according to any one of claims 1 to 5, wherein the heat conductive sheet is a member that advances while spirally winding in the length direction of the cushion member. 前記クッション部材は、その長さ方向に貫通する貫通路を備えることを特徴とする請求項1から6のいずれか1項に記載の熱伝導構造体。 The heat conductive structure according to any one of claims 1 to 6, wherein the cushion member includes a gangway that penetrates in the length direction thereof. 前記クッション部材は、前記熱伝導シートの裏面に沿ってスパイラル状に巻回しているスパイラル状クッション部材であることを特徴とする請求項6に記載の熱伝導構造体。 The heat conductive structure according to claim 6, wherein the cushion member is a spiral cushion member that is spirally wound along the back surface of the heat conductive sheet. 冷却剤を流す構造を持つ筐体内に、複数のバッテリーセルを備えたバッテリーであって、前記バッテリーセルと前記筐体との間に、請求項1から8のいずれか1項に記載の熱伝導構造体を備えることを特徴とするバッテリー。 The heat conduction according to any one of claims 1 to 8, which is a battery having a plurality of battery cells in a housing having a structure for flowing a coolant, and between the battery cells and the housing. A battery characterized by having a structure. 複数の前記バッテリーセルの内、温度のより高い前記バッテリーセルに前記熱伝導部材を密集させていることを特徴とする請求項9に記載のバッテリー。

The battery according to claim 9, wherein the heat conductive member is densely packed in the battery cell having a higher temperature among the plurality of battery cells.

JP2020019259A 2020-02-07 2020-02-07 Thermal conductive structure and battery equipped with the same Active JP7402705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020019259A JP7402705B2 (en) 2020-02-07 2020-02-07 Thermal conductive structure and battery equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020019259A JP7402705B2 (en) 2020-02-07 2020-02-07 Thermal conductive structure and battery equipped with the same

Publications (2)

Publication Number Publication Date
JP2021125409A true JP2021125409A (en) 2021-08-30
JP7402705B2 JP7402705B2 (en) 2023-12-21

Family

ID=77459420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020019259A Active JP7402705B2 (en) 2020-02-07 2020-02-07 Thermal conductive structure and battery equipped with the same

Country Status (1)

Country Link
JP (1) JP7402705B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321468A (en) * 1996-05-30 1997-12-12 Toshiba Corp Heat radiating device
JP2013004783A (en) * 2011-06-17 2013-01-07 Sony Corp Heat radiation structure and display device
US20180376618A1 (en) * 2017-06-27 2018-12-27 Joinset Co., Ltd. Thermally conductive member
JP2019125665A (en) * 2018-01-16 2019-07-25 信越ポリマー株式会社 Heat dissipation structure and battery provided with the same
WO2019244882A1 (en) * 2018-06-20 2019-12-26 信越ポリマー株式会社 Heat dissipation structure, heat dissipation structure production method, and battery
JP2020191171A (en) * 2019-05-20 2020-11-26 信越ポリマー株式会社 Heat dissipation structure and battery including the same
WO2021106444A1 (en) * 2019-11-27 2021-06-03 信越ポリマー株式会社 Heat conductive member and battery provided with same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321468A (en) * 1996-05-30 1997-12-12 Toshiba Corp Heat radiating device
JP2013004783A (en) * 2011-06-17 2013-01-07 Sony Corp Heat radiation structure and display device
US20180376618A1 (en) * 2017-06-27 2018-12-27 Joinset Co., Ltd. Thermally conductive member
JP2019125665A (en) * 2018-01-16 2019-07-25 信越ポリマー株式会社 Heat dissipation structure and battery provided with the same
WO2019244882A1 (en) * 2018-06-20 2019-12-26 信越ポリマー株式会社 Heat dissipation structure, heat dissipation structure production method, and battery
JP2020191171A (en) * 2019-05-20 2020-11-26 信越ポリマー株式会社 Heat dissipation structure and battery including the same
WO2021106444A1 (en) * 2019-11-27 2021-06-03 信越ポリマー株式会社 Heat conductive member and battery provided with same

Also Published As

Publication number Publication date
JP7402705B2 (en) 2023-12-21

Similar Documents

Publication Publication Date Title
JP6871183B2 (en) Heat dissipation structure and battery with it
US11495842B2 (en) Heat dissipating structure and battery provided with the same
JP6894933B2 (en) Heat dissipation structure and battery with it
WO2021241161A1 (en) Heat radiation structure, and battery provided with same
JP2020191171A (en) Heat dissipation structure and battery including the same
JP7190311B2 (en) Thermal structure and battery
JP2019207759A (en) Heat dissipation structure and battery
JP6994122B2 (en) Heat dissipation structure and battery with it
JP2020187885A (en) Heat dissipation structure and battery including the same
JPWO2020105377A1 (en) Heat dissipation structure and battery with it
JP2021125409A (en) Heat conductive structure and battery including the same
JP2022175357A (en) Heat conduction member and battery with the same
JP2021005582A (en) Heat dissipation structure and battery including the same
JP2021005508A (en) Heat dissipation structure and battery including the same
WO2020184109A1 (en) Heat-dissipating structure sheet and method for manufacturing heat-dissipating structure
JP7394666B2 (en) Heat dissipation structure and battery equipped with the same
JP7254661B2 (en) Heat dissipation structure and battery with same
WO2022034759A1 (en) Heat dissipation member, heat dissipation structure, and battery
JP2022012195A (en) Heat dissipation structure and battery with the same
JP2020202272A (en) Heat dissipation structure and battery having the same
JP2021096895A (en) Thermal conductor and battery including the same
JP2021044140A (en) Heat dissipation structure and battery having the same
JP2022147019A (en) Heat-conducting unit and battery with the same
JP2020135952A (en) Heat radiation structure, and battery including the same
JP2021166140A (en) Heat dissipation member, heat dissipation structure, and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231211

R150 Certificate of patent or registration of utility model

Ref document number: 7402705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150