JP2021124690A - Optical device, article manufacturing method, and optical member manufacturing method - Google Patents

Optical device, article manufacturing method, and optical member manufacturing method Download PDF

Info

Publication number
JP2021124690A
JP2021124690A JP2020020076A JP2020020076A JP2021124690A JP 2021124690 A JP2021124690 A JP 2021124690A JP 2020020076 A JP2020020076 A JP 2020020076A JP 2020020076 A JP2020020076 A JP 2020020076A JP 2021124690 A JP2021124690 A JP 2021124690A
Authority
JP
Japan
Prior art keywords
film
optical
optical device
light
photocatalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2020020076A
Other languages
Japanese (ja)
Other versions
JP2021124690A5 (en
Inventor
春名 川島
Haruna Kawashima
春名 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2020020076A priority Critical patent/JP2021124690A/en
Priority to KR1020210005691A priority patent/KR20210101129A/en
Priority to CN202110147111.5A priority patent/CN113311667A/en
Publication of JP2021124690A publication Critical patent/JP2021124690A/en
Publication of JP2021124690A5 publication Critical patent/JP2021124690A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70916Pollution mitigation, i.e. mitigating effect of contamination or debris, e.g. foil traps
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Health & Medical Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

To provide a technique advantageous for solving problems caused by the reduced intensity of light reaching an illuminated surface.SOLUTION: An exposure device includes: a light source that emits light that has a continuous wavelength range; and at least one optical element provided with an optical film including a photocatalytic film. The exposure device is configured so that light emitted from the light source is incident on an irradiated surface via at least one optical element. The lower limit wavelength in the wavelength range of light emitted from the light source and incident on an irradiated surface via at least one optical element is determined by the light absorption characteristics of the photocatalytic film.SELECTED DRAWING: Figure 1

Description

本発明は、光学装置、物品製造方法および光学部材製造方法に関する。 The present invention relates to an optical device, an article manufacturing method, and an optical member manufacturing method.

レンズ、ミラーなど光学素子を備えた露光装置では、紫外光の照射に伴って光学素子の表面に汚染物質が堆積することによって光学性能(透過率や反射率)が低下する。特許文献1には、石英ガラス基板上に光触媒物質からなる厚さ5Å以上50Å以下の光触媒膜が設けられた光学部材が記載されている。特許文献2には、低屈折率層及び高屈折率層が交互に積層され、最上層が低屈折率層で構成され、少なくとも最上層の直下の高屈折率層が光触媒活性を有する金属酸化物層で構成された多層反射防止膜が記載されている。特許文献3には、最表面の低屈折率透明膜と、該低屈折率透明膜の下層に設けられた高屈折率透明膜とを有する反射防止膜が記載されている。 In an exposure apparatus provided with an optical element such as a lens or a mirror, the optical performance (transmittance or reflectance) deteriorates due to the accumulation of contaminants on the surface of the optical element due to irradiation with ultraviolet light. Patent Document 1 describes an optical member in which a photocatalytic film made of a photocatalytic substance and having a thickness of 5 Å or more and 50 Å or less is provided on a quartz glass substrate. In Patent Document 2, low refractive index layers and high refractive index layers are alternately laminated, the uppermost layer is composed of a low refractive index layer, and at least the high refractive index layer immediately below the uppermost layer is a metal oxide having photocatalytic activity. A multilayer antireflection film composed of layers is described. Patent Document 3 describes an antireflection film having a low refractive index transparent film on the outermost surface and a high refractive index transparent film provided under the low refractive index transparent film.

特開2005−345812号公報Japanese Unexamined Patent Publication No. 2005-345812 特開2000−329904号公報Japanese Unexamined Patent Publication No. 2000-329904 特開2008−003390号公報Japanese Unexamined Patent Publication No. 2008-003390

露光装置等の光学装置において、光学素子の表面に光触媒膜を含む光学膜を設けると、その光触媒膜によって光が吸収され、被照射面に入射する光の強度が低下しうる。 When an optical film including a photocatalyst film is provided on the surface of an optical element in an optical device such as an exposure device, light is absorbed by the photocatalyst film, and the intensity of light incident on the irradiated surface may decrease.

本発明は、被照射面に到達する光の強度が低下することによって生じる問題を解決するために有利な技術を提供することを目的とする。 An object of the present invention is to provide an advantageous technique for solving a problem caused by a decrease in the intensity of light reaching an irradiated surface.

本発明の1つの側面は、光学装置に係り、前記光学装置は、連続した波長域を有する光を射出する光源と、光触媒膜を含む光学膜が設けられた少なくとも1つの光学素子とを備え、前記光源から射出された光が前記少なくとも1つの光学素子を介して被照射面に入射する光学装置であって、前記光源から射出され前記少なくとも1つの光学素子を介して前記被照射面に入射する光の波長域の下限波長が前記光触媒膜の光吸収特性によって定められる。 One aspect of the present invention relates to an optical device, which comprises a light source that emits light having a continuous wavelength range and at least one optical element provided with an optical film including a photocatalyst film. An optical device in which light emitted from the light source is incident on an irradiated surface via the at least one optical element, and is emitted from the light source and incident on the irradiated surface via the at least one optical element. The lower limit wavelength of the optical wavelength range is determined by the light absorption characteristics of the photocatalyst film.

本発明は、被照射面に到達する光の強度が低下することによって生じる問題を解決するために有利な技術が提供される。 The present invention provides an advantageous technique for solving a problem caused by a decrease in the intensity of light reaching an irradiated surface.

第1乃至第4実施形態の光学装置の構成を示す図。The figure which shows the structure of the optical apparatus of 1st to 4th Embodiment. 光源部の水銀ランプの発光波長を例示する図。The figure which illustrates the emission wavelength of the mercury lamp of a light source part. 1面分の反射防止膜の分光透過率を例示する図。The figure which exemplifies the spectral transmittance of the antireflection film for one surface. 40面分の反射防止膜の分光透過率を例示する図。The figure which exemplifies the spectral transmittance of the antireflection film for 40 surfaces. 第1乃至第4反射防止膜(光学膜)あるいは光学部材の構成を示す図。The figure which shows the structure of the 1st to 4th antireflection film (optical film) or an optical member. 光触媒としてHfO膜を用いた場合の露光装置における露光光の分光特性を規格化した図。The figure which standardized the spectral characteristic of the exposure light in the exposure apparatus when the HfO 2 film was used as a photocatalyst. 光触媒としてTa膜を用いた場合の露光装置における露光光の分光特性を規格化した図。The figure which standardized the spectral characteristic of the exposure light in the exposure apparatus when the Ta 2 O 5 film was used as a photocatalyst. 光触媒としてTiO膜を用いた場合の露光装置における露光光の分光特性を規格化した図。The figure which standardized the spectral characteristic of the exposure light in the exposure apparatus when the TiO 2 film was used as a photocatalyst. 従来の露光装置における露光光(基板上の感光材に入射する光)の分光特性を規格化した図。The figure which standardized the spectral characteristic of the exposure light (light incident on the photosensitive material on a substrate) in a conventional exposure apparatus.

以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。 Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. The following embodiments do not limit the invention according to the claims. Although a plurality of features are described in the embodiment, not all of the plurality of features are essential to the invention, and the plurality of features may be arbitrarily combined. Further, in the attached drawings, the same or similar configurations are given the same reference numbers, and duplicate explanations are omitted.

図1には、第1実施形態の光学装置100の構成が模式的に示されている。光学装置100は、例えば、基板上の感光材(フォトレジスト)に原版のパターンが転写されるように該感光材を露光する露光装置またはその構成要素(例えば、照明光学系、投影光学系など)として構成されうる。ここでは、より具体的な例を提示するために、光学装置100が露光装置として構成された例を説明する。 FIG. 1 schematically shows the configuration of the optical device 100 of the first embodiment. The optical device 100 is, for example, an exposure device or a component thereof (for example, an illumination optical system, a projection optical system, etc.) that exposes the photosensitive material so that the pattern of the original plate is transferred to the photosensitive material (photoresist) on the substrate. Can be configured as. Here, in order to present a more specific example, an example in which the optical device 100 is configured as an exposure device will be described.

露光装置として構成された光学装置100は、光源部1、照明光学系2、投影光学系3、原版ステージ部4および基板ステージ部5等の複数のブロックを備えうる。複数のブロックのうち互いに隣り合うブロック同士の境界には、シールガラス6(シール窓)が配置されうる。シールガラス6は、典型的には、光学的なパワーを有しない光学素子である。ここで、シールガラス6という表現は、シールガラス61、62、63、64の全部または少なくとも1つを説明するために使用される。 The optical device 100 configured as an exposure device may include a plurality of blocks such as a light source unit 1, an illumination optical system 2, a projection optical system 3, an original plate stage unit 4, and a substrate stage unit 5. A seal glass 6 (seal window) may be arranged at the boundary between blocks adjacent to each other among the plurality of blocks. The sealing glass 6 is typically an optical element that does not have optical power. Here, the expression seal glass 6 is used to describe all or at least one of the seal glasses 61, 62, 63, 64.

光源部1と照明光学系2との境界には、シールガラス61が配置され、光源部1と照明光学系2とを分離している。照明光学系2と原版ステージ部4との境界には、シールガラス62が配置され、シールガラス62によって照明光学系2と原版ステージ部4とが分離されている。原版ステージ部4と投影光学系3との境界には、シールガラス63が配置され、シールガラス63によって原版ステージ部4と投影光学系3とが分離されている。投影光学系3と基板ステージ部5との境界には、シールガラス64が配置され、シールガラス64によって投影光学系3と基板ステージ部5とが分離されている。光源部1を構成する複数の部品は、開放された又は閉鎖された1つの空間に配置されうる。 A seal glass 61 is arranged at the boundary between the light source unit 1 and the illumination optical system 2 to separate the light source unit 1 and the illumination optical system 2. A seal glass 62 is arranged at the boundary between the illumination optical system 2 and the original plate stage portion 4, and the illumination optical system 2 and the original plate stage portion 4 are separated by the seal glass 62. A seal glass 63 is arranged at the boundary between the original plate stage portion 4 and the projection optical system 3, and the original plate stage portion 4 and the projection optical system 3 are separated by the seal glass 63. A seal glass 64 is arranged at the boundary between the projection optical system 3 and the substrate stage portion 5, and the projection optical system 3 and the substrate stage portion 5 are separated by the seal glass 64. The plurality of components constituting the light source unit 1 may be arranged in one open or closed space.

照明光学系2を構成する複数の部品は、開放された又は閉鎖された1つの空間に配置されうる。原版ステージ部4を構成する複数の部品は、開放された又は閉鎖された1つの空間に配置されうる。投影光学系3を構成する複数の部品は、開放された又は閉鎖された1つの空間に配置されうる。基板ステージ部5を構成する複数の部品は、開放された又は閉鎖された1つの空間に配置されうる。 The plurality of components constituting the illumination optical system 2 may be arranged in one open or closed space. The plurality of parts constituting the original stage portion 4 may be arranged in one open or closed space. The plurality of components constituting the projection optical system 3 may be arranged in one open or closed space. The plurality of components constituting the board stage portion 5 may be arranged in one open or closed space.

光源部1は、例えば、水銀ランプ101および楕円ミラー102を含みうる。水銀ランプ101は、連続した波長域を有する光を射出する光源の一例である。照明光学系2は、例えば、ミラー201、レンズ203、ハエの目レンズ204、レンズ205、ミラー206、スリット部材207およびレンズ(結像光学系)208を含みうる。投影光学系3は、例えば、ミラー301、凹面ミラー302、凸面ミラー303およびミラー304を含みうる。原版ステージ部4は、原版41を保持する原版ステージ42と、原版ステージ42を駆動する原版ステージ駆動機構(不図示)とを含みうる。基板ステージ部5は、基板51を保持する基板ステージ52と、基板ステージ52を駆動する基板ステージ駆動機構(不図示)とを含みうる。 The light source unit 1 may include, for example, a mercury lamp 101 and an elliptical mirror 102. The mercury lamp 101 is an example of a light source that emits light having a continuous wavelength range. The illumination optical system 2 may include, for example, a mirror 201, a lens 203, a fly eye lens 204, a lens 205, a mirror 206, a slit member 207, and a lens (imaging optical system) 208. The projection optical system 3 may include, for example, a mirror 301, a concave mirror 302, a convex mirror 303, and a mirror 304. The original plate stage unit 4 may include an original plate stage 42 that holds the original plate 41 and an original plate stage drive mechanism (not shown) that drives the original plate stage 42. The substrate stage portion 5 may include a substrate stage 52 that holds the substrate 51 and a substrate stage drive mechanism (not shown) that drives the substrate stage 52.

光源部1の水銀ランプ101から発せられた光は、楕円ミラー102で反射され、シールガラス61を通過し、ミラー201で反射され、楕円ミラー102の第2焦点面202に集光する。第2焦点面202に集光した光は、レンズ203を通り、ハエの目レンズ204の入射面に入射し、ハエの目レンズ204の射出面から出射し、レンズ205を通り、ミラー206で反射され、スリット部材207が配置された面をケーラー照明する。スリット部材207は、スリット開口を有し、スリット部材207が配置された面に入射した光は、そのスリット開口を通り、更にレンズ208、シールガラス62を通って原版41をクリティカル照明する。 The light emitted from the mercury lamp 101 of the light source unit 1 is reflected by the elliptical mirror 102, passes through the sealing glass 61, is reflected by the mirror 201, and is focused on the second focal plane 202 of the elliptical mirror 102. The light focused on the second focal plane 202 passes through the lens 203, enters the incident surface of the fly's eye lens 204, exits from the ejection surface of the fly's eye lens 204, passes through the lens 205, and is reflected by the mirror 206. The surface on which the slit member 207 is arranged is illuminated by Koehler. The slit member 207 has a slit opening, and the light incident on the surface on which the slit member 207 is arranged passes through the slit opening and further passes through the lens 208 and the seal glass 62 to critically illuminate the original plate 41.

原版41を照明した光は、原版41で回折される。原版41で回折された光は、シールガラス63を通り、ミラー301、凹面ミラー302、凸面ミラー303で反射され、更に凹面ミラー302、ミラー304で反射され、シールガラス64を通り、基板51上の感光材に結像する。原版41を保持した原版ステージ42と基板51を保持した基板ステージ52は、図1のY方向に平行な方向にスキャン駆動される。これにより、原版41のパターンが基板51上の感光材に潜像として転写される。潜像は、現像工程を経て物理的なパターンに変換される。水銀ランプ101(光源)と基板51との間の光路に配置された部材の全部または一部は、この明細書において、光学素子あるいは光学部材とも表現される。 The light that illuminates the original plate 41 is diffracted by the original plate 41. The light diffracted by the original plate 41 passes through the seal glass 63, is reflected by the mirror 301, the concave mirror 302, and the convex mirror 303, is further reflected by the concave mirror 302, the mirror 304, passes through the seal glass 64, and is on the substrate 51. An image is formed on the photosensitive material. The original plate stage 42 holding the original plate 41 and the substrate stage 52 holding the substrate 51 are scanned and driven in a direction parallel to the Y direction in FIG. As a result, the pattern of the original plate 41 is transferred as a latent image to the photosensitive material on the substrate 51. The latent image is converted into a physical pattern through a developing process. All or part of the members arranged in the optical path between the mercury lamp 101 (light source) and the substrate 51 are also referred to as optical elements or optical members in this specification.

図9には、従来の露光装置において基板(の感光材)を露光するために使用される光の分光特性が示されている。従来の露光装置では、水銀ランプのi線、h線、g線の輝線スペクトルを含む340nm〜450nmの波長域の光が露光光として使用されていた。ディスプレイデバイス等のデバイスの製造において、高精細化に対する要求に応えるべく露光装置の解像力を上げるためには、露光光の波長域を短波長側に広げることが有利である。例えば、感光材(フォトレジスト)としてノボラック型レジストを用いる場合は、その感度特性に合わせて、ノボラック型レジストに入射する光(つまり露光光)の波長域の短波長側の波長、つまり波長域の下限波長を290nmとすることが有用である。 FIG. 9 shows the spectral characteristics of light used for exposing a substrate (photosensitive material) in a conventional exposure apparatus. In the conventional exposure apparatus, light in the wavelength range of 340 nm to 450 nm including the emission line spectra of the i-line, h-line, and g-line of the mercury lamp is used as the exposure light. In the manufacture of devices such as display devices, it is advantageous to widen the wavelength range of the exposure light to the short wavelength side in order to increase the resolution of the exposure apparatus in order to meet the demand for high definition. For example, when a novolak type resist is used as the photosensitive material (photoresist), the wavelength on the short wavelength side of the wavelength range of the light (that is, the exposure light) incident on the novolak type resist, that is, the wavelength range, is adjusted according to the sensitivity characteristics. It is useful to set the lower limit wavelength to 290 nm.

しかし、露光装置における露光光の波長域の下限波長を290nmとすると、従来は用いられていなかった290nm〜340nmの光によって、露光装置内の光学素子の表面に光化学反応による汚染物質の堆積が促進される。そこで、光学素子の表面への汚染物質の堆積を防ぐ技術が必要となる。 However, when the lower limit wavelength of the wavelength range of the exposure light in the exposure apparatus is set to 290 nm, the light of 290 nm to 340 nm, which has not been used in the past, promotes the deposition of contaminants by the photochemical reaction on the surface of the optical element in the exposure apparatus. Will be done. Therefore, a technique for preventing the accumulation of pollutants on the surface of the optical element is required.

図2には、図1の光源部1の水銀ランプ101をDeep UV型とした場合に水銀ランプ101が発生する光の分光特性が規格化して示されている。水銀ランプ101が発生する光の波長域の下限波長は、240nmであり、露光光の波長域の下限波長である290nmよりも短波長側である。 FIG. 2 shows standardized spectral characteristics of the light generated by the mercury lamp 101 when the mercury lamp 101 of the light source unit 1 of FIG. 1 is of the Deep UV type. The lower limit wavelength of the wavelength range of the light generated by the mercury lamp 101 is 240 nm, which is shorter than the lower limit wavelength of 290 nm in the wavelength range of the exposure light.

図3、図4には、光学素子に設けられる反射防止膜(光学膜)が光触媒膜を含む場合における該反射防止膜の分光特性が示されている。図3、図4には、光触媒膜としてHfO膜、Ta膜、TiO膜が用いられた場合の反射防止膜の分光透過率が示されている。図3には、1面分の反射防止膜の分光透過率が示されている。図4には、40面分の反射防止膜の分光透過率が示されている。40面分の反射防止膜の分光透過率は、光学装置100の全体、即ち、水銀ランプ101から基板51に至る光路における分光透過率に相当しうる。40面は、20個の光学素子の各々の2つの面でありうる。破線81、801は、光触媒膜がHfO膜である場合の反射防止膜の分光透過率を示している。実線82、802は、光触媒膜がTa膜である場合の反射防止膜の分光透過率を示している。破線83、803は、光触媒膜がTiO膜である場合の反射防止膜の分光透過率を示している。図4に示されるように、光触媒膜としてHfO膜を用いた反射防止膜は、260nm以下の光を吸収する。光触媒膜としてTa膜を用いた反射防止膜は、320nm以下の光を吸収する。光触媒膜としてTiO膜を用いた反射防止膜は、410nm以下の光を吸収する。 3 and 4 show the spectral characteristics of the antireflection film (optical film) provided in the optical element when the antireflection film (optical film) includes a photocatalytic film. 3 and 4 show the spectral transmittances of the antireflection film when the HfO 2 film, the Ta 2 O 5 film, and the TiO 2 film are used as the photocatalyst film. FIG. 3 shows the spectral transmittance of one antireflection film. FIG. 4 shows the spectral transmittances of the antireflection films for 40 surfaces. The spectral transmittance of the antireflection film for 40 surfaces can correspond to the spectral transmittance of the entire optical device 100, that is, in the optical path from the mercury lamp 101 to the substrate 51. The 40 planes can be two planes of each of the 20 optics. Dashed 81,801 is photocatalyst film indicates the spectral transmittance of the antireflection film when it is HfO 2 film. The solid lines 82 and 802 show the spectral transmittance of the antireflection film when the photocatalyst film is a Ta 2 O 5 film. The broken lines 83 and 803 show the spectral transmittance of the antireflection film when the photocatalyst film is a TiO 2 film. As shown in FIG. 4, the antireflection film using the HfO 2 film as the photocatalytic film absorbs light of 260 nm or less. An antireflection film using a Ta 2 O 5 film as a photocatalyst film absorbs light of 320 nm or less. An antireflection film using a TiO 2 film as a photocatalyst film absorbs light of 410 nm or less.

図6、図7、図8には、それぞれ、HfO膜を用いた反射防止膜、Ta膜を用いた反射防止膜、TiO膜を用いた反射防止膜を採用した露光装置における露光光(基板51上の感光材に入射する光)の分光特性が規格化して示されている。図6に示されたHfO膜を用いた反射防止膜の場合、露光装置における露光光の波長域の下限波長は240nmであり、Deep UV型の水銀ランプ101は発生する光の波長域の下限波長と同じである。このことより、HfOを用いた反射防止膜は光吸収が少なく、HfOを用いた反射防止膜では、光吸収による光触媒活性の発現が極めて弱いことが分かる。本発明者は、実験により、HfO膜を用いた反射防止膜の表面では、光吸収による光触媒活性が極めて弱いために光化学反応によって光学素子に汚染物質が堆積することを確認した。 6 and 7 and 8 show an exposure apparatus using an antireflection film using an HfO 2 film, an antireflection film using a Ta 2 O 5 film, and an antireflection film using a TiO 2 film, respectively. The spectral characteristics of the exposure light (light incident on the photosensitive material on the substrate 51) are standardized and shown. In the case of the antireflection film using the HfO 2 film shown in FIG. 6, the lower limit wavelength of the wavelength range of the exposure light in the exposure apparatus is 240 nm, and the Deep UV type mercury lamp 101 has the lower limit of the wavelength range of the generated light. Same as wavelength. From this fact, the anti-reflection film using HfO 2 has less light absorption in the anti-reflection film using HfO 2, it is found the expression of photocatalytic activity by light absorption is very weak. The present inventor has confirmed through experiments that pollutants are deposited on the optical element by a photochemical reaction because the photocatalytic activity due to light absorption is extremely weak on the surface of the antireflection film using the HfO 2 film.

図7に示されたTa膜を用いた反射防止膜の場合、露光装置としての光学装置100における露光光の波長域の下限波長は290nmであり、ノボラック型レジストの感度特性に適していることが分かる。本発明者は、実験により、Ta膜を用いた反射防止膜の表面では光吸収による光触媒活性が発現し、光化学反応による光学素子への汚染物質の堆積が生じないことを確認した。ノボラック型レジストを使用する場合において、光学装置100における露光光の波長域の下限波長が290nmであると、290nm未満の波長を有する光は、光触媒膜によって吸収され、光学素子(光学部材)に対する汚染物質の堆積を防止する。また、290nm以上の波長を有する光は、ノボラック型レジストの感光に寄与する。そして、光触媒膜を有する反射防止膜は、ノボラック型レジストの感光に寄与する波長の光については高い透過率を有する。よって、本実施形態は、被照射面に到達する光の強度が低下することによって生じる問題を解決するために有利である。 In the case of the antireflection film using the Ta 2 O 5 film shown in FIG. 7, the lower limit wavelength of the exposure light in the optical device 100 as the exposure device is 290 nm, which is suitable for the sensitivity characteristics of the novolak resist. You can see that there is. The present inventor has confirmed through experiments that photocatalytic activity due to light absorption is exhibited on the surface of the antireflection film using the Ta 2 O 5 film, and that no contaminants are deposited on the optical element due to the photochemical reaction. When a novolak type resist is used, if the lower limit wavelength of the exposure light in the optical device 100 is 290 nm, the light having a wavelength less than 290 nm is absorbed by the photocatalyst film and contaminates the optical element (optical member). Prevents material buildup. Further, light having a wavelength of 290 nm or more contributes to the photosensitivity of the novolak resist. The antireflection film having a photocatalytic film has a high transmittance for light having a wavelength that contributes to the photosensitivity of the novolak resist. Therefore, this embodiment is advantageous for solving the problem caused by the decrease in the intensity of the light reaching the irradiated surface.

ノボラック型レジストは、露光光の波長域の下限波長である290nmにおいて感光性を有する。あるいは、ノボラック型レジストは、露光光の波長域の下限波長である290nmにおいて、該レジストの最大感度の10%以上、または、20%以上、または、30%以上、または、40%以上、または、50%以上の感度を有しうる。 The novolak resist has photosensitivity at 290 nm, which is the lower limit of the wavelength range of the exposure light. Alternatively, the novolak type resist has 10% or more, 20% or more, 30% or more, or 40% or more, or 40% or more of the maximum sensitivity of the resist at 290 nm, which is the lower limit wavelength of the wavelength range of the exposure light. It can have a sensitivity of 50% or more.

図8に示されたTiO膜を用いた反射防止膜の場合、露光装置における露光光の波長域の下限波長は370nmであり、従来の露光装置における露光光の波長域の下限波長である波長340nmより長波長であることが分かる。このことより、露光装置における露光光の波長域の下限波長をノボラック型レジストの感度特性に合わせて短波長化する目的には、TiO膜を用いた反射防止膜は適さないことが分かる。 In the case of the antireflection film using the TiO 2 film shown in FIG. 8, the lower limit wavelength of the exposure light wavelength range in the exposure apparatus is 370 nm, which is the lower limit wavelength of the exposure light wavelength range in the conventional exposure apparatus. It can be seen that the wavelength is longer than 340 nm. From this, it can be seen that the antireflection film using the TiO 2 film is not suitable for the purpose of shortening the lower limit wavelength of the wavelength range of the exposure light in the exposure apparatus according to the sensitivity characteristics of the novolak resist.

図5には、本実施形態の反射防止膜(光学膜)7あるいは光学部材70の構造が模式的に示されている。光学部材70は、光学素子700と、光学素子700の上に配置された反射防止膜7とを含む。反射防止膜7の層構成に特別な制限はないが、図5の例では、反射防止膜7は、光学素子700の上に配置された高屈折率層704、低屈折率層703、高屈折率層702、および、低屈折率層701の4層を有する。低屈折率層701は、反射防止膜7の最上層、即ち、空間に露出する層である。高屈折率層702は、最上層の直下の高屈折率層であり、光触媒膜で構成される。反射防止膜7は、光学部材70による光の反射を広い波長域にわたって低く抑えるために、最上層が低屈折率層701で構成され、最上層の直下の層が光触媒膜からなる高屈折率層702で構成されることが有利である。 FIG. 5 schematically shows the structure of the antireflection film (optical film) 7 or the optical member 70 of the present embodiment. The optical member 70 includes an optical element 700 and an antireflection film 7 arranged on the optical element 700. The layer structure of the antireflection film 7 is not particularly limited, but in the example of FIG. 5, the antireflection film 7 has a high refractive index layer 704, a low refractive index layer 703, and a high refractive index arranged on the optical element 700. It has four layers, a rate layer 702 and a low refractive index layer 701. The low refractive index layer 701 is the uppermost layer of the antireflection film 7, that is, a layer exposed to space. The high-refractive index layer 702 is a high-refractive index layer directly below the uppermost layer, and is composed of a photocatalytic film. The antireflection film 7 has a high refractive index layer in which the uppermost layer is composed of a low refractive index layer 701 and the layer immediately below the uppermost layer is a photocatalyst film in order to suppress the reflection of light by the optical member 70 to a low level over a wide wavelength range. It is advantageous to be composed of 702.

1つの構成例では、高屈折率層704はHfO膜で構成され、低屈折率層703はSiO膜で構成され、高屈折率層702はTa膜で構成され、低屈折率層701はSiO膜で構成され、露光光の波長域の下限が290nmである。高屈折率層702としてのTa膜は、光触媒膜として機能する。なお、高屈折率層704はHfO膜の光触媒活性は極めて低く、HfO膜を光触媒膜としては機能しない。低屈折率層701としてのSiO膜は、最上層である。他の観点において、低屈折率層701としてのSiO膜は、光触媒膜としてのTa膜を覆う表面膜である。 In one configuration example, the high refractive index layer 704 is composed of an HfO 2 film, the low refractive index layer 703 is composed of a SiO 2 film, and the high refractive index layer 702 is composed of a Ta 2 O 5 film, and has a low refractive index. The layer 701 is composed of a SiO 2 film, and the lower limit of the wavelength range of the exposure light is 290 nm. The Ta 2 O 5 film as the high refractive index layer 702 functions as a photocatalytic film. The high refractive index layer 704 is photocatalytic activity of the HfO 2 film is very low, it does not function the HfO 2 film as a photocatalyst film. The SiO 2 film as the low refractive index layer 701 is the uppermost layer. From another point of view, the SiO 2 film as the low refractive index layer 701 is a surface film that covers the Ta 2 O 5 film as the photocatalytic film.

光学装置100は、光触媒膜を含む反射防振膜(光学膜)7が設けられた少なくとも1つの光学素子を備え、光源から射出された光が該少なくとも1つの光学素子を介して被照射面に入射する光学装置の一例として理解されうる。光学装置100において、該光源から射出され該少なくとも1つの光学素子を介して該被照射面に入射する光の波長域の下限波長は、該光触媒膜の光吸収特性によって定められる。反射防止膜7は、光源と基板との間の光路に配置された少なくとも1つの光透過型光学素子の1又は2つの面に配置されうる。 The optical device 100 includes at least one optical element provided with a reflection anti-vibration film (optical film) 7 including a photocatalyst film, and light emitted from a light source is applied to an irradiated surface via the at least one optical element. It can be understood as an example of an incident optical device. In the optical device 100, the lower limit wavelength of the wavelength range of the light emitted from the light source and incident on the irradiated surface via the at least one optical element is determined by the light absorption characteristics of the photocatalyst film. The antireflection film 7 may be arranged on one or two surfaces of at least one light transmissive optical element arranged in the optical path between the light source and the substrate.

楕円ミラー102、ミラー201、ミラー206、ミラー301、凹面ミラー302、凸面ミラー303、ミラー304等のミラーの全部または一部には、光触媒膜を含む反射増加膜(光学膜)が設けられてもよい。該反射増加膜に含まれる光触媒膜には、前述の反射防止膜に含まれる光触媒膜が適用されうる。光触媒膜を含む反射防止膜は、バンドパスフィルター、NDフィルター等の光学素子に設けられてもよい。 Even if all or part of the mirrors such as the elliptical mirror 102, the mirror 201, the mirror 206, the mirror 301, the concave mirror 302, the convex mirror 303, and the mirror 304 are provided with a reflection increasing film (optical film) including a photocatalytic film. good. The photocatalyst film contained in the antireflection film described above can be applied to the photocatalyst film contained in the reflection increasing film. The antireflection film including the photocatalyst film may be provided on an optical element such as a bandpass filter or an ND filter.

以下、第2実施形態について説明する。第1実施形態として言及しない事項は、第1実施形態に従いうる。光学装置100を構成する複数の光学素子のうち光源である水銀ランプ101から遠い光学素子ほど、反射防止膜の光触媒膜による光吸収が少なくなり光触媒活性が弱くなる。第2実施形態では、光触媒膜を含む反射防止膜が設けられる光学素子が限定される。 Hereinafter, the second embodiment will be described. Matters not mentioned as the first embodiment may follow the first embodiment. Of the plurality of optical elements constituting the optical device 100, the farther the optical element is from the mercury lamp 101, which is the light source, the less light is absorbed by the photocatalytic film of the antireflection film, and the photocatalytic activity becomes weaker. In the second embodiment, the optical element provided with the antireflection film including the photocatalytic film is limited.

まず、光源部1、照明光学系2、投影光学系3、原版ステージ部4および基板ステージ部5がそれぞれ配置された5つの空間におけるエアーのクリーン度について説明する。光源部1では、水銀ランプ101の冷却のために多量のエアーが必要であるので、通常は、光源部1を構成する複数の部品が配置された空間に対してクリーンルームのエアーが直接引き込まれ、冷却用のエアーとして使用されうる。その為、光源部1の空間には、他の4つの空間に比べ、汚染物質が多く存在している。例えば、外気に含まれる化学汚染物質、製造装置で用いられるプロセス材料に起因する化学汚染物質、オペレーターの汗、呼気などに含まれる化学汚染物質、クリーンルームの内壁などから出る化学汚染物質などが、光源部1の空間に引き込まれる可能性がある。 First, the cleanliness of air in the five spaces in which the light source unit 1, the illumination optical system 2, the projection optical system 3, the original plate stage unit 4 and the substrate stage unit 5 are arranged will be described. Since the light source unit 1 requires a large amount of air for cooling the mercury lamp 101, normally, the air in the clean room is directly drawn into the space where a plurality of parts constituting the light source unit 1 are arranged. Can be used as cooling air. Therefore, more pollutants are present in the space of the light source unit 1 than in the other four spaces. For example, chemical pollutants contained in the outside air, chemical pollutants caused by process materials used in manufacturing equipment, chemical pollutants contained in operator sweat, exhaled breath, etc., chemical pollutants emitted from the inner wall of a clean room, etc. are light sources. There is a possibility of being drawn into the space of part 1.

照明光学系2および投影光学系3については、閉鎖された閉空間内にそれらを構成する複数の部品を維持することが容易であるので、照明光学系2の空間および投影光学系3の空間は、他の空間に比べ空間のクリーン度を最も高く保つことが可能である。例えば、空間内にCDA(クリーンドライエアー)を充満させて該空間を陽圧に保つ、あるいは、ケミカルフィルターを用いた専用の循環空調を通したエアーで該空間を陽圧に保つことが考えられる。専用の循環空調では、閉鎖空間の内部を陽圧に保つ際に漏れ出るエアーの量に相当するエアーをCDA(クリーンドライエアー)で補充する為、専用の循環空調に用いるケミカルフィルターの寿命を長く保つことが可能である。 As for the illumination optical system 2 and the projection optical system 3, since it is easy to maintain a plurality of components constituting them in a closed closed space, the space of the illumination optical system 2 and the space of the projection optical system 3 are , It is possible to keep the cleanliness of the space the highest compared to other spaces. For example, it is conceivable to fill the space with CDA (clean dry air) to keep the space at a positive pressure, or to keep the space at a positive pressure with air passed through a dedicated circulating air conditioner using a chemical filter. .. In the dedicated circulation air conditioning, the air equivalent to the amount of air leaking when keeping the inside of the closed space at positive pressure is replenished with CDA (clean dry air), so the life of the chemical filter used for the dedicated circulation air conditioning is extended. It is possible to keep.

原版ステージ部4の空間は、露光装置の本体部分を格納しているチャンバに搭載されたケミカルフィルターを通して導入されるクリーンルームのエアーを用いて陽圧に保たれる。原版ステージ部4は、通常は、原版ステージ部4に接続された原版保管場所(不図示)との間で原版を搬送する際に原版ステージ部4の陽圧が弱るが、原版保管場所のエアーのクリーン度が高いため、汚染物質が原版ステージ部4に侵入する可能性は低い。しかし、チャンバに搭載されたケミカルフィルターは、チャンバ内を陽圧に保つように常にクリーンルームのエアーを吸引しチャンバ内に供給している為、クリーンルームのエアーの汚染度に合わせて適宜交換されなければならない。その為、ケミカルフィルターの交換が行われなかった場合、チャンバに搭載されたケミカルフィルターの汚染物質の除去能力が低下し、クリーンルームのエアーに存在する汚染物質が原版ステージ部4に侵入する可能性がある。 The space of the original stage portion 4 is maintained at a positive pressure by using air in a clean room introduced through a chemical filter mounted in a chamber containing the main body portion of the exposure apparatus. Normally, when the original plate is transported to and from the original plate storage location (not shown) connected to the original plate stage portion 4, the positive pressure of the original plate stage portion 4 is weakened, but the air in the original plate storage location is weakened. Since the cleanliness of the plate is high, it is unlikely that contaminants will invade the original stage portion 4. However, since the chemical filter mounted in the chamber always sucks the air in the clean room and supplies it into the chamber so as to keep the inside of the chamber at a positive pressure, it must be replaced appropriately according to the degree of contamination of the air in the clean room. It doesn't become. Therefore, if the chemical filter is not replaced, the ability of the chemical filter mounted on the chamber to remove contaminants is reduced, and there is a possibility that contaminants existing in the air of the clean room may invade the original stage portion 4. be.

また、後述するように基板ステージ部5に接続されたコーターデベロッパ(不図示)から汚染物質が基板ステージ部5に侵入し、その汚染物質が露光装置内の隙間を通り、原版ステージ部4に侵入する可能性がある。 Further, as will be described later, a contaminant enters the substrate stage 5 from a coater developer (not shown) connected to the substrate stage 5, and the contaminant passes through a gap in the exposure apparatus and enters the original stage 4. there's a possibility that.

基板ステージ部5の空間は、露光装置の本体部分を格納しているチャンバに搭載されたケミカルフィルターを通して導入されるクリーンルームのエアーを用いて陽圧に保たれる。しかし、基板ステージ部5には、通常は、コーターデベロッパが接続されており、コーターデベロッパと光学装置100との間で基板が搬送される。このような基板の搬送の際に基板ステージ部5の空間の陽圧が弱まり、コーターデベロッパで発生する感光材等のプロセス材料に起因する汚染物質が基板ステージ部5の空間に侵入しうる。また、ケミカルフィルターの交換が行われなかった場合、チャンバに搭載されたケミカルフィルターの汚染物質の除去能力が低下し、クリーンルームのエアーに存在する汚染物質が基板ステージ部5に侵入する可能性がある。 The space of the substrate stage portion 5 is maintained at a positive pressure by using air in a clean room introduced through a chemical filter mounted in a chamber containing the main body portion of the exposure apparatus. However, a coater developer is usually connected to the substrate stage portion 5, and the substrate is conveyed between the coater developer and the optical device 100. During such transfer of the substrate, the positive pressure in the space of the substrate stage portion 5 weakens, and contaminants generated by the process material such as the photosensitive material generated by the coater developer can invade the space of the substrate stage portion 5. Further, if the chemical filter is not replaced, the ability of the chemical filter mounted on the chamber to remove contaminants is reduced, and the contaminants existing in the air of the clean room may invade the substrate stage 5. ..

上述した5つの空間内のエアーのクリーン度を考えると、照明光学系2および投影光学系3の内部の光学素子に対しては、光触媒膜を含む反射防止膜を用いる必要性が低いと言える。よって、第2実施形態では、光学装置100が有する複数の空間のうち互いに隣り合う空間の境界に配置された光学素子、換言すると、空間と空間とを分離する光学素子、具体的には、シールガラス6に対して、光触媒膜を含む反射防止膜7が設けられうる。他の観点において、水銀ランプ101(光源)から射出された光は、複数の空間を介して被照射面(基板上の感光材)に入射し、水銀ランプ101と被照射面との間の光路には、光触媒膜を含む少なくとも1つの光学素子700が配置されうる。該少なくとも1つの光学素子700は、該複数の空間のうち互いに隣り合う空間の境界に配置された光学素子を含みうる。 Considering the cleanliness of the air in the five spaces described above, it can be said that there is little need to use an antireflection film containing a photocatalytic film for the optical elements inside the illumination optical system 2 and the projection optical system 3. Therefore, in the second embodiment, the optical element arranged at the boundary between the spaces adjacent to each other among the plurality of spaces of the optical device 100, in other words, the optical element that separates the space from the space, specifically, the seal. An antireflection film 7 including a photocatalyst film may be provided on the glass 6. From another viewpoint, the light emitted from the mercury lamp 101 (light source) is incident on the irradiated surface (photosensitive material on the substrate) through a plurality of spaces, and the optical path between the mercury lamp 101 and the irradiated surface. At least one optical element 700 including a photocatalytic film may be arranged therein. The at least one optical element 700 may include an optical element arranged at the boundary of adjacent spaces among the plurality of spaces.

光学装置100が有する複数の空間の少なくとも1つの空間の中には、被照射面(基板上の感光材)に入射する光の下限波長に影響を与える光触媒膜が設けられていない光学素子が配置されうる。あるいは、光学装置100が有する複数の空間の各々の中には、被照射面(基板上の感光材)に入射する光の下限波長に影響を与える光触媒膜が設けられていない光学素子が配置されうる。 In at least one of the plurality of spaces included in the optical device 100, an optical element having no photocatalytic film that affects the lower limit wavelength of light incident on the irradiated surface (photosensitive material on the substrate) is arranged. Can be done. Alternatively, in each of the plurality of spaces included in the optical device 100, an optical element not provided with a photocatalytic film that affects the lower limit wavelength of the light incident on the irradiated surface (photosensitive material on the substrate) is arranged. sell.

水銀ランプ101(光源)から射出された光は、互いに隣り合う第1空間および第2空間を介して被照射面(基板上の感光材)に入射し、該第2空間は、該第1空間よりも多くの汚染物質を有しうる。該少なくとも1つの光学素子は、光触媒膜を含む反射防止膜(光学膜)が該第2空間に面するように配置された光学素子を含む。ここで、該光学素子の2つの面のうち該第1空間の側の面には、被照射面に入射する光の下限波長に影響を与える光触媒膜が設けられなくてもよい。 The light emitted from the mercury lamp 101 (light source) is incident on the irradiated surface (photosensitive material on the substrate) via the first space and the second space adjacent to each other, and the second space is the first space. Can have more pollutants. The at least one optical element includes an optical element in which an antireflection film (optical film) including a photocatalytic film is arranged so as to face the second space. Here, the photocatalyst film that affects the lower limit wavelength of the light incident on the irradiated surface may not be provided on the surface of the two surfaces of the optical element on the side of the first space.

以下、第3実施形態について説明する。第3実施形態として言及しない事項は、第1又は第2実施形態に従いうる。第3実施形態では、感光材として化学増幅型レジストを用いる場合を考える。液晶ディスプレイデバイス等のディスプレイデバイスの製造において使用される化学増幅型レジストの感度特性では、光学装置100における露光光の波長域の下限波長を270nmとすることが望ましい場合がある。 Hereinafter, the third embodiment will be described. Matters not mentioned as the third embodiment may follow the first or second embodiment. In the third embodiment, a case where a chemically amplified resist is used as the photosensitive material is considered. In the sensitivity characteristics of the chemically amplified resist used in the manufacture of display devices such as liquid crystal display devices, it may be desirable to set the lower limit wavelength of the exposure light in the optical device 100 to 270 nm.

しかしながら、光吸収波長域の上限波長が露光光の波長域の下限波長に適合あるいは一致する光触媒膜が従来は存在しなかった。第3実施形態は、露光光の波長域の下限波長が化学増幅型レジストの感度特性に適合するように光触媒膜の光吸収波長域の上限波長を調整する方法を提供する。以下では、2つの方法を説明する。 However, conventionally, there has not been a photocatalyst film in which the upper limit wavelength of the light absorption wavelength range matches or matches the lower limit wavelength of the exposure light wavelength range. The third embodiment provides a method of adjusting the upper limit wavelength of the light absorption wavelength range of the photocatalyst film so that the lower limit wavelength of the wavelength range of the exposure light matches the sensitivity characteristics of the chemically amplified resist. Two methods will be described below.

第1の方法では、光触媒膜として、HfOx(x<2)膜を用いる。光触媒膜は、Hfをターゲットとして用いるスパッタ法によって下地(図5の構成例では、低屈折率膜703)の上に形成されうる。この際に成膜チャンバに供給する酸素ガスの量が不足すると、下地の上に形成される膜は、HfOの状態ではなく、HfOx(x<2)の状態となり、これにより光吸収波長の上限波長が長波長側にシフトする。本発明者は、実験を通して、上記の方法に従ってHfOx(x<2)膜で光触媒膜を形成することによって、光吸収波長の上限波長を270nmに調整することができることを確認した。光吸収波長の上限波長を270nmに調整することによって、露光光の波長域の下限波長も270nmに調整される。 In the first method, an HfOx (x <2) membrane is used as the photocatalytic membrane. The photocatalyst film can be formed on the substrate (low refractive index film 703 in the configuration example of FIG. 5) by a sputtering method using Hf as a target. If the amount of oxygen gas supplied to the film forming chamber is insufficient at this time, the film formed on the substrate is not in the state of HfO 2 but in the state of HfOx (x <2), which causes the light absorption wavelength. The upper limit wavelength shifts to the longer wavelength side. Through experiments, the present inventor has confirmed that the upper limit wavelength of the light absorption wavelength can be adjusted to 270 nm by forming a photocatalyst film with an HfOx (x <2) film according to the above method. By adjusting the upper limit wavelength of the light absorption wavelength to 270 nm, the lower limit wavelength of the wavelength range of the exposure light is also adjusted to 270 nm.

第1の方法で製造される反射防止膜(光学膜)7あるいは光学部材70は、図5に模式的に示される構造を有しうる。1つの実施例では、高屈折率層704はHfO膜で構成され、低屈折率層703はSiO膜で構成され、高屈折率層702はHfOx(x<2)膜で構成され、低屈折率層701はSiO膜で構成された。このような反射防止膜(光学膜)7が設けられた光学素子を有する光学装置100において、露光光の波長域の下限は、270nmに調整されていた。 The antireflection film (optical film) 7 or the optical member 70 manufactured by the first method may have the structure schematically shown in FIG. In one embodiment, the high refractive index layer 704 is composed of an HfO 2 film, the low refractive index layer 703 is composed of a SiO 2 film, and the high refractive index layer 702 is composed of an HfOx (x <2) film, which is low. The refractive index layer 701 was composed of a SiO 2 film. In the optical device 100 having an optical element provided with such an antireflection film (optical film) 7, the lower limit of the wavelength range of the exposure light was adjusted to 270 nm.

上記の第1の方法において、HfOx(x<2)膜をスパッタ法によって形成する際の酸素ガス濃度を調整することができる。これによって、露光光の波長域の下限波長を、光触媒膜としてHfO膜を用いた場合の240nmから、光触媒膜としてTa膜を用いた290nmの間の任意の波長に調整できる。 In the first method described above, the oxygen gas concentration when the HfOx (x <2) film is formed by the sputtering method can be adjusted. Thereby, the lower limit wavelength of the wavelength range of the exposure light can be adjusted to an arbitrary wavelength between 240 nm when the HfO 2 film is used as the photocatalyst film and 290 nm when the Ta 2 O 5 film is used as the photocatalyst film.

第1の方法によれば、光学部材を製造する光学部材製造方法は、光学素子の上に光触媒膜を含む光学膜を形成する処理工程を含み、該処理工程は、該光触媒膜の光吸収波長が目標光吸収波長になるように該光触媒膜を形成する成膜工程を含む。該成膜工程では、酸素ガス濃度の調整によって該光触媒膜の光吸収波長が該目標光吸収波長になるように該光触媒膜を形成する工程を含みうる。 According to the first method, the optical member manufacturing method for manufacturing an optical member includes a treatment step of forming an optical film including a photocatalyst film on an optical element, and the treatment step includes a light absorption wavelength of the photocatalyst film. Includes a film forming step of forming the photocatalyst film so that is the target light absorption wavelength. The film forming step may include a step of forming the photocatalyst film so that the light absorption wavelength of the photocatalyst film becomes the target light absorption wavelength by adjusting the oxygen gas concentration.

第2の方法では、光触媒膜として、HfOおよびTaの混合膜を用いる。光触媒膜は、HfOおよびTaを混成した材料を用いて、真空蒸着法によって下地(図5の構成例では、低屈折率膜703)の上に形成されうる。この際にHfOとTaとの混成比を変えることができる。これにより、露光光の波長域の下限波長を、光触媒膜としてHfO膜を用いた場合の240nmから、光触媒膜としてTa膜を用いた290nmの間の任意の波長に調整できる。 In the second method, a mixed membrane of HfO 2 and Ta 2 O 5 is used as the photocatalytic membrane. The photocatalyst film can be formed on a substrate (low refractive index film 703 in the configuration example of FIG. 5) by a vacuum vapor deposition method using a material in which HfO 2 and Ta 2 O 5 are mixed. At this time, the hybrid ratio of HfO 2 and Ta 2 O 5 can be changed. Thereby, the lower limit wavelength of the wavelength range of the exposure light can be adjusted to an arbitrary wavelength between 240 nm when the HfO 2 film is used as the photocatalyst film and 290 nm when the Ta 2 O 5 film is used as the photocatalyst film.

第2の方法で製造される反射防止膜(光学膜)7あるいは光学部材70は、図5に模式的に示される構造を有しうる。1つの実施例では、高屈折率層704はHfO膜で構成され、低屈折率層703はSiO膜で構成され、高屈折率層702はHfOおよびTaの混合膜で構成され、低屈折率層701はSiO膜で構成された。このような反射防止膜(光学膜)7が設けられた光学素子を有する光学装置100において、露光光の波長域の下限は、270nmに調整されていた。 The antireflection film (optical film) 7 or the optical member 70 manufactured by the second method may have the structure schematically shown in FIG. In one embodiment, the high refractive index layer 704 is composed of an HfO 2 film, the low refractive index layer 703 is composed of a SiO 2 film, and the high refractive index layer 702 is composed of a mixed film of HfO 2 and Ta 2 O 5. The low refractive index layer 701 was composed of a SiO 2 film. In the optical device 100 having an optical element provided with such an antireflection film (optical film) 7, the lower limit of the wavelength range of the exposure light was adjusted to 270 nm.

以下、第4実施形態について説明する。第4実施形態として言及しない事項は、第1乃至第3実施形態のいずれか、または、それらの任意の組み合わせに従いうる。クリーンルーム内のエアーに存在するプロセスガスにより、反射防止膜の表面に酸が付着しうる。これを考慮すると、反射防止膜の最上層を構成する低屈折率層(光触媒膜を覆う表面膜)は、耐酸性を有する膜で構成されることが望ましい。 Hereinafter, the fourth embodiment will be described. Matters not mentioned as the fourth embodiment may follow any of the first to third embodiments, or any combination thereof. The process gas present in the air in the clean room can cause acid to adhere to the surface of the antireflection coating. Considering this, it is desirable that the low refractive index layer (surface film covering the photocatalyst film) constituting the uppermost layer of the antireflection film is composed of a film having acid resistance.

例えば、最上層がMgF膜である場合、MgFは、硫酸または硝酸との反応によって、硫酸マグネシウムまたは硝酸マグネシウムに変化し、反射防止膜の透過率が低下しうる。そこで、反射防止膜の最上層は、硫酸および硝酸に対して耐性を有するSiO膜で構成されうる。 For example, when the uppermost layer is an MgF 2 film, MgF 2 may change to magnesium sulfate or magnesium nitrate by the reaction with sulfuric acid or nitric acid, and the transmittance of the antireflection film may decrease. Therefore, the uppermost layer of the antireflection film may be composed of a SiO 2 film having resistance to sulfuric acid and nitric acid.

しかし、反射防止膜の最上層がSiO膜で構成されている場合、該最上層の表面にHF(フッ化水素酸)が付着すると、該最上層がHFによって腐食(溶解)される。ここで、反射防止膜の表面に部分的に有機汚染物質が付着した場合、該有機汚染物質が付着した部分と他の部分(何も付着していないか、無機汚染物質が付着している)とでSiOの溶解量が異なることになる。この溶解量の差は、反射防止膜の表面に白い曇りを発生させ、反射防止膜の透過率を低下させる。 However, when the uppermost layer of the antireflection film is composed of a SiO 2 film, when HF (hydrofluoric acid) adheres to the surface of the uppermost layer, the uppermost layer is corroded (dissolved) by HF. Here, when an organic pollutant partially adheres to the surface of the antireflection film, the portion to which the organic pollutant adheres and another portion (nothing adheres or an inorganic pollutant adheres). The dissolved amount of SiO 2 is different between and. This difference in the amount of dissolution causes white fogging on the surface of the antireflection film and lowers the transmittance of the antireflection film.

そこで、反射防止膜の表面に硫酸および/または硝酸に加えHFが付着する場合は、反射防止膜の表面膜は、これらの酸と反応しない有機フッ素化合物膜、例えば、パーフルオロアルキシラン((CF)nSi)膜を含むことが望ましい。 Therefore, when HF adheres to the surface of the antireflection film in addition to sulfuric acid and / or nitric acid, the surface film of the antireflection film is an organic fluorine compound film that does not react with these acids, for example, perfluoroalkylylan ((CF). 2 ) It is desirable to include an nSi) film.

第4実施形態に係る反射防止膜(光学膜)7あるいは光学部材70は、図5に模式的に示される構造を有しうる。 The antireflection film (optical film) 7 or the optical member 70 according to the fourth embodiment may have a structure schematically shown in FIG.

第1例において、高屈折率層704はHfO膜で構成され、低屈折率層703はSiO膜で構成され、高屈折率層702はTa膜で構成され、低屈折率層701は(CF)nSi膜で構成されうる。 In the first example, the high refractive index layer 704 is composed of an HfO 2 film, the low refractive index layer 703 is composed of a SiO 2 film, and the high refractive index layer 702 is composed of a Ta 2 O 5 film, and is a low refractive index layer. 701 may be composed of a (CF 2 ) nSi film.

第2例において、高屈折率層704はHfO膜で構成され、低屈折率層703はSiO膜で構成され、高屈折率層702はHfOx(x<2)膜で構成され、低屈折率層701は(CF)nSi膜で構成されうる。 In the second example, the high refractive index layer 704 is composed of an HfO 2 film, the low refractive index layer 703 is composed of a SiO 2 film, and the high refractive index layer 702 is composed of an HfOx (x <2) film, and has a low refractive index. The rate layer 701 may be composed of a (CF 2 ) nSi film.

第3例において、高屈折率層704はHfO膜で構成され、低屈折率層703はSiO膜で構成され、高屈折率層702はHfOおよびTaの混合膜で構成され、低屈折率層701は(CF)nSi膜で構成されうる。 In the third example, the high refractive index layer 704 is composed of an HfO 2 film, the low refractive index layer 703 is composed of a SiO 2 film, and the high refractive index layer 702 is composed of a mixed film of HfO 2 and Ta 2 O 5. The low refractive index layer 701 may be composed of a (CF 2 ) nSi film.

第4例において、高屈折率層704はHfO膜で構成され、低屈折率層703はSiO膜で構成され、高屈折率層702はTa膜で構成され、低屈折率層701はSiO膜と、該SiO膜を覆う(CF)nSi膜で構成されうる。 In the fourth example, the high refractive index layer 704 is composed of an HfO 2 film, the low refractive index layer 703 is composed of a SiO 2 film, and the high refractive index layer 702 is composed of a Ta 2 O 5 film, and is a low refractive index layer. 701 may be composed of a SiO 2 film and a (CF 2 ) nSi film covering the SiO 2 film.

第5例において、高屈折率層704はHfO膜で構成され、低屈折率層703はSiO膜で構成され、高屈折率層702はHfOx(x<2)膜で構成され、低屈折率層701はSiO膜と、該SiO膜を覆う(CF)nSi膜で構成されうる。 In the fifth example, the high refractive index layer 704 is composed of an HfO 2 film, the low refractive index layer 703 is composed of a SiO 2 film, and the high refractive index layer 702 is composed of an HfOx (x <2) film, and has a low refractive index. The rate layer 701 may be composed of a SiO 2 film and a (CF 2 ) nSi film covering the SiO 2 film.

第6例において、高屈折率層704はHfO膜で構成され、低屈折率層703はSiO膜で構成され、高屈折率層702はHfOとTaとの混合膜で構成され、低屈折率層701はSiO膜と、該SiO膜を覆う(CF)nSi膜で構成されうる。 In the sixth example, the high refractive index layer 704 is composed of an HfO 2 film, the low refractive index layer 703 is composed of a SiO 2 film, and the high refractive index layer 702 is composed of a mixed film of HfO 2 and Ta 2 O 5. The low refractive index layer 701 may be composed of a SiO 2 film and a (CF 2 ) nSi film covering the SiO 2 film.

第4例、第5例、第6例は、それぞれ、第1例、第2例、第3例における(CF)nSi膜の直下にSiO層を追加し、下層と(CF)nSi膜との密着度がこの追加のSiO膜によって強化されている。 In the fourth, fifth, and sixth examples, the SiO 2 layer is added directly under the (CF 2 ) nSi film in the first, second, and third examples, respectively, and the lower layer and the (CF 2 ) nSi are added. Adhesion to the film is enhanced by this additional SiO 2 film.

以下、上記の第1乃至第4実施形態の変形例を説明する。 Hereinafter, modified examples of the above-mentioned first to fourth embodiments will be described.

図1に示された光学装置100において、シールガラス62を無くし、その代わりにレンズ208の下面に光触媒層を含む反射防止膜を形成し、レンズ208の下面を照明光学系2と原版ステージ部4の2つの空間の境界としてもよい。 In the optical device 100 shown in FIG. 1, the sealing glass 62 is eliminated, an antireflection film containing a photocatalyst layer is formed on the lower surface of the lens 208 instead, and the lower surface of the lens 208 is the illumination optical system 2 and the original plate stage portion 4. It may be the boundary between the two spaces.

光学装置100における露光光の波長域の下限波長を従来の露光装置と同様の340nmにする場合は、光触媒膜としてTa膜の代わりにNbO膜を用いることができる。光学装置100における露光光の波長域の下限波長を定める他の光触媒膜としては、例えば、ZrO膜またはZnO膜を挙げることができる。 When the lower limit wavelength of the exposure light in the optical device 100 is set to 340 nm, which is the same as that of the conventional exposure device, an NbO 5 film can be used as the photocatalyst film instead of the Ta 2 O 5 film. As another photocatalyst film that determines the lower limit wavelength of the wavelength range of the exposure light in the optical device 100, for example, a ZrO 2 film or a ZnO film can be mentioned.

光源をXeランプまたはXe水銀ランプで構成すると、光源が発生する光の波長域の下限は、より短波長側の200nmとなる。そこで、光源をXeランプまたはXe水銀ランプで構成する場合、露光装置における露光光の波長域の下限波長を240nmとする場合は、HfO膜にも光触媒活性が発現する。HfO膜を光触媒膜とする反射防止膜(光学膜)7あるいは光学部材70は、図5に模式的に示される構造を有しうる。1つの実施例では、高屈折率層704はHfO膜で構成され、低屈折率層703はSiO膜で構成され、高屈折率層702はHfO膜で構成され、低屈折率層701はSiO膜または(CF)nSi膜で構成された。このような反射防止膜(光学膜)7が設けられた光学素子を有する光学装置100において、露光光の波長域の下限は、240nmに調整された。高屈折率層702の他、高屈折率層704も光触媒膜として作用しうる。 When the light source is composed of an Xe lamp or an Xe mercury lamp, the lower limit of the wavelength range of the light generated by the light source is 200 nm on the shorter wavelength side. Therefore, when the light source is composed of an Xe lamp or an Xe mercury lamp, and the lower limit wavelength of the wavelength range of the exposure light in the exposure apparatus is 240 nm, the photocatalytic activity is also exhibited in the HfO 2 film. The antireflection film (optical film) 7 or the optical member 70 having the HfO 2 film as a photocatalytic film may have the structure schematically shown in FIG. In one embodiment, the high index of refraction layer 704 is composed of HfO 2 film, the low index of refraction layer 703 is composed of SiO 2 film, the high index of refraction layer 702 is composed of HfO 2 film, and the low index of refraction layer 701 is composed of HfO 2 film. Was composed of a SiO 2 film or a (CF 2 ) nSi film. In the optical device 100 having an optical element provided with such an antireflection film (optical film) 7, the lower limit of the wavelength range of the exposure light was adjusted to 240 nm. In addition to the high refractive index layer 702, the high refractive index layer 704 can also act as a photocatalytic film.

光源をXeランプまたはXe水銀ランプで構成し、露光装置における露光光の波長域の下限波長を220nmとする場合は、膜材料をSiOとAlとし、光触媒膜をAlOx(x<3)膜とすることができる。膜材料をSiOとAlとすると、反射防止膜の透過開始波長は200nmとなる。 When the light source is composed of an Xe lamp or an Xe mercury lamp and the lower limit wavelength of the exposure light in the exposure apparatus is 220 nm, the film materials are SiO 2 and Al 2 O 3 , and the photocatalyst film is Al 2 Ox (x). <3) It can be a film. When the film materials are SiO 2 and Al 2 O 3 , the transmission start wavelength of the antireflection film is 200 nm.

したがって、第3実施形態で説明したHfOx(x<2)と同様に、Alをスパッタ法で形成する際の酸素ガス濃度を調整することによってAlOx(x<3)膜を形成することができる。これによって、露光光の波長域の下限波長を220nmとすることができる。このような構造を有する反射防止膜(光学膜)7あるいは光学部材70は、図5に模式的に示される構造を有しうる。1つの実施例では、高屈折率層704はAl膜で構成され、低屈折率層703はSiO膜で構成され、高屈折率層702はAlOx(x<3)膜で構成され、低屈折率層701はSiO膜または(CF)nSi膜で構成された。このような反射防止膜(光学膜)7が設けられた光学素子を有する光学装置100において、露光光の波長域の下限は、220nmに調整されていた。 Therefore, similarly to HfOx (x <2) described in the third embodiment, the Al 2 Ox (x <3) film is formed by adjusting the oxygen gas concentration when forming Al 2 O 3 by the sputtering method. can do. Thereby, the lower limit wavelength of the wavelength range of the exposure light can be set to 220 nm. The antireflection film (optical film) 7 or the optical member 70 having such a structure may have the structure schematically shown in FIG. In one embodiment, the high refractive index layer 704 is made up of an Al 2 O 3 film, the low refractive index layer 703 is made up of a SiO 2 film, and the high refractive index layer 702 is made up of an Al 2 Ox (x <3) film. The low refractive index layer 701 was composed of a SiO 2 film or a (CF 2 ) nSi film. In the optical device 100 having an optical element provided with such an antireflection film (optical film) 7, the lower limit of the wavelength range of the exposure light is adjusted to 220 nm.

最上層あるいは表面膜を構成する有機フッ素化合物膜は、パーフルオロアルキシラン膜以外のパーフルオロアルキル化合物膜であってもよい。また、最上層あるいは表面膜を構成する有機フッ素化合物膜は、パーフルオロエーテル化合物膜であってもよい。 The organic fluorine compound film constituting the uppermost layer or the surface film may be a perfluoroalkyl compound film other than the perfluoroalkylylan film. Further, the organic fluorine compound film constituting the uppermost layer or the surface film may be a perfluoroether compound film.

次に、前述の露光装置を利用して物品(半導体IC素子、液晶表示素子、MEMS等)を製造する製造方法を説明する。物品製造方法は、前述の露光装置を用いて、基板(ウェハ、ガラス基板であるプレート等)上の感光材を露光する露光工程と、その感光剤を現像する現像工程とを含み、現像工程を経た基板から、他の処理を経て、物品を得る。他の処理は、例えば、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング等が含まれうる。本物品製造方法によれば、従来よりも高品位の物品を製造することができる。 Next, a manufacturing method for manufacturing an article (semiconductor IC element, liquid crystal display element, MEMS, etc.) using the above-mentioned exposure apparatus will be described. The article manufacturing method includes an exposure step of exposing a photosensitive material on a substrate (wafer, a plate which is a glass substrate, etc.) using the above-mentioned exposure apparatus, and a developing step of developing the photosensitive agent, and the developing step is performed. The article is obtained from the aged substrate through other processes. Other treatments may include, for example, etching, resist stripping, dicing, bonding, packaging and the like. According to this article manufacturing method, it is possible to manufacture an article of higher quality than before.

発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。 The invention is not limited to the above embodiments, and various modifications and modifications can be made without departing from the spirit and scope of the invention. Therefore, a claim is attached to make the scope of the invention public.

101:水銀ランプ、7:反射防止膜、700:光学素子、702:高屈性率膜(光触媒膜) 101: Mercury lamp, 7: Antireflection film, 700: Optical element, 702: High bending rate film (photocatalytic film)

Claims (22)

連続した波長域を有する光を射出する光源と、光触媒膜を含む光学膜が設けられた少なくとも1つの光学素子とを備え、前記光源から射出された光が前記少なくとも1つの光学素子を介して被照射面に入射する光学装置であって、
前記光源から射出され前記少なくとも1つの光学素子を介して前記被照射面に入射する光の波長域の下限波長が前記光触媒膜の光吸収特性によって定められる、
ことを特徴とする光学装置。
It includes a light source that emits light having a continuous wavelength range and at least one optical element provided with an optical film including a photocatalytic film, and the light emitted from the light source is covered through the at least one optical element. An optical device that is incident on the irradiation surface.
The lower limit wavelength of the wavelength range of the light emitted from the light source and incident on the irradiated surface via the at least one optical element is determined by the light absorption characteristic of the photocatalyst film.
An optical device characterized by that.
前記光源から射出された光は、複数の空間を介して前記被照射面に入射し、前記少なくとも1つの光学素子は、前記複数の空間のうち互いに隣り合う空間の境界に配置された光学素子を含む、
ことを特徴とする請求項1に記載の光学装置。
The light emitted from the light source is incident on the irradiated surface through a plurality of spaces, and the at least one optical element is an optical element arranged at a boundary between adjacent spaces among the plurality of spaces. include,
The optical device according to claim 1.
前記複数の空間の少なくとも1つの空間の中には、前記被照射面に入射する前記光の前記下限波長に影響を与える光触媒膜が設けられていない光学素子が配置されている、
ことを特徴とする請求項2に記載の光学装置。
In at least one of the plurality of spaces, an optical element not provided with a photocatalytic film that affects the lower limit wavelength of the light incident on the irradiated surface is arranged.
The optical device according to claim 2.
前記複数の空間の各々の中には、前記被照射面に入射する前記光の前記下限波長に影響を与える光触媒膜が設けられていない光学素子が配置されている、
ことを特徴とする請求項2に記載の光学装置。
In each of the plurality of spaces, an optical element not provided with a photocatalytic film that affects the lower limit wavelength of the light incident on the irradiated surface is arranged.
The optical device according to claim 2.
前記光源から射出された光は、互いに隣り合う第1空間および第2空間を介して前記被照射面に入射し、
前記第2空間は、前記第1空間よりも多くの汚染物質を有し、
前記少なくとも1つの光学素子は、前記光触媒膜を含む光学膜が前記第2空間に面するように配置された光学素子を含む、
ことを特徴とする請求項1に記載の光学装置。
The light emitted from the light source is incident on the irradiated surface via the first space and the second space adjacent to each other.
The second space has more contaminants than the first space and
The at least one optical element includes an optical element in which the optical film including the photocatalytic film is arranged so as to face the second space.
The optical device according to claim 1.
前記光学素子の2つの面のうち前記第1空間の側の面には、前記被照射面に入射する前記光の前記下限波長に影響を与える光触媒膜が設けられていない、
ことを特徴とする請求項5に記載の光学装置。
Of the two surfaces of the optical element, the surface on the side of the first space is not provided with a photocatalyst film that affects the lower limit wavelength of the light incident on the irradiated surface.
The optical device according to claim 5.
前記光触媒膜は、Ta膜を含む、
ことを特徴とする請求項1乃至6のいずれか1項に記載の光学装置。
The photocatalytic membrane comprises a Ta 2 O 5 membrane.
The optical device according to any one of claims 1 to 6, wherein the optical device is characterized by the above.
前記光触媒膜は、HfOx(x<2)膜を含む、
ことを特徴とする請求項1乃至6のいずれか1項に記載の光学装置。
The photocatalytic membrane comprises an HfOx (x <2) membrane.
The optical device according to any one of claims 1 to 6, wherein the optical device is characterized by the above.
前記光触媒膜は、TaおよびHfOx(x<2)の混合膜を含む、
ことを特徴とする請求項1乃至6のいずれか1項に記載の光学装置。
The photocatalytic membrane comprises a mixed membrane of Ta 2 O 5 and HfOx (x <2).
The optical device according to any one of claims 1 to 6, wherein the optical device is characterized by the above.
前記光触媒膜は、NbO膜、ZrO膜、ZnO膜およびAlOx(x<3)の少なくとも1つの膜を含む、
ことを特徴とする請求項1乃至6のいずれか1項に記載の光学装置。
The photocatalytic membrane comprises at least one of NbO 5 membrane, ZrO 2 membrane, ZnO membrane and Al 2 Ox (x <3).
The optical device according to any one of claims 1 to 6, wherein the optical device is characterized by the above.
前記光学膜は、前記光触媒膜を覆う表面膜を有し、前記表面膜は、SiO膜を含む、
ことを特徴とする請求項1乃至10のいずれか1項に記載の光学装置。
The optical film has a surface film covering the photocatalyst film, and the surface film contains a SiO 2 film.
The optical device according to any one of claims 1 to 10.
前記光学膜は、前記光触媒膜を覆う表面膜を有し、前記表面膜は、有機フッ素化合物膜を含む、
ことを特徴とする請求項1乃至10のいずれか1項に記載の光学装置。
The optical film has a surface film covering the photocatalyst film, and the surface film contains an organic fluorine compound film.
The optical device according to any one of claims 1 to 10.
前記光学膜は、前記光触媒膜を覆う表面膜を有し、前記表面膜は、パーフルオロアルキル化合物膜またはパーフルオロエーテル化合物膜を含む、
ことを特徴とする請求項12に記載の光学装置。
The optical film has a surface film covering the photocatalytic film, and the surface film includes a perfluoroalkyl compound film or a perfluoroether compound film.
The optical device according to claim 12.
前記光学膜は、反射防止膜であり、前記少なくとも1つの光学素子は、光透過型光学素子である、
ことを特徴とする請求項1乃至13のいずれか1項に記載の光学装置。
The optical film is an antireflection film, and the at least one optical element is a light transmissive optical element.
The optical device according to any one of claims 1 to 13.
前記被照射面に配置された基板を露光する露光装置として構成されている、
ことを特徴とする請求項1乃至14のいずれか1項に記載の光学装置。
It is configured as an exposure apparatus that exposes a substrate arranged on the irradiated surface.
The optical device according to any one of claims 1 to 14.
請求項15に記載の光学装置を用いて基板上の感光材を露光する露光工程と、
前記感光材を現像する現像工程と、を有し、
前記感光材は、前記下限波長において感光性を有し、
前記現像工程を経た前記基板から物品を得ることを特徴とする物品製造方法。
An exposure step of exposing a photosensitive material on a substrate using the optical device according to claim 15.
It has a developing process for developing the photosensitive material, and has
The photosensitive material has photosensitivity at the lower limit wavelength and has a photosensitivity.
A method for producing an article, which comprises obtaining an article from the substrate that has undergone the development step.
請求項15に記載の光学装置を用いて基板上の感光材を露光する露光工程と、
前記感光材を現像する現像工程と、を有し、
前記感光材は、前記下限波長において前記感光材の最大感度の10%以上の感度を有し、
前記現像工程を経た前記基板から物品を得ることを特徴とする物品製造方法。
An exposure step of exposing a photosensitive material on a substrate using the optical device according to claim 15.
It has a developing process for developing the photosensitive material, and has
The photosensitive material has a sensitivity of 10% or more of the maximum sensitivity of the photosensitive material at the lower limit wavelength.
A method for producing an article, which comprises obtaining an article from the substrate that has undergone the development step.
光学部材を製造する光学部材製造方法であって、
光学素子の上に光触媒膜を含む光学膜を形成する処理工程を含み、
前記処理工程は、前記光触媒膜の光吸収波長が目標光吸収波長になるように前記光触媒膜を形成する成膜工程を含む、
ことを特徴とする光学部材製造方法。
An optical member manufacturing method for manufacturing an optical member.
Including a processing step of forming an optical film including a photocatalytic film on an optical element,
The processing step includes a film forming step of forming the photocatalyst film so that the light absorption wavelength of the photocatalyst film becomes a target light absorption wavelength.
A method for manufacturing an optical member.
前記成膜工程は、酸素ガス濃度の調整によって前記光触媒膜の光吸収波長が前記目標光吸収波長になるように前記光触媒膜を形成する工程を含む、
ことを特徴とする請求項18に記載の光学部材製造方法。
The film forming step includes a step of forming the photocatalyst film so that the light absorption wavelength of the photocatalyst film becomes the target light absorption wavelength by adjusting the oxygen gas concentration.
The optical member manufacturing method according to claim 18.
前記光触媒膜は、HfOx(x<2)を含む、
ことを特徴とする請求項18又は19に記載の光学部材製造方法。
The photocatalytic membrane contains HfOx (x <2).
The optical member manufacturing method according to claim 18 or 19.
前記光触媒膜は、HfOおよびTaの混合膜を含む、
ことを特徴とする請求項18に記載の光学部材製造方法。
The photocatalytic membrane contains a mixed membrane of HfO 2 and Ta 2 O 5.
The optical member manufacturing method according to claim 18.
前記光触媒膜は、AlOx(x<3)を含む、
ことを特徴とする請求項18又は19に記載の光学部材製造方法。
The photocatalytic membrane contains Al 2 Ox (x <3).
The optical member manufacturing method according to claim 18 or 19.
JP2020020076A 2020-02-07 2020-02-07 Optical device, article manufacturing method, and optical member manufacturing method Withdrawn JP2021124690A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020020076A JP2021124690A (en) 2020-02-07 2020-02-07 Optical device, article manufacturing method, and optical member manufacturing method
KR1020210005691A KR20210101129A (en) 2020-02-07 2021-01-15 Optical apparatus, method of manufacturing article, and method of manufacturing optical member
CN202110147111.5A CN113311667A (en) 2020-02-07 2021-02-03 Optical device, article manufacturing method, and optical component manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020020076A JP2021124690A (en) 2020-02-07 2020-02-07 Optical device, article manufacturing method, and optical member manufacturing method

Publications (2)

Publication Number Publication Date
JP2021124690A true JP2021124690A (en) 2021-08-30
JP2021124690A5 JP2021124690A5 (en) 2023-02-07

Family

ID=77370664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020020076A Withdrawn JP2021124690A (en) 2020-02-07 2020-02-07 Optical device, article manufacturing method, and optical member manufacturing method

Country Status (3)

Country Link
JP (1) JP2021124690A (en)
KR (1) KR20210101129A (en)
CN (1) CN113311667A (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1145681A (en) * 1997-07-28 1999-02-16 Hitachi Ltd Fluorescent lamp having photocatalyst
JPH1167151A (en) * 1997-08-18 1999-03-09 Hitachi Ltd Recycled fluorescent lamp
JP2000329904A (en) 1999-05-18 2000-11-30 Hoya Corp Article for having antireflection film having photocatalyst function and production therefor
JP2005072076A (en) * 2003-08-28 2005-03-17 Nikon Corp Aligner, chemical filter, and manufacturing method of device
JP2005345812A (en) 2004-06-03 2005-12-15 Nikon Corp Optical member and projection exposure device with the same mounted thereon
US8698998B2 (en) * 2004-06-21 2014-04-15 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
JP2007156365A (en) * 2005-12-09 2007-06-21 Canon Inc Antireflection film, optical element, optical system, exposer and device manufacturing method
JP2008003390A (en) 2006-06-23 2008-01-10 Bridgestone Corp Antireflection film and optical filter
JP2014004548A (en) * 2012-06-26 2014-01-16 Fukuoka Univ Solar battery cover glass having antifouling function by photocatalyst body
JP6513486B2 (en) * 2015-05-27 2019-05-15 ジオマテック株式会社 Antifogging antireflective film, cover substrate with antifogging antireflective film, and method for producing antifogging antireflective film

Also Published As

Publication number Publication date
CN113311667A (en) 2021-08-27
KR20210101129A (en) 2021-08-18

Similar Documents

Publication Publication Date Title
US6795166B2 (en) Illuminator, exposure apparatus, and method for fabricating device using the same
TWI410676B (en) Multi-layer reflecting mirror, its production method, optical system, exposure device and production method of elements
US7145635B2 (en) Exposure method and apparatus
JP2004289118A (en) Optical device suitable for manufacturing semiconductor device and used for lithography method, and optical lithography method
JP2007133102A (en) Optical element having reflection preventing film, and exposure apparatus having the same
JP2006269942A (en) Aligner and device manufacturing method
JP2008288299A (en) Multilayer-film reflecting mirror, illuminator, exposure apparatus, and manufacturing method for device
US5661596A (en) Antireflection film and exposure apparatus using the same
JPWO2006051909A1 (en) Exposure method, device manufacturing method, and substrate
US9658526B2 (en) Mask pellicle indicator for haze prevention
JP3919599B2 (en) Optical element, light source device having the optical element, and exposure apparatus
JP2003243292A (en) Reflecting mask, aligner, and cleaning method therefor
JP2008205376A (en) Multilayered film reflecting mirror and manufacturing method thereof, aligner, and device manufacturing method
JP2006003540A (en) Anti-reflection coating
JP2006100363A (en) Aligner, exposure method, and device manufacturing method
JP2021124690A (en) Optical device, article manufacturing method, and optical member manufacturing method
JP2006210715A (en) Mirror for ultraviolet region and exposure device with it
JP3221226B2 (en) Illumination apparatus and projection exposure apparatus using the same
JP2010272677A (en) Optical element, exposure apparatus, and device manufacturing method
JP2006120985A (en) Illumination optical device, and exposure apparatus and method
JP3526207B2 (en) Antireflection film and optical system provided with the same
JP4095791B2 (en) Pattern transfer method and photomask
JP2007156365A (en) Antireflection film, optical element, optical system, exposer and device manufacturing method
JPH07218701A (en) Antireflection film
JP3943740B2 (en) Antireflection film and optical system provided with the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231201

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20240206