JP2021123778A - Method of manufacturing zinc oxide ore - Google Patents

Method of manufacturing zinc oxide ore Download PDF

Info

Publication number
JP2021123778A
JP2021123778A JP2020019939A JP2020019939A JP2021123778A JP 2021123778 A JP2021123778 A JP 2021123778A JP 2020019939 A JP2020019939 A JP 2020019939A JP 2020019939 A JP2020019939 A JP 2020019939A JP 2021123778 A JP2021123778 A JP 2021123778A
Authority
JP
Japan
Prior art keywords
zinc oxide
raw material
chlorine
crude zinc
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020019939A
Other languages
Japanese (ja)
Other versions
JP7415629B2 (en
Inventor
亨紀 鈴木
Koki Suzuki
亨紀 鈴木
太郎 桑原
Taro Kuwabara
太郎 桑原
悟 高谷
Satoru Takaya
悟 高谷
武史 高橋
Takeshi Takahashi
武史 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2020019939A priority Critical patent/JP7415629B2/en
Publication of JP2021123778A publication Critical patent/JP2021123778A/en
Application granted granted Critical
Publication of JP7415629B2 publication Critical patent/JP7415629B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a method of manufacturing zinc oxide ore capable of retaining a chlorine grade in a crude zinc oxide cake low by heightening a chlorine removal rate while suppressing usage of sodium carbonate in a wet process.SOLUTION: A method of manufacturing a zinc oxide ore includes: performing a chlorine amount-estimating process of estimating a content of a sodium aqueous solution-soluble chlorine of a crude zinc oxide cake raw material at any step before performing a wet process 20 in a production process of a zinc oxide ore including a reduction calcination process S10, a wet process S20, and a heating dry process S30; and performing a pH-adjusting process of adjusting a pH of a sodium carbonate aqueous solution to a pH corresponding to a content of the sodium aqueous solution-soluble chlorine of the crude zinc oxide cake raw material in a wet process S20.SELECTED DRAWING: Figure 1

Description

本発明は、酸化亜鉛鉱の製造方法に関する。詳しくは、本発明は、酸化亜鉛鉱の製造プロセスにおいて、原料鉱に含まれる塩素を、より低コストで、且つ、十分に高い除去率で除去することができる、酸化亜鉛鉱の製造方法に関する。 The present invention relates to a method for producing zinc oxide ore. More specifically, the present invention relates to a method for producing zinc oxide ore, which can remove chlorine contained in a raw material ore in a zinc oxide ore production process at a lower cost and with a sufficiently high removal rate.

従来、亜鉛製錬所における亜鉛地金の原料として、粗酸化亜鉛等の亜鉛含有鉱から不純物を分離除去して得た酸化亜鉛鉱が広く用いられている。 Conventionally, zinc oxide ore obtained by separating and removing impurities from zinc-containing ore such as crude zinc oxide has been widely used as a raw material for zinc bullion in a zinc smelter.

鉄鋼の製造工程において発生する鉄鋼ダストには、鉄成分以外に比較的多くの亜鉛が含まれている。そのため、上記の亜鉛含有鉱として鉄鋼ダストが用いられ、これに含まれる亜鉛を、粗酸化亜鉛ダストとして回収し、酸化亜鉛鉱を製造することが広く行われている。 Steel dust generated in the steel manufacturing process contains a relatively large amount of zinc in addition to the iron component. Therefore, steel dust is used as the above-mentioned zinc-containing ore, and zinc contained therein is widely recovered as crude zinc oxide dust to produce zinc oxide ore.

鉄鋼ダスト中の鉄と亜鉛を分離させて粗酸化亜鉛ダストを得る代表的な方法の一例として、ロータリーキルンを用いた還元培焼法(所謂ウェルツ法)を挙げることができる。この方法による場合、鉄鋼ダスト中の亜鉛はキルン炉内で還元され、金属亜鉛として揮発する。気体としてガス側に分離された金属亜鉛は、1000℃以下に冷却されると速やかに周辺の酸素と反応して酸化亜鉛となって固形化するため、粉状の粗酸化亜鉛ダストとして、ロータリーキルンの排ガスから電気集塵機等によって捕集される。 As an example of a typical method for obtaining crude zinc oxide dust by separating iron and zinc in steel dust, a reduction roasting method using a rotary kiln (so-called Waelz method) can be mentioned. When this method is used, zinc in the steel dust is reduced in the kiln furnace and volatilized as metallic zinc. When the metallic zinc separated on the gas side as a gas is cooled to 1000 ° C or lower, it quickly reacts with the surrounding oxygen to become zinc oxide and solidifies. It is collected from the exhaust gas by an electrostatic collector or the like.

還元焙焼工程で得た上記の粗酸化亜鉛ダストには、不純物として鉄鋼ダストに含まれる、フッ素、塩素等のハロゲンの一部が混入する。粗酸化亜鉛ダストからのハロゲンの分離除去処理としては、粗酸化亜鉛ダストをアルカリ洗浄する方法(特許文献1、2参照)がある。上記の粗酸化亜鉛ダストは、通常、ハロゲン成分を除去するために上記の洗浄を行う湿式工程に投入される。この際、多くの場合において、亜鉛や塩素を含む二次原料も上記の粗酸化亜鉛ダストとともにこの湿式工程に投入される。 The crude zinc oxide dust obtained in the reduction roasting step contains a part of halogens such as fluorine and chlorine contained in steel dust as impurities. As a treatment for separating and removing halogen from the crude zinc oxide dust, there is a method of alkaline cleaning the crude zinc oxide dust (see Patent Documents 1 and 2). The crude zinc oxide dust is usually put into a wet step of performing the above cleaning to remove the halogen component. At this time, in many cases, the secondary raw material containing zinc and chlorine is also put into this wet process together with the above-mentioned crude zinc oxide dust.

ここで、上記の粗酸化亜鉛ダスト及び二次原料に含まれるハロゲン成分のうち、塩素については、最終的に酸化亜鉛焼鉱の製品規格値を満たすために、湿式工程において約80%以上の除去率で除去することが求められる。湿式工程におけるアルカリ洗浄に用いるソーダ灰(炭酸ナトリウム)等の薬剤の使用量を増加させれば、塩素の除去率を90%程度にまで高めることができる。しかしながら、一方では、酸化亜鉛鉱の製造コストを低減させるために、必要とされる塩素の除去率を維持したまま、炭酸ナトリウムの過剰使用を抑制することも求められていた。 Here, among the halogen components contained in the above crude zinc oxide dust and the secondary raw material, about 80% or more of chlorine is removed in the wet process in order to finally satisfy the product standard value of zinc oxide burnt ore. It is required to remove at a rate. By increasing the amount of chemicals such as soda ash (sodium carbonate) used for alkaline cleaning in the wet process, the chlorine removal rate can be increased to about 90%. However, on the other hand, in order to reduce the production cost of zinc oxide ore, it has been required to suppress the excessive use of sodium carbonate while maintaining the required chlorine removal rate.

特開2002−332529号公報JP-A-2002-332259 特開2016−145423号公報Japanese Unexamined Patent Publication No. 2016-145423

本発明は、炭酸ナトリウムの過剰使用を抑制しつつ、湿式工程における塩素の除去率を十分に高めて、同工程から得られる粗酸化亜鉛ケーキ中の塩素品位を適正な低品位に維持することができる酸化亜鉛鉱の製造方法を提供することを目的とする。 According to the present invention, it is possible to sufficiently increase the removal rate of chlorine in the wet process while suppressing the excessive use of sodium carbonate, and maintain the chlorine quality in the crude zinc oxide cake obtained from the process at an appropriate low quality. It is an object of the present invention to provide a method for producing zinc oxide ore which can be produced.

本発明者らが、湿式工程に投入される様々な原料について、水及び炭酸ナトリウム水溶液による溶出試験を行ったところ、原料によって、含有する塩素のうちの大部分が水のみで溶ける塩素化合物(本明細書において「水溶性塩素化合物」と言う)である原料と、含有する塩素のうちの大部分が炭酸ナトリウム水溶液には溶けるが、水のみでは溶けない塩素化合物(本明細書において「ナトリウム水溶液溶性塩素化合物」と言う)である原料と、の2つに大別されることを見出した。この新たな知見に基づき、本発明者らは、湿式工程に投入される原料のうちの「ナトリウム水溶液溶性塩素」の含有量のみに着目して、この含有量に対して、湿式工程を行う炭酸ナトリウム水溶液のpHを最適化することにより、上記課題を解決できることを見出し、本発明を完成するに至った。尚、本明細書においては、「ナトリウム水溶液溶性塩素」とは、上記の「ナトリウム水溶液溶性塩素化合物」に含有される塩素であり、上記同様、その大部分が炭酸ナトリウム水溶液には溶けるが、非水溶性であって、水のみでは溶けない塩素のことを言うものとする。具体的には、本発明は以下のものを提供する。 When the present inventors conducted an elution test with water and an aqueous sodium carbonate solution on various raw materials to be put into the wet process, a chlorine compound in which most of the chlorine contained in the raw materials was dissolved only in water (the present invention). A raw material that is referred to as a "water-soluble chlorine compound" in the specification) and a chlorine compound in which most of the contained chlorine is soluble in an aqueous sodium carbonate solution but not in water alone (in the present specification, "soluble in an aqueous sodium solution"). It was found that it can be roughly divided into two types: the raw material, which is called "chlorine compound"). Based on this new finding, the present inventors pay attention only to the content of "sodium aqueous solution-soluble chlorine" in the raw materials to be put into the wet process, and perform the wet process with respect to this content. We have found that the above problems can be solved by optimizing the pH of the aqueous sodium solution, and have completed the present invention. In the present specification, the "sodium aqueous solution-soluble chlorine" is chlorine contained in the above-mentioned "sodium aqueous solution-soluble chlorine compound", and most of the chlorine is soluble in the sodium carbonate aqueous solution, but is not. Chlorine that is water-soluble and insoluble in water alone. Specifically, the present invention provides the following.

(1) 塩素と鉄を含む含鉄粗酸化亜鉛原料である一次原料を、還元焙焼して、粗酸化亜鉛ダストを得る還元焙焼工程と、前記粗酸化亜鉛ダストと、塩素を含み、鉄を含まない非含鉄粗酸化亜鉛原料である二次原料と、からなる、粗酸化亜鉛ケーキ原料を、炭酸ナトリウム水溶液にてレパルプ後、脱水することによって、粗酸化亜鉛ケーキを得る湿式工程と、前記粗酸化亜鉛ケーキを焼成して、酸化亜鉛鉱を得る乾燥加熱工程と、を含む酸化亜鉛鉱の製造プロセスにおいて、前記湿式工程を行う前の何れかの段階で、前記粗酸化亜鉛ケーキ原料のナトリウム水溶液溶性塩素の含有量を見積る塩素量見積り処理を行い、前記湿式工程においては、前記炭酸ナトリウム水溶液のpHを、前記粗酸化亜鉛ケーキ原料のナトリウム水溶液溶性塩素の含有量に対応するpHとするpH調整処理を行う、酸化亜鉛鉱の製造方法。 (1) A reduction roasting step of reducing and roasting a primary raw material which is an iron-containing crude zinc oxide raw material containing chlorine and iron to obtain crude zinc oxide dust, and the crude zinc oxide dust and iron containing chlorine. A wet step of obtaining a crude zinc oxide cake by repulping the crude zinc oxide cake raw material, which comprises a secondary raw material which is a non-iron-containing crude zinc oxide raw material, with an aqueous sodium carbonate solution and then dehydrating the crude zinc oxide cake, and the crude In the process of producing zinc oxide ore, which includes a drying and heating step of baking a zinc oxide cake to obtain zinc oxide ore, at any stage before the wet step, the sodium aqueous solution of the crude zinc oxide cake raw material is used. A chlorine amount estimation process for estimating the content of soluble chlorine is performed, and in the wet step, the pH of the sodium carbonate aqueous solution is adjusted to a pH corresponding to the content of the sodium aqueous solution soluble chlorine of the crude zinc oxide cake raw material. A method for producing zinc oxide ore to be treated.

(2) 前記一次原料が鉄鋼ダストであって、前記二次原料に含まれるナトリウム水溶液溶性塩素の含有量を前記粗酸化亜鉛ケーキ原料のナトリウム水溶液溶性塩素の含有量とみなして、前記塩素量見積り処理を行う、(1)に記載の酸化亜鉛鉱の製造方法。 (2) The amount of chlorine is estimated by regarding the primary raw material as steel dust and the content of the sodium aqueous solution-soluble chlorine contained in the secondary raw material as the content of the sodium aqueous solution-soluble chlorine of the crude zinc oxide cake raw material. The method for producing zinc oxide ore according to (1), wherein the treatment is carried out.

(3) 前記二次原料は、複数種の前記非含鉄粗酸化亜鉛原料の混合物であって、前記pH調整処理を、個々の前記非含鉄粗酸化亜鉛原料に含まれるナトリウム水溶液溶性塩素含有率と、個々の前記非含鉄粗酸化亜鉛原料の使用量に応じて、前記炭酸ナトリウム水溶液のpHを調整することによって行う、(2)に記載の酸化亜鉛鉱の製造方法。 (3) The secondary raw material is a mixture of a plurality of types of the non-iron-containing crude zinc oxide raw materials, and the pH adjustment treatment is carried out with the sodium aqueous solution-soluble chlorine content contained in the individual non-iron-containing crude zinc oxide raw materials. The method for producing zinc oxide ore according to (2), which is carried out by adjusting the pH of the sodium carbonate aqueous solution according to the amount of each non-iron-containing crude zinc oxide raw material used.

(4) 前記pH調整処理後の、前記炭酸ナトリウム水溶液のpHが6.0以上6.5以下である、(1)から(3)の何れかに記載の酸化亜鉛鉱の製造方法。 (4) The method for producing zinc oxide ore according to any one of (1) to (3), wherein the pH of the aqueous sodium carbonate solution after the pH adjustment treatment is 6.0 or more and 6.5 or less.

本発明によれば、炭酸ナトリウムの過剰使用を抑制しつつ、湿式工程から得られる粗酸化亜鉛ケーキ中の塩素品位を低く適正に維持することができる酸化亜鉛鉱の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for producing zinc oxide ore, which can appropriately maintain a low chlorine grade in a crude zinc oxide cake obtained from a wet process while suppressing excessive use of sodium carbonate. ..

本発明の酸化亜鉛鉱の製造方法の一例を示すフローチャート図である。It is a flowchart which shows an example of the manufacturing method of zinc oxide ore of this invention. 本発明の酸化亜鉛鉱の製造方法の一工程である湿式工程を行う湿式処理設備の基本構成を示す模式図である。It is a schematic diagram which shows the basic structure of the wet processing equipment which performs the wet process which is one process of the manufacturing method of zinc oxide ore of this invention. 湿式工程を行う沈降分離装置のpHと粗酸化亜鉛ケーキの塩素品位の関係を、二次原料からの塩素負荷で層別した結果を示すグラフである。It is a graph which shows the result of stratifying the relationship between the pH of the sedimentation separation apparatus which performs a wet process, and the chlorine grade of a crude zinc oxide cake by the chlorine load from a secondary raw material. 本発明の酸化亜鉛鉱の製造方法の湿式工程においてpH調整処理を行うために用いる多次元マトリックス表の一例を示す図である。It is a figure which shows an example of the multidimensional matrix table used for performing the pH adjustment treatment in the wet process of the manufacturing method of zinc oxide ore of this invention.

<全体プロセス>
図1は、本発明の酸化亜鉛鉱の製造方法のフローチャートである。本発明の酸化亜鉛鉱の製造方法は、鉄鋼ダスト等の一次原料を還元焙焼して、粗酸化亜鉛ダストを得る還元焙焼工程S10、還元焙焼工程S10で得た粗酸化亜鉛ダスト及び二次原料からフッ素や塩素等のハロゲン元素を処理液中に分離除去して、粗酸化亜鉛ケーキを得る湿式工程S20、湿式工程S20で得た粗酸化亜鉛ケーキを乾燥加熱して、酸化亜鉛鉱を得る乾燥加熱工程S30を、必須の工程とする。
<Overall process>
FIG. 1 is a flowchart of the method for producing zinc oxide ore of the present invention. The method for producing zinc oxide ore of the present invention includes a reduction roasting step S10 for obtaining crude zinc oxide dust by reducing and roasting a primary raw material such as steel dust, a crude zinc oxide dust obtained in the reduction roasting step S10, and two. The crude zinc oxide cake obtained in the wet step S20 and the wet step S20 obtained by separating and removing halogen elements such as fluorine and chlorine from the next raw material in the treatment liquid to obtain a crude zinc oxide cake is dried and heated to obtain zinc oxide ore. The obtaining drying and heating step S30 is an essential step.

ここで、本明細書においては、亜鉛を含む原料鉱であって、酸化亜鉛鉱製造の全体プロセスにおいて、湿式工程S20よりも上流側の工程である還元焙焼工程S10に投入される原料のことを「一次原料」と言うものとする。又、本明細書においては、酸化亜鉛鉱製造の全体プロセスにおいて、上流側の工程を経ずに直接、湿式工程S20に投入される亜鉛を含む原料鉱のことを「二次原料」と言うものとする。 Here, in the present specification, it is a raw material containing zinc and is a raw material to be input to the reduction roasting step S10, which is a step upstream of the wet step S20 in the entire process of zinc oxide ore production. Is referred to as "primary raw material". Further, in the present specification, in the entire process of zinc oxide ore production, the raw material ore containing zinc that is directly input to the wet step S20 without going through the upstream process is referred to as "secondary raw material". And.

そして、本発明の酸化亜鉛鉱の製造方法は、還元焙焼工程S10に投入する「一次原料」として、亜鉛の他に塩素及び鉄を含む原料である「含鉄粗酸化亜鉛原料」を用い、且つ、「二次原料」として、亜鉛の他に塩素を含み、鉄を含まない原料である「非含鉄粗酸化亜鉛原料」を用いる酸化亜鉛の製造に広く適用することができるプロセスである。そして、本発明の製造方法を実施する場合には、一次原料から得られた粗酸化亜鉛ダストと二次原料とが併せて湿式工程S20に投入される。 The method for producing zinc oxide ore of the present invention uses a "iron-containing crude zinc oxide raw material" which is a raw material containing chlorine and iron in addition to zinc as the "primary raw material" to be input to the reduction roasting step S10. This is a process that can be widely applied to the production of zinc oxide using a "non-iron-containing crude zinc oxide raw material" that contains chlorine in addition to zinc as a "secondary raw material" and does not contain iron. Then, when the production method of the present invention is carried out, the crude zinc oxide dust obtained from the primary raw material and the secondary raw material are put into the wet step S20 together.

一次原料として用いられる上記の「含鉄粗酸化亜鉛原料」及び二次原料として用いられる「非含鉄粗酸化亜鉛原料」の塩素の含有量は、何れも1重量%以上であることが好ましい。又、上記の「含鉄粗酸化亜鉛原料」の鉄の含有量は、7重量%以上であることが好ましい。そして、「含鉄粗酸化亜鉛原料」は、鉄鋼ダストであることが更に好ましい。本発明の酸化亜鉛鉱の製造方法は、上記のような組成範囲にある各原料を用いて行われるプロセスに特に好ましく適用することができる。 The chlorine content of the above-mentioned "iron-containing crude zinc oxide raw material" used as the primary raw material and the "non-iron-containing crude zinc oxide raw material" used as the secondary raw material is preferably 1% by weight or more. Further, the iron content of the above-mentioned "iron-containing crude zinc oxide raw material" is preferably 7% by weight or more. The "iron-containing crude zinc oxide raw material" is more preferably steel dust. The method for producing zinc oxide ore of the present invention can be particularly preferably applied to a process carried out using each raw material having a composition range as described above.

又、本発明の酸化亜鉛鉱の製造方法を好ましく適用することができる酸化亜鉛鉱製造の全体プロセスは、上記の各工程の他、乾燥加熱工程S30で発生した排ガスダストを洗浄して洗浄後の排ガスダストケーキを得る排ガス処理工程、及び、湿式工程S20から排出される排出液を無害化する排水処理工程等が、併せて行われる全体プロセスである。これらの工程は従来公知の態様で適宜行われればよい。 Further, in the overall process of zinc oxide production to which the method for producing zinc oxide of the present invention can be preferably applied, in addition to the above steps, the exhaust gas dust generated in the drying and heating step S30 is washed and washed. An exhaust gas treatment step for obtaining an exhaust gas dust cake, a wastewater treatment step for detoxifying the discharge liquid discharged from the wet step S20, and the like are performed together as an overall process. These steps may be appropriately performed in a conventionally known manner.

そして、本発明の酸化亜鉛鉱の製造方法は、上記の各工程のうち、特に湿式工程S20において用いる炭酸ナトリウム水溶液のpHを、粗酸化亜鉛ケーキ原料の「ナトリウム水溶液溶性塩素」の含有量に対応するpHとするpH調整処理を行う点を主な特徴とする製造方法である。 Then, in the method for producing zinc oxide ore of the present invention, among the above steps, the pH of the sodium carbonate aqueous solution used in the wet step S20 corresponds to the content of "sodium aqueous solution-soluble chlorine" as the raw material for the crude zinc oxide cake. The main feature of this production method is that a pH adjustment process is performed to obtain a pH to be adjusted.

<還元焙焼工程>
鉄鋼ダスト等の一次原料から粗酸化亜鉛ダストを得る還元焙焼工程S10を行う具体的な方法として、還元焙焼ロータリーキルン(RRK)による還元焙焼法を用いることができる。一次原料として鉄鋼ダストを用い、これを還元焙焼ロータリーキルンによって還元焙焼する場合において、鉄鋼ダストは必要に応じて、予め、石炭、コークス等の炭素質還元剤と混合造粒され、大きさ5〜10mm程度のペレットに成形される。そして、このペレットと、混合造粒されていない鉄鋼ダストと、石炭、コークス等の炭素質還元剤と、融点調整剤としての石灰石(CaCO)等が、併せて還元焙焼ロータリーキルンに連続的に投入される。
<Reduction roasting process>
As a specific method for performing the reduction roasting step S10 for obtaining crude zinc oxide dust from a primary raw material such as steel dust, a reduction roasting method using a reduction roasting rotary kiln (RRK) can be used. When steel dust is used as the primary raw material and it is reduced and roasted by a reduction roasting rotary kiln, the steel dust is preliminarily mixed and granulated with a carbonaceous reducing agent such as coal or coke, and has a size of 5 It is molded into pellets of about 10 mm. Then, these pellets, steel dust that has not been mixed and granulated, a carbonaceous reducing agent such as coal and coke, and limestone (CaCO 3 ) as a melting point adjusting agent are continuously added to the reduction roasting rotary kiln. It is thrown in.

還元焙焼工程S10の実施時に、還元焙焼ロータリーキルンの炉内は、重油の燃焼と投入した炭素質還元剤の燃焼により、被処理物の最高温度が1100〜1200℃程度になるように制御されている。この炉内で鉄鋼ダストは還元焙焼され、揮発した金属亜鉛は、1000℃以下に冷却されると炉内で再酸化されて粉状の酸化亜鉛となり、粗酸化亜鉛ダストとして回収される。鉄鋼ダスト中に少量含まれる鉛については、酸化鉛の形態でダストとなり、粗酸化亜鉛ダストとして回収される。そして、一次原料由来のハロゲンの一部は、一部の亜鉛及び鉛と結合したハロゲン化合物として粗酸化亜鉛ダストに混入した状態で回収される。 When the reduction roasting step S10 is carried out, the inside of the reduction roasting rotary kiln is controlled so that the maximum temperature of the object to be processed is about 1,100 to 1200 ° C. by the combustion of heavy oil and the combustion of the charged carbonaceous reducing agent. ing. Steel dust is reduced and roasted in this furnace, and when the volatilized metallic zinc is cooled to 1000 ° C. or lower, it is reoxidized in the furnace to become powdery zinc oxide, which is recovered as crude zinc oxide dust. Lead contained in a small amount in steel dust becomes dust in the form of lead oxide and is recovered as crude zinc oxide dust. Then, a part of the halogen derived from the primary raw material is recovered as a halogen compound bonded to a part of zinc and lead in a state of being mixed with the crude zinc oxide dust.

<湿式工程>
湿式工程S20は、湿式処理を行う工程である。湿式処理は、その上流側の工程である還元焙焼工程S10に一次原料(含鉄粗酸化亜鉛原料)を投入して得た粗酸化亜鉛ダスト、及び、この湿式工程S20に直接投入される二次原料(非含鉄粗酸化亜鉛原料)からなる「粗酸化亜鉛ケーキ原料」に含有される塩素等の不純物を、炭酸ナトリウム水溶液中に抽出し、更に固液分離処理を行うことによって、最終的に不純物を水洗浄法により除去して粗酸化亜鉛ケーキを得る処理である。尚、本明細書においては、粗酸化亜鉛ケーキを得るための原料として、湿式工程S20に投入する上記の粗酸化亜鉛ダスト及び二次原料とを、併せて、「粗酸化亜鉛ケーキ原料」と言うものとする。
<Wet process>
The wet step S20 is a step of performing a wet treatment. The wet treatment includes crude zinc oxide dust obtained by adding a primary raw material (iron-containing crude zinc oxide raw material) to the reduction roasting step S10, which is an upstream step thereof, and a secondary directly charged into the wet step S20. Impurities such as chlorine contained in the "crude zinc oxide cake raw material" composed of the raw material (non-iron-containing crude zinc oxide raw material) are extracted into an aqueous sodium carbonate solution, and further solid-liquid separation treatment is performed to finally obtain impurities. Is a process for obtaining a crude zinc oxide cake by removing the zinc oxide cake by a water washing method. In the present specification, as the raw material for obtaining the crude zinc oxide cake, the above-mentioned crude zinc oxide dust and the secondary raw material to be put into the wet step S20 are collectively referred to as "crude zinc oxide cake raw material". It shall be.

図2は、湿式工程S20を行うことができる湿式処理設備10の基本構成を示す模式図である。湿式処理設備10には、凝集槽1、沈降分離装置2が備えられている。又、沈降分離装置2には、pH測定装置3が更に備えられている。 FIG. 2 is a schematic view showing the basic configuration of the wet processing equipment 10 capable of performing the wet step S20. The wet treatment equipment 10 is provided with a coagulation tank 1 and a sedimentation separation device 2. Further, the sedimentation separation device 2 is further provided with a pH measuring device 3.

湿式工程S20においては、先ず、還元焙焼工程S10で回収された粗酸化亜鉛ダストをレパルプしたスラリーと、二次原料を粉砕したスラリーと、からなる粗酸化亜鉛ケーキ原料が、凝集槽1へ投入される。又、凝集槽1へは、上記の粗酸化亜鉛ケーキ原料の他、ソーダ灰(炭酸ナトリウム)、及び、凝集剤も添加される。そして、凝集槽1内において、粗酸化亜鉛ケーキ原料中に含まれる塩素等の不純物を、炭酸ナトリウム水溶液中に抽出除去する処理が行われる。 In the wet step S20, first, the crude zinc oxide cake raw material composed of the slurry obtained by repulping the crude zinc oxide dust recovered in the reduction roasting step S10 and the slurry obtained by crushing the secondary raw material is put into the coagulation tank 1. Will be done. In addition to the above-mentioned crude zinc oxide cake raw material, soda ash (sodium carbonate) and a coagulant are also added to the coagulation tank 1. Then, in the coagulation tank 1, impurities such as chlorine contained in the crude zinc oxide cake raw material are extracted and removed into the sodium carbonate aqueous solution.

上記のスラリーや各薬剤は凝集槽1内において撹拌・混合された後に、沈降分離装置2に送液される。沈降分離装置2としては、例えば、一般的なシックナーを好ましく用いることができる。沈降分離装置2にて沈降分離された固体は、沈降分離装置2の底部から抜き出されて濾過機にて脱水した後に、乾燥加熱工程S30を行う乾燥加熱キルンに投入される。濾過機としては、真空吸引式等、脱水された粗酸化亜鉛ケーキを連続して供給可能な型式のものを用いることが好ましい。又、沈降分離装置2の上部からオーバーフローされる清澄液は排水処理工程に送液されるが、一部はプロセス水として再利用される。 The above slurry and each drug are stirred and mixed in the coagulation tank 1 and then sent to the sedimentation separation device 2. As the sedimentation separation device 2, for example, a general thickener can be preferably used. The solid settled and separated by the settling and separating device 2 is taken out from the bottom of the settling and separating device 2 and dehydrated by a filter, and then put into a drying and heating kiln in which the drying and heating step S30 is performed. As the filter, it is preferable to use a type such as a vacuum suction type that can continuously supply dehydrated crude zinc oxide cake. Further, the clear liquid overflowing from the upper part of the sedimentation separation device 2 is sent to the wastewater treatment step, but a part of the clear liquid is reused as process water.

pH測定装置3は、清澄液部分に設置されており、pH測定装置3の指示値が規定のpHとなるように炭酸ナトリウムの添加量を調整する。 The pH measuring device 3 is installed in the clarification liquid portion, and the amount of sodium carbonate added is adjusted so that the indicated value of the pH measuring device 3 becomes a specified pH.

尚、湿式工程S20において、ソーダ灰(NaCO)は、水溶液中で以下に示す化学式(式1)のように電離する。そして、化学式(式2)の平衡式は、右側に偏っているため、水溶液の液性はアルカリ性を示す。又、粗酸化亜鉛ケーキ原料の「ナトリウム水溶液溶性塩素化合物」として、例えば、塩化鉛(PbCl)、塩化フッ化鉛(PbFCl)の形態が推定できる。そして、粗酸化亜鉛ケーキ原料からのハロゲンの抽出反応は、化学式(式3)(式4)に従うと推定される。化学式(式3)(式4)に示す脱ハロゲン反応により液中のCO 2−イオンが消費されると、化学式(式2)の平衡式が左側に移動し、OHイオンは減少しpHは低下する。故に、pH測定装置3で測定したpHを、脱ハロゲンの進行状態を確認する指標として使用することが可能であるから、pH測定装置3の指示値が規定のpHを維持するように炭酸ナトリウムの添加量を調整すればよい。更に、化学式(式2)によれば、塩化鉛(PbCl)、塩化フッ化鉛(PbFCl)の量に応じてCO 2−の量の増減、すなわちOHの量の増減、すなわちpHの増減が必要であることが分かる。具体的には、塩化鉛(PbCl)、塩化フッ化鉛(PbFCl)の量が増加すれば、設定pHを上昇させてCO 2−の量を増やし、塩化鉛(PbCl)、塩化フッ化鉛(PbFCl)の量が減少すれば、設定pHを低下させてCO 2−の量を減らせばよい。 In the wet step S20, the soda ash (Na 2 CO 3 ) is ionized in the aqueous solution as shown in the chemical formula (formula 1) shown below. Since the equilibrium formula of the chemical formula (formula 2) is biased to the right, the liquidity of the aqueous solution is alkaline. Further, as the "sodium aqueous solution-soluble chlorine compound" of the crude zinc oxide cake raw material, for example, the forms of lead chloride (PbCl 2 ) and lead chloride fluoride (PbFCl) can be estimated. Then, it is presumed that the halogen extraction reaction from the crude zinc oxide cake raw material follows the chemical formulas (formula 3) and (formula 4). When the CO 3 2- ions in the solution is consumed by the dehalogenation reaction represented by the chemical formula (Formula 3) (Formula 4), to move the equilibrium equation of Formula (Equation 2) is on the left, OH - ions are reduced pH Decreases. Therefore, since the pH measured by the pH measuring device 3 can be used as an index for confirming the progress of dehalogenation, the indicated value of the pH measuring device 3 can be used to maintain the specified pH. The amount of addition may be adjusted. Furthermore, according to the chemical formula (Formula 2), lead chloride (PbCl 2), the amount CO 3 2- in the amount of increase or decrease in accordance with the lead fluoride chloride (PbFCl), i.e. OH - of the amount of increase or decrease, i.e., the pH of the It turns out that an increase or decrease is necessary. Specifically, lead chloride (PbCl 2), if an increase in the amount of lead fluoride chloride (PbFCl), increase the allowed and CO 3 2- in the amount increase the setting pH, lead chloride (PbCl 2), fluoride chloride a decrease in the amount of lead iodide (PbFCl), or reducing the amount of CO 3 2- lowering the set pH.

NaCO→2Na+CO 2− ・・・ (式1)
CO 2−+HO←→HCO +OH ・・・ (式2)
PbCl+NaCO→PbCO+2NaCl ・・・ (式3)
PbFCl+NaCO→PbCO+NaF+NaCl ・・・ (式4)
Na 2 CO 3 → 2Na + + CO 3 2-・ ・ ・ (Equation 1)
CO 3 2- + H 2 O ← → HCO 3 - + OH - ··· ( Formula 2)
PbCl 2 + Na 2 CO 3PbCO 3 + 2 NaCl ... (Equation 3)
PbFCl + Na 2 CO 3PbCO 3 + NaF + NaCl ... (Equation 4)

ここで、一般的に、酸化亜鉛鉱の製造において製品である酸化亜鉛焼鉱の規格値を満たすためには、この湿式工程S20において、粗酸化亜鉛ケーキの塩素品位を基準値以下に抑えることが求められる。従来の酸化亜鉛鉱の製造においては、粗酸化亜鉛ケーキ中の塩素品位のばらつきが大きいことを考慮して、製品となる酸化亜鉛焼鉱の塩素品位異常のリスクを避けるために、沈降分離装置2のpH設定を安全な一定の値(例えばpH6.5)に固定して、これを保持するために必要な量の炭酸ナトリウムを大量に投入するという、いわば、過剰管理が行われていた。 Here, in general, in order to satisfy the standard value of zinc oxide roasting ore, which is a product in the production of zinc oxide ore, the chlorine grade of the crude zinc oxide cake may be suppressed to the reference value or less in this wet step S20. Desired. In the conventional production of zinc oxide ore, in consideration of the large variation in chlorine grade in the crude zinc oxide cake, the sedimentation separation device 2 is used to avoid the risk of abnormal chlorine grade in the zinc oxide burnt ore as a product. The pH setting of the above was fixed at a safe constant value (for example, pH 6.5), and a large amount of sodium carbonate was added in an amount necessary to maintain the pH setting, so to speak, over-control was performed.

これに対し、本発明の製造方法においては、粗酸化亜鉛ケーキの塩素品位に係る上記の要求に応えるために、粗酸化亜鉛ケーキ原料の「ナトリウム水溶液溶性塩素」の含有量に応じて上記の炭酸ナトリウム水溶液のpHを調整する「pH調整処理」を行う。 On the other hand, in the production method of the present invention, in order to meet the above-mentioned requirements concerning the chlorine grade of the crude zinc oxide cake, the above-mentioned carbonic acid is prepared according to the content of "sodium aqueous solution-soluble chlorine" of the crude zinc oxide cake raw material. A "pH adjustment process" is performed to adjust the pH of the aqueous sodium solution.

又、本発明の製造方法においては、上記の「pH調整処理」を行うために、湿式工程S20を行う前の何れかの段階で、湿式工程S20に投入される「粗酸化亜鉛ケーキ原料」の「ナトリウム水溶液溶性塩素」の含有量を見積る「塩素量見積り処理」を行う。以下、この2つの処理の実施方法について具体例を挙げながら説明する。 Further, in the production method of the present invention, in order to perform the above-mentioned "pH adjustment treatment", the "crude zinc oxide cake raw material" to be charged into the wet step S20 at any stage before the wet step S20 is performed. Perform the "chlorine amount estimation process" to estimate the content of "sodium aqueous solution soluble chlorine". Hereinafter, methods for carrying out these two processes will be described with reference to specific examples.

(塩素量見積り処理)
「粗酸化亜鉛ケーキ原料」の「ナトリウム水溶液溶性塩素」の含有量を見積る「塩素量見積り処理」は、例えば、下記段落に示す方法によって行うことができる。
(Chlorine amount estimation process)
The "chlorine amount estimation process" for estimating the content of "sodium aqueous solution-soluble chlorine" in the "crude zinc oxide cake raw material" can be performed, for example, by the method shown in the following paragraph.

「塩素量見積り処理」の一例においては、先ず、塩素量見積り処理を行う処理対象の「粗酸化亜鉛ケーキ原料」のサンプルに、重量比で10倍の量の水を加えて撹拌し、撹拌後に濾別することで、上記の「粗酸化亜鉛ケーキ原料」から水溶性の塩素化合物が除去された状態の固体分を得る。そして、当該固体分に重量比で10倍量のpH8以上の炭酸ナトリウム水溶液を加えて撹拌し、撹拌後に濾別することで濾液分を得る。続いて、当該濾液分の塩素濃度を測定し、その塩素濃度に濾液分の体積を乗ずることで塩素量を求める。更に、当該塩素量を「粗酸化亜鉛ケーキ原料」の重量で除することにより「粗酸化亜鉛ケーキ原料」の塩素含有率を求める。このように溶出試験によって求めた塩素含有率に「粗酸化亜鉛ケーキ原料」の湿式工程への投入量を乗ずることで、「粗酸化亜鉛ケーキ原料」の「ナトリウム水溶液溶性塩素」の含有量を見積ることができる。 In an example of the "chlorine amount estimation process", first, 10 times the weight ratio of water is added to the sample of the "crude zinc oxide cake raw material" to be processed for the chlorine amount estimation process, and the mixture is stirred. By filtering, a solid content in which the water-soluble chlorine compound has been removed from the above-mentioned "raw zinc oxide cake raw material" is obtained. Then, a sodium carbonate aqueous solution having a pH of 8 or more, which is 10 times the weight ratio of the solid content, is added and stirred, and the filtrate is obtained by filtering after stirring. Subsequently, the chlorine concentration of the filtrate is measured, and the amount of chlorine is obtained by multiplying the chlorine concentration by the volume of the filtrate. Further, the chlorine content of the "crude zinc oxide cake raw material" is obtained by dividing the chlorine amount by the weight of the "crude zinc oxide cake raw material". By multiplying the chlorine content obtained by the dissolution test in this way by the amount of the "crude zinc oxide cake raw material" input to the wet process, the content of the "sodium aqueous solution-soluble chlorine" of the "crude zinc oxide cake raw material" is estimated. be able to.

上記の方法による、「塩素量見積り処理」は、塩素量見積り処理を行う処理対象の「粗酸化亜鉛ケーキ原料」を湿式工程S20に投入する前の何れかの段階で行えばよい。一例としては、粗酸化亜鉛ダストについては、粗酸化亜鉛ダストのスラリーを採取して濾別することにより、サンプルを得ることができる。二次原料については、フレキシブルコンテナ等の荷姿で入荷したそれぞれの原料からサンプルを採取することができる。これらの各サンプル取得後、上記の方法で粗酸化亜鉛ダスト及び二次原料の「ナトリウム水溶液溶性塩素」の含有率を求める。「粗酸化亜鉛ケーキ原料」の湿式工程での処理量は、粗酸化亜鉛ダスト、二次原料によって変動する。従って、上記の粗酸化亜鉛ダスト及び二次原料の「ナトリウム水溶液溶性塩素」の含有率をパラメーターにして、その値に、粗酸化亜鉛ダスト、二次原料の処理量を乗じて「ナトリウム水溶液溶性塩素」の含有量を求め、最後にそれぞれの「ナトリウム水溶液溶性塩素」の含有量を合計することで、粗酸化亜鉛ケーキ原料の「ナトリウム水溶液溶性塩素」の含有量を見積ることができる。上記の方法を、「塩素量見積り処理」の好ましい実施態様の一例として挙げることができる。 The "chlorine amount estimation process" according to the above method may be performed at any stage before the "crude zinc oxide cake raw material" to be processed to be subjected to the chlorine amount estimation process is put into the wet step S20. As an example, for crude zinc oxide dust, a sample can be obtained by collecting a slurry of crude zinc oxide dust and filtering it. As for the secondary raw materials, samples can be collected from each raw material that arrives in the form of a flexible container or the like. After obtaining each of these samples, the content of crude zinc oxide dust and "sodium aqueous solution-soluble chlorine" as a secondary raw material is determined by the above method. The amount of the "crude zinc oxide cake raw material" processed in the wet process varies depending on the crude zinc oxide dust and the secondary raw material. Therefore, the content of the above crude zinc oxide dust and the secondary raw material "sodium aqueous solution soluble chlorine" is used as a parameter, and the value is multiplied by the amount of the crude zinc oxide dust and the secondary raw material processed to obtain "sodium aqueous solution soluble chlorine". , And finally, by summing the contents of each "sodium aqueous solution-soluble chlorine", the content of "sodium aqueous solution-soluble chlorine" of the crude zinc oxide cake raw material can be estimated. The above method can be mentioned as an example of a preferable embodiment of the "chlorine amount estimation process".

又、上記の「塩素量見積り処理」の実施において、二次原料が複数種の非含鉄粗酸化亜鉛原料の混合物である場合には、個々の二次原料(非含鉄粗酸化亜鉛原料)に含まれる「ナトリウム水溶液溶性塩素」の含有率について「塩素含有率見積り処理」を個別に行い、個々の二次原料(非含鉄粗酸化亜鉛原料)の処理量を乗じることによって、「粗酸化亜鉛ケーキ原料」の「ナトリウム水溶液溶性塩素」の含有量を求める「塩素量見積り処理」を行うことができる。 Further, in the above-mentioned "chlorination amount estimation processing", when the secondary raw material is a mixture of a plurality of types of non-iron-containing crude zinc oxide raw materials, they are included in the individual secondary raw materials (non-iron-containing crude zinc oxide raw materials). "Chlorine content estimation processing" is performed individually for the content of "sodium aqueous solution soluble chlorine", and by multiplying the processing amount of each secondary raw material (non-iron-containing crude zinc oxide raw material), "crude zinc oxide cake raw material" The "chlorine amount estimation process" for determining the content of "sodium aqueous solution-soluble chlorine" can be performed.

又、本発明の酸化亜鉛鉱の製造方法は、還元焙焼工程S10に投入する一次原料が鉄鋼ダストである場合には、「粗酸化亜鉛ケーキ原料」の「ナトリウム水溶液溶性塩素」の含有量を見積る塩素量見積り処理を、二次原料に含まれる「ナトリウム水溶液溶性塩素」の含有量を粗酸化亜鉛ケーキ原料の「ナトリウム水溶液溶性塩素」の含有量とみなして、塩素量算出処理を行うことによって、より簡便に実施することができる。 Further, in the method for producing zinc oxide ore of the present invention, when the primary raw material to be charged into the reduction roasting step S10 is steel dust, the content of "sodium aqueous solution-soluble chlorine" in the "crude zinc oxide cake raw material" is increased. In the estimated chlorine amount estimation process, the chlorine amount calculation process is performed by regarding the content of "sodium aqueous solution-soluble chlorine" contained in the secondary raw material as the content of "sodium aqueous solution-soluble chlorine" in the crude zinc oxide cake raw material. , Can be carried out more easily.

尚、鉄鋼ダストを還元焙焼した粗酸化亜鉛ダストには、「ナトリウム水溶液溶性塩素」はほとんど含有されておらず、含有される塩素の大部分が「水溶性塩素」であるという知見は本願発明者らが上述の溶出試験時に得た独自知見であり、上記の実施態様はこの独自知見に基づくものである。鉄鋼ダストは、製鉄業の電気炉、高炉において、鉄スクラップを溶解したときに発生したダストであり、鉛含有率が低い。よって、鉄鋼ダストを還元焙焼した粗酸化亜鉛ダストの、塩化鉛(PbCl)、塩化フッ化鉛(PbFCl)の含有率も低いものと推定される。 It should be noted that the crude zinc oxide dust obtained by reducing and roasting steel dust contains almost no "sodium aqueous solution-soluble chlorine", and the finding that most of the contained chlorine is "water-soluble chlorine" is the invention of the present application. It is an original finding obtained by these subjects at the time of the above-mentioned dissolution test, and the above-mentioned embodiment is based on this original finding. Steel dust is dust generated when iron scrap is melted in electric furnaces and blast furnaces in the steel industry, and has a low lead content. Therefore, it is estimated that the content of lead chloride (PbCl 2 ) and lead chloride fluoride (PbFCl) in the crude zinc oxide dust obtained by reducing and roasting steel dust is also low.

(pH調整処理)
湿式工程S20において用いる炭酸ナトリウム水溶液のpHを、上述の「塩素量見積り処理」によって見積った粗酸化亜鉛ケーキ原料の「ナトリウム水溶液溶性塩素」の含有量に応じて調整するpH調整処理は、一例として、以下のようにして行う。
(PH adjustment process)
As an example, the pH adjusting treatment for adjusting the pH of the sodium carbonate aqueous solution used in the wet step S20 according to the content of the "sodium aqueous solution-soluble chlorine" of the crude zinc oxide cake raw material estimated by the above-mentioned "chlorine amount estimation treatment" is used as an example. , Do as follows.

pH調整処理は、湿式工程S20で得られる粗酸化亜鉛ケーキ中の塩素品位の管理目標値に応じて行われる。例えば、酸化亜鉛鉱の塩素品位の製品規格値を満たすためには湿式工程S20で得られる粗酸化亜鉛ケーキの塩素品位を約1.2%以下に調整する必要がある。 The pH adjustment treatment is performed according to the control target value of the chlorine grade in the crude zinc oxide cake obtained in the wet step S20. For example, in order to satisfy the product standard value of the chlorine grade of zinc oxide ore, it is necessary to adjust the chlorine grade of the crude zinc oxide cake obtained in the wet step S20 to about 1.2% or less.

ここで、一次原料として鉄鋼ダストを用いる場合において、沈降分離装置2のpHと、粗酸化亜鉛ケーキの塩素品位の関係を、二次原料の「ナトリウム水溶液溶性塩素」の含有量で層別した結果、これらの間には、図3に示すような負の相関があることが確認されている。図3によれば、粗酸化亜鉛ケーキの塩素品位を約1.2%以下に調整するためには、二次原料の「ナトリウム水溶液溶性塩素」の含有量が1日当たり6.0〜8.0tのときは炭酸ナトリウム水溶液のpHを6.5に、4.0〜6.0tのときはpHを6.3に、2.0〜4.0tのときはpHを6.2に、調整すればよいことが分かる。 Here, when steel dust is used as the primary raw material, the relationship between the pH of the sedimentation separation device 2 and the chlorine grade of the crude zinc oxide cake is stratified by the content of the secondary raw material "sodium aqueous solution-soluble chlorine". , It has been confirmed that there is a negative correlation between them as shown in FIG. According to FIG. 3, in order to adjust the chlorine grade of the crude zinc oxide cake to about 1.2% or less, the content of the secondary raw material "sodium aqueous solution-soluble chlorine" is 6.0 to 8.0 tons per day. In this case, adjust the pH of the aqueous sodium carbonate solution to 6.5, adjust the pH to 6.3 when it is 4.0 to 6.0 tons, and adjust the pH to 6.2 when it is 2.0 to 4.0 tons. I know it's good.

そこで、例えば、一次原料としては鉄鋼ダストを用い、二次原料としては、「ナトリウム水溶液溶性塩素」を約13%含有する二次原料Aと「ナトリウム水溶液溶性塩素」を約3%含有する二次原料Bを用いる場合においてであれば、図3に示される相関に基づいて、各二次原料の湿式工程S20への投入量(日当たりの処理量)と、粗酸化亜鉛ケーキの塩素品位を好ましい範囲内に保持することが可能となるpH設定値を、pH6.0以上6.5以下の範囲において柔軟に変動させながら随時最適な値として規定することができる。pH6.0未満では、炭酸ナトリウムが添加されなくなるので、「ナトリウム水溶液溶性塩素」の負荷量の変動を考慮すると、粗酸化亜鉛ケーキの塩素品位が管理目標値を超える恐れがある。pHを高くすると、不純物であるカドミウムが水酸化物を形成して、粗酸化亜鉛ケーキに混入することになる。カドミウムは、pHが低いほど液中に抽出除去することができる。又、本発明の課題である炭酸ナトリウムの使用量削減という観点から、pHは低い方が良い。従って、pHの上限値は6.5とすることが好ましい。 Therefore, for example, steel dust is used as the primary raw material, and as the secondary raw material, the secondary raw material A containing about 13% of "sodium aqueous solution-soluble chlorine" and the secondary raw material A containing about 3% of "sodium aqueous solution-soluble chlorine" are used. In the case of using the raw material B, the amount of each secondary raw material input to the wet step S20 (the amount processed per day) and the chlorine grade of the crude zinc oxide cake are in a preferable range based on the correlation shown in FIG. The pH setting value that can be kept inside can be defined as an optimum value at any time while flexibly fluctuating in the range of pH 6.0 or more and 6.5 or less. If the pH is less than 6.0, sodium carbonate is not added. Therefore, considering the fluctuation of the load amount of "sodium aqueous solution-soluble chlorine", the chlorine grade of the crude zinc oxide cake may exceed the control target value. When the pH is increased, the impurity cadmium forms a hydroxide and is mixed in the crude zinc oxide cake. The lower the pH, the more cadmium can be extracted and removed in the liquid. Further, from the viewpoint of reducing the amount of sodium carbonate used, which is a subject of the present invention, the lower the pH, the better. Therefore, the upper limit of pH is preferably 6.5.

そして、そのようにして規定されたpH設定値に応じて、炭酸ナトリウムの使用量を管理することにより、炭酸ナトリウムの使用量を従来よりも削減しつつ、粗酸化亜鉛ケーキの塩素品位を適正に維持することができる。 Then, by controlling the amount of sodium carbonate used according to the pH setting value thus defined, the amount of sodium carbonate used can be reduced as compared with the conventional case, and the chlorine grade of the crude zinc oxide cake can be appropriately adjusted. Can be maintained.

又、各二次原料の湿式工程S20への投入量の組合せと、これに対応する沈降分離装置2の最適なpH値を示す多次元マトリックス表(図4参照)、又は、多次元グラフ等を予め作成しておき、これらを随時、人手により、或いは、情報処理装置によって自動的に参照しながら、上記のpH値の設定を行うことにより、更に効率よくpH調整処理を行うことができる。 In addition, a multidimensional matrix table (see FIG. 4) or a multidimensional graph showing the combination of the amounts of each secondary raw material input to the wet step S20 and the corresponding optimum pH value of the sedimentation separation device 2 is displayed. The pH adjustment process can be performed more efficiently by preparing the pH value in advance and setting the above pH value while manually referring to the pH value at any time or automatically by the information processing apparatus.

<乾燥加熱工程>
湿式工程S20で得た粗酸化亜鉛ケーキを、乾燥加熱ロータリーキルン(DRK)等の加熱炉に投入して焼成・造粒する乾燥加熱工程S30により、フッ素濃度を更に低減させて、酸化亜鉛鉱を製造することができる。乾燥加熱工程S30における焼成温度は、1000℃以上1200℃以下であることが好ましい。
<Drying and heating process>
The crude zinc oxide cake obtained in the wet step S20 is put into a heating furnace such as a dry heating rotary kiln (DRK) and fired and granulated. In the dry heating step S30, the fluorine concentration is further reduced to produce zinc oxide ore. can do. The firing temperature in the drying and heating step S30 is preferably 1000 ° C. or higher and 1200 ° C. or lower.

<その他の工程>
酸化亜鉛鉱を製造する全体プロセスにおいては、乾燥加熱工程S30で発生した排ガスダストを洗浄して洗浄後の排ガスダストケーキを得るための排ガスダスト洗浄工程が行われる。この工程を行うための洗浄設備は、洗浄塔、湿式電気集塵機の組合せとすることができる。又、同プロセスにおいては、湿式工程S20において粗酸化亜鉛ケーキ原料から分離されたフッ素やカドミウムを高濃度で含有する廃液から、フッ素及びカドミウムを除去し、更に、廃液中に微量に含まれる重金属を中和処理により沈澱除去し、最終的にpHを調整して無害の排水とする排水処理工程も行われる。
<Other processes>
In the whole process of producing zinc oxide ore, an exhaust gas dust cleaning step is performed to clean the exhaust gas dust generated in the drying and heating step S30 to obtain an exhaust gas dust cake after cleaning. The cleaning equipment for performing this step can be a combination of a cleaning tower and a wet electrostatic precipitator. Further, in the same process, fluorine and cadmium are removed from the waste liquid containing high concentrations of fluorine and cadmium separated from the crude zinc oxide cake raw material in the wet step S20, and heavy metals contained in a trace amount in the waste liquid are removed. A wastewater treatment step is also carried out in which sediment is removed by neutralization treatment, and finally the pH is adjusted to make harmless wastewater.

以下、実施例及び比較例により本発明を更に具体的に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

(実施例)
一次原料としては鉄鋼ダストを用い、二次原料としては、「高鉛ウェルツキルンダスト」(二次原料A)及び「RHF(Rotary Hearth Furnace)で回収された粗酸化亜鉛」(二次原料B)を用いて、本発明の製造方法による酸化亜鉛鉱の製造を試験的に行った。
(Example)
Steel dust is used as the primary raw material, and as the secondary raw material, "high lead Weltzkirundast" (secondary raw material A) and "crude zinc oxide recovered by RHF (Rotary Heart Finance)" (secondary raw material B). ) Was used to test the production of zinc oxide ore by the production method of the present invention.

上記の一次原料を還元焙焼して得た粗酸化亜鉛ダストと、上記の各二次原料とを、湿式工程に投入した。粗酸化亜鉛ダスト、二次原料A、二次原料Bのそれぞれの投入量は、乾燥量基準の1日当たりの重量で、100〜200t、0〜48t、0〜75tとした。 The crude zinc oxide dust obtained by reducing and roasting the above-mentioned primary raw material and each of the above-mentioned secondary raw materials were put into a wet step. The input amounts of the crude zinc oxide dust, the secondary raw material A, and the secondary raw material B were 100 to 200 tons, 0 to 48 tons, and 0 to 75 tons, respectively, based on the dry amount per day.

尚、二次原料A、二次原料Bについて、それぞれ上述の方法で、予め「塩素含有率見積り処理」を行ったとところ、二次原料Aについては、「ナトリウム水溶液溶性塩素」の含有率は、乾燥量基準で12〜13重量%、二次原料Bについては、同含有量が、乾燥量基準で2〜3重量%であった。 When the "chlorine content estimation process" was performed in advance for the secondary raw material A and the secondary raw material B by the above-mentioned methods, the content of "sodium aqueous solution-soluble chlorine" for the secondary raw material A was determined. The content of the secondary raw material B was 12 to 13% by weight based on the dry amount, and the content was 2 to 3% by weight based on the dry amount.

そして、予め用意した各二次原料の湿式工程S20への投入量の組合せと、これに対応する沈降分離装置の最適なpH値を示す多次元マトリックス表(図4参照)に基づいて、沈降分離装置内の処理液のpH設定値を6.0〜6.5として、このpH値に見合う量の炭酸ナトリウム(ソーダ灰)を凝集槽に添加するようにした。 Then, based on the combination of the amounts of each secondary raw material input to the wet step S20 prepared in advance and the multidimensional matrix table (see FIG. 4) showing the optimum pH value of the corresponding sedimentation separator, sedimentation separation is performed. The pH setting value of the treatment liquid in the apparatus was set to 6.0 to 6.5, and sodium carbonate (soda ash) in an amount commensurate with this pH value was added to the coagulation tank.

この実施例においては、結果的に炭酸ナトリウム(ソーダ灰)の添加量は、19.4kg/t(ソーダ灰原単位(酸化亜鉛鉱1t当たりのソーダ灰の使用量))となり、又、乾燥加熱工程を経て得られた酸化亜鉛鉱の塩素品位は、0.76重量%であった。 In this example, as a result, the amount of sodium carbonate (soda ash) added is 19.4 kg / t (soda ash basic unit (amount of soda ash used per ton of zinc oxide ore)), and drying and heating are performed. The chlorine grade of the zinc oxide ore obtained through the process was 0.76% by weight.

(比較例)
固液分離装置内の処理液のpH設定値を、粗酸化亜鉛ケーキ原料の「ナトリウム水溶液溶性塩素」含有量に関わらず、6.5に固定して、このpH値に見合う量の炭酸ナトリウム(ソーダ灰)を、凝集槽に添加するようにした他は、実施例と同一条件で製造を行った。
(Comparison example)
The pH setting value of the treatment liquid in the solid-liquid separator is fixed at 6.5 regardless of the content of "sodium aqueous solution-soluble chlorine" of the crude zinc oxide cake raw material, and the amount of sodium carbonate (sodium carbonate) corresponding to this pH value ( The production was carried out under the same conditions as in Examples except that sodium ash) was added to the coagulation tank.

この比較例においては、結果的に炭酸ナトリウム(ソーダ灰)の添加量は、43.5kg/t(ソーダ灰原単位(酸化亜鉛鉱1t当たりのソーダ灰の使用量))となり、又、乾燥加熱工程を経て得られた酸化亜鉛鉱の塩素品位は、0.55重量%であった。 In this comparative example, as a result, the amount of sodium carbonate (soda ash) added was 43.5 kg / t (soda ash basic unit (amount of soda ash used per ton of zinc oxide ore)), and it was dried and heated. The chlorine grade of the zinc oxide ore obtained through the process was 0.55% by weight.

実施例では、比較例と比べて酸化亜鉛鉱の塩素品位が若干上昇したものの、十分に許容できる範囲である。一方で、実施例では、比較例と比べてソーダ灰原単位が半分以下となり、十分な効果が得られた。 In the examples, the chlorine grade of zinc oxide ore was slightly higher than that in the comparative example, but it was within a sufficiently acceptable range. On the other hand, in the examples, the soda ash basic unit was less than half that of the comparative example, and a sufficient effect was obtained.

上記の実施例、及び比較例より、本発明の製造方法によれば、炭酸ナトリウムの過剰使用を抑制しつつ、湿式工程から得られる粗酸化亜鉛ケーキ中の塩素品位を低く適正に維持することができることが分る。 From the above Examples and Comparative Examples, according to the production method of the present invention, it is possible to appropriately maintain the chlorine grade in the crude zinc oxide cake obtained from the wet step while suppressing the excessive use of sodium carbonate. I know what I can do.

1 凝集槽
2 沈降分離装置(シックナー)
3 pH測定装置
10 湿式処理設備
S10 還元焙焼工程
S20 湿式工程
S30 乾燥加熱工程
1 Coagulation tank 2 Sedimentation separator (thickener)
3 pH measuring device 10 Wet processing equipment S10 Reduction roasting process S20 Wet process S30 Drying and heating process

Claims (4)

塩素と鉄を含む含鉄粗酸化亜鉛原料である一次原料を、還元焙焼して、粗酸化亜鉛ダストを得る還元焙焼工程と、
前記粗酸化亜鉛ダストと、塩素を含み、鉄を含まない非含鉄粗酸化亜鉛原料である二次原料と、からなる、粗酸化亜鉛ケーキ原料を、炭酸ナトリウム水溶液にてレパルプ後、脱水することによって、粗酸化亜鉛ケーキを得る湿式工程と、
前記粗酸化亜鉛ケーキを焼成して、酸化亜鉛鉱を得る乾燥加熱工程と、を含む酸化亜鉛鉱の製造プロセスにおいて、
前記湿式工程を行う前の何れかの段階で、前記粗酸化亜鉛ケーキ原料のナトリウム水溶液溶性塩素の含有量を見積る塩素量見積り処理を行い、
前記湿式工程においては、前記炭酸ナトリウム水溶液のpHを、前記粗酸化亜鉛ケーキ原料のナトリウム水溶液溶性塩素の含有量に対応するpHとするpH調整処理を行う、酸化亜鉛鉱の製造方法。
A reduction roasting process in which a primary raw material, which is an iron-containing crude zinc oxide raw material containing chlorine and iron, is reduced and roasted to obtain crude zinc oxide dust.
A crude zinc oxide cake raw material composed of the crude zinc oxide dust and a secondary raw material which is a non-iron-containing crude zinc oxide raw material containing chlorine and not iron is repulped with an aqueous sodium carbonate solution and then dehydrated. , Wet process to obtain crude zinc oxide cake,
In the process for producing zinc oxide ore, which comprises a drying and heating step of calcining the crude zinc oxide cake to obtain zinc oxide ore.
At any stage before the wet step, a chlorine amount estimation process for estimating the content of the sodium aqueous solution-soluble chlorine of the crude zinc oxide cake raw material is performed.
In the wet step, a method for producing zinc oxide ore, wherein the pH of the sodium carbonate aqueous solution is adjusted to a pH corresponding to the content of the sodium aqueous solution-soluble chlorine of the crude zinc oxide cake raw material.
前記一次原料が鉄鋼ダストであって、
前記二次原料に含まれるナトリウム水溶液溶性塩素の含有量を前記粗酸化亜鉛ケーキ原料のナトリウム水溶液溶性塩素の含有量とみなして、前記塩素量見積り処理を行う、
請求項1に記載の酸化亜鉛鉱の製造方法。
The primary raw material is steel dust,
The content of the aqueous sodium solution-soluble chlorine contained in the secondary raw material is regarded as the content of the sodium aqueous solution-soluble chlorine of the crude zinc oxide cake raw material, and the chlorine amount estimation process is performed.
The method for producing zinc oxide ore according to claim 1.
前記二次原料は、複数種の前記非含鉄粗酸化亜鉛原料の混合物であって、
前記pH調整処理を、個々の前記非含鉄粗酸化亜鉛原料に含まれるナトリウム水溶液溶性塩素含有率と、個々の前記非含鉄粗酸化亜鉛原料の使用量に応じて、前記炭酸ナトリウム水溶液のpHを調整することによって行う、
請求項2に記載の酸化亜鉛鉱の製造方法。
The secondary raw material is a mixture of a plurality of types of the non-iron-containing crude zinc oxide raw materials.
In the pH adjustment treatment, the pH of the sodium carbonate aqueous solution is adjusted according to the sodium aqueous solution-soluble chlorine content contained in the individual non-iron-containing crude zinc oxide raw material and the amount of each of the non-iron-containing crude zinc oxide raw materials used. Do by doing,
The method for producing zinc oxide ore according to claim 2.
前記pH調整処理後の、前記炭酸ナトリウム水溶液のpHが6.0以上6.5以下である、
請求項1から3の何れかに記載の酸化亜鉛鉱の製造方法。
After the pH adjustment treatment, the pH of the sodium carbonate aqueous solution is 6.0 or more and 6.5 or less.
The method for producing zinc oxide ore according to any one of claims 1 to 3.
JP2020019939A 2020-02-07 2020-02-07 Method for producing zinc oxide ore Active JP7415629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020019939A JP7415629B2 (en) 2020-02-07 2020-02-07 Method for producing zinc oxide ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020019939A JP7415629B2 (en) 2020-02-07 2020-02-07 Method for producing zinc oxide ore

Publications (2)

Publication Number Publication Date
JP2021123778A true JP2021123778A (en) 2021-08-30
JP7415629B2 JP7415629B2 (en) 2024-01-17

Family

ID=77458436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020019939A Active JP7415629B2 (en) 2020-02-07 2020-02-07 Method for producing zinc oxide ore

Country Status (1)

Country Link
JP (1) JP7415629B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4506017B2 (en) 2001-03-28 2010-07-21 住友金属鉱山株式会社 Method for producing zinc oxide sinter or zinc oxide briquette
JP2002332529A (en) 2001-05-07 2002-11-22 Sumitomo Metal Mining Co Ltd Method for removing fluorine from crude zinc oxide
CN102108445A (en) 2009-12-23 2011-06-29 株洲冶炼集团股份有限公司 Method for removing fluorine and chlorine in zinc oxide fume dust
JP5565354B2 (en) 2011-03-23 2014-08-06 住友金属鉱山株式会社 Method for producing zinc oxide sinter
JP5862305B2 (en) 2012-01-06 2016-02-16 住友金属鉱山株式会社 Smoke ash treatment method
JP5904089B2 (en) 2012-10-25 2016-04-13 住友金属鉱山株式会社 Method for producing zinc oxide ore
JP6123930B2 (en) 2016-03-14 2017-05-10 住友金属鉱山株式会社 Method for producing zinc oxide ore

Also Published As

Publication number Publication date
JP7415629B2 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
JP5565354B2 (en) Method for producing zinc oxide sinter
JP5904073B2 (en) Method for producing zinc oxide ore
JP6094467B2 (en) Method for producing zinc oxide ore
JP6015540B2 (en) Method for treating effluent containing cadmium
JP5904089B2 (en) Method for producing zinc oxide ore
JP2009161803A (en) Nonferrous refining dust treatment method
JP6123930B2 (en) Method for producing zinc oxide ore
JP6094468B2 (en) Method for producing zinc oxide ore
JP2021123778A (en) Method of manufacturing zinc oxide ore
KR20170060676A (en) Method for collecting tin from tin sludge
JP2020084235A (en) Manufacturing method of zinc oxide ore
JP2013543052A (en) Recycling method of dust generated from electric steelworks
JP4506017B2 (en) Method for producing zinc oxide sinter or zinc oxide briquette
JP6724433B2 (en) Wastewater treatment method
JP7211153B2 (en) Method for producing lead compound
JP4350262B2 (en) Residue treatment method
JP2000135480A (en) Treatment of residue
JP7400401B2 (en) Method for producing zinc oxide ore
JP2022103730A (en) Method for producing zinc oxide ore
JP7183502B2 (en) Method for producing zinc oxide ore
CN112538568B (en) Method for removing fluorine and chlorine in zinc oxide powder by low-temperature roasting and water washing
JP4359090B2 (en) Method for treating zinc-containing dust
JP6743859B2 (en) Zinc separation method, zinc material manufacturing method, and iron material manufacturing method
JPH07316677A (en) Method for recovering valuable metal from steelmaking dust
JP2023167518A (en) Method for producing crude zinc oxide sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231218

R150 Certificate of patent or registration of utility model

Ref document number: 7415629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150