JP2021123217A - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
JP2021123217A
JP2021123217A JP2020017599A JP2020017599A JP2021123217A JP 2021123217 A JP2021123217 A JP 2021123217A JP 2020017599 A JP2020017599 A JP 2020017599A JP 2020017599 A JP2020017599 A JP 2020017599A JP 2021123217 A JP2021123217 A JP 2021123217A
Authority
JP
Japan
Prior art keywords
engine
vehicle
control device
power
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020017599A
Other languages
Japanese (ja)
Other versions
JP7426250B2 (en
Inventor
忠明 辻
Tadaaki Tsuji
忠明 辻
博美 川原田
Hiromi Kawaharada
博美 川原田
義弘 須永
Yoshihiro Sunaga
義弘 須永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2020017599A priority Critical patent/JP7426250B2/en
Priority to CN202110158501.2A priority patent/CN113212409A/en
Publication of JP2021123217A publication Critical patent/JP2021123217A/en
Application granted granted Critical
Publication of JP7426250B2 publication Critical patent/JP7426250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K5/12Arrangement of engine supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/17Control strategies specially adapted for achieving a particular effect for noise reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Abstract

To provide a vehicle control device that can reduce muffled sound that is generated inside a vehicle when a hybrid vehicle decelerates intensely.SOLUTION: A control unit 48 monitors a variable (motor torque command value) which is correlated with any one of vehicle deceleration, a regeneration amount by a second electric motor and a displacement amount of an engine mount 20 and, when detecting that the variable varies from less than a first threshold to the first threshold or more, performs such control of making an operation point 80 of an engine 16 outside the muffled sound generating region 78.SELECTED DRAWING: Figure 3

Description

本発明は、エンジンと発電用の電動機と駆動用の電動機とを有するハイブリッド車両の車両制御装置に関する。 The present invention relates to a vehicle control device for a hybrid vehicle having an engine, an electric motor for power generation, and an electric motor for driving.

特許文献1には、停車中にエンジンの動力でジェネレータを動作させてバッテリを充電するときに、エンジンの排気異音に起因する運転者の違和感を抑制するハイブリッド車両が開示される。特許文献1には、エンジンの回転数とエンジンのトルクの座標系において複数の動作線が設定されており、停車中には運転効率よりも排気異音の抑制を優先する動作線(排気異音抑制動作ライン)を用いてエンジンを制御することが開示される。 Patent Document 1 discloses a hybrid vehicle that suppresses a driver's discomfort due to an abnormal exhaust noise of the engine when the generator is operated by the power of the engine to charge the battery while the vehicle is stopped. In Patent Document 1, a plurality of operation lines are set in the coordinate system of the engine speed and the torque of the engine, and the operation lines (exhaust abnormal noise) that prioritize the suppression of exhaust abnormal noise over the operating efficiency while the vehicle is stopped. It is disclosed that the engine is controlled by using the suppression operation line).

特許第5971188号公報Japanese Patent No. 5971188

エンジンは複数のエンジンマウントを介して車体に固定される。エンジンマウントは、エンジンから車体に伝播するエンジンの振動を抑制し、また、エンジンの振動に伴い発生する騒音を抑制する。しかし、車両の減速度が大きい強減速時に、エンジンマウントの基準位置の変位量は大きくなり、エンジンマウントにより低減することができる振動や騒音の量が少なくなる。このため、強減速時には、車室内にこもり音が発生する。特許文献1は、停車中の排気異音を抑制する技術を開示する一方で、車両の強減速時に発生するこもり音を抑制する技術を開示していない。 The engine is fixed to the vehicle body via multiple engine mounts. The engine mount suppresses engine vibration propagating from the engine to the vehicle body, and also suppresses noise generated by engine vibration. However, at the time of strong deceleration where the deceleration of the vehicle is large, the amount of displacement of the reference position of the engine mount becomes large, and the amount of vibration and noise that can be reduced by the engine mount decreases. Therefore, during strong deceleration, a muffled sound is generated in the vehicle interior. Patent Document 1 discloses a technique for suppressing an abnormal exhaust noise while the vehicle is stopped, but does not disclose a technique for suppressing a muffled noise generated when the vehicle is strongly decelerated.

本発明はこのような課題を考慮してなされたものであり、ハイブリッド車両の強減速時に車内に発生するこもり音を低減することができる車両制御装置を提供することを目的とする。 The present invention has been made in consideration of such a problem, and an object of the present invention is to provide a vehicle control device capable of reducing muffled noise generated in a hybrid vehicle during strong deceleration.

本発明の態様は、
エンジンマウントを介して車体に固定されるエンジンと、
前記エンジンの動力で発電を行うことが可能な第1電動機と、
力行により車両の駆動軸を駆動し、回生により発電を行うことが可能な第2電動機と、
前記エンジンと前記第1電動機と前記第2電動機の各動作を制御する制御部と、
を有する車両制御装置であって、
前記制御部は、前記車両の減速度と、前記第2電動機による回生量と、前記エンジンマウントの変位量と、のいずれかと相関のある変数を監視し、前記変数が第1閾値未満から第1閾値以上に変化したことを検出したときに、前記エンジンの運転点をこもり音発生領域外にする制御を行う。
Aspects of the present invention are
An engine that is fixed to the car body via an engine mount,
A first motor capable of generating electricity with the power of the engine,
A second motor that can drive the drive shaft of the vehicle by power running and generate electricity by regeneration,
A control unit that controls each operation of the engine, the first electric motor, and the second electric motor,
It is a vehicle control device having
The control unit monitors a variable that correlates with any one of the deceleration of the vehicle, the amount of regeneration by the second motor, and the amount of displacement of the engine mount, and the variable is from less than the first threshold value to the first. When it is detected that the change exceeds the threshold value, the operation point of the engine is controlled to be outside the muffled sound generation region.

本発明によれば、ハイブリッド車両の強減速時に車内に発生するこもり音を低減することができる。 According to the present invention, it is possible to reduce the muffled sound generated in the vehicle during strong deceleration of the hybrid vehicle.

図1は車両制御装置の構成を示す図である。FIG. 1 is a diagram showing a configuration of a vehicle control device. 図2は車両制御装置の制御系の構成を示す図である。FIG. 2 is a diagram showing a configuration of a control system of a vehicle control device. 図3はエンジン特性情報を示す図である。FIG. 3 is a diagram showing engine characteristic information. 図4は車両制御装置の処理を示すフローチャートである。FIG. 4 is a flowchart showing the processing of the vehicle control device. 図5は車速とアクセルペダルの操作量とエンジン回転数とトラクションモータのモータトルク指令値とバッテリの充電量の変化を示すタイムチャートである。FIG. 5 is a time chart showing changes in vehicle speed, accelerator pedal operation amount, engine speed, traction motor motor torque command value, and battery charge amount.

以下、本発明に係る車両制御装置について、好適な実施形態を挙げ、添付の図面を参照して詳細に説明する。 Hereinafter, the vehicle control device according to the present invention will be described in detail with reference to the accompanying drawings with reference to suitable embodiments.

[1.車両制御装置10の構成]
図1、図2を用いて車両制御装置10の構成を説明する。本実施形態で説明する車両は、エンジン16の動力でトラクションモータ30を駆動し、トラクションモータ30の動力で走行するハイブリッド車両である。車両制御装置10は、エンジン16と、エンジン駆動部22と、バッテリ24と、ジェネレータ26と、ジェネレータPDU28と、トラクションモータ30と、モータPDU32と、第1動力伝達機構34aと、第2動力伝達機構34bと、センサ群36と、ハイブリッドECU46と、エンジンECU68と、バッテリECU72と、を有する。
[1. Configuration of vehicle control device 10]
The configuration of the vehicle control device 10 will be described with reference to FIGS. 1 and 2. The vehicle described in this embodiment is a hybrid vehicle in which the traction motor 30 is driven by the power of the engine 16 and travels by the power of the traction motor 30. The vehicle control device 10 includes an engine 16, an engine drive unit 22, a battery 24, a generator 26, a generator PDU 28, a traction motor 30, a motor PDU 32, a first power transmission mechanism 34a, and a second power transmission mechanism. It has 34b, a sensor group 36, a hybrid ECU 46, an engine ECU 68, and a battery ECU 72.

エンジン16は、複数のエンジンマウント20を介して車体18に固定される。エンジン駆動部22は、エンジン16の動作を制御する種々の装置(燃料噴射弁、スロットルバルブ、イグニッションコイル等)を有する。 The engine 16 is fixed to the vehicle body 18 via a plurality of engine mounts 20. The engine drive unit 22 has various devices (fuel injection valve, throttle valve, ignition coil, etc.) that control the operation of the engine 16.

バッテリ24は、ジェネレータPDU28およびモータPDU32と電気的に接続される。バッテリ24は、ジェネレータPDU28およびモータPDU32が発電した電力により充電される。バッテリECU72は、プロセッサと各種メモリとA/D変換回路と通信インターフェースを有する。バッテリECU72は、バッテリ24を管理する。例えば、バッテリECU72は、SOCを演算し、また、バッテリ24の目標充電電力をハイブリッドECU46に出力する。 The battery 24 is electrically connected to the generator PDU 28 and the motor PDU 32. The battery 24 is charged by the electric power generated by the generator PDU 28 and the motor PDU 32. The battery ECU 72 has a processor, various memories, an A / D conversion circuit, and a communication interface. The battery ECU 72 manages the battery 24. For example, the battery ECU 72 calculates the SOC and outputs the target charging power of the battery 24 to the hybrid ECU 46.

ジェネレータ26は、第1電動機に相当する。ジェネレータ26の回転軸は、第1動力伝達機構34aを介してエンジン16の回転軸に連結される。ジェネレータPDU28は、ジェネレータ26が発電時に出力する交流の電力を直流の電力に変換してバッテリ24に出力するコンバータと、電力を調整するスイッチング素子と、を有する。更に、ジェネレータPDU28は、スイッチング素子を制御するジェネレータECU70(図2)を有する。 The generator 26 corresponds to the first electric motor. The rotation shaft of the generator 26 is connected to the rotation shaft of the engine 16 via the first power transmission mechanism 34a. The generator PDU 28 includes a converter that converts alternating current power output by the generator 26 during power generation into direct current power and outputs the power to the battery 24, and a switching element that adjusts the power. Further, the generator PDU 28 has a generator ECU 70 (FIG. 2) that controls a switching element.

トラクションモータ30は、第2電動機に相当する。トラクションモータ30の回転軸は第2動力伝達機構34bを介して駆動軸14に連結される。モータPDU32は、回生時にトラクションモータ30が出力する交流の電力を直流の電力に変換してバッテリ24に出力するコンバータと、バッテリ24に出力される電力を調整するスイッチング素子と、力行時にバッテリ24が出力する直流の電力を交流の電力に変換してトラクションモータ30に出力するインバータと、トラクションモータ30に出力される電力を調整するスイッチング素子と、を有する。更に、モータPDU32は、スイッチング素子を制御するモータECU66(図2)を有する。 The traction motor 30 corresponds to the second electric motor. The rotating shaft of the traction motor 30 is connected to the drive shaft 14 via the second power transmission mechanism 34b. The motor PDU 32 includes a converter that converts AC power output by the traction motor 30 during regeneration into DC power and outputs it to the battery 24, a switching element that adjusts the power output to the battery 24, and the battery 24 during power running. It has an inverter that converts the output DC power into AC power and outputs it to the traction motor 30, and a switching element that adjusts the power output to the traction motor 30. Further, the motor PDU 32 has a motor ECU 66 (FIG. 2) that controls a switching element.

第1動力伝達機構34aと第2動力伝達機構34bは、ギアやクラッチや動力分配機構を有する。 The first power transmission mechanism 34a and the second power transmission mechanism 34b have a gear, a clutch, and a power distribution mechanism.

図2に示されるように、センサ群36は、APセンサ38と、車速センサ40と、モータ回転センサ42と、エンジン回転センサ44と、を有する。APセンサ38は、アクセルペダル(APともいう)の近傍に設けられる変位計であり、APの操作量を検出し、検出値をハイブリッドECU46に出力する。車速センサ40は、車両の駆動軸14等に設けられるレゾルバまたはエンコーダであり、駆動軸14の回転位置を検出し、検出値をハイブリッドECU46に出力する。モータ回転センサ42は、トラクションモータ30に設けられるレゾルバまたはエンコーダであり、トラクションモータ30の回転軸の回転位置を検出し、検出値をハイブリッドECU46に出力する。エンジン回転センサ44は、エンジン16に設けられるレゾルバまたはエンコーダであり、エンジン16の回転軸(クランクシャフト等)の回転位置を検出し、検出値をハイブリッドECU46に出力する。 As shown in FIG. 2, the sensor group 36 includes an AP sensor 38, a vehicle speed sensor 40, a motor rotation sensor 42, and an engine rotation sensor 44. The AP sensor 38 is a displacement meter provided in the vicinity of the accelerator pedal (also referred to as AP), detects the operation amount of the AP, and outputs the detected value to the hybrid ECU 46. The vehicle speed sensor 40 is a resolver or encoder provided on the drive shaft 14 or the like of the vehicle, detects the rotational position of the drive shaft 14, and outputs the detected value to the hybrid ECU 46. The motor rotation sensor 42 is a resolver or an encoder provided in the traction motor 30, detects the rotation position of the rotation shaft of the traction motor 30, and outputs the detected value to the hybrid ECU 46. The engine rotation sensor 44 is a resolver or an encoder provided in the engine 16, detects the rotation position of the rotation shaft (crankshaft, etc.) of the engine 16 and outputs the detected value to the hybrid ECU 46.

ハイブリッドECU46は、制御部48と記憶部50の他に図示しないA/D変換回路と通信インターフェースを有する。制御部48は、例えばCPU等を備えるプロセッサにより構成される。制御部48は、記憶部50に記憶されるプログラムを実行することにより各種機能を実現する。本実施形態において、制御部48は、目標駆動力算出部52と、モータトルク指令値算出部54と、車両要求電力算出部56と、エンジン目標出力算出部58と、エンジン目標回転数算出部60と、エンジントルク指令値算出部62と、ジェネレータトルク指令値算出部64として機能する。 The hybrid ECU 46 has an A / D conversion circuit (not shown) and a communication interface in addition to the control unit 48 and the storage unit 50. The control unit 48 is composed of a processor including, for example, a CPU. The control unit 48 realizes various functions by executing a program stored in the storage unit 50. In the present embodiment, the control unit 48 includes a target driving force calculation unit 52, a motor torque command value calculation unit 54, a vehicle required power calculation unit 56, an engine target output calculation unit 58, and an engine target rotation speed calculation unit 60. It functions as an engine torque command value calculation unit 62 and a generator torque command value calculation unit 64.

目標駆動力算出部52は、APセンサ38の検出値と車速センサ40の検出値を用いて車両の目標駆動力を算出する。モータトルク指令値算出部54は、目標駆動力をトラクションモータ30の目標トルクに変換し、モータトルク指令値をモータECU66に出力する。車両要求電力算出部56は、トラクションモータ30の目標トルクとモータ回転センサ42の検出値と電装品の消費電力等を用いて発電すべき電力、すなわち車両要求電力を算出する。エンジン目標出力算出部58は、車両要求電力とバッテリ24の目標充電電力を用いてエンジン目標出力を算出する。エンジン目標回転数算出部60は、エンジン目標出力を用いてエンジン目標回転数を算出する。エンジントルク指令値算出部62は、エンジン目標出力とエンジン回転センサ44の検出値を用いてエンジン目標トルクを算出し、エンジントルク指令値をエンジンECU68に出力する。ジェネレータトルク指令値算出部64は、エンジン目標回転数とエンジン回転センサ44の検出値を用いてジェネレータ26の目標トルクを算出し、ジェネレータトルク指令値をジェネレータECU70に出力する。 The target driving force calculation unit 52 calculates the target driving force of the vehicle by using the detection value of the AP sensor 38 and the detection value of the vehicle speed sensor 40. The motor torque command value calculation unit 54 converts the target driving force into the target torque of the traction motor 30 and outputs the motor torque command value to the motor ECU 66. The vehicle required power calculation unit 56 calculates the power to be generated, that is, the vehicle required power, using the target torque of the traction motor 30, the detected value of the motor rotation sensor 42, the power consumption of the electrical components, and the like. The engine target output calculation unit 58 calculates the engine target output using the vehicle required power and the target charging power of the battery 24. The engine target rotation speed calculation unit 60 calculates the engine target rotation speed using the engine target output. The engine torque command value calculation unit 62 calculates the engine target torque using the engine target output and the detection value of the engine rotation sensor 44, and outputs the engine torque command value to the engine ECU 68. The generator torque command value calculation unit 64 calculates the target torque of the generator 26 using the engine target rotation speed and the detection value of the engine rotation sensor 44, and outputs the generator torque command value to the generator ECU 70.

記憶部50は、RAMとROMとハードディスク等のメモリにより構成される。記憶部50は、各種プログラムの他に、制御部48が行う処理で使用される各種情報を記憶する。ここでは、記憶部50は、第1閾値と第2閾値を記憶する。第1閾値というのは、こもり音が発生するか否かを判定するためのモータトルクの値である。第2閾値というのは、こもり音が消失したか否かを判定するためのモータトルクの値である。第1閾値と第2閾値は、シミュレーション等によって予め求められる。 The storage unit 50 is composed of a RAM, a ROM, and a memory such as a hard disk. The storage unit 50 stores various information used in the processing performed by the control unit 48 in addition to the various programs. Here, the storage unit 50 stores the first threshold value and the second threshold value. The first threshold value is a value of motor torque for determining whether or not a muffled sound is generated. The second threshold value is a value of the motor torque for determining whether or not the muffled sound has disappeared. The first threshold value and the second threshold value are obtained in advance by simulation or the like.

モータECU66と、エンジンECU68と、ジェネレータECU70は、プロセッサと各種メモリとA/D変換回路と通信インターフェースとドライバを有する。モータECU66は、モータトルク指令値に従い、モータPDU32の各スイッチング素子を制御する。エンジンECU68は、エンジントルク指令値に従い、エンジン駆動部22を制御する。ジェネレータECU70は、ジェネレータトルク指令値に従い、ジェネレータPDU28の各スイッチング素子を制御する。 The motor ECU 66, the engine ECU 68, and the generator ECU 70 have a processor, various memories, an A / D conversion circuit, a communication interface, and a driver. The motor ECU 66 controls each switching element of the motor PDU 32 according to the motor torque command value. The engine ECU 68 controls the engine drive unit 22 according to the engine torque command value. The generator ECU 70 controls each switching element of the generator PDU 28 according to the generator torque command value.

[2.車両制御装置10の動作]
車両に強減速が発生すると、前側に配置されるエンジンマウント20が圧縮される。この状態でエンジン16が高トルクを発生させると、エンジン16の振動はエンジンマウント20で低減されずに車体18に伝播する。その結果、こもり音が発生する。
[2. Operation of vehicle control device 10]
When a strong deceleration occurs in the vehicle, the engine mount 20 arranged on the front side is compressed. When the engine 16 generates a high torque in this state, the vibration of the engine 16 propagates to the vehicle body 18 without being reduced by the engine mount 20. As a result, a muffled sound is generated.

本実施形態では、制御部48がこもり音を抑制するための処理を行う。制御部48の各算出部は、所定時間毎に各値を算出している。この際、制御部48は、車両の減速度と、トラクションモータ30による回生量と、エンジンマウント20の変位量と、のいずれかと相関のある変数を監視する。例えば、制御部48の車両要求電力算出部56は、モータトルク指令値算出部54が出力するモータトルク指令値を監視する。モータトルク指令値は、こもり音が発生するか否かを判定するための指標である。 In the present embodiment, the control unit 48 performs a process for suppressing a muffled sound. Each calculation unit of the control unit 48 calculates each value at predetermined time intervals. At this time, the control unit 48 monitors a variable that correlates with any of the deceleration of the vehicle, the amount of regeneration by the traction motor 30, and the amount of displacement of the engine mount 20. For example, the vehicle required power calculation unit 56 of the control unit 48 monitors the motor torque command value output by the motor torque command value calculation unit 54. The motor torque command value is an index for determining whether or not a muffled sound is generated.

ここで図3を用いてエンジン16の動作を説明する。APが操作されると、車両要求電力算出部56が出力する車両要求電力は上昇し、エンジン目標出力算出部58が出力するエンジン目標出力も上昇する。すると、エンジン16の出力(エンジン回転数×エンジントルク)が上昇し、ジェネレータ26の発電電力は上昇する。このとき、図3に示されるように、エンジン16の出力(エンジン回転数×エンジントルク)は、動作線76に沿って上昇する(矢印82a)。なお、図3において、等出力線74は、ジェネレータ26の発電電力に相当する。 Here, the operation of the engine 16 will be described with reference to FIG. When the AP is operated, the vehicle required power output by the vehicle required power calculation unit 56 increases, and the engine target output output by the engine target output calculation unit 58 also increases. Then, the output of the engine 16 (engine speed x engine torque) increases, and the generated power of the generator 26 increases. At this time, as shown in FIG. 3, the output of the engine 16 (engine speed x engine torque) rises along the operation line 76 (arrow 82a). In FIG. 3, the equal output line 74 corresponds to the generated power of the generator 26.

制御部48は、図4に示される処理、すなわちこもり音を抑制する処理を行う。図4に示される処理は、車両の動作中に繰り返し実行される。 The control unit 48 performs the process shown in FIG. 4, that is, the process of suppressing the muffled sound. The process shown in FIG. 4 is repeatedly executed during the operation of the vehicle.

ステップS1において、車両要求電力算出部56は、APセンサ38の検出値を用いてAPが操作されているか否かを判定する。例えば、図5の時点t1〜t4のように、APが操作されていない場合(ステップS1:YES)、処理はステップS2に移行する。この場合、トラクションモータ30が回生ブレーキとして機能するため、車両は減速する。一方、例えば、図5の時点t0〜t1のように、APが操作されている場合(ステップS1:NO)、処理は終了し、次に一連の処理を行うタイミングが到来したときに改めてステップS1の処理が実行される。 In step S1, the vehicle required power calculation unit 56 determines whether or not the AP is being operated by using the detection value of the AP sensor 38. For example, when the AP is not operated (step S1: YES) as in the time points t1 to t4 in FIG. 5, the process proceeds to step S2. In this case, the traction motor 30 functions as a regenerative brake, so that the vehicle decelerates. On the other hand, for example, when the AP is operated (step S1: NO) as in the time points t0 to t1 in FIG. 5, the process is completed, and when the timing for performing the next series of processes arrives, step S1 is performed again. Processing is executed.

ステップS2において、車両要求電力算出部56は、モータトルク指令値算出部54が算出した最新のモータトルク指令値と、記憶部50に予め記憶される第1閾値と、を比較する。モータトルク指令値は力行時にプラスの値となり、回生時にマイナスの値となる。また、第1閾値は回生トルクを示すマイナスの閾値である。ここでは説明の便宜のために、モータトルク指令値および各種閾値の絶対値を用いる。例えば、図5の時点t2のように、|モータトルク指令値|<|第1閾値|の状態から|モータトルク指令値|≧|第1閾値|に変化した場合(ステップS2:YES)、処理はステップS3に移行する。図3において、このときのエンジン16の出力が運転点80aとして示される。一方、例えば、図5の時点t1〜t2のように、|モータトルク指令値|<|第1閾値|である場合(ステップS2:NO)、処理は終了し、次に一連の処理を行うタイミングが到来したときに改めてステップS1の処理が実行される。 In step S2, the vehicle required power calculation unit 56 compares the latest motor torque command value calculated by the motor torque command value calculation unit 54 with the first threshold value stored in advance in the storage unit 50. The motor torque command value becomes a positive value during power running and a negative value during regeneration. The first threshold value is a negative threshold value indicating the regenerative torque. Here, for convenience of explanation, the motor torque command value and the absolute value of various threshold values are used. For example, when the state of | motor torque command value | << | first threshold value | changes to | motor torque command value | ≧ | first threshold value | as in time point t2 of FIG. 5 (step S2: YES), processing Goes to step S3. In FIG. 3, the output of the engine 16 at this time is shown as an operating point 80a. On the other hand, for example, when | motor torque command value | << | first threshold value | (step S2: NO) as in the time points t1 to t2 in FIG. 5, the processing is completed, and then the timing for performing a series of processing is performed. Is reached, the process of step S1 is executed again.

ステップS3において、車両要求電力算出部56は、発電量減少制御を実行する。例えば、記憶部50には、減速度やエンジン16の回転数等と、こもり音を抑制することができる車両要求電力と、の関係を示すマップが記憶される。車両要求電力算出部56は、このマップを使用して、こもり音を抑制することができる車両要求電力として目標電力74a(図3)を求める。エンジン目標出力算出部58は、目標電力74aに応じたエンジン目標出力を算出する。そして、エンジントルク指令値算出部62は、エンジントルク指令値をエンジンECU68に出力し、ジェネレータトルク指令値算出部64は、ジェネレータトルク指令値をジェネレータECU70に出力する。 In step S3, the vehicle required power calculation unit 56 executes the power generation amount reduction control. For example, the storage unit 50 stores a map showing the relationship between the deceleration, the number of revolutions of the engine 16, and the required electric power of the vehicle capable of suppressing muffled noise. The vehicle required power calculation unit 56 uses this map to obtain a target power 74a (FIG. 3) as a vehicle required power capable of suppressing muffled noise. The engine target output calculation unit 58 calculates the engine target output according to the target power 74a. Then, the engine torque command value calculation unit 62 outputs the engine torque command value to the engine ECU 68, and the generator torque command value calculation unit 64 outputs the generator torque command value to the generator ECU 70.

このとき、エンジントルクは応答性が高いため、車両要求電力(目標電力74a)およびエンジン目標出力の低下に応じて比較的早く低下する。一方、エンジン回転数は、イナーシャの影響を受けるため、エンジントルクと比較して低下に時間を要する。このため、エンジン16の出力(運転点80)は、先ず運転点80aからエンジントルクが低下した後に(矢印82b)、エンジン回転数が低下する(矢印82c)。目標電力74aに対応する等出力線74は、こもり音発生領域78と交わらないように設定される。このため、こもり音は抑制される。 At this time, since the engine torque has high responsiveness, it decreases relatively quickly according to the decrease in the vehicle required electric power (target electric power 74a) and the engine target output. On the other hand, since the engine speed is affected by inertia, it takes time to decrease compared with the engine torque. Therefore, the output of the engine 16 (operating point 80) is such that the engine torque first decreases from the operating point 80a (arrow 82b), and then the engine speed decreases (arrow 82c). The equal output line 74 corresponding to the target power 74a is set so as not to intersect with the muffled sound generation region 78. Therefore, the muffled sound is suppressed.

エンジン16の出力が低下すると、図5の時点t2直後のように、バッテリ24の充電量は低下する。なお、図5では、発電量減少制御が実行される場合の充電量が実線で示され、発電量減少制御が実行されない場合の充電量が破線で示される。図5は、充電量をマイナス値で示しており、図面下方ほど充電量が高く、図面上方ほど充電量が低いことを示す。ステップS3の処理と平行してステップS4の判定が行われる。 When the output of the engine 16 decreases, the charge amount of the battery 24 decreases as immediately after t2 in FIG. In FIG. 5, the charge amount when the power generation amount reduction control is executed is shown by a solid line, and the charge amount when the power generation amount reduction control is not executed is shown by a broken line. FIG. 5 shows the charge amount as a negative value, indicating that the charge amount is higher toward the lower part of the drawing and lower at the upper part of the drawing. The determination in step S4 is performed in parallel with the process in step S3.

ステップS4において、車両要求電力算出部56は、モータトルク指令値算出部54が算出した最新のモータトルク指令値と、記憶部50に予め記憶される第2閾値と、を比較する。第2閾値は、第1閾値と同様に、回生トルクを示すマイナスの閾値であり、その絶対値は第1閾値の絶対値よりも小さい。例えば、図5の時点t3のように、|モータトルク指令値|>|第2閾値|の状態から|モータトルク指令値|≦|第2閾値|に変化した場合(ステップS4:YES)、処理はステップS5に移行する。一方、例えば、図5の時点t2〜t3のように、|モータトルク指令値|>|第2閾値|である場合(ステップS4:NO)、ステップS4の処理が繰り返し実行される。 In step S4, the vehicle demand power calculation unit 56 compares the latest motor torque command value calculated by the motor torque command value calculation unit 54 with the second threshold value stored in advance in the storage unit 50. The second threshold value, like the first threshold value, is a negative threshold value indicating the regenerative torque, and its absolute value is smaller than the absolute value of the first threshold value. For example, when the state of | motor torque command value |> | second threshold value | changes to | motor torque command value | ≤ | second threshold value | as in time point t3 of FIG. 5 (step S4: YES), processing Goes to step S5. On the other hand, for example, when the | motor torque command value |> | second threshold value | (step S4: NO) as in the time points t2 to t3 of FIG. 5, the process of step S4 is repeatedly executed.

ステップS5において、車両要求電力算出部56は、発電量減少制御を解除する。このとき、車両要求電力算出部56は、通常通り、トラクションモータ30の目標トルクとモータ回転センサ42の検出値と電装品の消費電力等を用いて車両要求電力を算出する。ステップS5が終了すると、一連の処理は終了する。 In step S5, the vehicle required power calculation unit 56 releases the power generation amount reduction control. At this time, the vehicle required power calculation unit 56 calculates the vehicle required power using the target torque of the traction motor 30, the detected value of the motor rotation sensor 42, the power consumption of the electrical components, and the like as usual. When step S5 ends, a series of processes ends.

[3.変形例]
上述した実施形態では、車両要求電力算出部56がこもり音を抑制することができる目標電力74aを求める。これに代わり、エンジン目標出力算出部58がエンジン16の出力を所定量だけ低下させることにより、エンジン目標出力を算出してもよい。
[3. Modification example]
In the above-described embodiment, the vehicle required power calculation unit 56 obtains a target power 74a capable of suppressing muffled noise. Instead, the engine target output calculation unit 58 may calculate the engine target output by reducing the output of the engine 16 by a predetermined amount.

例えば、上述した実施形態において、車両要求電力算出部56は、エンジン16の運転点80をこもり音発生領域78外にする制御として、車両要求電力を、通常よりも抑制された目標電力74aとする。しかし、図3に示されるように、車両要求電力算出部56が車両要求電力を通常の目標電力74bとし、エンジン目標回転数算出部60およびエンジントルク指令値算出部62がこもり音発生領域78の境界74c付近でエンジン16を動作させる制御を行ってもよい。この場合、運転点80は、こもり音発生領域78の境界74c付近で維持される。 For example, in the above-described embodiment, the vehicle required power calculation unit 56 sets the vehicle required power to the target power 74a, which is suppressed more than usual, as a control for keeping the operating point 80 of the engine 16 outside the muffled sound generation region 78. .. However, as shown in FIG. 3, the vehicle required power calculation unit 56 sets the vehicle required power as the normal target power 74b, and the engine target rotation speed calculation unit 60 and the engine torque command value calculation unit 62 are in the muffled sound generation region 78. Control may be performed to operate the engine 16 near the boundary 74c. In this case, the operating point 80 is maintained near the boundary 74c of the muffled sound generation region 78.

[4.実施形態から得られる技術的思想]
上記実施形態から把握しうる技術的思想について、以下に記載する。
[4. Technical idea obtained from the embodiment]
The technical ideas that can be grasped from the above embodiments are described below.

本発明の態様は、
エンジンマウント20を介して車体18に固定されるエンジン16と、
前記エンジン16の動力で発電を行うことが可能な第1電動機(ジェネレータ26)と、
力行により車両の駆動軸14を駆動し、回生により発電を行うことが可能な第2電動機(トラクションモータ30)と、
前記エンジン16と前記第1電動機と前記第2電動機の各動作を制御する制御部48と、
を有する車両制御装置10であって、
前記制御部48は、前記車両の減速度と、前記第2電動機による回生量と、前記エンジンマウント20の変位量と、のいずれかと相関のある変数(モータトルク指令値)を監視し、前記変数が第1閾値未満から第1閾値以上に変化したことを検出したときに、前記エンジン16の運転点80をこもり音発生領域78外にする制御を行う。
Aspects of the present invention are
The engine 16 fixed to the vehicle body 18 via the engine mount 20 and
A first electric motor (generator 26) capable of generating electricity with the power of the engine 16 and
A second electric motor (traction motor 30) capable of driving the drive shaft 14 of the vehicle by power running and generating electricity by regeneration, and
A control unit 48 that controls each operation of the engine 16, the first electric motor, and the second electric motor, and
The vehicle control device 10 having the
The control unit 48 monitors a variable (motor torque command value) that correlates with any of the deceleration of the vehicle, the amount of regeneration by the second electric motor, and the displacement amount of the engine mount 20, and the variable. When it is detected that the engine 16 has changed from less than the first threshold value to more than the first threshold value, the operation point 80 of the engine 16 is controlled to be outside the muffled sound generation region 78.

上記構成によれば、エンジン16の運転点80をこもり音発生領域78外にする制御を行うため、ハイブリッド車両の強減速時に車内に発生するこもり音を低減することができる。 According to the above configuration, since the operation point 80 of the engine 16 is controlled to be outside the muffled sound generation region 78, the muffled sound generated in the vehicle during strong deceleration of the hybrid vehicle can be reduced.

本発明の態様において、
前記制御部48は、前記エンジン16の前記運転点80をこもり音発生領域78外にする制御として、前記第1電動機(ジェネレータ26)の発電量を、第1閾値未満のときと比較して減少させる発電量減少制御を行う。
In aspects of the invention
The control unit 48 reduces the amount of power generated by the first electric motor (generator 26) as compared with the case where the operating point 80 of the engine 16 is less than the first threshold value, as a control to move the operating point 80 of the engine 16 out of the muffled sound generation region 78. Control the amount of power generation to be reduced.

上記構成によれば、発電量減少制御を行うため、ハイブリッド車両の強減速時に車内に発生するこもり音を低減することができる。特に、車両の減速度と、第2電動機(トラクションモータ30)による回生量と、エンジンマウント20の変位量と、のいずれかと相関のある変数、例えば、モータトルク指令値を第1閾値と比較することにより、こもり音の発生を予測することができる。このため、こもり音を抑制する発電量減少制御を、迅速に開始することができる。 According to the above configuration, since the power generation amount reduction control is performed, it is possible to reduce the muffled sound generated in the vehicle during strong deceleration of the hybrid vehicle. In particular, a variable that correlates with any of the deceleration of the vehicle, the amount of regeneration by the second motor (traction motor 30), and the amount of displacement of the engine mount 20, for example, the motor torque command value is compared with the first threshold value. Therefore, it is possible to predict the occurrence of muffled sound. Therefore, the power generation amount reduction control for suppressing the muffled sound can be started quickly.

本発明の態様において、
前記制御部48は、前記発電量減少制御において、前記エンジン16の出力を所定量減少させてもよい。
In aspects of the invention
The control unit 48 may reduce the output of the engine 16 by a predetermined amount in the power generation reduction control.

本発明の態様において、
前記制御部48は、前記発電量減少制御を行っている場合であって、前記変数が前記第1閾値よりも小さい前記第2閾値以下に変化したことを検出したときに、前記発電量減少制御を解除し、前記第1電動機(ジェネレータ26)の発電量を通常に戻す発電量復帰制御を行ってもよい。
In aspects of the invention
When the control unit 48 detects that the variable is smaller than the first threshold value and is equal to or less than the second threshold value in the case where the power generation amount reduction control is performed, the power generation amount reduction control is performed. Is released, and the power generation amount return control for returning the power generation amount of the first electric motor (generator 26) to the normal value may be performed.

上記構成によれば、第1電動機(ジェネレータ26)の発電によりバッテリ24を充電することができる。 According to the above configuration, the battery 24 can be charged by the power generation of the first electric motor (generator 26).

なお、本発明に係る車両制御装置は、上述の実施形態および変形例に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。 It should be noted that the vehicle control device according to the present invention is not limited to the above-described embodiments and modifications, and of course, various configurations can be adopted without deviating from the gist of the present invention.

10…車両制御装置 16…エンジン
18…車体 20…エンジンマウント
26…ジェネレータ(第1電動機)
30…トラクションモータ(第2電動機)
48…制御部 78…こもり音発生領域
10 ... Vehicle control device 16 ... Engine 18 ... Body 20 ... Engine mount 26 ... Generator (first motor)
30 ... Traction motor (second motor)
48 ... Control unit 78 ... Muffled sound generation area

Claims (4)

エンジンマウントを介して車体に固定されるエンジンと、
前記エンジンの動力で発電を行うことが可能な第1電動機と、
力行により車両の駆動軸を駆動し、回生により発電を行うことが可能な第2電動機と、
前記エンジンと前記第1電動機と前記第2電動機の各動作を制御する制御部と、
を有する車両制御装置であって、
前記制御部は、前記車両の減速度と、前記第2電動機による回生量と、前記エンジンマウントの変位量と、のいずれかと相関のある変数を監視し、前記変数が第1閾値未満から第1閾値以上に変化したことを検出したときに、前記エンジンの運転点をこもり音発生領域外にする制御を行う、車両制御装置。
An engine that is fixed to the car body via an engine mount,
A first motor capable of generating electricity with the power of the engine,
A second motor that can drive the drive shaft of the vehicle by power running and generate electricity by regeneration,
A control unit that controls each operation of the engine, the first electric motor, and the second electric motor,
It is a vehicle control device having
The control unit monitors a variable that correlates with any one of the deceleration of the vehicle, the amount of regeneration by the second electric motor, and the displacement amount of the engine mount, and the variable is from less than the first threshold value to the first. A vehicle control device that controls the operating point of the engine to be outside the muffled sound generation region when it detects that the change has exceeded a threshold value.
請求項1に記載の車両制御装置であって、
前記制御部は、前記エンジンの前記運転点をこもり音発生領域外にする制御として、前記第1電動機の発電量を、第1閾値未満のときと比較して減少させる発電量減少制御を行う、車両制御装置。
The vehicle control device according to claim 1.
The control unit controls the operation point of the engine to be outside the muffled sound generation region, and performs power generation reduction control for reducing the power generation amount of the first electric motor as compared with the case where the power generation amount is less than the first threshold value. Vehicle control device.
請求項2に記載の車両制御装置であって、
前記制御部は、前記発電量減少制御において、前記エンジンの出力を所定量減少させる、車両制御装置。
The vehicle control device according to claim 2.
The control unit is a vehicle control device that reduces the output of the engine by a predetermined amount in the power generation reduction control.
請求項2に記載の車両制御装置であって、
前記制御部は、前記発電量減少制御を行っている場合であって、前記変数が前記第1閾値よりも小さい第2閾値以下に変化したことを検出したときに、前記発電量減少制御を解除し、前記第1電動機の発電量を通常に戻す発電量復帰制御を行う、車両制御装置。
The vehicle control device according to claim 2.
When the control unit detects that the variable has changed to a second threshold value smaller than the first threshold value in the case where the power generation amount reduction control is performed, the power generation amount reduction control is released. A vehicle control device that controls the power generation amount return to return the power generation amount of the first electric motor to the normal value.
JP2020017599A 2020-02-05 2020-02-05 Vehicle control device Active JP7426250B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020017599A JP7426250B2 (en) 2020-02-05 2020-02-05 Vehicle control device
CN202110158501.2A CN113212409A (en) 2020-02-05 2021-02-04 Vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020017599A JP7426250B2 (en) 2020-02-05 2020-02-05 Vehicle control device

Publications (2)

Publication Number Publication Date
JP2021123217A true JP2021123217A (en) 2021-08-30
JP7426250B2 JP7426250B2 (en) 2024-02-01

Family

ID=77084608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020017599A Active JP7426250B2 (en) 2020-02-05 2020-02-05 Vehicle control device

Country Status (2)

Country Link
JP (1) JP7426250B2 (en)
CN (1) CN113212409A (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4086014B2 (en) 2004-06-21 2008-05-14 トヨタ自動車株式会社 POWER OUTPUT DEVICE, AUTOMOBILE, AND CONTROL METHOD FOR POWER OUTPUT DEVICE
JP4997949B2 (en) * 2006-12-08 2012-08-15 トヨタ自動車株式会社 Control device for vehicle drive device
JP2009274487A (en) 2008-05-12 2009-11-26 Toyota Motor Corp Hybrid vehicle control unit
JP2010221896A (en) * 2009-03-24 2010-10-07 Toyota Motor Corp Hybrid car and method for controlling the same
JP5673339B2 (en) * 2011-05-11 2015-02-18 トヨタ自動車株式会社 Hybrid car
JP5375913B2 (en) 2011-09-22 2013-12-25 トヨタ自動車株式会社 Control device for hybrid vehicle
JP2013086600A (en) * 2011-10-14 2013-05-13 Toyota Motor Corp Controller and control method of hybrid vehicle
KR101865954B1 (en) * 2012-09-21 2018-06-08 현대자동차주식회사 Inverter control method of eco-friendly vehicle for reducing noise
JP5966858B2 (en) 2012-10-30 2016-08-10 トヨタ自動車株式会社 Hybrid car
JP6317263B2 (en) * 2013-01-31 2018-04-25 トヨタ自動車株式会社 Control device for hybrid vehicle
JP7000879B2 (en) * 2018-01-30 2022-01-19 株式会社アイシン Vehicle control device

Also Published As

Publication number Publication date
CN113212409A (en) 2021-08-06
JP7426250B2 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
KR101622525B1 (en) Hybrid vehicle
JP6011541B2 (en) Charge control device and charge control method
US10351015B2 (en) Hybrid vehicle
JP5725037B2 (en) Vehicle and vehicle control method
JP6620134B2 (en) Hybrid vehicle
JP5400697B2 (en) Control device for hybrid vehicle and hybrid vehicle including the same
JP5575203B2 (en) Vehicle power generation apparatus and power generation control method
JP2012092673A (en) Vehicle power generation control apparatus
US9522670B2 (en) Control system of hybrid vehicle
JPWO2013061758A1 (en) Control device for hybrid vehicle
JP6819685B2 (en) Hybrid vehicle control method and control device
JP5598555B2 (en) Vehicle and vehicle control method
JP6213497B2 (en) Hybrid vehicle
JP6606444B2 (en) Vehicle control device
JP5919434B2 (en) Internal combustion engine control device and internal combustion engine control method
JP5282798B2 (en) Control device for hybrid vehicle
JP2010268639A (en) Vehicle controller
JP7426250B2 (en) Vehicle control device
JP7252996B2 (en) vehicle controller
JP7140292B2 (en) Series hybrid vehicle control method and series hybrid vehicle
JP2021066316A (en) Power train system
JP7373446B2 (en) Hybrid vehicle and its control method
JP5728447B2 (en) Vehicle control device
JP6916674B2 (en) Vehicle control device
JP2023060622A (en) Control device and hybrid vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240122

R150 Certificate of patent or registration of utility model

Ref document number: 7426250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150