JP2021122994A - 造形システム及び造形方法 - Google Patents

造形システム及び造形方法 Download PDF

Info

Publication number
JP2021122994A
JP2021122994A JP2020016628A JP2020016628A JP2021122994A JP 2021122994 A JP2021122994 A JP 2021122994A JP 2020016628 A JP2020016628 A JP 2020016628A JP 2020016628 A JP2020016628 A JP 2020016628A JP 2021122994 A JP2021122994 A JP 2021122994A
Authority
JP
Japan
Prior art keywords
cross
modeled object
image
section
colored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020016628A
Other languages
English (en)
Inventor
健次 原山
Kenji Harayama
健次 原山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mimaki Engineering Co Ltd
Original Assignee
Mimaki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mimaki Engineering Co Ltd filed Critical Mimaki Engineering Co Ltd
Priority to JP2020016628A priority Critical patent/JP2021122994A/ja
Publication of JP2021122994A publication Critical patent/JP2021122994A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】着色された造形物を適切に造形する。【解決手段】造形システム10であって、複数のインクジェットヘッド202及び制御部110を備え、制御部110は、吐出制御部としての動作において、複数のインクジェットヘッド202の少なくとも一部に着色用のインクを吐出させて、着色領域を形成させ、スライス画像生成部としての動作において、断面位置における造形物50の断面の形状と表面の色とを示す表面着色断面画像を形状データ及びテクスチャデータに基づいて生成する表面着色断面画像生成処理と、断面位置における着色領域の断面に対応する断面着色部を設定することで領域設定後画像を生成する領域設定処理と、領域設定後画像の解像度を低くする解像度変換を行うことでスライス画像を生成する解像度変換処理とを行う。【選択図】図1

Description

本発明は、造形システム及び造形方法に関する。
従来、インクジェットヘッドを用いて造形物を造形する造形装置(3Dプリンタ)が知られている(例えば、特許文献1参照。)。このような造形装置においては、例えば、インクジェットヘッドにより形成するインクの層を複数層重ねることにより、積層造形法で造形物を造形する。また、近年、複数色のインクを用いて着色がされた造形物を造形すること等も行われている。
特開2015−071282号公報
積層造形法で造形物の造形を行う場合、例えば、造形物の断面の状態を示すスライス画像(スライスデータ)を生成して、スライス画像に基づいて造形物を構成するインクの層を形成することが考えられる。また、着色された造形物を造形する場合、例えば、造形物の表面に対する着色の仕方(例えば、表面に描く画像等)を示すテクスチャデータを用いることが考えられる。この場合、例えば、造形物の形状を示す形状データ及びテクスチャデータに基づき、造形の解像度(造形出力の解像度)に合わせた解像度のスライス画像を生成する。
しかし、本願の発明者が実際に様々な実験等を行ったところ、テクスチャデータとして十分に高い解像度のデータを用いる場合でも、造形物に対する着色のされ方の解像度が低くなり、高い品質の造形物を造形することが難しくなる場合があることを見出した。より具体的に、例えば、高い解像度での造形が可能な造形システムを用い、かつ、造形の解像度と比べて十分に高い解像度で画像を示すテクスチャデータを用いる場合でも、造形物の表面に描かれる画像について、造形の解像度に対応する品質よりも低い画像になり、テクスチャデータが示す画像の再現性が不十分になる場合があることを見出した。そこで、本発明は、上記の課題を解決できる造形システム及び造形方法を提供することを目的とする。
本願の発明者は、より高い品質で着色がされた造形物を造形できる構成について、鋭意研究を行った。そして、上記のような品質の低下が生じる理由に関し、形状データ及びテクスチャデータからスライス画像を生成する処理について、テクスチャデータの高い解像度を適切に反映しない状態でスライス画像が生成される場合があることを見出した。
より具体的に、テクスチャデータについては、例えば、造形物の表面の色を示すデータ等と考えることができる。これに対し、造形物の造形時には、着色がされる着色領域について、通常、造形物の表面の法線方向における厚さがある程度の厚さ(例えば10μm以上、好ましくは、40〜200μm程度)になるように形成する。そして、この場合、スライス画像としては、着色領域の厚さに対応する部分にも着色がされる画像を生成する。
そのため、スライス画像の生成時には、例えば、テクスチャデータによって造形物の表面に対してのみ指定されている色に基づき、厚みのある着色領域の各部の色を設定することが必要になる。そして、従来の方法でスライス画像を生成する場合、この処理において、テクスチャデータの高い解像度を適切に反映しない状態でスライス画像が生成される場合がある。これに対し、本願の発明者は、スライス画像を生成する処理について、途中の段階までを造形の解像度よりも高い解像度の画像を用いて行い、その後に解像度の変換を行うことで造形の解像度に合わせたスライス画像を生成することを考えた。また、このような処理を行うことで、テクスチャデータの解像度をより適切に反映したスライス画像を生成して、高い品質での造形物の造形をより適切に行い得ることを見出した。
また、本願の発明者は、更なる鋭意研究により、このような効果を得るために必要な特徴を見出し、本発明に至った。上記の課題を解決するために、本発明は、立体的な造形物を造形する造形システムであって、前記造形物の形状を示す形状データと、前記造形物の表面の色を示すテクスチャデータとに基づき、前記造形物の断面を示す画像であるスライス画像を生成するスライス画像生成部と、前記造形物の材料をそれぞれが吐出する複数の吐出ヘッドと、前記スライス画像に基づいて前記複数の吐出ヘッドに前記材料を吐出させる吐出制御部とを備え、前記吐出制御部は、前記複数の吐出ヘッドの少なくとも一部に着色用の有色の前記材料を吐出させることにより、前記造形物において着色がされる領域である着色領域を形成させ、前記スライス画像生成部は、予め設定された断面位置方向における互いに異なる複数の断面位置に対し、それぞれの前記断面位置における前記造形物の断面を示す前記スライス画像を生成し、それぞれの前記断面位置における前記スライス画像を生成する処理として、前記断面位置における前記造形物の断面の形状と、前記断面位置における前記造形物の表面の色とを示す画像である表面着色断面画像を前記形状データ及び前記テクスチャデータに基づいて生成する表面着色断面画像生成処理と、前記断面位置における前記着色領域の断面に対応する領域である断面着色部を設定する処理であり、前記断面着色部に色が指定された状態で前記造形物の断面の形状及び色を示す画像である領域設定後画像を前記表面着色断面画像に基づいて生成する領域設定処理と、前記領域設定後画像の解像度を低くする解像度変換を行うことで前記断面位置に対応する前記スライス画像を生成する解像度変換処理とを行う。
このように構成すれば、例えば、高い品質で造形物の断面を示すスライス画像を適切に生成することができる。また、これにより、例えば、高い品質での造形物の造形をより適切に行うことができる。
この構成において、テクスチャデータについては、例えば、立体的なモデル(3Dモデル)を示すデータ(3Dデータ)に対するテクスチャマッピングに用いるテクスチャを示すデータ等と考えることができる。このようなテクスチャデータとしては、例えば公知のテクスチャデータを好適に用いることができる。また、テクスチャデータとしては、例えば、造形物の表面に描く画像を示すデータ等を用いることが考えられる。より具体的に、テクスチャデータとしては、例えば、厚みが設定されていない面において各位置の色が指定されるデータを用いることが考えられる。このように構成すれば、例えば、造形物の表面の各位置の色を適切に指定することができる。
また、テクスチャデータが造形物の表面の色を示すことについては、例えば、画像を描くために造形物の表面の各位置に着色すべき色を示すこと等と考えることができる。また、造形物の表面の色については、例えば、造形物の表面において着色をする箇所の色等と考えることができる。また、造形物の表面の色については、例えば、造形物の表面の少なくとも一部の色等と考えることができる。
また、この構成において、領域設定処理については、例えば、造形物を構成する各領域(例えば、着色領域等)を生成する処理等と考えることができる。また、この場合、着色領域に対応する断面着色部については、例えば、造形物の表面の法線方向における着色領域の厚さは所定が一定の厚さになるように設定することが好ましい。このように構成すれば、例えば、着色された造形物を適切に造形することができる。
また、この構成において、造形物は、着色領域以外に、例えば、光反射性の領域である光反射領域を更に備える。この場合、吐出制御部は、例えば、複数の吐出ヘッドの少なくとも一部に光反射性の材料を吐出させることにより、造形物における着色領域の内側に光反射領域を形成させる。また、この場合、領域設定処理において、スライス画像生成部は、断面位置における光反射領域の断面に対応する領域である断面光反射部を更に設定する。このように構成すれば、例えば、造形物の外部から入射する光を光反射領域で反射させることで、減法混色法での色の表現を適切に行うことができる。また、これにより、例えば、着色された造形物をより適切に造形することができる。
また、この構成において、吐出制御部は、例えば、予め設定された造形の解像度に応じて設定される吐出位置へ、複数の吐出ヘッドに造形の材料を吐出させる。そして、表面着色断面画像生成処理において、スライス画像生成部は、例えば、断面位置方向と直交する方向における解像度が造形の解像度よりも高い表面着色断面画像を生成する。また、解像度変換処理において、スライス画像生成部は、例えば、断面位置方向と直交する方向における解像度が造形の解像度と等しいスライス画像を生成する。このように構成すれば、例えば、高い品質で造形物の断面を示すスライス画像をより適切に生成することができる。
また、領域設定処理において、スライス画像生成部は、例えば、表面着色断面画像に基づき、断面位置における造形物の表面の少なくとも一部に沿った所定の幅の範囲を断面着色部に設定して、表面着色断面画像において造形物の表面に対して指定されている色に基づき、断面着色部の各位置の色を設定することで、領域設定後画像を生成する。このように構成すれば、例えば、着色領域を備える造形物を造形する場合において、領域設定後画像をより適切に生成することができる。また、この場合、断面着色部に設定する範囲の所定の幅は、例えば、造形物の表面の法線方向における着色領域の厚さを一定の所定の厚さにするための幅である。
また、この場合、表面着色断面画像生成処理において、スライス画像生成部は、例えば、断面位置における造形物の断面の輪郭が線で示され、当該線の各位置に対してテクスチャデータに基づいて色が設定されている表面着色断面画像を生成する。そして、領域設定処理において、スライス画像生成部は、例えば、断面の輪郭を示す線の各位置に設定されている色に基づき、断面着色部の各位置の色を設定する。このように構成すれば、例えば、領域設定後画像を適切に生成することができる。また、この場合、断面着色部について、例えば、断面の輪郭を示す線よりも幅の広い範囲に色が設定されている部分等と考えることができる。
また、表面着色断面画像生成処理において、スライス画像生成部は、例えば、断面状態算出処理及び断面状態画像生成処理を行う。この場合、断面状態算出処理については、例えば、表面着色断面画像を生成しようとする断面位置での造形物の断面の状態を算出する処理等と考えることができる。また、断面状態画像生成処理については、例えば、断面状態算出処理により算出した状態に対応する画像を生成する処理等と考えることができる。また、より具体的に、断面状態算出処理において、スライス画像生成部は、例えば、断面位置に対して形状データ及びテクスチャデータにより指定される造形物の断面の状態を算出する。また、断面状態画像生成処理において、スライス画像生成部は、例えば、断面状態算出処理で算出した造形物の断面の状態を示す画像を表面着色断面画像として生成する。このように構成すれば、例えば、表面着色断面画像を適切に生成することができる。
また、断面状態算出処理及び断面状態画像生成処理については、例えば、仮想ビューワを用いて実行することが考えられる。この場合、仮想ビューワについては、例えば、実際に表示装置(モニタ等)を用いることなく仮想的に画像を表示する手段等と考えることができる。より具体的に、この場合、断面状態算出処理において、スライス画像生成部は、例えば、断面位置について形状データ及びテクスチャデータにより指定される形状及び色を仮想ビューワに表示する。そして、断面状態画像生成処理において、スライス画像生成部は、例えば、仮想ビューワに表示した造形物の断面を仮想的なカメラで撮影することで、表面着色断面画像を生成する。このように構成すれば、例えば、断面状態算出処理及び断面状態画像生成処理を適切に実行することができる。
また、この場合、断面状態算出処理の動作について、例えば、仮想ビューワへの表示を行う処理の中で造形物の断面の状態を算出していると考えることができる。この場合、例えば、仮想ビューワへの表示を行うために画像処理用のライブラリで行う演算等について、造形物の断面の状態を算出する処理の一例と考えることができる。また、この場合、仮想ビューワを用いることで、例えば、表示装置に設定可能な解像度等に制限されることなく、様々な解像度での処理を容易かつ適切に行うことができる。また、断面状態算出処理では、仮想ビューワへの表示と同時に、実際の表示装置への表示を更に行ってもよい。
また、断面状態算出処理において、スライス画像生成部は、例えば、造形物を設置可能な領域である造形可能領域を仮想ビューワの表示領域内に設定して、造形可能領域に造形物が置かれた状態での断面位置について、形状データ及びテクスチャデータにより指定される形状及び色を仮想ビューワに表示する。このように構成すれば、例えば、造形物の断面の状態を仮想ビューワに適切に表示することができる。
また、この場合、断面状態画像生成処理での表面着色断面画像の生成について、複数の分割領域に分けて複数回の撮影を行うことで実行してもよい。より具体的に、断面状態画像生成処理において、スライス画像生成部は、例えば、造形可能領域を複数の分割領域に分割して、分割領域毎に仮想的なカメラでの撮影を行うことで、それぞれの分割領域に対応して撮影される画像である分割撮影画像を取得する。そして、スライス画像生成部は、例えば、複数の分割撮影画像をつなげることで、表面着色断面画像を生成する。このように構成すれば、例えば、1回の撮影の動作で取得できる画像の画素数が少ない場合等にも、高い解像度の表面着色断面画像を適切に生成することができる。
また、この場合、例えば造形可能領域と造形物との大きさの関係によっては、一部の分割領域の範囲にのみ造形物が載ること等も考えられる。そして、この場合、造形物の少なくとも一部が載っている分割領域を対象にして、仮想的なカメラでの撮影を行ってもよい。より具体的に、この場合、断面状態画像生成処理において、スライス画像生成部は、例えば、複数の分割領域のうち、造形物の少なくとも一部と重なる分割領域を選択して、選択した分割領域に対応する分割撮影画像を取得する。このように構成すれば、例えば、必要以上の撮影の動作を省略することで、表面着色断面画像の生成をより効率的に実行することができる。
また、本発明の構成として、上記と同様の特徴を有する造形方法等を用いることも考えられる。この場合も、例えば、上記と同様の効果を得ることができる。また、この場合、造形方法について、例えば、造形物の製造方法等と考えることもできる。
本発明によれば、例えば、着色された造形物を適切に造形することができる。
本発明の一実施形態に係る造形システム10の一例を示す図である。図1(a)は、造形システム10の構成の一例を示す。図1(b)は、造形装置12の要部の構成の一例を示す。図1(c)は、ヘッド部102の構成の一例を示す。 本例の造形装置12で造形する造形物50及びスライス画像を生成する動作について説明をする図である。図2(a)は、造形物50の構成の一例を示す。図2(b)は、本例においてスライス画像を生成する処理の概略を示す。 本例においてスライス画像を生成する処理の一例を示すフローチャートである。 スライス画像の生成時に行う一部の処理について更に詳しく説明をする図である。図4(a)、(b)は、図3に示したフローチャートにおけるステップS104〜S108において行う処理について更に詳しく説明をする図である。図4(c)は、解像度変換処理の動作の一例を示す。 分割領域402に対応する分割撮影画像を取得する動作の他の例について説明をする図である。
以下、本発明に係る実施形態を、図面を参照しながら説明する。図1は、本発明の一実施形態に係る造形システム10の一例を示す。図1(a)は、造形システム10の構成の一例を示す。本例において、造形システム10は、立体的な造形物を造形する造形システムであり、造形装置12及び制御PC14を備える。
造形装置12は、造形物の造形を実行する装置であり、制御PC14の制御に応じて、造形物を造形する。また、より具体的に、造形装置12は、フルカラーでの着色がされた造形物を造形可能なフルカラー造形装置であり、造形しようとする造形物を示すデータである造形物データを制御PC14から受け取り、造形物データに基づいて、造形物を造形する。
制御PC14は、造形装置12の動作を制御するコンピュータ(ホストPC)であり、造形物データを造形装置12へ供給することにより、造形装置12による造形の動作を制御する。この場合、制御PC14は、例えば、少なくとも一部が着色された造形物を示す造形物データを造形装置12へ供給する。
また、より具体的に、本例において、制御PC14は、外部から色彩を視認できる表面に着色がされた造形物を示す造形物データを造形装置12へ供給する。また、この場合、制御PC14は、造形装置12へ、造形物データとして、形状データ及びテクスチャデータを含むデータを供給する。形状データについては、例えば、造形装置12において造形する造形物の形状を示すデータ等と考えることができる。形状データとしては、例えば、立体的なモデル(3Dモデル)の形状を指定する公知のデータ(3Dデータ)等を好適に用いることができる。また、形状データについては、例えば、造形物の色を指定せずに形状を指定するデータ等と考えることもできる。
また、テクスチャデータについては、例えば、造形物の表面の色を示すデータ等と考えることができる。本例において、テクスチャデータとしては、例えば、造形物の表面に描く画像を示すデータを用いる。テクスチャデータについては、例えば、3Dデータに対するテクスチャマッピングに用いるテクスチャを示すデータ等と考えることもできる。また、本例において、テクスチャデータとしては、厚みが設定されていない面において各位置の色が指定されるデータを用いる。このようなテクスチャデータとしては、例えば、公知のテクスチャデータを好適に用いることができる。
また、本例において、テクスチャデータが造形物の表面の色を示すことについては、例えば、画像を描くために造形物の表面の各位置に着色すべき色を示すこと等と考えることができる。また、造形物の表面の色については、例えば、造形物の表面において着色をする箇所の色等と考えることができる。また、造形物の表面の色については、例えば、造形物の表面の少なくとも一部の色等と考えることができる。このようなテクスチャデータを用いることにより、例えば、造形物の表面の各位置の色を適切に指定することができる。
尚、上記のように、本例において、造形システム10は、複数の装置である造形装置12及び制御PC14により構成されている。しかし、造形システム10の構成については、上記において説明をした構成に限らず、様々に変形することが可能である。例えば、造形システム10の変形例において、造形システム10は、一台の装置により構成されてもよい。この場合、例えば、制御PC14の機能を含む一台の造形装置12により造形システム10を構成すること等が考えられる。また、造形システム10は、造形装置12及び制御PC14以外の装置を更に備えてもよい。この場合、例えば、上記及び以下において説明をする造形装置12又は制御PC14の機能の一部を他の装置で実行すること等が考えられる。
続いて、造形装置12の具体的な構成について、説明をする。図1(b)は、造形装置12の要部の構成の一例を示す。本例において、造形装置12は、立体的な造形物50を造形する造形装置であり、ヘッド部102、造形台104、走査駆動部106、及び制御部110を有する。また、上記及び以下に説明をする点を除き、造形装置12は、公知の造形装置と同一又は同様の構成を有してよい。より具体的に、上記及び以下に説明をする点を除き、造形装置12は、インクジェットヘッドを用いて造形物50の材料となる液滴を吐出することで造形を行う公知の造形装置と同一又は同様の特徴を有してよい。また、造形装置12は、図示した構成以外にも、例えば、造形物50の造形等に必要な各種構成を更に備えてよい。また、本例において、造形装置12は、積層造形法により立体的な造形物50を造形する造形装置(3Dプリンタ)である。この場合、積層造形法とは、例えば、複数の層を重ねて造形物50を造形する方法のことである。造形物50とは、例えば、立体的な三次元構造物のことである。
ヘッド部102は、造形物50の材料を吐出する部分である。本例において、造形物50の材料としては、インクを用いる。この場合、インクとは、例えば、機能性の液体のことである。本例において、インクについては、例えば、インクジェットヘッドから吐出する液体等と考えることもできる。また、より具体的に、ヘッド部102は、造形物50の材料として、複数のインクジェットヘッドから、所定の条件に応じて硬化するインクを吐出する。そして、着弾後のインクを硬化させることにより、造形物50を構成する各層を重ねて形成して、積層造形法で造形物を造形する。この場合、造形装置12における複数のインクジェットヘッドは、造形物の材料をそれぞれが吐出する複数の吐出ヘッドの一例である。また、本例では、インクとして、紫外線の照射により液体状態から硬化する紫外線硬化型インク(UVインク)を用いる。
また、ヘッド部102は、造形物50の材料に加え、サポート層52の材料を更に吐出する。これにより、ヘッド部102は、造形物50の周囲等に、必要に応じて、サポート層52を形成する。サポート層52とは、例えば、造形中の造形物50の少なくとも一部を支持する積層構造物のことである。サポート層52は、造形物50の造形時において、必要に応じて形成され、造形の完了後に除去される。
造形台104は、造形中の造形物50を支持する台状部材であり、ヘッド部102におけるインクジェットヘッドと対向する位置に配設され、造形中の造形物50及びサポート層52を上面に載置する。また、本例において、造形台104は、少なくとも上面が積層方向(図中のZ方向)へ移動可能な構成を有しており、走査駆動部106に駆動されることにより、造形物50の造形の進行に合わせて、少なくとも上面を移動させる。この場合、積層方向については、例えば、積層造形法において造形の材料が積層される方向等と考えることができる。また、本例において、積層方向は、造形装置12において予め設定される主走査方向(図中のY方向)及び副走査方向(図中のX方向)と直交する方向である。
走査駆動部106は、造形中の造形物50に対して相対的に移動する走査動作をヘッド部102に行わせる駆動部である。この場合、造形中の造形物50に対して相対的に移動するとは、例えば、造形台104に対して相対的に移動することである。また、ヘッド部102に走査動作を行わせるとは、例えば、ヘッド部102が有するインクジェットヘッドに走査動作を行わせることである。また、本例において、走査駆動部106は、走査動作として、主走査動作(Y走査)、副走査動作(X走査)、及び積層方向走査動作(Z走査)をヘッド部102に行わせる。
主走査動作とは、造形中の造形物50に対して相対的に主走査方向へ移動しつつインクを吐出する動作のことである。また、副走査動作とは、主走査方向と直交する副走査方向へ造形中の造形物50に対して相対的に移動する動作のことである。副走査動作については、例えば、予め設定された送り量だけ副走査方向へ造形台104に対して相対的に移動する動作等と考えることもできる。また、本例において、走査駆動部106は、主走査動作の合間に、ヘッド部102に副走査動作を行わせる。積層方向走査動作とは、造形中の造形物50に対して相対的に積層方向へヘッド部102を移動させる動作のことである。走査駆動部106は、造形の動作の進行に合わせてヘッド部102に積層方向走査動作を行わせることにより、例えば、積層方向において、造形中の造形物50に対するインクジェットヘッドの相対位置を調整する。
制御部110は、例えば造形装置12のCPUを含む構成であり、造形装置12の各部を制御することにより、造形物50の造形の動作を制御する。また、本例において、制御部110は、CPU及びGPUを含み、所定のプログラムに従って動作することで、例えば、スライス画像生成部及び吐出制御部等として機能する。この場合、GPUについては、例えば、画像処理用の演算処理を行うプロセッサ(画像処理用のプロセッサ)等と考えることができる。また、制御部110がスライス画像生成部及び吐出制御部等として機能する動作については、例えば、スライス画像生成処理及び吐出制御処理を実行する動作等と考えることができる。
また、スライス画像生成部については、例えば、造形装置12において造形する造形物50の断面を示す画像であるスライス画像を生成する構成等と考えることができる。また、本例において、制御部110は、造形物データに含まれる形状データ及びテクスチャデータに基づき、スライス画像を生成する。また、スライス画像を生成する動作において、制御部110は、例えば、多くの画像処理の演算を行う。そのため、制御部110としては、上記のようにGPUを更に含む構成を用いることが好ましい。このように構成すれば、例えば、スライス画像の生成を高速に行うことができる。また、スライス画像を生成する動作については、後に更に詳しく説明をする。
また、吐出制御部については、例えば、ヘッド部102における複数のインクジェットヘッドにインクを吐出させる制御を行う構成等と考えることができる。本例において、制御部110は、予め設定された造形の解像度に応じて設定される吐出位置へ、ヘッド部102における複数のインクジェットヘッドにインクを吐出させる。この場合、造形の解像度については、例えば、造形装置12における造形出力の解像度(出力解像度)等と考えることができる。また、本例において、制御部110は、スライス画像生成部として生成するスライス画像に基づき、造形装置12におけるそれぞれのインクジェットヘッドにインクを吐出させる。また、この場合、制御部110は、例えば、造形物50を構成するそれぞれのインクの層を形成する動作において、走査駆動部106を介して主走査動作及び副走査動作の制御を行うことで、造形物の被造形面における各位置に対し、ヘッド部102におけるそれぞれのインクジェットヘッドにインクを吐出させる。本例によれば、例えば、造形物50を適切に造形できる。
尚、上記において説明をした制御部110の機能のうち、一部の機能について、制御PC14の機能として構成すること等も考えられる。例えば、制御部110におけるスライス画像生成部としての機能について、制御PC14の機能として構成すること等が考えられる。この場合、制御PC14において生成したスライス画像を造形装置12へ供給することで、造形装置12の動作を制御することが考えられる。また、この場合、スライス画像について、造形装置12の外部で生成されると考えることができる。
続いて、造形装置12におけるヘッド部102の構成について、更に詳しく説明をする。図1(c)は、ヘッド部102の構成の一例を示す。本例において、ヘッド部102は、複数のインクジェットヘッド、複数の紫外線光源204、及び平坦化ローラ206を有する。また、複数のインクジェットヘッドとして、図中に示すように、インクジェットヘッド202s、インクジェットヘッド202w、インクジェットヘッド202y、インクジェットヘッド202m、インクジェットヘッド202c、インクジェットヘッド202k、及びインクジェットヘッド202tを有する。これらの複数のインクジェットヘッドは、例えば、副走査方向における位置を揃えて、主走査方向へ並べて配設される。また、それぞれのインクジェットヘッドは、造形台104と対向する面に、所定のノズル列方向へ複数のノズルが並ぶノズル列を有する。また、本例において、ノズル列方向は、副走査方向と平行な方向である。
また、これらのインクジェットヘッドのうち、インクジェットヘッド202sは、サポート層52の材料を吐出するインクジェットヘッドである。サポート層52の材料としては、例えば、サポート層用の公知の材料を好適に用いることができる。インクジェットヘッド202wは、白色(W色)のインクを吐出するインクジェットヘッドである。本例において、白色のインクは、光反射性の材料の一例であり、例えば、造形物50における光反射領域を形成する場合に用いられる。この光反射領域は、例えば、造形物50表面に対してフルカラー表現での着色を行う場合に、造形物50の外部から入射する光を反射する。フルカラー表現とは、例えば、プロセスカラーのインクによる減法混色法の可能な組み合わせで行う色の表現のことである。
インクジェットヘッド202y、インクジェットヘッド202m、インクジェットヘッド202c、インクジェットヘッド202k(以下、インクジェットヘッド202y〜kという)は、着色された造形物50の造形時に用いられる着色用のインクジェットヘッドである。より具体的に、インクジェットヘッド202yは、イエロー色(Y色)のインクを吐出する。インクジェットヘッド202mは、マゼンタ色(M色)のインクを吐出する。インクジェットヘッド202cは、シアン色(C色)のインクを吐出する。また、インクジェットヘッド202kは、ブラック色(K色)のインクを吐出する。また、本例において、YMCKの各色は、減法混色法によるフルカラー表現に用いるプロセスカラーの一例である。また、これらの各色のインクは、着色用の有色の材料の一例である。インクジェットヘッド202y〜kは、互いに異なる色の着色用の材料をそれぞれ吐出する複数の吐出ヘッドの一例である。また、インクジェットヘッド202tは、クリアインクを吐出するインクジェットヘッドである。クリアインクとは、例えば、可視光に対して無色で透明(T)なインクのことである。
複数の紫外線光源204は、インクを硬化させるための光源(UV光源)であり、紫外線硬化型インクを硬化させる紫外線を発生する。また、本例において、複数の紫外線光源204のそれぞれは、間にインクジェットヘッドの並びを挟むように、ヘッド部102における主走査方向の一端側及び他端側のそれぞれに配設される。紫外線光源204としては、例えば、UVLED(紫外LED)等を好適に用いることができる。また、紫外線光源204として、メタルハライドランプや水銀ランプ等を用いることも考えられる。平坦化ローラ206は、造形物50の造形中に形成されるインクの層を平坦化するための平坦化手段である。平坦化ローラ206は、例えば主走査動作時において、インクの層の表面と接触して、硬化前のインクの一部を除去することにより、インクの層を平坦化する。
以上のような構成のヘッド部102を用いることにより、造形物50を構成するインクの層を適切に形成できる。また、複数のインクの層を重ねて形成することにより、造形物50を適切に造形できる。
尚、ヘッド部102の具体的な構成については、上記において説明をした構成に限らず、様々に変形することもできる。例えば、ヘッド部102は、着色用のインクジェットヘッドとして、上記以外の色用のインクジェットヘッドを更に有してもよい。また、ヘッド部102における複数のインクジェットヘッドの並べ方についても、様々に変形可能である。例えば、一部のインクジェットヘッドについて、他のインクジェットヘッドと副走査方向における位置をずらしてもよい。
続いて、造形装置12で造形する造形物50の構成やスライス画像を生成する動作等について、更に詳しく説明をする。図2は、本例の造形装置12(図1参照)で造形する造形物50及びスライス画像を生成する動作について説明をする図である。図2(a)は、造形物50の構成の一例を示す図であり、積層方向(Z方向)と直交する造形物50の断面であるX−Y断面の構成の一例を示す。また、本例においては、Y方向やZ方向と垂直な造形物50のZ−X断面やZ−Y断面の構成も、同様の構成になる。
上記においても説明をしたように、本例において、造形装置12は、インクジェットヘッド202y〜k(図1参照)等を用いて、少なくとも表面が着色された造形物50を造形する。造形物50の表面が着色されることについては、例えば、造形物50において外部から色彩を視認できる領域の少なくとも一部が着色されること等と考えることができる。また、この場合、造形装置12は、例えば図中に示すように、光反射領域152及び着色領域154を備える造形物50を造形する。この場合、光反射領域152は、白色のインクを用いて形成される光反射性の領域である。着色領域154は、造形物50において着色がされる領域である。また、造形装置12は、必要に応じて、造形物50の周囲等にサポート層52(図1参照)を形成する。
また、本例において、造形装置12の制御部110(図1参照)は、造形物データに基づいてスライス画像を生成し、スライス画像に基づいてヘッド部102(図1参照)における各インクジェットヘッドにインクを吐出させることで、造形物50の一部をそれぞれが構成するそれぞれのインクの層を造形装置12に形成させる。この場合、制御部110は、例えば、ヘッド部102におけるインクジェットヘッド202w(図1参照)に白色のインクを吐出させることで、着色領域154の内側に光反射領域152を形成させる。また、ヘッド部102におけるインクジェットヘッド202y〜kにYMCKの各色のインクを吐出させ、インクジェットヘッド202tにクリアインクを吐出させることで、光反射領域152の外側に着色領域154を形成させる。この場合、クリアインクについては、例えば、光反射領域152の各位置に着色する色の違いによって生じる有色のインクの合計量の変化を補填するために用いる。
このように構成した場合、例えば、スライス画像に基づいて形成する複数のインクの層を重ねることで、造形物50の造形を適切に行うことができる。また、着色領域154の内側において光反射領域152を背景として機能させ、造形物50から入射する光を光反射領域152で反射させることで、減法混色法での様々な色の表現を適切に行うことができる。また、これにより、例えば、高い品質で着色がされた造形物50を適切に造形することができる。
ここで、図2(a)に図示した構成において、光反射領域152は、着色領域154の内側の全体に形成されている。この場合、光反射領域152について、例えば、造形物50の内部を構成する内部領域を兼ねていると考えることができる。造形物50の構成の変形例においては、例えば、光反射領域152とは別に内部領域を形成してもよい。この場合、内部領域については、例えば、インクジェットヘッド202sが吐出するインク以外の任意のインクを用いて形成することが考えられる。また、光反射領域152については、内部領域の外側に形成することが考えられる。このように構成した場合も、光反射領域152の外側に着色領域154を形成することで、高い品質で着色がされた造形物50を適切に造形することができる。また、造形物50の構成の変形例において、造形物50は、更に他の領域を備えてもよい。例えば、着色領域154の更に外側に、クリアインクを用いて透明な保護領域を形成すること等も考えられる。
また、上記においても説明をしたように、本例において、制御部110は、スライス画像に基づいてヘッド部102(図1参照)における各インクジェットヘッドにインクを吐出させることで、造形物50の一部を構成するそれぞれのインクの層を造形装置12に形成させる。この場合、スライス画像に対応するインクの層を形成する動作について、各インクジェットヘッドから吐出するインクでスライス画像を描く動作等と考えることもできる。また、この場合、スライス画像としては、光反射領域152及び着色領域154の断面に対応する部分を含む画像を生成することが考えられる。
これに対し、上記においても説明をしたように、本例においては、形状データ及びテクスチャデータにより形状及び色が指定されている造形物データを用いる。そして、この場合、造形物50の色については、表面のみに対して指定されていると考えることができる。また、表面のみに対して色が指定されている状態については、例えば、光反射領域152及び着色領域154に対応する範囲についての設定がされていない状態等と考えることができる。そのため、本例において、スライス画像の生成時には、テクスチャデータにおいて指定されている造形物50の表面の色に基づき、光反射領域152及び着色領域154の断面に対応する部分の範囲及び色を設定する処理を行う。
図2(b)は、本例においてスライス画像を生成する処理の概略を示す。上記のように、本例においては、光反射領域152及び着色領域154を備える造形物50を造形する。また、この場合、着色領域154において適切に色を表現するために、造形物50の法線方向における着色領域154の厚さについて、ある程度の厚さ(例えば10μm以上)にする。法線方向における着色領域154の厚さについては、例えば40〜200μm程度にすることが考えられる。
そして、この場合、スライス画像としては、着色領域の厚さに対応する部分にも着色がされる画像を生成することが必要になる。また、本例のように、着色領域154の内側に光反射領域152を形成する場合、スライス画像において光反射領域152に対応する部分について、光反射領域152に対応する色を設定することが必要になる。
これに対し、上記においても説明をしたように、本例において用いる造形物データでは、テクスチャデータにより、造形物50の表面の色が指定されている。そして、この場合、造形物データが示す造形物の断面については、例えば図2(b)における左側の図に示すように、断面の形状が示され、かつ、図中に破線で示す外周に対してのみ色が設定されていると考えることができる。
そのため、スライス画像を生成する処理においては、上記においても説明をしたように、例えば、断面の外周に対してのみ色が設定されているデータに基づき、光反射領域152及び着色領域154に対応する領域及び色が設定されている画像を生成することになる。また、この場合、スライス画像について、例えば図2(b)における右側の図に示すように、断面光反射部302及び断面着色部304を有する画像になると考えることができる。この場合、断面光反射部302については、例えば、生成するスライス画像に対応する断面位置における光反射領域152の断面に対応する領域等と考えることができる。断面着色部304については、例えば、生成するスライス画像に対応する断面位置における着色領域154の断面に対応する領域等と考えることができる。
また、本例において、断面光反射部302の各位置の色としては、白色を設定する。断面着色部304の各位置の色としては、造形物データにおいて断面の外周に設定されている色に基づく色を設定する。より具体的に、この場合、例えば、造形物50の法線方向における着色領域154の厚さが所定の一定の厚さになるように断面着色部304の範囲を決定して、断面の外周に設定されている色を断面の内側に延長することで、断面着色部304の各位置の色を設定する。着色領域154の厚さが所定の一定の厚さになることについては、例えば、基準の厚さとの差が所定の許容範囲内になるように厚さを設定すること等と考えることができる。
しかし、この場合、断面の外周に設定されている色を単に断面の内側に延長するのみでは、スライス画像を高い品質で生成することが難しくなる場合がある。より具体的に、上記においても説明をしたように、本例において、テクスチャデータとしては、厚みが設定されていない面において各位置の色が指定されるデータを用いる。そして、この場合、図2(b)の左側に示す図において、断面の外周に設定されている色については、例えば、最低限の幅(例えば、解像度における1ドット分の幅)の線の各位置に対して設定されることになる。
そして、この場合、例えばテクスチャデータとして高い解像度のデータを用いても、断面の外周に設定されている色を断面の内側に延長する処理を行った結果において、断面着色部304に各位置に対する着色のされ方が粗い印象になる場合がある。そして、このような断面着色部304を有するスライス画像を用いる場合、高い品質の造形物を造形することが難しくなる場合がある。より具体的に、本願の発明者は、例えば、造形の解像度と比べて十分に高い解像度で画像等を示すテクスチャデータを用いて、造形の解像度で造形物50の断面を示すスライス画像を生成する場合において、断面着色部304の着色のされ方が造形の解像度と比べて粗い印象になりやすいことを見出した。また、このようなスライス画像を用いることで、例えば、造形物50の表面に描かれる画像等の解像度について、造形の解像度と比べて低い品質になりやすいことを見出した。この場合、例えば、造形物50の表面に描かれる画像について、造形の解像度に対応する品質よりも低い画像になり、テクスチャデータが示す画像の再現性が不十分になる。
また、本願の発明者は、更なる鋭意研究により、造形物データにおいて断面の外周に設定されている色を単に断面の内側に延長するのではなく、この処理について、最終的に生成するスライス画像よりも高い解像度の画像を用いて行い、その後に解像度の変換を行うことでスライス画像を生成することを考えた。また、このような処理を行うことで、より高い品質での造形物の造形を行い得ることを見出した。
また、このようにしてスライス画像を生成する処理については、例えば図3に示すように実行することが考えられる。図3は、本例においてスライス画像を生成する処理の一例を示すフローチャートであり、スライス画像の生成時に造形装置12の制御部110(図1参照)が実行する処理の一例を示す。
スライス画像の生成時において、制御部110は、制御PC14(図1参照)から供給される造形データを取得する(S102)。また、本例において、制御部110は、造形物データと共に、造形装置12において造形を行う造形時の造形物50の向きを指定するデータを更に受け取る。この場合、制御部110は、例えば、造形物50の向きを指定するデータと造形物データとを合わせた一つのデータを受け取ってもよい。
また、造形物データ等を受け取った後、制御部110は、制御PC14から取得したデータ等に基づき、プログラムに従って設定する仮想的な空間内に、造形物データが示す造形物50を造形時の向きで配置する(S104)。また、より具体的に、本例において、制御部110は、このような仮想空間に対応する構成として仮想ビューワを用い、仮想ビューワ内に設定される座標空間内に、造形物50を設置する。また、仮想ビューワとしては、指定した方向から立体的な対象物を見た状態を仮想的に表示する仮想3Dビューワを用いる。また、この場合、仮想ビューワ内に設定される座標空間として、造形装置12における副走査方向に対応する方向をX方向とし、主走査方向に対応する方向をY方向とし、積層方向に対応する方向をZ方向とする座標空間を用いる。また、本例において、Z方向は、断面位置方向の一例である。
ここで、仮想ビューワについては、例えば、実際に表示装置(モニタ等)を用いることなく仮想的に画像を表示する手段等と考えることができる。また、表示装置を用いることなく仮想的に画像を表示する動作については、例えば、表示装置への表示を行う場合と同一又は同様の処理をプログラム上で行う動作等を考えることができる。また、仮想ビューワについては、例えば、OPENGLライブラリ等の画像処理用のライブラリにおいて実際の表示装置に代えて用いることができるプログラム上での構成等と考えることもできる。また、上記及び以下において説明をする仮想ビューワへの表示については、例えば、実際の表示装置への表示と同時に行ってもよい。
また、図3においては、図示及び説明の便宜上、一つの断面位置に対応するスライス画像を生成する動作を簡略化してフローチャートにより図示している。実際のスライス画像の生成時には、積層される複数のインクの層のそれぞれに対応する断面位置に対し、スライス画像を生成する。また、この場合、ステップS104の動作に続いて、処理対象の断面位置を順次変更しつつ、ステップS106〜S112の動作を繰り返して行う。また、これにより、制御部110は、Z方向における互いに異なる複数の断面位置に対し、それぞれの断面位置における造形物50の断面を示すスライス画像を生成する。この場合、Z方向における互いに異なる複数の断面位置については、例えば、造形時に積層される複数のインクの層のそれぞれの積層方向における位置に対応して設定されると考えることができる。
また、この繰り返しの動作では、先ず、処理対象の断面位置を設定して、造形物データが示す造形物50において設定された断面位置に対応する部分を取得するトリミング処理を行う(S106)。このトリミング処理については、例えば、造形物データが示す造形物50の全体から積層方向(Z方向)における所定の位置の部分を抜き出して表示する処理等と考えることができる。また、本例において、制御部110は、造形物50における断面位置の部分を仮想ビューワに表示することで、トリミング処理を行う。また、本例のトリミング処理において、制御部110は、形状データ及びテクスチャデータを含む造形物データに基づいて表示を行うことで、断面位置における造形物50の断面の輪郭が線で示され、この線の各位置に対してテクスチャデータに基づいて色が設定されている画像を仮想ビューワに表示する。また、この場合において、制御部110は、造形の解像度よりも高い解像度で、仮想ビューワへの表示を行う。
ここで、本例において、ステップS106において行う処理は、断面状態算出処理の一例である。断面状態算出処理については、例えば、断面位置に対して形状データ及びテクスチャデータにより指定される造形物の断面の状態を算出する処理等と考えることができる。また、この場合、仮想ビューワへの表示を行う処理について、造形物50の断面の状態を算出する処理を含んでいると考えることができる。また、より具体的に、この場合、例えば、仮想ビューワへの表示を行うために画像処理用のライブラリで行う演算等について、造形物の断面の状態を算出する処理の一例と考えることができる。また、この場合、仮想ビューワを用いることで、例えば、表示装置に設定可能な解像度等に制限されることなく、様々な解像度での処理を容易かつ適切に行うことができる。また、本例において行うトリミング処理については、例えば、断面位置について形状データ及びテクスチャデータにより指定される形状及び色を仮想ビューワに表示する処理等と考えることもできる。
また、トリミング処理に続いて、制御部110は、トリミング処理で仮想ビューワに表示した画像を画像データとして保存する画像データ化の処理(画像データ化処理)を行う(S108)。画像データ化処理については、例えば、トリミング処理により算出した状態に対応する画像を生成する処理等と考えることができる。また、本例において、制御部110は、画像データ化処理により、スライス画像を生成する動作の中で用いる第1の中間画像である第1中間画像を生成する。この場合、第1中間画像は、断面位置における造形物の断面の輪郭が線で示され、この線の各位置に対してテクスチャデータに基づいて色が設定されている画像である。また、この場合、画像データ化処理の前に行うトリミング処理については、例えば、第1中間画像を生成しようとする断面位置での造形物の断面の状態を算出する処理等と考えることもできる。また、画像データ化処理については、例えば、トリミング処理の中で算出した造形物50の断面の状態を示す画像を第1中間画像として生成する処理等と考えることもできる。
また、本例において、画像データ化処理は、断面状態画像生成処理の一例である。第1中間画像は、表面着色断面画像の一例である。表面着色断面画像については、例えば、断面位置における造形物50の断面の形状と、断面位置における造形物50の表面の色とを示す画像等と考えることができる。また、本例において、制御部110は、トリミング処理によって仮想ビューワに表示した造形物50の断面を仮想的なカメラで撮影することで、第1中間画像を生成する。また、この場合において、制御部110は、断面位置方向であるZ方向と直交する方向であるX方向及びY方向における解像度が造形の解像度よりも高い第1中間画像を生成する。
また、本例において、X方向及びY方向における第1中間画像の解像度が造形の解像度よりも高いことについては、例えば、造形装置12のヘッド部102(図1参照)におけるそれぞれのインクジェットヘッドが造形時にインクを吐出する動作での副走査方向及び主走査方向における解像度と比べてX方向及びY方向における第1中間画像の解像度が高いこと等と考えることができる。また、インクジェットヘッドが造形時にインクを吐出する動作での副走査方向及び主走査方向における解像度については、一つのスライス画像に対応する一つのインクの層を形成する動作において1色のインクを吐出可能な吐出位置の解像度等と考えることができる。
また、本例において、トリミング処理及び画像データ化処理を含む動作は、表面着色断面画像生成処理の動作の一例である。表面着色断面画像生成処理については、例えば、表面着色断面画像を形状データ及びテクスチャデータに基づいて生成する処理等と考えることができる。また、仮想的なカメラを用いて高い解像度の第1中間画像を生成する動作については、後に更に詳しく説明をする。
また、第1中間画像を生成した後、制御部110は、第1中間画像に基づいて断面光反射部302及び断面着色部304(図2参照)を設定する領域設定処理を行うことで、スライス画像を生成する動作の中で用いる第2の中間画像である第2中間画像を生成する(S110)。処理対象の画像の解像度以外の点に関し、領域設定処理については、例えば、スライス画像を生成する公知の処理の中で行う領域設定処理と同一又は同様に行うことができる。また、本例において、第2中間画像は、領域設定後画像の一例である。領域設定後画像については、例えば、断面着色部304に色が指定された状態で造形物50の断面の形状及び色を示す画像等と考えることができる。また、領域設定処理において、断面光反射部302及び断面着色部304を設定する動作については、最終的に生成するスライス画像での断面光反射部302及び断面着色部304に対応する領域を設定する処理等と考えることができる。
また、領域設定処理については、例えば、造形物50を構成する各領域を生成する処理等と考えることもできる。また、本例において、断面着色部304については、造形物50の表面の法線方向における着色領域154の厚さが所定の一定の厚さになるように設定する。より具体的に、領域設定処理において、制御部110は、例えば、第1中間画像に基づき、断面位置における造形物50の表面に沿った所定の幅の範囲を断面着色部304に設定する。この場合、断面着色部304に設定する範囲の所定の幅については、例えば、造形物50の表面の法線方向における着色領域154の厚さを一定の所定の厚さにするための幅等と考えることができる。また、造形物50の表面の一部のみに対して着色を行う場合等も考慮した場合、領域設定処理の動作について、例えば、断面位置における造形物50の表面の少なくとも一部に沿った所定の幅の範囲を断面着色部に設定する動作等と考えることもできる。
また、領域設定処理において、制御部110は、更に、第1中間画像において造形物50の表面に対して指定されている色に基づき、第2中間画像での断面着色部304の各位置の色を設定する。より具体的に、この場合、制御部110は、造形物50の断面の輪郭を示す線の各位置に設定されている色に基づき、例えばその色を造形物50の内部へ延長するようにして、断面着色部304の各位置の色を設定する。また、この場合、断面着色部304について、例えば、造形物50の断面の輪郭を示す線よりも幅の広い範囲に色が設定されている部分等と考えることもできる。また、本例においては、第2中間画像における断面着色部304の内側の領域を、断面光反射部302に設定する。そして、断面光反射部302の各位置の色として、白色を設定する。このように構成した場合、例えば、解像度の高い第1中間画像を用いて断面光反射部302及び断面着色部304の設定を行うことで、より高い品質の第2中間画像を生成することができる。また、本例においては、造形の解像度よりも高い解像度の第1中間画像から第2中間画像を生成することで、第2中間画像としても、造形の解像度よりも高い解像度の画像を生成する。
そして、このような第2中間画像を生成した後、制御部110は、第2中間画像に対して解像度を低くする解像度変換処理を実行して、断面位置に対応するスライス画像を生成する(S112)。また、本例において、スライス画像としては、X方向及びY方向における解像度が造形の解像度と等しいスライス画像を生成する。このように構成すれば、例えば、スライス画像に基づき、ヘッド部102におけるインクジェットヘッドに対する吐出の制御を適切に行うことができる。また、この場合、画像データ化処理及び領域設定処理で生成する第1中間画像及び第2中間画像としてスライス画像よりも解像度の高い画像を用いることで、例えばスライス画像と同じ解像度の第1中間画像及び第2中間画像を用いる場合等と比べて、高い品質で造形物50の断面を示すスライス画像を生成することができる。また、これにより、例えば、造形装置12の性能を適切に活かして、テクスチャデータが示す画像の再現性を適切に高めることができる。そのため、本例によれば、例えば、造形の解像度に応じた高い品質での着色がされた造形物50を適切に造形することができる。
続いて、スライス画像の生成時に行う各処理について、更に詳しく説明をする。図4は、スライス画像の生成時に行う一部の処理について更に詳しく説明をする図である。図4(a)、(b)は、図3に示したフローチャートにおけるステップS104〜S108において行う処理について更に詳しく説明をする図である。
上記においても説明をしたように、スライス画像の生成時において、造形物データ等を受け取った後、制御部110は、造形物データ等に基づき、仮想ビューワ内に設定される座標空間内に、造形物50を設置する。また、より具体的に、本例において、制御部110は、例えば図4(a)に示すように、造形物50を設置可能な領域である造形可能領域を仮想ビューワの表示領域内に設定する。この場合、造形可能領域については、例えば、造形装置12の造形台104(図1参照)において造形物50の造形を行うことが可能な範囲に対応する仮想ビューワ内での領域等と考えることができる。また、造形可能領域400について、例えば、仮想ビューワ内に設定される造形エリア等と考えることもできる。
また、この場合、制御部110は、造形物データに基づき、例えば造形可能領域400の上に造形物50が置かれるように、仮想ビューワ内に設定される座標空間内に造形物50を設置する。このようにして造形物50を設置する動作については、例えば、仮想ビューワ内の造形エリアに造形物50をプロットする動作等と考えることもできる。また、仮想ビューワ内に造形物50を設置した後、トリミング処理において、制御部110は、造形物データに基づき、造形可能領域400に造形物50が置かれた状態での断面位置について、例えば図4(b)に示すように、形状データ及びテクスチャデータにより指定される形状及び色を仮想ビューワに表示する。このように構成すれば、例えば、造形物50の断面の状態を仮想ビューワに適切に表示することができる。
また、トリミング処理に続いて、制御部110は、上記においても説明をしたように、仮想ビューワに表示した造形物50の断面を仮想的なカメラで撮影することで、第1中間画像を生成する。この場合、仮想的なカメラで行う撮影の動作については、例えば、仮想ビューワに表示されている対象物を所定の方向から見た画像を取得する処理等と考えることができる。仮想ビューワに表示されている対象物を所定の方向から見た画像については、例えば、仮想ビューワ中の造形エリアにある対象物を所定の方向から見た画像等と考えることもできる。また、仮想的なカメラでの撮影については、例えば、仮想ビューワに表示されている造形物50の断面の画像を取得する動作等と考えることもできる。より具体的に、本例においては、Z方向における上方側から仮想的なカメラでの撮影を行うことで、第1中間画像を生成する。この場合、Z方向における上方側については、例えば、積層方向における上方側に対応する側等と考えることができる。
また、図4(b)に示す造形可能領域400及び造形物50の状態については、例えば、Z方向における上方側から造形可能領域400と共に造形物50の断面を見た状態等と考えることができる。また、仮想ビューワでの造形可能領域400及び造形物50の表示については、Z方向における上方側以外の視点から造形可能領域400及び造形物50を見た状態を表示してもよい。この場合も、例えば任意の位置から撮影を行うことが可能な仮想的なカメラを用いることで、指定された断面位置における造形物50の断面を示す第1中間画像を適切に生成することができる。
また、上記においても説明をしたように、本例においては、仮想的なカメラを用いて、高い解像度の第1中間画像を生成する。この場合、必ずしも1回の撮影で第1中間画像を生成するのではなく、複数回の撮影により得られる複数の画像に基づき、第1中間画像を生成してもよい。より具体的に、本例において、制御部110は、造形可能領域400に対し、仮想的なカメラによる1回の撮影の対象となる範囲として、例えば図4(a)、(b)に示すように、複数の分割領域402を設定する。このようにして複数の分割領域402を設定する動作については、例えば、造形可能領域400を複数の分割領域402に分割する動作等と考えることができる。また、本例において、制御部110は、造形可能領域400について、X方向及ぶY方向へ並ぶ同サイズの複数の分割領域402に分割する。また、本例における複数の分割領域402については、例えば、造形エリアのXY面を等間隔で区分した領域等と考えることもできる。
また、この場合、画像データ化処理において、制御部110は、分割領域402毎に仮想的なカメラでの撮影を行うことで、それぞれの分割領域402に対応して撮影される画像である分割撮影画像を取得する。この場合、分割領域402毎に仮想的なカメラでの撮影を行う動作については、例えば、造形可能領域400の一部を構成する区分を上方視点の所定の位置にある仮想的なカメラから見た画像を取得する動作等と考えることができる。また、それぞれの分割領域402に対応して行う撮影については、例えば、カメラにおいて他の分割領域402が見えない状態で行うことが考えられる。また、それぞれの分割領域402に対応する分割撮影画像を取得する動作については、例えば、第1中間画像の一部の区分を構成する画像(区分化した第1中間画像)を取得する動作等と考えることもできる。
また、本例において、制御部110は、例えば、全て分割領域402に対応する撮影の動作を実行することで、全ての分割領域402に対応する分割撮影画像を取得する。そして、制御部110は、複数の分割撮影画像をつなげることで、第1中間画像を生成する。この場合、複数の分割撮影画像をつなげて第1中間画像を生成する動作については、例えば、対応する分割領域402の位置の関係に合わせて複数の分割撮影画像をつなげることで第1中間画像を合成する動作等と考えることができる。また、複数の分割撮影画像をつなげて第1中間画像を生成する動作については、例えば、造形可能領域400の各区分にそれぞれが対応する複数の分割撮影画像をパネリングして一つの画像の画像データ(一つの大きな画像データ)にデータ化することで第1中間画像を生成する動作等と考えることもできる。このように構成すれば、例えば、1回の撮影の動作で取得できる画像の画素数が少ない場合等にも、高い解像度の第1中間画像を適切に生成することができる。
また、この点に関し、より具体的に、本例において、仮想的なカメラでの撮影で得られる画像は、予め設定された所定の画素数の画像になる。そのため、造形物50の断面の全体の画像を1回の撮影の動作で取得しようとすると、1回の撮影に対応する画素数で造形物50の断面の全体を示すことになる。そして、この場合、いわば、カメラと造形物50との距離が離れた条件で撮影を行うような状態になり、細かい部分が見えにくい粗い画像が取得されることが考えられる。これに対し、分割領域402を単位にして仮想カメラでの撮影を行う場合、いわば、カメラと造形物50との距離が近い条件で撮影を行うような状態になり、より細かい部分までは見える画像になることが考えられる。そのため、このように構成すれば、例えば、上記のように、高い解像度の第1中間画像を適切に生成することができる。
また、上記においても説明をしたように、制御部110は、第1中間画像を生成した後、領域設定処理を行うことで、第2中間画像を生成する。また、第2中間画像に対して解像度変換処理を実行して、それぞれの断面位置に対応するスライス画像を生成する。
図4(c)は、解像度変換処理の動作の一例を示す。上記においても説明をしたように、解像度変換処理において、制御部110は、スライス画像に求められる解像度よりも高い解像度で生成された第2中間画像の解像度を低くする処理を行うことで、造形の解像度に応じた解像度のスライス画像を生成する。この場合、第2中間画像からスライス画像への変換について、例えば図中に示すように、画像のサイズを小さくリサイズする処理等と考えることができる。また、この場合、制御部110は、例えば、造形可能領域400の寸法及び造形の解像度等に基づき、解像度の変換の比率を決定する。このように構成すれば、例えば、スライス画像を生成する処理の中で高い解像度の第1中間画像や第2中間画像を用いつつ、造形の解像度に応じた解像度のスライス画像を適切に生成することができる。
ここで、第1中間画像、第2中間画像、及びスライス画像等の画像に関し、解像度の大小関係については、例えば、対象物の同じ範囲を示すために用いる画素数の大小に対応する関係等と考えることができる。また、スライス画像の解像度について、造形の解像度に応じた解像度であることについては、例えば、造形装置12のヘッド部102(図1参照)におけるそれぞれのインクジェットヘッドにインクを吐出させる制御との関係における造形の解像度に対応する画像の解像度等と考えることができる。
また、上記においては、分割領域402に対応する分割撮影画像を取得する動作に関し、主に、全ての分割領域402に対応する分割撮影画像を取得する動作の例を説明した。しかし、造形装置12においては、様々な大きさの造形物50を造形することが考えられる。そして、造形可能領域400と造形物50との大きさの関係によっては、一部の分割領域402の範囲にのみ造形物50が載ること等も考えられる。そして、この場合、造形物50の少なくとも一部が載っている分割領域402のみを対象にして、仮想的なカメラでの撮影を行ってもよい。
図5は、分割領域402に対応する分割撮影画像を取得する動作の他の例について説明をする図であり、一部の分割領域402の上にのみ造形物50が載っている場合における分割撮影画像を取得する動作の一例を示す。この場合、それぞれの断面位置において分割撮影画像を取得する動作において、制御部110は、造形可能領域400における複数の分割領域402のうち、造形物50の少なくとも一部と重なる分割領域402を選択する。造形物50の少なくとも一部が分割領域402と重なることについては、例えば、処理中の断面位置において造形物50の少なくとも一部が分割領域402内に入ること等と考えることができる。また、この場合、制御部110は、例えば、選択した分割領域402のみに対し、分割領域402に対応する分割撮影画像を取得する。そして、取得した分割撮影画像に基づき、第1中間画像を生成する。このように構成すれば、例えば、必要以上の撮影の動作を省略することで、第1中間画像の生成をより効率的に実行することができる。
本発明は、例えば造形システムに好適に利用できる。
10・・・造形システム、12・・・造形装置、14・・・制御PC、50・・・造形物、52・・・サポート層、102・・・ヘッド部、104・・・造形台、106・・・走査駆動部、110・・・制御部、152・・・光反射領域、154・・・着色領域、202・・・インクジェットヘッド、204・・・紫外線光源、206・・・平坦化ローラ、302・・・断面光反射部、304・・・断面着色部、400・・・造形可能領域、402・・・分割領域

Claims (11)

  1. 立体的な造形物を造形する造形システムであって、
    前記造形物の形状を示す形状データと、前記造形物の表面の色を示すテクスチャデータとに基づき、前記造形物の断面を示す画像であるスライス画像を生成するスライス画像生成部と、
    前記造形物の材料をそれぞれが吐出する複数の吐出ヘッドと、
    前記スライス画像に基づいて前記複数の吐出ヘッドに前記材料を吐出させる吐出制御部と
    を備え、
    前記吐出制御部は、前記複数の吐出ヘッドの少なくとも一部に着色用の有色の前記材料を吐出させることにより、前記造形物において着色がされる領域である着色領域を形成させ、
    前記スライス画像生成部は、
    予め設定された断面位置方向における互いに異なる複数の断面位置に対し、それぞれの前記断面位置における前記造形物の断面を示す前記スライス画像を生成し、
    それぞれの前記断面位置における前記スライス画像を生成する処理として、
    前記断面位置における前記造形物の断面の形状と、前記断面位置における前記造形物の表面の色とを示す画像である表面着色断面画像を前記形状データ及び前記テクスチャデータに基づいて生成する表面着色断面画像生成処理と、
    前記断面位置における前記着色領域の断面に対応する領域である断面着色部を設定する処理であり、前記断面着色部に色が指定された状態で前記造形物の断面の形状及び色を示す画像である領域設定後画像を前記表面着色断面画像に基づいて生成する領域設定処理と、
    前記領域設定後画像の解像度を低くする解像度変換を行うことで前記断面位置に対応する前記スライス画像を生成する解像度変換処理と
    を行うことを特徴とする造形システム。
  2. 前記吐出制御部は、予め設定された造形の解像度に応じて設定される吐出位置へ前記複数の吐出ヘッドに前記材料を吐出させ、
    前記表面着色断面画像生成処理において、前記スライス画像生成部は、前記断面位置方向と直交する方向における解像度が前記造形の解像度よりも高い前記表面着色断面画像を生成し、
    前記解像度変換処理において、前記スライス画像生成部は、前記断面位置方向と直交する方向における解像度が前記造形の解像度と等しい前記スライス画像を生成することを特徴とする請求項1に記載の造形システム。
  3. 前記領域設定処理において、前記スライス画像生成部は、前記表面着色断面画像に基づき、前記断面位置における前記造形物の表面の少なくとも一部に沿った所定の幅の範囲を前記断面着色部に設定して、前記表面着色断面画像において前記造形物の表面に対して指定されている色に基づき、前記断面着色部の各位置の色を設定することで、前記領域設定後画像を生成することを特徴とする請求項1又は2に記載の造形システム。
  4. 前記表面着色断面画像生成処理において、前記スライス画像生成部は、前記断面位置における前記造形物の断面の輪郭が線で示され、当該線の各位置に対して前記テクスチャデータに基づいて色が設定されている前記表面着色断面画像を生成し、
    前記領域設定処理において、前記スライス画像生成部は、前記断面の輪郭を示す前記線の各位置に設定されている色に基づき、前記断面着色部の各位置の色を設定することを特徴とする請求項3に記載の造形システム。
  5. 前記吐出制御部は、前記複数の吐出ヘッドの少なくとも一部に光反射性の前記材料を吐出させることにより、光反射性の領域である光反射領域を前記造形物における前記着色領域の内側に形成させ、
    前記領域設定処理において、前記スライス画像生成部は、前記断面位置における前記光反射領域の断面に対応する領域である断面光反射部を更に設定することを特徴とする請求項1から4のいずれかに記載の造形システム。
  6. 前記スライス画像生成部は、前記テクスチャデータとして、厚みが設定されていない面において各位置の色が指定されるデータを用いることを特徴とする請求項1から5のいずれかに記載の造形システム。
  7. 前記表面着色断面画像生成処理において、前記スライス画像生成部は、
    前記断面位置に対して前記形状データ及び前記テクスチャデータにより指定される前記造形物の断面の状態を算出する断面状態算出処理と、
    前記断面状態算出処理で算出した前記造形物の断面の状態を示す画像を前記表面着色断面画像として生成する断面状態画像生成処理と
    を行うことを特徴とする請求項1から5のいずれかに記載の造形システム。
  8. 前記断面状態算出処理において、前記スライス画像生成部は、前記断面位置について前記形状データ及び前記テクスチャデータにより指定される形状及び色を仮想ビューワに表示し、
    前記断面状態画像生成処理において、前記スライス画像生成部は、前記仮想ビューワに表示されている前記造形物の断面を仮想的なカメラで撮影することで、前記表面着色断面画像を生成することを特徴とする請求項7に記載の造形システム。
  9. 前記断面状態算出処理において、前記スライス画像生成部は、前記造形物を設置可能な領域である造形可能領域を前記仮想ビューワの表示領域内に設定して、前記造形可能領域に前記造形物が置かれた状態での前記断面位置について、前記形状データ及び前記テクスチャデータにより指定される形状及び色を仮想ビューワに表示し、
    前記断面状態画像生成処理において、前記スライス画像生成部は、前記造形可能領域を複数の分割領域に分割して、前記分割領域毎に前記仮想的なカメラでの撮影を行うことで、それぞれの前記分割領域に対応して撮影される画像である分割撮影画像を取得し、複数の前記分割撮影画像をつなげることで、前記表面着色断面画像を生成することを特徴とする請求項8に記載の造形システム。
  10. 前記断面状態画像生成処理において、前記スライス画像生成部は、前記複数の分割領域のうち、前記造形物の少なくとも一部と重なる前記分割領域を選択して、選択した前記分割領域に対応する前記分割撮影画像を取得することを特徴とする請求項9に記載の造形システム。
  11. 立体的な造形物を造形する造形方法であって、
    前記造形物の形状を示す形状データと、前記造形物の表面の色を示すテクスチャデータとに基づき、前記造形物の断面を示す画像であるスライス画像を生成するスライス画像生成処理と、
    前記造形物の材料をそれぞれが吐出する複数の吐出ヘッドに前記スライス画像に基づいて前記材料を吐出させる吐出制御処理と
    を行い、
    前記吐出制御処理において、前記複数の吐出ヘッドの少なくとも一部に着色用の有色の前記材料を吐出させることにより、前記造形物において着色がされる領域である着色領域を形成させ、
    前記スライス画像生成処理は、予め設定された断面位置方向における互いに異なる複数の断面位置に対し、それぞれの前記断面位置における前記造形物の断面を示す前記スライス画像を生成する処理であり、
    それぞれの前記断面位置における前記スライス画像を生成する処理として、
    前記断面位置における前記造形物の断面の形状と、前記断面位置における前記造形物の表面の色とを示す画像である表面着色断面画像を前記形状データ及び前記テクスチャデータに基づいて生成する表面着色断面画像生成処理と、
    前記断面位置における前記着色領域の断面に対応する領域である断面着色部を設定する処理であり、前記断面着色部に色が指定された状態で前記造形物の断面の形状及び色を示す画像である領域設定後画像を前記表面着色断面画像に基づいて生成する領域設定処理と、
    前記領域設定後画像の解像度を低くする解像度変換を行うことで前記断面位置に対応する前記スライス画像を生成する解像度変換処理と
    を行うことを特徴とする造形方法。
JP2020016628A 2020-02-03 2020-02-03 造形システム及び造形方法 Pending JP2021122994A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020016628A JP2021122994A (ja) 2020-02-03 2020-02-03 造形システム及び造形方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020016628A JP2021122994A (ja) 2020-02-03 2020-02-03 造形システム及び造形方法

Publications (1)

Publication Number Publication Date
JP2021122994A true JP2021122994A (ja) 2021-08-30

Family

ID=77459851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020016628A Pending JP2021122994A (ja) 2020-02-03 2020-02-03 造形システム及び造形方法

Country Status (1)

Country Link
JP (1) JP2021122994A (ja)

Similar Documents

Publication Publication Date Title
JP6691017B2 (ja) 造形方法、及び造形システム
US11214009B2 (en) Shaping system, shaping method, and shaped object
EP3439280A1 (en) Object shaping method and object shaping system
JP6838953B2 (ja) 造形方法、造形システム、及び造形装置
JP6836897B2 (ja) 造形物および造形方法
US10532516B2 (en) Shaping method, shaping system, and shaping device
US11220067B2 (en) Shaping system
US20190248074A1 (en) Shaping device and shaping method
JP7350461B2 (ja) 造形物
US11148353B2 (en) Manufacturing method for shaped object, shaping system, and shaping device
JP6823435B2 (ja) 造形装置及び造形方法
JP2021122994A (ja) 造形システム及び造形方法
JP2022089992A (ja) 造形方法、スライスデータの生成方法、造形装置、及びスライスデータ生成装置
JP6532378B2 (ja) 造形システム、造形動作の制御方法、造形制御装置、及びプログラム
US11627236B2 (en) Shaping device and shaping method utilizing color conversion process and color adjustment parameters
JP2021045911A (ja) 造形装置及び造形方法
US11485068B2 (en) Manufacturing method and shaping device for shaped object
JP2022048028A (ja) 造形物データ生成装置、造形システム、及び造形物データ生成方法
JP6660711B2 (ja) 造形システム、造形動作の制御方法、造形制御装置、及びプログラム