JP2021120195A - Bonding structure - Google Patents

Bonding structure Download PDF

Info

Publication number
JP2021120195A
JP2021120195A JP2020013899A JP2020013899A JP2021120195A JP 2021120195 A JP2021120195 A JP 2021120195A JP 2020013899 A JP2020013899 A JP 2020013899A JP 2020013899 A JP2020013899 A JP 2020013899A JP 2021120195 A JP2021120195 A JP 2021120195A
Authority
JP
Japan
Prior art keywords
protrusions
protrusion
diameter
tip
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020013899A
Other languages
Japanese (ja)
Inventor
渉 神岡
Wataru Kamioka
渉 神岡
卓唯 李
Chuowei Li
卓唯 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2020013899A priority Critical patent/JP2021120195A/en
Publication of JP2021120195A publication Critical patent/JP2021120195A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

To provide a bonding structure of metal and resin that has a high bonding strength.SOLUTION: The bonding structure includes a first member 1 that is a metal work piece having protrusions 3 aligned on the surface, and a thermoplastic resin-containing second member 2 that is bonded to the first member via the protrusions 3. The height of the protrusions is 15 to 200 μm, the width of the protrusions is 10 to 200 μm, the interval between the protrusions is 10 to 200 μm, and, when viewed from the tip side of the protrusions, the arrangement of the protrusions is at least one of a triangular shape, a quadrangular shape, and a hexagonal shape.SELECTED DRAWING: Figure 1

Description

本発明は金属と樹脂との接合構造体に関する。 The present invention relates to a bonded structure of a metal and a resin.

例えば、金属と樹脂とによる接合封止が必要なセンサ、または金属と樹脂とによる接合が必要なリレー等の、金属と樹脂との接合構造体は多くの産業分野において使用されている。この金属と樹脂との接合には様々な方法が用いられている。 For example, a metal-resin bonding structure such as a sensor that requires metal-resin bonding or a relay that requires metal-resin bonding is used in many industrial fields. Various methods are used for joining the metal and the resin.

例えば、特許文献1には金属部材の表面に、高エネルギービームによって、複数の窪みもしくは溝を設け、さらにその表面に前記金属部材の溶融物で形成される廂状の隆起部もしくは先端に球状の瘤を備えた括れ部を有する隆起部からなる金属飛沫凝固部を設け、その表面を樹脂部材でモールドした、金属部材と成形樹脂部材との複合成形体が開示されている。 For example, in Patent Document 1, a plurality of depressions or grooves are provided on the surface of a metal member by a high-energy beam, and a spherical ridge or a spherical tip formed of a melt of the metal member is formed on the surface thereof. A composite molded body of a metal member and a molded resin member is disclosed in which a metal droplet solidifying portion formed of a raised portion having a constricted portion having a knob is provided and the surface thereof is molded with a resin member.

また、特許文献2には重畳的微細粒子構造を有する金属基材の接合予定面と、プラスチックの接合予定面を押圧する工程と、押圧された界面に対しレーザ光を照射し加熱する工程と、加熱により溶融した前記プラスチックが前記重畳的微細粒子構造に入り込みおよび包み込むことで互いに係合する工程と、を含む金属基材とプラスチックの接合方法が開示されている。 Further, Patent Document 2 describes a step of pressing a planned joining surface of a metal base material having a superposed fine particle structure and a step of pressing a planned joining surface of a plastic, and a step of irradiating the pressed interface with laser light to heat the pressed interface. A method for joining a metal base material and a plastic including a step of engaging the plastics melted by heating by entering and wrapping the superposed fine particle structure and engaging with each other is disclosed.

特許文献3には開口を有する穿孔部が形成された第1部材と、当該穿孔部に充填された第2部材からなる接合構造体が開示されている。前記穿孔は深さ方向において開口径が大きくなる拡径部と、深さ方向において開口径が小さくなる縮径部とを有し、拡径部が表面側、縮径部が底部側に形成されている接合構造体が開示されている。 Patent Document 3 discloses a joint structure composed of a first member in which a perforated portion having an opening is formed and a second member filled in the perforated portion. The perforation has an enlarged diameter portion in which the opening diameter increases in the depth direction and a reduced diameter portion in which the opening diameter decreases in the depth direction, and the enlarged diameter portion is formed on the surface side and the reduced diameter portion is formed on the bottom side. The joining structure is disclosed.

特開2013−71312号公報Japanese Unexamined Patent Publication No. 2013-71312 特開2016−130003号公報Japanese Unexamined Patent Publication No. 2016-130003 国際公開第2016/027775号International Publication No. 2016/0277775

特許文献1に係る複合成形体の製造方法によると、金属表面が廂状の隆起部、球状の金属飛沫、粒状のスパッタによる粗面形状を有することにより、前記粗面部に樹脂が入り込んで十分な密着性と気密性を有する樹脂複合成形体を安価に製造できるとされている。 According to the method for producing a composite molded product according to Patent Document 1, the metal surface has a rough surface shape due to a raised portion, spherical metal droplets, and granular spatter, so that the resin can sufficiently enter the rough surface portion. It is said that a resin composite molded product having adhesiveness and airtightness can be manufactured at low cost.

また特許文献2に係る接合方法によると、金属表面に付着した金属粉末により形成される微細粒子構造にプラスチックが入り込み、または包み込むことによって、アンカー効果を発現し、せん断、剥離、いずれの方向に対しても機械的強度を有する接合体が得られるとされている。 Further, according to the joining method according to Patent Document 2, when the plastic enters or wraps in the fine particle structure formed by the metal powder adhering to the metal surface, an anchor effect is exhibited, and in either direction of shearing or peeling. However, it is said that a bonded body having mechanical strength can be obtained.

しかしながら、特許文献1および2に係る発明は、加工形状が複雑であり、かつ加工形状を制御することが困難であるため、任意の箇所に所望の加工形状が得られるとは限らず、安定性に欠ける。特許文献2に係る発明ではまた、金属基材に対して金属粉末が表面に付着しているだけであるため、アンカー効果が不十分であり、それゆえ、接合体全体の強度に未だ改善の余地がある。 However, in the inventions according to Patent Documents 1 and 2, since the processed shape is complicated and it is difficult to control the processed shape, it is not always possible to obtain a desired processed shape at an arbitrary location, and the stability is stable. Lacking. Also in the invention according to Patent Document 2, the anchor effect is insufficient because the metal powder is only adhered to the surface of the metal base material, and therefore there is still room for improvement in the strength of the entire joint. There is.

特許文献3に係る接合構造体の製造方法によると、当該接合構造体の拡径部が穿孔内において内側に突出しているため、拡径部と穿孔に充填された第2部材とが剥離方向において係合されることにより、剥離方向の接合強度が向上するとされている。 According to the method for manufacturing a joint structure according to Patent Document 3, since the enlarged diameter portion of the joint structure protrudes inward in the perforation, the enlarged diameter portion and the second member filled in the perforation are separated in the peeling direction. Engagement is said to improve the joint strength in the peeling direction.

しかしながら、特許文献3に係る発明はアンカー効果を発現する穿孔が独立しているため、熱衝撃などの応力印加時に、応力が集中する部分から順次、穿孔に充填された第2部材が破壊される。したがって、接合部の耐久性は第2部材に含まれる樹脂の強度にのみ依存する。特に、第2部材が繊維強化樹脂を含有した場合、束になった繊維は穿孔に挿入されず、穿孔内に充填されるのは樹脂のみとなるため、当該樹脂が本来よりも低い強度を示す場合がある。 However, in the invention according to Patent Document 3, since the perforations that exhibit the anchor effect are independent, when stress such as thermal shock is applied, the second member filled in the perforations is sequentially destroyed from the portion where the stress is concentrated. .. Therefore, the durability of the joint depends only on the strength of the resin contained in the second member. In particular, when the second member contains a fiber reinforced resin, the bundled fibers are not inserted into the perforation, and only the resin is filled in the perforation, so that the resin exhibits lower strength than the original. In some cases.

したがって、本件発明者は、従来の方法では金属と樹脂を用いた場合、高い接合強度を示す接合構造体を作製することは困難であることを見出した。 Therefore, the present inventor has found that it is difficult to produce a bonded structure exhibiting high bonding strength when a metal and a resin are used by the conventional method.

本発明は、一側面ではこのような実情を鑑みてなされたものであり、その目的は、高い接合強度を有する金属と樹脂との接合構造体を提供することである。 One aspect of the present invention has been made in view of such circumstances, and an object of the present invention is to provide a bonded structure of a metal and a resin having high bonding strength.

本発明は上述した課題を解決するために以下を採用する。 The present invention employs the following in order to solve the above-mentioned problems.

すなわち、本発明の一態様に係る接合構造体は、表面に整列した突起を有する金属加工物である第一部材と、前記突起を介して前記第一部材と接合している、熱可塑性樹脂を含む第二部材と、を備える。 That is, the bonding structure according to one aspect of the present invention comprises a first member which is a metal processed product having protrusions aligned on the surface and a thermoplastic resin which is bonded to the first member via the protrusions. It includes a second member including.

上記構成では、金属加工物の表面に整列した突起を熱可塑性樹脂が覆う形で固化することで、第一部材と第二部材との間に、物理的に強固なアンカー効果が得られる。上記構成によれば、接合構造体は接合強度が向上する。本明細書において、「整列した突起」とは、規則的に配置された突起を意味する。 In the above configuration, a physically strong anchor effect can be obtained between the first member and the second member by solidifying the protrusions aligned on the surface of the metal processed product so as to be covered with the thermoplastic resin. According to the above configuration, the joint structure has improved joint strength. As used herein, the term "aligned protrusions" means regularly arranged protrusions.

上記一側面に係る接合構造体において、前記突起の高さは15〜200μmであってもよい。当該構成によればアンカー効果が発揮されやすい。本明細書において、「突起の高さ」とは、突起の先端から基部までの距離を意味する。また本明細書において「突起の先端」とは、突起が突出している側から平面を接近させた場合に最初に当該平面に接する突起の部位を意味する。 In the joint structure according to the one side surface, the height of the protrusion may be 15 to 200 μm. According to this configuration, the anchor effect is likely to be exhibited. As used herein, the "protrusion height" means the distance from the tip to the base of the protrusion. Further, in the present specification, the “tip of the protrusion” means a portion of the protrusion that first comes into contact with the plane when the plane is brought closer from the side where the protrusion protrudes.

上記一側面に係る接合構造体において、前記突起の幅は10〜200μmであってもよい。当該構成によればアンカー効果が発揮されやすい。本明細書において、「突起の幅」とは、突起の先端側から見た突起輪郭線の最大フェレ径を意味する。 In the joint structure according to the one side surface, the width of the protrusion may be 10 to 200 μm. According to this configuration, the anchor effect is likely to be exhibited. In the present specification, the "protrusion width" means the maximum ferret diameter of the protrusion contour line seen from the tip side of the protrusion.

上記一側面に係る接合構造体において、前記突起の間隔は10〜200μmであってもよい。当該構成によればアンカー効果が発揮されやすい。本明細書において、「突起の間隔」とは、突起の先端側から見て、突起の輪郭線を等距離拡大させた時、隣接する他の突起の輪郭線と最初に接する距離を意味する。 In the joint structure according to the one side surface, the distance between the protrusions may be 10 to 200 μm. According to this configuration, the anchor effect is likely to be exhibited. As used herein, the term "protrusion spacing" means the distance at which the contour lines of the protrusions first come into contact with the contour lines of other adjacent protrusions when the contour lines of the protrusions are expanded equidistantly when viewed from the tip end side of the protrusions.

上記一側面に係る接合構造体において、前記突起の先端側から見て、突起の配列は三角形状、四角形状および六角形状の少なくともいずれか1種であってもよい。当該構成のうち、配列が三角形状であれば、突起が最密配置されるため、垂直引きはがし強度が向上する。また配列が四角形状であればせん断強度の異方性が小さくなる。さらに、配列が六角形状であればせん断強度の異方性が前記四角形状の配列に比べてより小さくなる。 In the joint structure according to the one side surface, the arrangement of the protrusions may be at least one of a triangular shape, a quadrangular shape, and a hexagonal shape when viewed from the tip end side of the protrusions. In the configuration, if the arrangement is triangular, the protrusions are arranged most closely, so that the vertical peeling strength is improved. Further, if the arrangement is square, the anisotropy of the shear strength becomes small. Further, when the arrangement is hexagonal, the anisotropy of shear strength is smaller than that of the square arrangement.

本明細書において突起の配列が「四角形状」であるとは、突起の配列が格子型であることを意味する。本明細書において突起の配列が「三角形状」であるとは、突起が第一部材の表面上に最密配置されていることを意味する。また、本明細書において突起の配列が「六角形状」であるとは、突起の配列が亀甲形状であることを意味する。 As used herein, the "square" arrangement of protrusions means that the arrangement of protrusions is grid-like. As used herein, the "triangular" arrangement of protrusions means that the protrusions are closest packed on the surface of the first member. Further, in the present specification, the arrangement of the protrusions is "hexagonal" means that the arrangement of the protrusions is a hexagonal shape.

上記一側面に係る接合構造体において、前記突起は、突起の高さ方向に垂直な断面の径が突起の先端から基部に向かって拡大する領域および縮小する領域の少なくともいずれか一方を有してもよい。当該構成によれば、前記突起の形状により、アンカー効果が発揮されやすいため、垂直引きはがし強度がより向上する。 In the joint structure according to the one side surface, the protrusion has at least one of a region in which the diameter of the cross section perpendicular to the height direction of the protrusion expands from the tip of the protrusion toward the base and a region in which the diameter decreases. May be good. According to this configuration, the shape of the protrusions makes it easier for the anchor effect to be exhibited, so that the vertical peeling strength is further improved.

上記一側面に係る接合構造体において、前記突起の高さ方向に垂直な断面の径は、突起の先端から基部に向かって拡大し、次いで縮小してもよい。当該構成によれば、前記突起の形状により、アンカー効果が発揮されやすいため、垂直引きはがし強度がより向上する。 In the joint structure according to the one side surface, the diameter of the cross section perpendicular to the height direction of the protrusion may be increased from the tip of the protrusion toward the base and then reduced. According to this configuration, the shape of the protrusions makes it easier for the anchor effect to be exhibited, so that the vertical peeling strength is further improved.

上記一側面に係る接合構造体において、前記突起の高さ方向に垂直な断面の径は、突起の先端から基部に向かって縮小し、次いで拡大してもよい。当該構成によれば、前記突起の形状により、アンカー効果が発揮されやすいため、垂直引きはがし強度がより向上する。 In the joint structure according to the one side surface, the diameter of the cross section perpendicular to the height direction of the protrusion may be reduced from the tip of the protrusion toward the base and then expanded. According to this configuration, the shape of the protrusions makes it easier for the anchor effect to be exhibited, so that the vertical peeling strength is further improved.

上記一側面に係る接合構造体において、前記突起の高さ方向に垂直な断面の径は、突起の先端から基部まで縮小してもよい。当該構成によれば、前記突起の形状により、アンカー効果が発揮されやすいため、垂直引きはがし強度がより向上する。 In the joint structure according to the one side surface, the diameter of the cross section perpendicular to the height direction of the protrusion may be reduced from the tip to the base of the protrusion. According to this configuration, the shape of the protrusions makes it easier for the anchor effect to be exhibited, so that the vertical peeling strength is further improved.

上記一側面に係る接合構造体において、前記突起の高さ方向に垂直な断面の径は、突起の先端から基部まで拡大してもよい。当該構成によれば、前記突起の形状により、アンカー効果が得られる。 In the joint structure according to the one side surface, the diameter of the cross section perpendicular to the height direction of the protrusion may be expanded from the tip to the base of the protrusion. According to this configuration, the anchor effect can be obtained by the shape of the protrusion.

上記一側面に係る接合構造体において、前記突起の高さ方向に垂直な断面の径は、突起の先端から基部まで一定であってもよい。当該構成によれば、前記突起の形状により、アンカー効果が得られる。 In the joint structure according to the one side surface, the diameter of the cross section perpendicular to the height direction of the protrusion may be constant from the tip to the base of the protrusion. According to this configuration, the anchor effect can be obtained by the shape of the protrusion.

本発明の一態様によれば、高い接合強度を有する金属と樹脂との接合構造体を提供できる。 According to one aspect of the present invention, it is possible to provide a bonded structure of a metal and a resin having high bonding strength.

図1は、実施形態に係る接合構造体の断面の一例を模式的に例示する。FIG. 1 schematically illustrates an example of a cross section of the joint structure according to the embodiment. 図2は、実施形態に係る突起を形成するためのレーザ照射の方法を模式的に表す。FIG. 2 schematically shows a method of laser irradiation for forming a protrusion according to an embodiment. 図3は、実施形態に係る第一部材の突起の一例を模式的に表す。FIG. 3 schematically shows an example of a protrusion of the first member according to the embodiment. 図4は、実施形態に係る第一部材の突起の一例を模式的に表す。FIG. 4 schematically shows an example of a protrusion of the first member according to the embodiment. 図5は、実施形態に係る第一部材の突起の一例を模式的に表す。FIG. 5 schematically shows an example of a protrusion of the first member according to the embodiment. 図6は、実施形態に係る第一部材の突起の一例を模式的に表す。FIG. 6 schematically shows an example of a protrusion of the first member according to the embodiment. 図7は、実施形態に係る第一部材の突起の一例を模式的に表す。FIG. 7 schematically shows an example of a protrusion of the first member according to the embodiment. 図8は、実施形態に係る第一部材の突起の配列の一例を模式的に表す。FIG. 8 schematically shows an example of the arrangement of the protrusions of the first member according to the embodiment. 図9は、実施形態に係る第一部材の突起の配列の一例を模式的に表す。FIG. 9 schematically shows an example of the arrangement of the protrusions of the first member according to the embodiment. 図10は、実施形態に係る第一部材の突起の配列の一例を模式的に表す。FIG. 10 schematically shows an example of the arrangement of the protrusions of the first member according to the embodiment. 図11は、実施例に係る第一部材のレーザ加工部を模式的に表す。FIG. 11 schematically shows a laser-machined portion of the first member according to the embodiment. 図12は、実施例に係る垂直引きはがし試験に用いた接合構造体を模式的に表す。FIG. 12 schematically shows a joint structure used in the vertical peeling test according to the embodiment. 図13は、実施例に係る垂直引きはがし試験の方法を模式的に表す。FIG. 13 schematically shows a method of a vertical peeling test according to an embodiment. 図14は、実施例に係るせん断試験に用いた接合構造体を模式的に表す。FIG. 14 schematically shows a joint structure used in the shear test according to the embodiment. 図15は、実施例に係るせん断試験の方法を模式的に表す。FIG. 15 schematically shows a shear test method according to an example. 図16は、実施例1に係る突起を示す光学顕微鏡画像を表す。FIG. 16 represents an optical microscope image showing the protrusions according to the first embodiment. 図17は、実施例2に係る突起を示す光学顕微鏡画像を表す。FIG. 17 represents an optical microscope image showing the protrusions according to the second embodiment. 図18は、実施例3に係る突起を示す光学顕微鏡画像を表す。FIG. 18 represents an optical microscope image showing the protrusions according to Example 3. 図19は、実施例4に係る突起を示す光学顕微鏡画像を表す。FIG. 19 represents an optical microscope image showing the protrusions according to the fourth embodiment. 図20は、実施例5に係る突起を示す光学顕微鏡画像を表す。FIG. 20 represents an optical microscope image showing a protrusion according to Example 5.

以下、本発明の一側面に係る実施の形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。 Hereinafter, embodiments according to one aspect of the present invention (hereinafter, also referred to as “the present embodiment”) will be described with reference to the drawings.

§1適用例
まず、図1を用いて本発明の一態様に係る接合構造体の概要を説明する。図1は、一態様に係る接合構造体の断面の一例を模式的に例示する。
§1 Application example First, the outline of the bonded structure according to one aspect of the present invention will be described with reference to FIG. FIG. 1 schematically illustrates an example of a cross section of the bonded structure according to one aspect.

図1では、表面に整列した突起3を有する金属加工物である第一部材1と、前記突起3を介して第一部材1と接合している、熱可塑性樹脂を含む第二部材2と、を備える接合構造体が例示されている。 In FIG. 1, a first member 1 which is a metal processed product having protrusions 3 aligned on the surface, a second member 2 containing a thermoplastic resin which is joined to the first member 1 via the protrusions 3, and a second member 2. A bonded structure comprising the above is exemplified.

第二部材2は、第一部材1に形成された突起3を包み込むように固化しているため、物理的に強固なアンカー効果が得られる。すなわち、第二部材2は、特許文献3のように穿孔に充填される形態ではない。したがって、第二部材2では、穿孔に充填された樹脂部分に応力が集中することがない。これにより、接合構造体が破壊される場合に、接合部の破壊部位が金属突起あるいは第二部材全体となる。また、接合部全体に応力が分散しやすくなるため、第二部材は容易に破壊されない。また、穿孔中で繊維または結晶が挿入されずに樹脂のみが充填されるという事態が生じないので、繊維強化樹脂または結晶性樹脂を用いた場合でも、特許文献3で発生するような樹脂の強度の低下が発生しない。 Since the second member 2 is solidified so as to wrap the protrusion 3 formed on the first member 1, a physically strong anchor effect can be obtained. That is, the second member 2 is not in the form of being filled in the perforation as in Patent Document 3. Therefore, in the second member 2, stress does not concentrate on the resin portion filled in the perforation. As a result, when the joint structure is broken, the broken portion of the joint becomes a metal protrusion or the entire second member. In addition, the second member is not easily broken because the stress is easily dispersed over the entire joint. Further, since the situation where only the resin is filled without inserting the fibers or crystals during drilling does not occur, the strength of the resin as generated in Patent Document 3 even when the fiber reinforced resin or the crystalline resin is used. Does not decrease.

また突起3は整列しているため、接合構造体全体の強度が安定する。加えて、接合に中間層、あるいは接着剤を必要とせず、金属と樹脂とを直接接合させることができる。そのため、高い接合強度を示す接合構造体を提供することができる。 Further, since the protrusions 3 are aligned, the strength of the entire joint structure is stable. In addition, the metal and the resin can be directly bonded without the need for an intermediate layer or an adhesive for bonding. Therefore, it is possible to provide a bonded structure that exhibits high bonding strength.

§2構成例
<第一部材>
第一部材は、表面に整列した突起を有する金属加工物である。金属加工物の材料としては、例えば、鉄系金属、ステンレス系金属、銅系金属、アルミ系金属、マグネシウム系金属、および、それらの合金等が挙げられる。また、金属加工物は、金属成型体であってもよく、亜鉛ダイカスト、アルミダイカスト、粉末冶金等であってもよい。
§2 Configuration example <First member>
The first member is a metal work piece having protrusions aligned on the surface. Examples of the material of the metal processed product include iron-based metal, stainless-based metal, copper-based metal, aluminum-based metal, magnesium-based metal, and alloys thereof. Further, the metal processed product may be a metal molded product, zinc die-cast, aluminum die-cast, powder metallurgy, or the like.

<突起>
突起は、第一部材の表面に形成される、整列した突起である。第一部材が突起を備えることで、第二部材である熱可塑性樹脂との間に、前記突起を介したアンカー効果が得られる。したがって、接合強度が向上する。
<Protrusion>
The protrusions are aligned protrusions formed on the surface of the first member. When the first member is provided with the protrusions, an anchor effect can be obtained between the first member and the thermoplastic resin, which is the second member, via the protrusions. Therefore, the joint strength is improved.

前記突起は、第一部材と一体的に形成されていることが好ましい。すなわち、第一部材とは別の部材として形成された突起を第一部材の表面に付着させるのではないことが好ましい。これにより、第一部材に対して突起を付着させる場合に比べて接合強度が向上する。 The protrusion is preferably formed integrally with the first member. That is, it is preferable that the protrusion formed as a member different from the first member is not attached to the surface of the first member. As a result, the joint strength is improved as compared with the case where the protrusion is attached to the first member.

前記突起の高さは、15μm以上、200μm以下であることが好ましく、より好ましくは20μm以上、100μm以下である。突起の高さが15μm以上であればアンカー効果が向上する。また突起の高さが200μm以下であれば、樹脂充填性が向上する。 The height of the protrusions is preferably 15 μm or more and 200 μm or less, more preferably 20 μm or more and 100 μm or less. If the height of the protrusion is 15 μm or more, the anchor effect is improved. Further, when the height of the protrusion is 200 μm or less, the resin filling property is improved.

前記突起の幅は、10μm以上、200μm以下であることが好ましく、より好ましくは20μm以上、100μm以下である。突起の幅が10μm以上であれば、突起形成が容易である。また突起の幅が200μm以下であれば、単位面積当たりの突起の数が増加し、アンカー効果が向上する。 The width of the protrusions is preferably 10 μm or more and 200 μm or less, more preferably 20 μm or more and 100 μm or less. When the width of the protrusion is 10 μm or more, the protrusion can be easily formed. When the width of the protrusions is 200 μm or less, the number of protrusions per unit area increases and the anchor effect is improved.

前記突起の間隔は、10μm以上、200μm以下であることが好ましく、より好ましくは20μm以上、100μm以下である。突起の間の距離が10μm以上であれば、樹脂充填性に優れる。また、200μm以下であれば、単位面積当たりの突起の数が増加し、アンカー効果が向上する。安定した強度を得る観点からは、突起の間の距離が一定であることが好ましい。 The distance between the protrusions is preferably 10 μm or more and 200 μm or less, and more preferably 20 μm or more and 100 μm or less. When the distance between the protrusions is 10 μm or more, the resin filling property is excellent. Further, when it is 200 μm or less, the number of protrusions per unit area increases and the anchor effect is improved. From the viewpoint of obtaining stable strength, it is preferable that the distance between the protrusions is constant.

前記突起の形状は特に限定されない。例えば、突起は、高さ方向に垂直な断面の径が一定であってもよく、高さ方向に垂直な断面の径が突起の先端から基部に向かって拡大する領域および縮小する領域の少なくともいずれか一方を有していてもよい。特に突起が、高さ方向に垂直な断面の径が突起の先端から基部に向かって縮小する領域を有している場合、垂直引きはがし強度に優れる。 The shape of the protrusion is not particularly limited. For example, the protrusion may have a constant diameter of the cross section perpendicular to the height direction, and at least one of a region in which the diameter of the cross section perpendicular to the height direction expands and contracts from the tip to the base of the protrusion. It may have either one. In particular, when the protrusion has a region in which the diameter of the cross section perpendicular to the height direction decreases from the tip of the protrusion toward the base, the vertical peeling strength is excellent.

図3〜図7は突起の一例を模式的に例示する。図3に示す突起3は、高さ方向に垂直な断面の径が、突起の先端から基部に向かって拡大する領域21に次いで、縮小する領域22を備える。図4に示す突起3は、高さ方向に垂直な断面の径が、突起の先端から基部に向かって縮小する領域22に次いで、拡大する領域21を備える。図5に示す突起3は、高さ方向に垂直な断面の径が突起の先端から基部まで縮小する領域22のみを備える。図6に示す突起3は、高さ方向に垂直な断面の径が突起の先端から基部まで拡大する領域21のみを備える。図7に示す突起3は、高さ方向に垂直な断面の径が突起の先端から基部まで一定である。また複数の形状の突起を部分的に使い分けてもよい。すなわち、例えば図3に示す形状と図4に示す形状とが併存してもよい。 3 to 7 schematically show an example of a protrusion. The protrusion 3 shown in FIG. 3 includes a region 22 in which the diameter of the cross section perpendicular to the height direction expands from the tip of the protrusion toward the base, and then decreases. The protrusion 3 shown in FIG. 4 includes a region 21 in which the diameter of the cross section perpendicular to the height direction expands next to the region 22 in which the diameter of the cross section decreases from the tip of the protrusion toward the base. The protrusion 3 shown in FIG. 5 includes only a region 22 in which the diameter of the cross section perpendicular to the height direction is reduced from the tip to the base of the protrusion. The protrusion 3 shown in FIG. 6 includes only a region 21 in which the diameter of the cross section perpendicular to the height direction expands from the tip to the base of the protrusion. In the protrusion 3 shown in FIG. 7, the diameter of the cross section perpendicular to the height direction is constant from the tip to the base of the protrusion. Further, the protrusions having a plurality of shapes may be partially used. That is, for example, the shape shown in FIG. 3 and the shape shown in FIG. 4 may coexist.

前記突起の配列は特に限定されない。図8〜図10は突起の配列の一例を模式的に例示する。図8〜10では便宜的に、突起の先端を繋いだ形状を太線で示している。突起の先端側から見た突起の配列は、例えば図8のように四角形状であってもよく、図9のように三角形状であってもよく、図10のように六角形状であってもよい。また複数の種類の配列を部分的に使い分けてもよい。すなわち、例えば図8に示す配列と図9に示す配列とが併存してもよい。 The arrangement of the protrusions is not particularly limited. 8 to 10 schematically illustrate an example of the arrangement of protrusions. In FIGS. 8 to 10, for convenience, the shape in which the tips of the protrusions are connected is shown by a thick line. The arrangement of the protrusions as seen from the tip side of the protrusions may be, for example, a quadrangular shape as shown in FIG. 8, a triangular shape as shown in FIG. 9, or a hexagonal shape as shown in FIG. good. In addition, a plurality of types of arrays may be partially used. That is, for example, the sequence shown in FIG. 8 and the sequence shown in FIG. 9 may coexist.

<第二部材>
第二部材は熱可塑性樹脂を含む。第二部材の材料としては、例えばPMMA(ポリメタクリル酸メチル)、PC(ポリカーボネート)、PS(ポリスチレン)、PAR(ポリアリレート)、PES(ポリエーテルサルホン)、PEI(ポリエーテルイミド)、COC(シクロオレフィンコポリマー)、COP(シクロオレフィンポリマー)、フルオレン誘導体、EFEP(エチレン四フッ化エチレン系共重合体)、PSU(ポリスルホン)、PPSU(ポリフェニルスルホン)、AS(アクリロニトリル・スチレン)、LDPE(低密度ポリエチレン)、PP(ポリプロピレン)、PE(ポリエチレン)、PBT(ポリブチレンテレフタレート)、PET(ポリエチレンテレフタレート)、PA(ポリアミド)、PA6(ポリアミド6)、PA66(ポリアミド66)、POM(ポリアセタール)、PPS(ポリフェニレンサルファイド)、PVC(ポリ塩化ビニル)、PPVDC(ポリ塩化ビニリデン)、および、PVDF(ポリフッ化ビニリデン)が挙げられる。また、樹脂部材はTPE(熱可塑性エラストマ)であってもよく、TPEの一例としては、TPO(オレフィン系)、TPS(スチレン系)、TPEE(エステル系)、TPU(ウレタン系)、TPA(ナイロン系)、および、TPVC(塩化ビニル系)等が挙げられる。材料強度の観点から、上記の中でも結晶性を有する熱可塑性樹脂が好ましい。
<Second member>
The second member contains a thermoplastic resin. Examples of the material of the second member include PMMA (polymethylmethacrylate), PC (polypolyamide), PS (polyamide), PAR (polyaraylate), PES (polyethersulfon), PEI (polyetherimide), and COC (. Cycloolefin copolymer), COP (cycloolefin polymer), fluorene derivative, EFEP (ethylene tetrafluoroethylene copolymer), PSU (polysulfone), PPSU (polyphenylsulfone), AS (acrylonitrile / styrene), LDPE (low) Density polyethylene), PP (polyethylene), PE (polyethylene), PBT (polybutylene terephthalate), PET (polyethylene terephthalate), PA (polyamide), PA6 (polyamide 6), PA66 (polyamide 66), POM (polyacetal), PPS (Polyphenylene sulfide), PVC (polyvinyl chloride), PPVDC (polyvinylidene chloride), and PVDF (vinylidene fluoride). The resin member may be TPE (thermoplastic elastomer), and examples of TPE include TPO (olefin type), TPS (styrene type), TPEE (ester type), TPU (urethane type), and TPA (nylon type). System), TPVC (vinyl chloride system) and the like. Among the above, a thermoplastic resin having crystallinity is preferable from the viewpoint of material strength.

また、前記樹脂には充填剤が添加されていてもよい。充填剤としては例えば、無機系充填剤(ガラス繊維、無機塩類など)、金属系充填剤、有機系充填剤、および、炭素繊維等が挙げられる。 Further, a filler may be added to the resin. Examples of the filler include inorganic fillers (glass fibers, inorganic salts, etc.), metal fillers, organic fillers, carbon fibers and the like.

前記第二部材は、上述の効果を損なわない範囲で、必要に応じて前記熱可塑性樹脂と前記充填剤以外の添加剤を含んでいてもよい。添加剤の一例としては、サイジング剤、分散剤、酸化防止剤、紫外線吸収剤、帯電防止剤、難燃剤、滑剤、結晶核材、可塑剤、染料、顔料、カーボンナノチューブ等が挙げられる。 The second member may contain an additive other than the thermoplastic resin and the filler, if necessary, as long as the above-mentioned effects are not impaired. Examples of additives include sizing agents, dispersants, antioxidants, ultraviolet absorbers, antistatic agents, flame retardants, lubricants, crystal nucleating materials, plasticizers, dyes, pigments, carbon nanotubes and the like.

前記第二部材の材料強度を向上させる目的で、結晶核材として、層状ケイ酸塩を用いることが好ましい。層状ケイ酸塩は、Siを4個の酸素が囲んだ四面体が、3つの頂点を隣の四面体と共有することにより、2次元的に拡がった構造単位(四面体シート)を形成している層状構造をもったケイ酸塩の一群である。また、Siの一部がAlに置換されていてもよい。前記ケイ酸塩の一例としては、マイカ、雲母、タルク、カオリン、モンモリロナイト等が挙げられる。また、Siに加えてMg、Alなどを6個の酸素またはOHが囲んだ八面体の2次元的なつながりである八面体シートも結晶核剤となる。前記八面体シートは層面に平行な劈開が完全であり、一般に板状又は薄片状の形態である。前記八面体シートは化学的には、Si以外にAl、Mg、Fe、アルカリなどを含有する含水ケイ酸塩である。いずれも市販品を利用することができる。 It is preferable to use a layered silicate as the crystal nucleating material for the purpose of improving the material strength of the second member. In the layered silicate, a tetrahedron in which Si is surrounded by four oxygens forms a two-dimensionally expanded structural unit (tetrahedron sheet) by sharing three vertices with the adjacent tetrahedron. It is a group of silicates with a layered structure. Further, a part of Si may be replaced with Al. Examples of the silicate include mica, mica, talc, kaolin, montmorillonite and the like. Further, an octahedral sheet, which is a two-dimensional connection of octahedrons in which Mg, Al, etc. are surrounded by six oxygens or OHs in addition to Si, is also a crystal nucleating agent. The octahedral sheet has a complete cleavage parallel to the layer surface and is generally in the form of a plate or flakes. The octahedral sheet is chemically a hydrous silicate containing Al, Mg, Fe, alkali and the like in addition to Si. Commercially available products can be used for both.

<接合構造体の製造方法>
前記接合構造体は、例えば前記第一部材と前記第二部材とを接合する工程を含む製造方法によって得られる。
<Manufacturing method of joint structure>
The joined structure is obtained, for example, by a manufacturing method including a step of joining the first member and the second member.

前記接合構造体の製造方法は、前記第一部材と前記第二部材とを接合する工程の前に、第一部材に突起を形成する工程を含んでいてもよい。第一部材の突起の形成方法は特に限定されず、レーザ加工または化学エッチング等によって行っても良い。 The method for manufacturing the joined structure may include a step of forming a protrusion on the first member before the step of joining the first member and the second member. The method of forming the protrusions of the first member is not particularly limited, and may be performed by laser processing, chemical etching, or the like.

突起の形成に用いるレーザは例えばファイバレーザ、YAGレーザ、YVO4レーザ、半導体レーザ、炭酸ガスレーザ、エキシマレーザ等が挙げられる。突起の高さ方向に垂直な断面の径が突起の先端から基部に向かって縮小する領域を有する突起を形成する場合はパルスレーザが適しており、それ以外の場合は連続波レーザでもよい。パルスレーザとしては、サブパルスレーザがより好ましい。 Examples of the laser used for forming the protrusions include a fiber laser, a YAG laser, a YVO4 laser, a semiconductor laser, a carbon dioxide gas laser, and an excimer laser. A pulse laser is suitable when forming a protrusion having a region in which the diameter of the cross section perpendicular to the height direction of the protrusion decreases from the tip of the protrusion toward the base, and in other cases, a continuous wave laser may be used. As the pulse laser, a sub-pulse laser is more preferable.

図2は、実施形態に係る突起を形成するためのレーザ照射の方法を模式的に表す。前記金属に対して、図2に示すレーザ照射部11が一部重畳するようにレーザ加工することで、レーザ非照射部13が独立した突起となる。図2では、レーザ照射部が重畳する領域をレーザ照射重畳部12として示している。 FIG. 2 schematically shows a method of laser irradiation for forming a protrusion according to an embodiment. By laser processing the metal so that the laser irradiation portion 11 shown in FIG. 2 partially overlaps with the metal, the laser non-irradiation portion 13 becomes an independent protrusion. In FIG. 2, the region where the laser irradiation unit overlaps is shown as the laser irradiation superimposing unit 12.

第一部材と第二部材とを接合する方法としては、レーザ接合、射出成形接合、超音波溶着、熱プレス溶着等が挙げられる。 Examples of the method for joining the first member and the second member include laser joining, injection molding joining, ultrasonic welding, hot press welding and the like.

レーザ接合は、例えば以下のように行われる。第一部材の加工部に、第二部材を押圧しながらレーザを照射して、熱により第二部材を溶融させる。レーザを照射する方向は、第二部材がレーザを透過する場合は第二部材側から、第二部材がレーザを透過しない場合は第一部材側から照射する。その後、レーザ照射を停止すると、冷却されて第二部材が突起を包み込むように固化することで、第一部材と第二部材が接合した接合構造体が得られる。 Laser bonding is performed, for example, as follows. The processed portion of the first member is irradiated with a laser while pressing the second member, and the second member is melted by heat. The direction of irradiating the laser is from the second member side when the second member transmits the laser, and from the first member side when the second member does not transmit the laser. After that, when the laser irradiation is stopped, the second member is cooled and solidified so as to wrap the protrusions, thereby obtaining a joined structure in which the first member and the second member are joined.

射出成形接合は、例えば電動射出成形機を用いて行われる。具体的には、第一部材を前記成形機に設置した金型内にインサートし、当該金型内に溶融した樹脂を充填することにより、第二部材を成形し、接合構造体を得られる。 Injection molding joining is performed using, for example, an electric injection molding machine. Specifically, by inserting the first member into a mold installed in the molding machine and filling the mold with a molten resin, the second member can be molded to obtain a bonded structure.

超音波溶着は、第一部材と第二部材とを接合部を介して重ね合わせ、超音波溶着用の機器に設置することにより行われる。超音波溶着用のホーンを介して超音波溶着させ、接合構造体を得る。 Ultrasonic welding is performed by superimposing the first member and the second member via a joint and installing the first member and the second member on a device for ultrasonic welding. Ultrasonic welding is performed through a horn for ultrasonic welding to obtain a bonded structure.

熱プレス接着は、第一部材と第二部材とを接合部を介して重ね合わせ、熱プレス用の機器、あるいは金型に設置することにより行われる。第二部材側から熱と圧力をかけて接合させ、接合構造体を得る。 Hot press bonding is performed by superimposing the first member and the second member via a joint and installing the first member and the second member on a device for hot pressing or a mold. Heat and pressure are applied from the second member side to join them to obtain a joined structure.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.

以下、実施例に基づいて本発明をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited to the following Examples.

〔垂直引きはがし試験〕
図12は垂直引きはがし試験に用いた接合構造体を模式的に表す。垂直引きはがし試験に用いた接合構造体は、第一部材1の長手方向と第二部材の長手方向とが垂直になるように接合することによって得た。接合構造体の接合時、第一部材1、第二部材2の両側から加圧しながら第二部材側2からレーザを照射した。
[Vertical peeling test]
FIG. 12 schematically shows the joint structure used in the vertical peeling test. The joint structure used in the vertical peeling test was obtained by joining so that the longitudinal direction of the first member 1 and the longitudinal direction of the second member were perpendicular to each other. At the time of joining the joined structure, the laser was irradiated from the second member side 2 while applying pressure from both sides of the first member 1 and the second member 2.

また、図13は垂直引きはがし試験の方法を模式的に表す。電気機械式万能試験機5900(インストロン製)を用いて、接合構造体を、接合面に対して垂直方向(図13に引張方向として示される矢印の方向)に引っ張った。第二部材2または接合界面が破壊された時点で試験を終了した。モーメントの発生を抑制するため、第二部材2の長手方向の両端を樹脂でチャックし、引張速度は5mm/minとした。得られた荷重(N)を、接合部の面積(25mm×2mm)で除することにより、接合強度(N/mm=MPa)を求めた。接合強度の数値は、5回の試験から得られた平均値として表した。また表には、接合強度が3MPa未満であれば×、3MPa以上であれば○、10MPa以上であれば◎と表記した。 Further, FIG. 13 schematically shows a method of a vertical peeling test. Using an electromechanical universal tester 5900 (manufactured by Instron), the joint structure was pulled in a direction perpendicular to the joint surface (in the direction of the arrow shown as the tensile direction in FIG. 13). The test was terminated when the second member 2 or the joint interface was broken. In order to suppress the generation of moments, both ends of the second member 2 in the longitudinal direction were chucked with resin, and the tensile speed was set to 5 mm / min. The joint strength (N / mm 2 = MPa) was determined by dividing the obtained load (N) by the area of the joint (25 mm × 2 mm). The numerical value of the joint strength was expressed as an average value obtained from 5 tests. Further, in the table, if the bonding strength is less than 3 MPa, it is indicated as ×, if it is 3 MPa or more, it is indicated as ◯, and if it is 10 MPa or more, it is indicated as ⊚.

〔せん断強度試験〕
図14はせん断強度試験に用いた接合構造体を模式的に表す。せん断強度試験に用いた接合構造体は、第一部材1の長手方向と第二部材の長手方向とが平行になるように接合することによって得た。接合構造体の接合時、第一部材1、第二部材2の両側から加圧しながら第二部材側2からレーザを照射した。
[Shear strength test]
FIG. 14 schematically shows the joint structure used in the shear strength test. The joined structure used in the shear strength test was obtained by joining so that the longitudinal direction of the first member 1 and the longitudinal direction of the second member were parallel to each other. At the time of joining the joined structure, the laser was irradiated from the second member side 2 while applying pressure from both sides of the first member 1 and the second member 2.

また、図15はせん断強度試験の方法を模式的に表す。図15において、第一部材および第二部材の長手方向をX軸方向とし、X軸方向に垂直な方向であって第一部材および第二部材の厚み方向にも垂直な方向をY軸方向とし、第一部材および第二部材の厚み方向をZ軸方向とする。接合部に対してX軸方向に、電気機械式万能試験機5900(インストロン製)を用いて、接合構造体を引っ張った。モーメントの発生を抑制するため、サンプル板と同じ厚みのダミー板を挟んでチャックし、引張速度5mm/minで試験を行った。第二部材の破断もしくは接合界面の破断で試験を終了した。Y軸方向のせん断強度も、同様に測定した。Y軸方向のせん断強度に対するX軸方向のせん断強度の比率を、5回の試験から得られた数値範囲で表した。 Further, FIG. 15 schematically shows a method of shear strength test. In FIG. 15, the longitudinal direction of the first member and the second member is defined as the X-axis direction, and the direction perpendicular to the X-axis direction and perpendicular to the thickness direction of the first member and the second member is defined as the Y-axis direction. , The thickness direction of the first member and the second member is the Z-axis direction. The joint structure was pulled in the X-axis direction with respect to the joint using an electromechanical universal testing machine 5900 (manufactured by Instron). In order to suppress the generation of moments, a dummy plate having the same thickness as the sample plate was sandwiched and chucked, and the test was conducted at a tensile speed of 5 mm / min. The test was completed when the second member was broken or the joint interface was broken. The shear strength in the Y-axis direction was also measured in the same manner. The ratio of the shear strength in the X-axis direction to the shear strength in the Y-axis direction was expressed in the numerical range obtained from the five tests.

〔実施例1〕
金属材料であるSUS304(50mm×25mm、厚さ2mm)に対して、ファイバーレーザマーカMX−Z2000H(オムロン製)を用いて突起を形成することにより第一部材を作製した。
[Example 1]
The first member was produced by forming protrusions on the metal material SUS304 (50 mm × 25 mm, thickness 2 mm) using the fiber laser marker MX-Z2000H (manufactured by OMRON).

図11は第一部材1のレーザ加工部4を模式的に表す。レーザ加工部4を第一部材1の長手方向の一方の端部に形成した。レーザ加工部4の面積は2mm×25mmであった。突起形成時のレーザ照射条件は以下の通りである。波長:1062nm、出力:3W、周波数:10kHz、走査速度:400mm/s、走査回数:20回、サブパルス:20本。突起の配列が図8に示す四角形状となるようにレーザを照射した。 FIG. 11 schematically shows the laser processing portion 4 of the first member 1. The laser machined portion 4 was formed at one end of the first member 1 in the longitudinal direction. The area of the laser processing section 4 was 2 mm × 25 mm. The laser irradiation conditions at the time of forming the protrusions are as follows. Wavelength: 1062 nm, output: 3 W, frequency: 10 kHz, scanning speed: 400 mm / s, number of scans: 20 times, subpulse: 20 lines. The laser was irradiated so that the arrangement of the protrusions was in the shape of a quadrangle shown in FIG.

図16は、実施例1に係る突起を示す光学顕微鏡画像を表す。当該突起は、高さ方向に垂直な断面の径が、突起の先端から基部に向かって拡大する領域に次いで、縮小する領域を有する形であった。 FIG. 16 represents an optical microscope image showing the protrusions according to the first embodiment. The protrusion had a shape in which the diameter of the cross section perpendicular to the height direction had a region where the diameter expanded from the tip of the protrusion toward the base, and then decreased.

得られた金属加工物を、金属加工物と同じサイズの、PMMA(アクリライト、三菱レイヨン製)からなる第二部材と重ね合わせ、次いで第一部材と第二部材とを接合するために、金属の加工部に圧力をかけながら半導体レーザを照射して、接合構造体を得た。接合時のレーザ照射条件と加圧条件は以下の通りである。出力:24W、照射径:2mm、走査速度30mm/s、走査回数:30回、加圧力:80N。 The obtained metal work piece is superposed on a second member made of PMMA (Acrylite, manufactured by Mitsubishi Rayon) of the same size as the metal work piece, and then a metal is used to join the first member and the second member. A bonded structure was obtained by irradiating a semiconductor laser while applying pressure to the processed portion of the above. The laser irradiation conditions and pressurization conditions at the time of joining are as follows. Output: 24 W, irradiation diameter: 2 mm, scanning speed 30 mm / s, number of scans: 30 times, pressing force: 80 N.

〔実施例2〕
第一部材の突起を形成するためのレーザ照射条件を、以下のように変更したこと以外は実施例1と同様に接合構造体を得た。出力:6W、周波数:10kHz、走査速度700mm/s、走査回数:30回、サブパルス20本。図17は、実施例2に係る突起を示す光学顕微鏡画像を表す。当該突起は、高さ方向に垂直な断面の径が、突起の先端から基部に向かって縮小する領域に次いで、拡大する領域を有する形であった。
[Example 2]
A bonded structure was obtained in the same manner as in Example 1 except that the laser irradiation conditions for forming the protrusions of the first member were changed as follows. Output: 6W, frequency: 10kHz, scanning speed 700mm / s, number of scanning: 30 times, 20 subpulses. FIG. 17 represents an optical microscope image showing the protrusions according to the second embodiment. The protrusion had a shape in which the diameter of the cross section perpendicular to the height direction had a region in which the diameter decreased from the tip of the protrusion toward the base, and then expanded.

〔実施例3〕
第一部材の突起を形成するためのレーザ照射条件を、以下のように変更したこと以外は実施例1と同様に接合構造体を得た。出力:6W、周波数:10kHz、走査速度:980mm/s、走査回数:30回、サブパルス:20本。図18は実施例3に係る突起を示す光学顕微鏡画像を表す。当該突起は、高さ方向に垂直な断面の径が、突起の先端から基部まで縮小する領域のみを有する形であった。
[Example 3]
A bonded structure was obtained in the same manner as in Example 1 except that the laser irradiation conditions for forming the protrusions of the first member were changed as follows. Output: 6W, frequency: 10kHz, scanning speed: 980mm / s, number of scanning: 30 times, subpulse: 20 lines. FIG. 18 shows an optical microscope image showing the protrusions according to the third embodiment. The protrusion had a shape in which the diameter of the cross section perpendicular to the height direction had only a region where the diameter of the cross section was reduced from the tip to the base of the protrusion.

〔実施例4〕
第一部材の突起を形成するためのレーザ照射条件を、以下のように変更したこと以外は実施例1と同様に接合構造体を得た。出力:6W、周波数:10kHz、走査速度:700mm/s、走査回数:20回、サブパルス:20本。図19は実施例4に係る突起を示す光学顕微鏡画像を表す。当該突起は、高さ方向に垂直な断面の径が、突起の先端から基部まで拡大する領域のみを有する形であった。
[Example 4]
A bonded structure was obtained in the same manner as in Example 1 except that the laser irradiation conditions for forming the protrusions of the first member were changed as follows. Output: 6W, frequency: 10kHz, scanning speed: 700mm / s, number of scanning: 20 times, subpulse: 20 lines. FIG. 19 shows an optical microscope image showing the protrusions according to the fourth embodiment. The protrusion had a shape in which the diameter of the cross section perpendicular to the height direction had only a region extending from the tip to the base of the protrusion.

〔実施例5〕
第一部材の突起を形成するためのレーザ照射条件を、以下のように変更したこと以外は実施例1と同様に接合構造体を得た。出力:1W、周波数:10kHz、走査速度:400mm/s、走査回数:20回、サブパルス:20本。図20は実施例5に係る突起を示す光学顕微鏡画像を表す。当該突起は、実施例4に比べると、高さ方向に垂直な断面の径が突起の先端から基部まで一定に近い形であった。
[Example 5]
A bonded structure was obtained in the same manner as in Example 1 except that the laser irradiation conditions for forming the protrusions of the first member were changed as follows. Output: 1W, frequency: 10kHz, scanning speed: 400mm / s, number of scanning: 20 times, subpulse: 20 lines. FIG. 20 shows an optical microscope image showing the protrusions according to the fifth embodiment. Compared to Example 4, the protrusion had a shape in which the diameter of the cross section perpendicular to the height direction was close to constant from the tip to the base of the protrusion.

〔比較例1〕
第一部材の金属表面にステンレス、チタン、炭化ホウ素からなる粉体を吹き付け、半導体レーザによるクラッディング層の形成を行った。半導体レーザの照射条件は以下の通りである。波長:970nm、出力:1000W、周波数:1kHz、Duty:70%、走査速度:30mm/s。第二部材との接合は、実施例1と同様に行い、接合構造体を得た。
[Comparative Example 1]
A powder made of stainless steel, titanium, and boron carbide was sprayed onto the metal surface of the first member to form a cladding layer by a semiconductor laser. The irradiation conditions of the semiconductor laser are as follows. Wavelength: 970 nm, output: 1000 W, frequency: 1 kHz, duty: 70%, scanning speed: 30 mm / s. Joining with the second member was carried out in the same manner as in Example 1 to obtain a joined structure.

実施例1〜5、比較例1の垂直引きはがし試験の結果を表1に示す。 Table 1 shows the results of the vertical peeling test of Examples 1 to 5 and Comparative Example 1.

Figure 2021120195
Figure 2021120195

表1より、整列した突起が第一部材と一体的に形成されている実施例1〜5は、レーザクラッディングにより作製した比較例1と比較して、より強い接合を示すことが分かった。 From Table 1, it was found that Examples 1 to 5 in which the aligned protrusions were integrally formed with the first member showed stronger bonding as compared with Comparative Example 1 produced by laser cladding.

〔実施例6〕
第二部材の樹脂をPA6としたこと以外は実施例1と同様に接合構造体を得た。
[Example 6]
A bonded structure was obtained in the same manner as in Example 1 except that the resin of the second member was PA6.

〔実施例7〕
第二部材の樹脂として、PBTにガラス繊維(GF)を分散させた樹脂を用いた。当該樹脂全体に対するガラス繊維の含有量は30重量%であった。この樹脂はレーザが透過しにくいため、接合時のレーザは裏面から照射し、金属を加熱することによって接合し、接合構造体を得た。接合時のレーザの照射条件は以下の通りである。出力:50W、照射径:2mm、走査速度:30mm/s、走査回数:30回、加圧力:80N。これらのこと以外は実施例1と同様に接合構造体を得た。
[Example 7]
As the resin of the second member, a resin in which glass fiber (GF) was dispersed in PBT was used. The content of the glass fiber with respect to the whole resin was 30% by weight. Since this resin is difficult for the laser to pass through, the laser at the time of joining was irradiated from the back surface and the metal was heated to join the resin to obtain a bonded structure. The laser irradiation conditions at the time of joining are as follows. Output: 50 W, irradiation diameter: 2 mm, scanning speed: 30 mm / s, number of scans: 30 times, pressing force: 80 N. A bonded structure was obtained in the same manner as in Example 1 except for these matters.

〔実施例8〕
第二部材の樹脂として、PA6に炭素繊維(CF)を分散させた樹脂(CFRTP)を用いたこと以外は実施例7と同様に、接合構造体を得た。CFRTP全体に対する炭素繊維の含有量は30重量%であった。
[Example 8]
A bonded structure was obtained in the same manner as in Example 7 except that a resin (CFRTP) in which carbon fibers (CF) were dispersed in PA6 was used as the resin of the second member. The carbon fiber content with respect to the total CFRTP was 30% by weight.

実施例1および実施例6〜8の垂直引きはがし試験の結果を表2に示す。結果は、接合強度の数値ではなく、破壊された部材のみを記載した。 The results of the vertical peeling test of Examples 1 and 6 to 8 are shown in Table 2. The results show only the broken members, not the joint strength numbers.

Figure 2021120195
Figure 2021120195

表2より、樹脂の種類を変更した場合でも、接合部ではなく第二部材が破壊された。 From Table 2, even when the type of resin was changed, the second member, not the joint, was destroyed.

〔実施例9〕
突起形成のためのレーザ走査軌道を適宜調整し、図9に示す配列で突起を作製したこと以外は実施例1と同様に接合構造体を得た。
[Example 9]
A bonded structure was obtained in the same manner as in Example 1 except that the laser scanning trajectory for forming the protrusions was appropriately adjusted and the protrusions were prepared in the arrangement shown in FIG.

〔実施例10〕
突起形成のためのレーザ走査軌道を適宜調整し、図10に示す配列で突起を作製したこと以外は実施例1と同様に接合構造体を得た。
[Example 10]
A bonded structure was obtained in the same manner as in Example 1 except that the laser scanning trajectory for forming the protrusions was appropriately adjusted and the protrusions were prepared in the arrangement shown in FIG.

実施例1、9〜10および比較例1の、垂直引きはがし試験とせん断強度試験の結果を表3に示す。 Table 3 shows the results of the vertical peeling test and the shear strength test of Examples 1, 9 to 10 and Comparative Example 1.

Figure 2021120195
Figure 2021120195

表3より、突起が整列した実施例1、9〜10は、突起がランダムな配列である比較例1と比較して、垂直引きはがし強度に優れ、せん断強度の異方性を抑制できていた。 From Table 3, Examples 1 and 9 to 10 in which the protrusions were aligned were superior in vertical peel strength to Comparative Example 1 in which the protrusions were arranged randomly, and the anisotropy of the shear strength could be suppressed. ..

本発明の一態様は、例えば金属と樹脂による接合、または金属と樹脂による接合封止が必要な機器全般に利用することができる。 One aspect of the present invention can be used for all devices that require, for example, metal-resin bonding or metal-resin bonding.

1 第一部材
2 第二部材
3 突起
4 レーザ加工部
11 レーザ照射部
12 レーザ照射重畳部
13 レーザ非照射部
21 径が拡大する領域
22 径が縮小する領域
1 1st member 2 2nd member 3 Protrusion 4 Laser processing part 11 Laser irradiation part 12 Laser irradiation superimposition part 13 Laser non-irradiation part 21 Area where diameter expands 22 Area where diameter decreases

Claims (11)

表面に整列した突起を有する金属加工物である第一部材と、
前記突起を介して前記第一部材と接合している、熱可塑性樹脂を含む第二部材と、を備える接合構造体。
The first member, which is a metal work piece with protrusions aligned on the surface,
A bonded structure including a second member containing a thermoplastic resin, which is bonded to the first member via the protrusion.
前記突起の高さは、15〜200μmである、請求項1に記載の接合構造体。 The bonded structure according to claim 1, wherein the height of the protrusion is 15 to 200 μm. 前記突起の幅は、10〜200μmである、請求項1または2に記載の接合構造体。 The bonded structure according to claim 1 or 2, wherein the width of the protrusion is 10 to 200 μm. 前記突起の間隔は、10〜200μmである、請求項1〜3のいずれか1項に記載の接合構造体。 The joint structure according to any one of claims 1 to 3, wherein the distance between the protrusions is 10 to 200 μm. 前記突起の先端側から見て、突起の配列は三角形状、四角形状および六角形状の少なくともいずれか1種である、請求項1〜4のいずれか1項に記載の接合構造体。 The joint structure according to any one of claims 1 to 4, wherein the arrangement of the protrusions is at least one of a triangular shape, a quadrangular shape, and a hexagonal shape when viewed from the tip end side of the protrusions. 前記突起は、突起の高さ方向に垂直な断面の径が突起の先端から基部に向かって拡大する領域および縮小する領域の少なくともいずれか一方を有する、請求項1〜5のいずれか1項に記載の接合構造体。 10. The joint structure described. 前記突起の高さ方向に垂直な断面の径は、突起の先端から基部に向かって拡大し、次いで縮小する、請求項1〜6のいずれか1項に記載の接合構造体。 The joint structure according to any one of claims 1 to 6, wherein the diameter of the cross section perpendicular to the height direction of the protrusion expands from the tip of the protrusion toward the base and then decreases. 前記突起の高さ方向に垂直な断面の径は、突起の先端から基部に向かって縮小し、次いで拡大する、請求項1〜6のいずれか1項に記載の接合構造体。 The joint structure according to any one of claims 1 to 6, wherein the diameter of the cross section perpendicular to the height direction of the protrusion decreases from the tip of the protrusion toward the base and then expands. 前記突起の高さ方向に垂直な断面の径は、突起の先端から基部まで縮小する、請求項1〜6のいずれか1項に記載の接合構造体。 The joint structure according to any one of claims 1 to 6, wherein the diameter of the cross section perpendicular to the height direction of the protrusion is reduced from the tip to the base of the protrusion. 前記突起の高さ方向に垂直な断面の径は、突起の先端から基部まで拡大する、請求項1〜6のいずれか1項に記載の接合構造体。 The joint structure according to any one of claims 1 to 6, wherein the diameter of the cross section perpendicular to the height direction of the protrusions expands from the tip to the base of the protrusions. 前記突起の高さ方向に垂直な断面の径は、突起の先端から基部まで一定である、請求項1〜5のいずれか1項に記載の接合構造体。 The joint structure according to any one of claims 1 to 5, wherein the diameter of the cross section perpendicular to the height direction of the protrusion is constant from the tip to the base of the protrusion.
JP2020013899A 2020-01-30 2020-01-30 Bonding structure Pending JP2021120195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020013899A JP2021120195A (en) 2020-01-30 2020-01-30 Bonding structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020013899A JP2021120195A (en) 2020-01-30 2020-01-30 Bonding structure

Publications (1)

Publication Number Publication Date
JP2021120195A true JP2021120195A (en) 2021-08-19

Family

ID=77270151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020013899A Pending JP2021120195A (en) 2020-01-30 2020-01-30 Bonding structure

Country Status (1)

Country Link
JP (1) JP2021120195A (en)

Similar Documents

Publication Publication Date Title
JP4771371B2 (en) Dissimilar member joining method and dissimilar member joined product
EP2447042A2 (en) Sonotrode and Anvil Energy Director Grids for Narrow/Complex Ultrasonic Welds of Improved Durability
WO2016027775A1 (en) Junction structure and method for manufacturing junction structure
WO2013084963A1 (en) Method for manufacturing joint member
TWI704994B (en) Method for manufacturing joint structure and joint structure
JP6341156B2 (en) Resin bonded body, resin bonded body manufacturing method, and vehicle structure
EP2799211A1 (en) Method for joining composite materials
EP3381660A1 (en) Method for manufacturing bonded structure and bonded structure
US20160167288A1 (en) Systems and methods to reduce air pocket formation during welding
WO2014206580A1 (en) Cross seam joining device for joining a sealing seam for a flexible packaging
JP7447512B2 (en) bonded structure
JP2016141092A (en) Production method of joint structure, and joint structure
JP2021120195A (en) Bonding structure
JP5603653B2 (en) Joining method using laser light
JP6302606B1 (en) Manufacturing method of joined body
JP2016010883A (en) Method and apparatus for welding resin member
KR20160112962A (en) Resin joined body, method of producing resin joined body, and vehicular structural body
JP2013129177A (en) Manufacturing method of joined body
JP2017100394A (en) Method for producing joined body
JP2019076912A (en) Manufacturing method for laminate-molded component, joint method for laminate-molded component, laminate-molded component, and structure
JP7053109B2 (en) Manufacturing method of dissimilar material joints and dissimilar material joints
JP7404899B2 (en) Composite molded body
JP2014213539A (en) Method and apparatus for joining fiber-reinforced resin laminate, and fiber-reinforced resin material
US20100285261A1 (en) Resistive Implant Welding of Thermoplastic Materials with Butt Joints
US20240139861A1 (en) Ultrasonic Weld Pad

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240318