JP2021118180A - Polymer electrolyte composition and all solid lithium ion secondary battery - Google Patents

Polymer electrolyte composition and all solid lithium ion secondary battery Download PDF

Info

Publication number
JP2021118180A
JP2021118180A JP2021007100A JP2021007100A JP2021118180A JP 2021118180 A JP2021118180 A JP 2021118180A JP 2021007100 A JP2021007100 A JP 2021007100A JP 2021007100 A JP2021007100 A JP 2021007100A JP 2021118180 A JP2021118180 A JP 2021118180A
Authority
JP
Japan
Prior art keywords
weight
polymer electrolyte
monomer
electrolyte composition
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021007100A
Other languages
Japanese (ja)
Other versions
JP7526108B2 (en
Inventor
英起 西村
Hideki Nishimura
英起 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Publication of JP2021118180A publication Critical patent/JP2021118180A/en
Application granted granted Critical
Publication of JP7526108B2 publication Critical patent/JP7526108B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

To provide a polymer electrolyte composition having excellent moldability and capable of obtaining a battery having good cycle characteristics.SOLUTION: There is provided a polymer electrolyte composition comprising a polymer (P) of a monomer composition containing a monomer (m1) represented by the general formula 1 and/or a monomer (m2) represented by the general formula 2 and a monomer (m3) represented by the general formula 3 and a lithium salt, wherein the total weight ratio of the monomer (m1) and the monomer (m2) in the monomer composition is 10 to 60 wt.% based on the weight of the monomer composition, the weight ratio of the monomer (m3) in the monomer composition is 40 to 90 wt.% based on the weight of the monomer composition, the weight ratio of the polymer (P) is 70 to 90 wt.% based on the weight of the polymer electrolyte composition and the weight ratio of the lithium salt is 10 to 30 wt.% based on the weight of the polymer electrolyte composition.SELECTED DRAWING: None

Description

本発明は、高分子電解質組成物及びそれを用いた全固体リチウムイオン二次電池に関する。 The present invention relates to a polymer electrolyte composition and an all-solid-state lithium ion secondary battery using the same.

近年、環境保護のため二酸化炭素排出量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用二次電池の開発が鋭意行われている。二次電池としては、高エネルギー密度、高出力密度が達成できるリチウムイオン電池に注目が集まっている。 In recent years, there has been an urgent need to reduce carbon dioxide emissions for environmental protection. In the automobile industry, expectations are high for the reduction of carbon dioxide emissions by introducing electric vehicles (EVs) and hybrid electric vehicles (HEVs), and the development of secondary batteries for driving motors, which holds the key to their practical application, is enthusiastic. It is done. As a secondary battery, attention is focused on a lithium ion battery that can achieve high energy density and high output density.

なかでも、有機溶媒が揮発する可能性がなく、充放電時の副反応である有機溶媒の分解反応が進行することよって電池内部にガスが発生して電池を膨脹させる問題のない電池として、固体電解質を用いたリチウムイオン二次電池が検討されている。
固体電解質について、カーボネート構造やピロリドン構造を有する高分子化合物に電解質を加えることで電池を起動するに十分なイオン伝導性を発現する高分子電解質組成物が報告されている(特許文献1及び2)。
Among them, as a solid battery, there is no possibility that the organic solvent will volatilize, and gas will be generated inside the battery due to the progress of the decomposition reaction of the organic solvent, which is a side reaction during charging and discharging, to expand the battery. A lithium ion secondary battery using an electrolyte is being studied.
Regarding solid electrolytes, polymer electrolyte compositions that exhibit sufficient ionic conductivity to start a battery by adding an electrolyte to a polymer compound having a carbonate structure or a pyrrolidone structure have been reported (Patent Documents 1 and 2). ..

特開平10−67849号公報Japanese Unexamined Patent Publication No. 10-67849 特開2018−85331号公報Japanese Unexamined Patent Publication No. 2018-85331

しかし、カーボネート構造やピロリドン構造を有する高分子は局所的に結晶を形成することが多く、固くて脆いため成型性に課題があった。また、繰り返しの充放電に伴う電極の膨張収縮に追随できないため、長期使用時に電池容量の著しい低下が見られるという課題もあった。これらを受けて、成型性に優れ、サイクル特性が良好な電池を得ることができる高分子電解質組成物の開発が望まれていた。 However, polymers having a carbonate structure or a pyrrolidone structure often form crystals locally, and are hard and brittle, so that there is a problem in moldability. In addition, since it cannot follow the expansion and contraction of the electrode due to repeated charging and discharging, there is also a problem that the battery capacity is significantly reduced during long-term use. In response to these, it has been desired to develop a polymer electrolyte composition capable of obtaining a battery having excellent moldability and good cycle characteristics.

本発明は、成型性に優れ、サイクル特性が良好な電池を得ることができる高分子電解質組成物であり、前記高分子電解質組成物を使用した全固体リチウムイオン二次電池である。 The present invention is a polymer electrolyte composition capable of obtaining a battery having excellent moldability and good cycle characteristics, and is an all-solid-state lithium ion secondary battery using the polymer electrolyte composition.

本発明者らは、これらの課題を解決するべく鋭意検討した結果、本発明に到達した。すなわち本発明は、下記発明である。
一般式1で表示される単量体(m1)及び/又は一般式2で表示される単量体(m2)と一般式3で表示される単量体(m3)とを含む単量体組成物の重合体(P)及びリチウム塩を含む高分子電解質組成物であって、
前記単量体組成物における前記(m1)と前記(m2)との合計重量割合が前記単量体組成物の重量を基準として10〜60重量%であり、
前記単量体組成物における前記(m3)の重量割合が前記単量体組成物の重量を基準として40〜90重量%であり、
前記(P)の重量割合が前記高分子電解質組成物の重量を基準として70〜90重量%であり、
前記リチウム塩の重量割合が前記高分子電解質組成物の重量を基準として10〜30重量%である高分子電解質組成物。
The present inventors have arrived at the present invention as a result of diligent studies to solve these problems. That is, the present invention is the following invention.
Monomer composition containing the monomer (m1) represented by the general formula 1 and / or the monomer (m2) represented by the general formula 2 and the monomer (m3) represented by the general formula 3. A polymer electrolyte composition containing a polymer (P) of a product and a lithium salt.
The total weight ratio of the (m1) and the (m2) in the monomer composition is 10 to 60% by weight based on the weight of the monomer composition.
The weight ratio of the (m3) in the monomer composition is 40 to 90% by weight based on the weight of the monomer composition.
The weight ratio of (P) is 70 to 90% by weight based on the weight of the polymer electrolyte composition.
A polymer electrolyte composition in which the weight ratio of the lithium salt is 10 to 30% by weight based on the weight of the polymer electrolyte composition.

Figure 2021118180

[一般式1中、Rは水素原子又はメチル基を表す。]
Figure 2021118180

[In general formula 1, R 1 represents a hydrogen atom or a methyl group. ]

Figure 2021118180

[一般式2中、Rは水素原子又はメチル基を表し、Xは炭素数1〜2のアルキレン基を表す。]
Figure 2021118180

[In the general formula 2, R 2 represents a hydrogen atom or a methyl group, and X 2 represents an alkylene group having 1 to 2 carbon atoms. ]

Figure 2021118180

[一般式3中、Rは水素原子又はメチル基を表し、Rは水素原子又は炭素数1〜12の飽和アルキル基を表す。]
Figure 2021118180

[In the general formula 3, R 3 represents a hydrogen atom or a methyl group, and R 4 represents a hydrogen atom or a saturated alkyl group having 1 to 12 carbon atoms. ]

本発明の高分子電解質組成物は成型性に優れ、サイクル特性が良好な電池を得ることができる。 The polymer electrolyte composition of the present invention has excellent moldability, and a battery having good cycle characteristics can be obtained.

以下、本発明を詳細に説明する。
なお、本明細書において、「(メタ)アクリル酸」とは「アクリル酸又はメタクリル酸」を、「(メタ)アクリロイル基」とは「アクリロイル基又はメタクリロイル基」を意味する。
Hereinafter, the present invention will be described in detail.
In the present specification, "(meth) acrylic acid" means "acrylic acid or methacrylic acid", and "(meth) acryloyl group" means "acryloyl group or methacrylic acid group".

本発明は、一般式1で表示される単量体(m1)及び/又は一般式2で表示される単量体(m2)と一般式3で表示される単量体(m3)とを含む単量体組成物の重合体(P)及びリチウム塩を含む高分子電解質組成物である。 The present invention includes a monomer (m1) represented by the general formula 1 and / or a monomer (m2) represented by the general formula 2 and a monomer (m3) represented by the general formula 3. It is a polymer electrolyte composition containing a polymer (P) of a monomer composition and a lithium salt.

Figure 2021118180
Figure 2021118180

一般式1中、Rは水素原子又はメチル基を表す。
一般式1で表示される単量体(m1)としては、ビニルピロリドン及びα−メチルビニルピロリドン等が挙げられる。
In the general formula 1, R 1 represents a hydrogen atom or a methyl group.
Examples of the monomer (m1) represented by the general formula 1 include vinylpyrrolidone and α-methylvinylpyrrolidone.

Figure 2021118180
Figure 2021118180

一般式2中、Rは水素原子又はメチル基を表し、Xは炭素数1〜2のアルキレン基を表す。
一般式2で表示される単量体(m2)としては、(2−オキソ−1,3−ジオキソラン−4−イル)メチルアクリレート、(2−オキソ−1,3−ジオキソラン−4−イル)メチルメタクリレート、(2−オキソ−1,3−ジオキソラン−4−イル)エチルアクリレート及び(2−オキソ−1,3−ジオキソラン−4−イル)エチルメタクリレート等が挙げられる。
In the general formula 2, R 2 represents a hydrogen atom or a methyl group, and X 1 represents an alkylene group having 1 to 2 carbon atoms.
Examples of the monomer (m2) represented by the general formula 2 include (2-oxo-1,3-dioxolan-4-yl) methyl acrylate and (2-oxo-1,3-dioxolan-4-yl) methyl. Examples thereof include methacrylate, (2-oxo-1,3-dioxolane-4-yl) ethyl acrylate and (2-oxo-1,3-dioxolan-4-yl) ethyl methacrylate.

Figure 2021118180
Figure 2021118180

一般式3中、Rは水素原子又はメチル基を表し、Rは水素原子又は炭素数1〜12の飽和アルキル基を表す。
一般式3で表示される単量体(m3)としては、(メタ)アクリル酸、2−エチルヘキシルメタクリレート、アクリル酸−2−エチルヘキシル、ドデシルメタクリレート、ブチルメタクリレート、メチルメタアクリレート及びイソボルニルメタクリレート等が挙げられる。
In the general formula 3, R 3 represents a hydrogen atom or a methyl group, and R 4 represents a hydrogen atom or a saturated alkyl group having 1 to 12 carbon atoms.
Examples of the monomer (m3) represented by the general formula 3 include (meth) acrylic acid, 2-ethylhexyl methacrylate, -2-ethylhexyl acrylate, dodecyl methacrylate, butyl methacrylate, methyl methacrylate, and isobornyl methacrylate. Can be mentioned.

前記単量体組成物における前記単量体(m1)及び/又は(m2)と(m3)との組合せとしては、イオン伝導性の観点から、前記単量体(m1)と前記単量体(m3)のうちRが炭素数4〜12の飽和アルキル基であるものとの組み合わせが好ましく、また、前記単量体(m2)と前記単量体(m3)のうちRが水素原子であるものとの組み合わせが好ましい。 The combination of the monomer (m1) and / or (m2) and (m3) in the monomer composition includes the monomer (m1) and the monomer (m1) from the viewpoint of ionic conductivity. Of m3), a combination in which R 4 is a saturated alkyl group having 4 to 12 carbon atoms is preferable, and R 4 of the monomer (m2) and the monomer (m3) is a hydrogen atom. A combination with some is preferred.

本発明の高分子電解質組成物は前記単量体(m1)及び/又は前記単量体(m2)と前記単量体(m3)とを含む単量体組成物の重合体(P)を含む。
前記単量体組成物における前記(m1)と前記(m2)との合計重量割合が前記単量体組成物の重量を基準として10〜60重量%である。前記単量体組成物における前記(m1)と前記(m2)との合計重量割合が前記単量体組成物の重量を基準として10重量%未満であると重合体(P)のイオン伝導性が悪化し、60重量%を超えると重合体(P)の成型性が悪化する。成型性の観点から、前記単量体組成物における前記(m1)と前記(m2)との合計重量割合は前記単量体組成物の重量を基準として20〜50重量%であることが好ましい。
The polymer electrolyte composition of the present invention contains a polymer (P) of a monomer composition containing the monomer (m1) and / or the monomer (m2) and the monomer (m3). ..
The total weight ratio of the (m1) and the (m2) in the monomer composition is 10 to 60% by weight based on the weight of the monomer composition. When the total weight ratio of the (m1) and the (m2) in the monomer composition is less than 10% by weight based on the weight of the monomer composition, the ionic conductivity of the polymer (P) becomes high. It deteriorates, and when it exceeds 60% by weight, the moldability of the polymer (P) deteriorates. From the viewpoint of moldability, the total weight ratio of the (m1) and the (m2) in the monomer composition is preferably 20 to 50% by weight based on the weight of the monomer composition.

前記単量体組成物における前記(m3)の重量割合が前記単量体組成物の重量を基準として40〜90重量%である。前記単量体組成物における前記(m3)の重量割合が前記単量体組成物の重量を基準として40重量%未満であると前記重合体(P)が硬くなりイオン伝導性が悪化し、90重量%を超えると後述するリチウム塩が部分析出し重合体(P)のイオン伝導性が悪化する。
イオン伝導性の観点から、前記単量体組成物における前記(m3)の重量割合は前記単量体組成物の重量を基準として50〜80重量%であることが好ましい。
The weight ratio of the (m3) in the monomer composition is 40 to 90% by weight based on the weight of the monomer composition. When the weight ratio of the (m3) in the monomer composition is less than 40% by weight based on the weight of the monomer composition, the polymer (P) becomes hard and the ionic conductivity deteriorates, and 90 If it exceeds% by weight, the lithium salt described later is partially precipitated and the ionic conductivity of the polymer (P) deteriorates.
From the viewpoint of ionic conductivity, the weight ratio of the (m3) in the monomer composition is preferably 50 to 80% by weight based on the weight of the monomer composition.

前記単量体組成物はイオン伝導性の観点から、さらにビニル基を有するスルホン酸塩(m4)を含むことが好ましい。前記(m4)としては、スチレンスルホン酸ナトリウム、スチレンスルホン酸リチウム及び2−スルホエチルメタアクリレートナトリウム等が挙げられる。
イオン伝導性の観点から、前記単量体組成物における前記(m4)の重量割合は前記単量体組成物の重量を基準として1重量%以下であることが好ましく、0.5重量%以下であることがより好ましい。
From the viewpoint of ionic conductivity, the monomer composition preferably further contains a sulfonate (m4) having a vinyl group. Examples of the (m4) include sodium styrene sulfonate, lithium styrene sulfonate, sodium 2-sulfoethyl methacrylate and the like.
From the viewpoint of ionic conductivity, the weight ratio of the (m4) in the monomer composition is preferably 1% by weight or less, preferably 0.5% by weight or less, based on the weight of the monomer composition. More preferably.

前記単量体組成物は、物性を損なわない範囲で、前記単量体(m1)、(m2)、(m3)及び(m4)以外の単量体を含んでもよい。イオン伝導性及び成型性の観点から、前記単量体組成物における前記単量体(m1)、(m2)、(m3)及び(m4)以外の単量体の重量割合は前記単量体組成物の重量を基準として5重量%以下であることが好ましい。
前記単量体(m1)、(m2)、(m3)及び(m4)以外の単量体は、重合性を有するものであれば特に制限はないが、具体的には1,6−ヘキサンジオールジメタクリレート及びトリメチロールプロパントリアクリレート等が挙げられる。
The monomer composition may contain monomers other than the monomers (m1), (m2), (m3) and (m4) as long as the physical properties are not impaired. From the viewpoint of ionic conductivity and moldability, the weight ratio of the monomers other than the monomers (m1), (m2), (m3) and (m4) in the monomer composition is the monomer composition. It is preferably 5% by weight or less based on the weight of the object.
The monomers other than the monomers (m1), (m2), (m3) and (m4) are not particularly limited as long as they are polymerizable, but specifically 1,6-hexanediol. Examples thereof include dimethacrylate and trimethylolpropane triacrylate.

本発明の高分子電解質組成物に含まれる前記重合体(P)の絶対分子量は、高分子電解質組成物の強度と柔軟性の観点から、15,000〜100,000であることが好ましい。
絶対分子量の測定には例えばゲルパーミエーションクロマトグラフィー(GPC)の多角度光散乱検出器(MALS)や静的光散乱(SLS)を使用することができる。本願においてはSLSを用いて絶対分子量を測定した。絶対分子量の測定条件は以下の通りである。
なお、本測定で用いられる溶媒は前記重合体(P)が溶解するものであれば特に限定されない。また各サンプルの屈折率濃度勾配(dn/dc)はDLS−8000DLS付属の示差屈折率測定DRM−3000を用いて測定することができる。
装置:DLS−8000DSL[大塚電子(株)製]
測定モード:SLS
測定セル:円筒セル
測定温度:25℃
検体数:4個(濃度違い)
The absolute molecular weight of the polymer (P) contained in the polymer electrolyte composition of the present invention is preferably 15,000 to 100,000 from the viewpoint of strength and flexibility of the polymer electrolyte composition.
For the measurement of the absolute molecular weight, for example, a multi-angle light scattering detector (MALS) of gel permeation chromatography (GPC) or a static light scattering (SLS) can be used. In the present application, the absolute molecular weight was measured using SLS. The measurement conditions for the absolute molecular weight are as follows.
The solvent used in this measurement is not particularly limited as long as it dissolves the polymer (P). The refractive index concentration gradient (dn / dc) of each sample can be measured using the differential refractive index measurement DRM-3000 attached to DLS-8000DLS.
Equipment: DLS-8000DSL [manufactured by Otsuka Electronics Co., Ltd.]
Measurement mode: SLS
Measurement cell: Cylindrical cell Measurement temperature: 25 ° C
Number of samples: 4 (difference in concentration)

本発明の高分子電解質組成物に含まれる前記重合体(P)の重量割合は、前記高分子電解質組成物の重量を基準として70〜90重量%である。前記高分子電解質組成物に含まれる前記重合体(P)の重量割合が、前記高分子電解質組成物の重量を基準として70重量%未満であると高分子電解質組成物の成型性が悪化し、90重量%を超えると高分子電解質組成物のイオン伝導性が悪化する。
成型性及びイオン伝導性の観点から、前記高分子電解質組成物に含まれる前記重合体(P)の重量割合は75〜85重量%であることが好ましい。
The weight ratio of the polymer (P) contained in the polymer electrolyte composition of the present invention is 70 to 90% by weight based on the weight of the polymer electrolyte composition. If the weight ratio of the polymer (P) contained in the polymer electrolyte composition is less than 70% by weight based on the weight of the polymer electrolyte composition, the moldability of the polymer electrolyte composition deteriorates. If it exceeds 90% by weight, the ionic conductivity of the polymer electrolyte composition deteriorates.
From the viewpoint of moldability and ionic conductivity, the weight ratio of the polymer (P) contained in the polymer electrolyte composition is preferably 75 to 85% by weight.

前記重合体(P)は、前記単量体組成物を公知の重合開始剤{アゾ系開始剤[2,2’−アゾビス(2−メチルプロピオニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2−メチルブチロニトリル)等]、パーオキサイド系開始剤(ベンゾイルパーオキサイド、ジ−t−ブチルパーオキサイド、ラウリルパーオキサイド等)等}を使用して公知の重合方法(塊状重合、溶液重合、乳化重合、懸濁重合等)により重合して製造することができる。
重合開始剤の使用量は、絶対分子量を好ましい範囲に調整する等の観点から、モノマーの全重量に基づいて好ましくは0.01〜5重量%、より好ましくは0.05〜2重量%、さらに好ましくは0.1〜1.5重量%であり、重合温度及び重合時間は重合開始剤の種類等に応じて調整されるが、重合温度は好ましくは−5〜150℃、(より好ましくは30〜120℃)、反応時間は好ましくは0.1〜50時間(より好ましくは2〜24時間)で行われる。
The polymer (P) is a polymerization initiator known for the monomer composition {azo-based initiator [2,2'-azobis (2-methylpropionitrile), 2,2'-azobis (2,). 4-Dimethylvaleronitrile), 2,2'-azobis (2-methylbutyronitrile), etc.], peroxide-based initiators (benzoyl peroxide, di-t-butyl peroxide, lauryl peroxide, etc.), etc.} It can be produced by polymerization by a known polymerization method (lumpy polymerization, solution polymerization, emulsion polymerization, suspension polymerization, etc.).
The amount of the polymerization initiator used is preferably 0.01 to 5% by weight, more preferably 0.05 to 2% by weight, based on the total weight of the monomers, from the viewpoint of adjusting the absolute molecular weight to a preferable range. It is preferably 0.1 to 1.5% by weight, and the polymerization temperature and the polymerization time are adjusted according to the type of the polymerization initiator and the like, but the polymerization temperature is preferably −5 to 150 ° C. (more preferably 30). ~ 120 ° C.), the reaction time is preferably 0.1 to 50 hours (more preferably 2 to 24 hours).

溶液重合の場合に使用される溶媒としては、例えばエステル(炭素数2〜8、例えば酢酸エチル及び酢酸ブチル)、アルコール(炭素数1〜8、例えばメタノール、エタノール及びオクタノール)、炭化水素(炭素数4〜8、例えばn−ブタン、シクロヘキサン及びトルエン)、アミド(例えばN,N−ジメチルホルムアミド)及びケトン(炭素数3〜9、例えばメチルエチルケトン)が挙げられ、絶対分子量を好ましい範囲に調整する等の観点から、その使用量はモノマーの合計重量に基づいて好ましくは5〜900重量%、より好ましくは10〜400重量%、さらに好ましくは30〜300重量%である。モノマー濃度としては、好ましくは10〜95重量%、より好ましくは20〜90重量%、さらに好ましくは30〜80重量%である。 Solvents used in the case of solution polymerization include, for example, esters (2 to 8 carbon atoms, such as ethyl acetate and butyl acetate), alcohols (1 to 8 carbon atoms, such as methanol, ethanol and octanol), and hydrocarbons (carbon numbers 1 to 8). Examples thereof include 4 to 8, for example, n-butane, cyclohexane and toluene), amides (for example, N, N-dimethylformamide) and ketones (for example, methyl ethyl ketone having 3 to 9 carbon atoms), and the absolute molecular weight is adjusted to a preferable range. From the viewpoint, the amount used is preferably 5 to 900% by weight, more preferably 10 to 400% by weight, still more preferably 30 to 300% by weight based on the total weight of the monomers. The monomer concentration is preferably 10 to 95% by weight, more preferably 20 to 90% by weight, still more preferably 30 to 80% by weight.

乳化重合及び懸濁重合における分散媒としては、水、アルコール(例えばエタノール)、エステル(例えばプロピオン酸エチル)、軽ナフサ等が挙げられ、乳化剤としては、高級脂肪酸(炭素数10〜24)金属塩(例えばオレイン酸ナトリウム及びステアリン酸ナトリウム)、高級アルコール(炭素数10〜24)硫酸エステル金属塩(例えばラウリル硫酸ナトリウム)、エトキシ化テトラメチルデシンジオール、メタクリル酸スルホエチルナトリウム、メタクリル酸ジメチルアミノメチル等が挙げられる。さらに安定剤としてポリビニルアルコール、ポリビニルピロリドン等を加えてもよい。 Examples of the dispersion medium in emulsification polymerization and suspension polymerization include water, alcohol (for example, ethanol), ester (for example, ethyl propionate), and light naphtha, and examples of emulsifier include higher fatty acid (10 to 24 carbon atoms) metal salt. (For example, sodium oleate and sodium stearate), higher alcohol (10 to 24 carbon atoms) sulfate ester metal salt (for example, sodium lauryl sulfate), tetramethyldecindiol ethoxylated, sodium sulfoethyl methacrylate, dimethylaminomethyl methacrylate, etc. Can be mentioned. Further, polyvinyl alcohol, polyvinylpyrrolidone and the like may be added as stabilizers.

溶液又は分散液のモノマー濃度は好ましくは5〜95重量%、より好ましくは10〜90重量%、さらに好ましくは15〜85重量%であり、重合開始剤の使用量は、モノマーの全重量に基づいて好ましくは0.01〜5重量%、より好ましくは0.05〜2重量%である。
重合に際しては、公知の連鎖移動剤、例えばメルカプト化合物(ドデシルメルカプタン、n−ブチルメルカプタン等)及び/又はハロゲン化炭化水素(四塩化炭素、四臭化炭素、塩化ベンジル等)を使用することができる。
The monomer concentration of the solution or dispersion is preferably 5 to 95% by weight, more preferably 10 to 90% by weight, even more preferably 15 to 85% by weight, and the amount of the polymerization initiator used is based on the total weight of the monomers. It is preferably 0.01 to 5% by weight, more preferably 0.05 to 2% by weight.
For polymerization, known chain transfer agents such as mercapto compounds (dodecyl mercaptan, n-butyl mercaptan, etc.) and / or halogenated hydrocarbons (carbon tetrachloride, carbon tetrabromide, benzyl chloride, etc.) can be used. ..

本発明の高分子電解質組成物はリチウム塩を含む。
前記リチウム塩としては、LiSCN、LiN(CN)、LiClO、LiBF、LiAsF、LiPF、LiCFSO、Li(CFSON、Li(CFSOC、LiSbF、Li(FSON、LiCSO、LiN(SOCFCF、LiPF(CFCF、LiPF(C、LiPF(CF、LiCl、LiF、LiBr、LiI、LiB(C、リチウムジフルオロ(オキサレート)ボレート及びリチウムビス(オキサレート)ボレート等が挙げられる。
前記リチウム塩は、1種であっても2種以上の混合物であってもよい。
The polymer electrolyte composition of the present invention contains a lithium salt.
Examples of the lithium salt include LiSCN, LiN (CN) 2 , LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, Li (CF 3 SO 2 ) 3 C. , LiSbF 6 , Li (FSO 2 ) 2 N, LiC 4 F 9 SO 3 , LiN (SO 2 CF 2 CF 3 ) 2 , LiPF 3 (CF 2 CF 3 ) 3 , LiPF 3 (C 2 F 5 ) 3 , Examples thereof include LiPF 3 (CF 3 ) 3 , LiCl, LiF, LiBr, LiI, LiB (C 2 O 4 ) 2 , lithium difluoro (oxalate) borate and lithium bis (oxalate) borate.
The lithium salt may be one kind or a mixture of two or more kinds.

前記高分子電解質組成物に含まれる前記リチウム塩の重量割合は前記高分子電解質組成物の重量を基準として10〜30重量%である。前記高分子電解質組成物に含まれる前記リチウム塩の重量割合が前記高分子電解質組成物の重量を基準として10重量%未満であると前記高分子電解質組成物がイオン伝導しなくなり、30重量%を超えると塩が部分析出し対向面の電池反応が不均一になる。
イオン伝導性の観点から、前記高分子電解質組成物に含まれる前記リチウム塩の重量割合は前記高分子電解質組成物の重量を基準として15〜25重量%であることが好ましい。
The weight ratio of the lithium salt contained in the polymer electrolyte composition is 10 to 30% by weight based on the weight of the polymer electrolyte composition. If the weight ratio of the lithium salt contained in the polymer electrolyte composition is less than 10% by weight based on the weight of the polymer electrolyte composition, the polymer electrolyte composition does not conduct ionic conduction, and 30% by weight is used. If it exceeds, salt is partially precipitated and the battery reaction on the facing surface becomes non-uniform.
From the viewpoint of ionic conductivity, the weight ratio of the lithium salt contained in the polymer electrolyte composition is preferably 15 to 25% by weight based on the weight of the polymer electrolyte composition.

本発明の高分子電解質組成物は、公知の高分子化合物に使用される可塑剤、安定剤、酸化防止剤あるいは離型剤等の添加剤を、本発明の目的に反しない範囲内でさらに含んでもよい。 The polymer electrolyte composition of the present invention further contains additives such as plasticizers, stabilizers, antioxidants and mold release agents used in known polymer compounds within a range not contrary to the object of the present invention. It may be.

本発明の高分子電解質組成物のガラス転移温度は、−60〜20℃であることが好ましく、さらに好ましくは−50〜0℃である。前記高分子電解質組成物のガラス転移温度が前記範囲であると、高分子電解質組成物の成型性と柔軟性のバランスが良好となる。高分子電解質組成物のガラス転移温度は高分子電解質組成物に含まれるリチウム塩の重量割合で調節することができる。 The glass transition temperature of the polymer electrolyte composition of the present invention is preferably -60 to 20 ° C, more preferably -50 to 0 ° C. When the glass transition temperature of the polymer electrolyte composition is in the above range, the balance between moldability and flexibility of the polymer electrolyte composition is good. The glass transition temperature of the polymer electrolyte composition can be adjusted by the weight ratio of the lithium salt contained in the polymer electrolyte composition.

高分子電解質組成物及び重合体(P)等のガラス転移温度の測定は例えば示差走査熱量測定(DSC)を使用することができる。本願においては、ASTM D3418−82に規定の方法(DSC法)で測定した。測定条件を以下に記載する。
装置:Q2000[TA−インスツルメンツ社製]
サンプルパン:アルミニウム
測定雰囲気:窒素 50mL/min
温度プログラム:
(1)50℃まで10℃/分で昇温
(2)50℃で10分間保持
(3)10℃/分で−80℃まで冷却
(4)−80℃で10分間保持
(5)10℃/分で50℃まで昇温
上記測定によって得られた示差走査熱量曲線から、縦軸を吸発熱量、横軸を温度とするグラフを描き、そのグラフの低温側のベースラインを高温側に延長した直線と、ガラス転移の階段状変化部分の曲線の勾配が最大になるような点で引いた接線との交点の温度をガラス転移温度とした。
For the measurement of the glass transition temperature of the polymer electrolyte composition and the polymer (P), for example, differential scanning calorimetry (DSC) can be used. In the present application, the measurement was carried out by the method (DSC method) specified in ASTM D3418-82. The measurement conditions are described below.
Equipment: Q2000 [manufactured by TA-Instruments]
Sample pan: Aluminum Measurement atmosphere: Nitrogen 50 mL / min
Temperature program:
(1) Raise to 50 ° C at 10 ° C / min (2) Hold at 50 ° C for 10 minutes (3) Cool to -80 ° C at 10 ° C / min (4) Hold at -80 ° C for 10 minutes (5) 10 ° C Heat up to 50 ° C at / min From the differential scanning calorific value curve obtained by the above measurement, draw a graph with the vertical axis representing the amount of heat absorbed and the horizontal axis representing the temperature, and extend the baseline on the low temperature side of the graph to the high temperature side. The temperature at the intersection of the straight line and the tangent line drawn at the point where the slope of the curve of the stepwise change portion of the glass transition is maximized was defined as the glass transition temperature.

本発明の高分子電解質組成物の製造方法は、特に制限されないが、例えば前記重合体(P)と前記リチウム塩と、前記重合体(P)と前記リチウム塩の両方を溶解可能な有機溶媒を所定の割合で混合した後、必要であれば脱溶剤して得ることができる。
前記混合は従来公知の方法、例えばホモミキサー、ホモディスパー、ウエーブローター、ホモジナイザー、ディスパーサー、ペイントコンディショナー、ボールミル、マグネチックスターラー、メカニカルスターラーなどの混合機を用いて行うことが好ましい。
The method for producing the polymer electrolyte composition of the present invention is not particularly limited, and for example, an organic solvent capable of dissolving both the polymer (P) and the lithium salt and the polymer (P) and the lithium salt can be used. After mixing in a predetermined ratio, it can be obtained by removing the solvent if necessary.
The mixing is preferably carried out by a conventionally known method, for example, a mixer such as a homomixer, a homodisper, a wave blower, a homogenizer, a disperser, a paint conditioner, a ball mill, a magnetic stirrer, or a mechanical stirrer.

前記重合体(P)と前記リチウム塩の両方を溶解可能な有機溶媒としては特に限定されないが、例えば、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン等のN−アルキルピロリドン類、ジメチルスルホキシド、1,3−ジメチル−2−イミダゾリジノン等の非プロトン性極性溶媒、γ−ブチロラクトン、酢酸ブチルなどのエステル系溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のアルキレングリコールモノアルキルエーテル、あるいはイソプロピルアルコール等のアルコール系溶媒、水及びこれらの混合物が好適に用いられる。中でも非プロトン性極性溶媒が最も溶解性が高く好ましい。 The organic solvent capable of dissolving both the polymer (P) and the lithium salt is not particularly limited, but for example, N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone and the like. Aprotonic polar solvents such as N-alkylpyrrolidones, dimethylsulfoxide, 1,3-dimethyl-2-imidazolidinone, ester solvents such as γ-butyrolactone and butyl acetate, carbonate solvents such as ethylene carbonate and propylene carbonate. , Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, alkylene glycol monoalkyl ether such as propylene glycol monoethyl ether, alcohol solvent such as isopropyl alcohol, water and a mixture thereof are preferably used. Among them, the aprotic polar solvent has the highest solubility and is preferable.

本発明の高分子電解質組成物は、特に、高分子電解質組成物成型体として好適に用いられる。高分子電解質組成物成型体は、膜状の他、板状、繊維状、中空糸状、粒子状、塊状、微多孔状、発泡体状など、使用用途によって様々な形態で有り得る。 The polymer electrolyte composition of the present invention is particularly preferably used as a polymer electrolyte composition molded body. The polymer electrolyte composition molded body may be in various forms depending on the intended use, such as a film shape, a plate shape, a fibrous shape, a hollow thread shape, a particle shape, a lump shape, a microporous shape, and a foam shape.

本発明の全固体リチウムイオン二次電池は、正極と負極との間に介在された前記高分子電解質組成物を有する。
本発明の全固体リチウムイオン二次電池は、正極と高分子電解質組成物と負極とを電池外装容器(ラミネート容器等)内に積層し、集電体に接続した電流取り出し用端子を容器の外側に出した状態で電池外装容器を封止する方法等で得ることができる。
The all-solid-state lithium-ion secondary battery of the present invention has the polymer electrolyte composition interposed between the positive electrode and the negative electrode.
In the all-solid-state lithium-ion secondary battery of the present invention, a positive electrode, a polymer electrolyte composition, and a negative electrode are laminated in a battery outer container (laminated container, etc.), and a current extraction terminal connected to a current collector is provided on the outside of the container. It can be obtained by a method of sealing the battery outer container in the state of being put out in the above.

本発明の全固体リチウムイオン二次電池において、高分子電解質組成物を膜状に成形して用いても良い。
なお、全固体リチウムイオン二次電池において正極と負極との間に配置される高分子電解質組成物の膜をセパレータという場合もある。
In the all-solid-state lithium ion secondary battery of the present invention, the polymer electrolyte composition may be formed into a film and used.
In the all-solid-state lithium ion secondary battery, the film of the polymer electrolyte composition arranged between the positive electrode and the negative electrode may be referred to as a separator.

次に本発明を実施例によって具体的に説明するが、本発明の主旨を逸脱しない限り本発明は実施例に限定されるものではない。なお、特記しない限り部は重量部、%は重量%を意味する。 Next, the present invention will be specifically described with reference to Examples, but the present invention is not limited to the Examples as long as the gist of the present invention is not deviated. Unless otherwise specified, parts mean parts by weight and% means% by weight.

<製造例1:重合体(P−1)の合成>
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口コルベンに重合溶媒としてトルエン300部を仕込み75℃に昇温した。次いで、N−ビニルピロリドン(以下VPと略記)30部、2−エチルヘキシルメタアクリレート(以下EHMAと略記)65部、アクリル酸4.5部及び1,6−ヘキサンジオールジメタクリレート(以下HDMAと略記)0.5部を配合したモノマー配合液と、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.03部をトルエン5部に溶解した開始剤溶液とを4つ口コルベン内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、75℃に昇温し反応を1時間継続した。次いで2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.01部をトルエン1部に溶解した開始剤溶液を滴下ロートで投入しさらに反応を3時間継続して重合体(P−1)のトルエン溶液を得た。得られた重合体(P−1)のトルエン溶液をメタノール/イオン交換水(1/1体積比)中に滴下して再沈殿を行い、白色塊状の重合体(P−1)を得た。得られた重合体(P−1)のメタノール溶液での光散乱法を用いて測定した絶対分子量は69000、ガラス転移温度は−25℃であった。
<Production Example 1: Synthesis of polymer (P-1)>
300 parts of toluene was charged as a polymerization solvent into a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel and a nitrogen gas introduction tube, and the temperature was raised to 75 ° C. Next, 30 parts of N-vinylpyrrolidone (hereinafter abbreviated as VP), 65 parts of 2-ethylhexyl methacrylate (hereinafter abbreviated as EHMA), 4.5 parts of acrylic acid and 1,6-hexanediol dimethacrylate (hereinafter abbreviated as HDMA). A monomer compound containing 0.5 part and an initiator solution in which 0.03 part of 2,2'-azobis (2,4-dimethylvaleronitrile) was dissolved in 5 parts of toluene were added to nitrogen in four mouths of corben. Radical polymerization was carried out by continuously dropping the solution with a dropping funnel over 2 hours while stirring. After completion of the dropping, the temperature was raised to 75 ° C. and the reaction was continued for 1 hour. Next, an initiator solution prepared by dissolving 0.01 part of 2,2'-azobis (2,4-dimethylvaleronitrile) in 1 part of toluene was added with a dropping funnel, and the reaction was continued for 3 hours to continue the polymer (P-1). ) Was obtained. A toluene solution of the obtained polymer (P-1) was added dropwise to methanol / ion-exchanged water (1/1 volume ratio) and reprecipitation was carried out to obtain a white lumpy polymer (P-1). The absolute molecular weight of the obtained polymer (P-1) measured by a light scattering method in a methanol solution was 69000, and the glass transition temperature was −25 ° C.

<製造例2、3及び21〜27:重合体(P−2)(P−3)及び重合体(P−21)〜(P−27)の合成>
製造例1において、モノマー配合液の配合を表1の通り変更した他は同様にして重合体(P−2)、(P−3)及び重合体(P−21)〜(P−27)を得た。それぞれの絶対分子量及びガラス転移温度は表1に記載した。
<Production Examples 2, 3 and 21-27: Synthesis of Polymers (P-2) (P-3) and Polymers (P-21)-(P-27)>
In Production Example 1, the polymers (P-2), (P-3) and the polymers (P-21) to (P-27) were similarly prepared except that the composition of the monomer compounding solution was changed as shown in Table 1. Obtained. The absolute molecular weight and glass transition temperature of each are shown in Table 1.

<製造例4〜20:重合体(P−4)〜(P−20)の合成>
製造例1において、重合溶媒をN,N−ジメチルホルムアミド(以下DMFと略記)300部に、モノマー配合液の配合を表1の通り変更した他は同様にして重合体(P−4)〜(P−20)のDMF溶液を得た。得られたDMF溶液をアセトン中に滴下して再沈殿を行い、重合体(P−4)〜(P−20)を得た。それぞれの絶対分子量及びガラス転移温度は表1に記載した。
<Production Examples 4 to 20: Synthesis of Polymers (P-4) to (P-20)>
In Production Example 1, the polymers (P-4) to (P-4) to (P-4) to ( A DMF solution of P-20) was obtained. The obtained DMF solution was added dropwise to acetone and reprecipitated to obtain polymers (P-4) to (P-20). The absolute molecular weight and glass transition temperature of each are shown in Table 1.

Figure 2021118180
Figure 2021118180

表1中の単量体を以下に示す。
VP:N−ビニルピロリドン
PCMA:(2−オキソ−1,3−ジオキソラン−4−イル)メチルメタクリレート
EHMA:2−エチルヘキシルメタクリレート
EHA:2−エチルヘキシルアクリレート
DMA:ドデシルメタクリレート
BMA:ブチルメタアクリレート
MMA:メチルメタアクリレート
AA:アクリル酸
MAA:メタクリル酸
NaSS:スチレンスルホン酸ナトリウム
LiSS:スチレンスルホン酸リチウム
NaSEMA:2−スルホエチルメタアクリレートナトリウム
HDMA:1,6−ヘキサンジオールジメタクリレート
TMPTA:トリメチロールプロパントリアクリレート
The monomers in Table 1 are shown below.
VP: N-vinylpyrrolidone PCMA: (2-oxo-1,3-dioxolan-4-yl) methyl methacrylate EHMA: 2-ethylhexyl methacrylate EHA: 2-ethylhexyl acrylate DMA: dodecyl methacrylate BMA: butyl methacrylate MMA: methyl methacrylate Acrylate AA: Acrylic acid MAA: Namethacrylate NaSS: Sodium styrene sulfonate LiSS: Lithium styrene sulfonate NaSEMA: 2-Sulfoethyl methacrylate Sodium HDMA: 1,6-hexanediol dimethacrylate TMPTA: Trimethylol propanetriacrylate

<実施例1>
重合体(P−1)20部とリチウムビス(スルホニル)イミド(以下LiFSIと略記)3.7部をアセトン76.3部に溶解させ、高分子電解質組成物(D−1)のアセトン溶液を作製した。アセトン溶液をキャストし、その後脱アセトンして高分子電解質組成物のフィルムを得た。フィルムは薄黄色透明のフィルムとなり、ガラス転移温度は−9℃、イオン伝導度は4.6×10−3mS/cmを示した。イオン伝導度は後述の方法で測定した。
<Example 1>
20 parts of the polymer (P-1) and 3.7 parts of lithium bis (sulfonyl) imide (hereinafter abbreviated as LiFSI) are dissolved in 76.3 parts of acetone to prepare an acetone solution of the polymer electrolyte composition (D-1). Made. The acetone solution was cast and then deacetoneed to give a film of polymer electrolyte composition. The film became a pale yellow transparent film, and the glass transition temperature was -9 ° C., and the ionic conductivity was 4.6 × 10 -3 mS / cm. The ionic conductivity was measured by the method described later.

<実施例2、15〜20及び比較例1、8>
実施例1において、重合体とリチウム塩を表2の通り変更した他は同様にして高分子電解質組成物(D−2)、(D−22)〜(D−26)、(D−28)、(D−3)、(D−27)のアセトン溶液を作製した。アセトン溶液をキャストしたフィルムのガラス転移温度及びイオン伝導度は表2に記載した。
<Examples 2, 15 to 20 and Comparative Examples 1, 8>
In Example 1, the polymer electrolyte compositions (D-2), (D-22) to (D-26), (D-28) were similarly modified except that the polymer and the lithium salt were changed as shown in Table 2. , (D-3) and (D-27) were prepared. The glass transition temperature and ionic conductivity of the film cast with the acetone solution are shown in Table 2.

<実施例3〜14及び比較例2〜7>
実施例1において、重合体とリチウム塩を表2の通り変更し、溶媒をメタノールに変更した他は同様にして高分子電解質組成物(D−4)〜(D−21)のメタノール溶液を作製した。メタノール溶液をキャストし、その後脱メタノールして高分子電解質組成物のフィルムを得た。フィルムのガラス転移温度及びイオン伝導度は表2に記載した。
<Examples 3 to 14 and Comparative Examples 2 to 7>
In Example 1, the polymer and the lithium salt were changed as shown in Table 2, and the solvent was changed to methanol. In the same manner, the methanol solutions of the polymer electrolyte compositions (D-4) to (D-21) were prepared. did. The methanol solution was cast and then demethanolized to give a film of polymer electrolyte composition. The glass transition temperature and ionic conductivity of the film are shown in Table 2.

<成型性の評価>
実施例1〜19、比較例1〜8で得たフィルムを目視して、全体として均一かどうか評価した。
<Evaluation of moldability>
The films obtained in Examples 1 to 19 and Comparative Examples 1 to 8 were visually inspected and evaluated as to whether they were uniform as a whole.

<イオン伝導度の測定>
得られたフィルムのイオン伝導度を以下の方法で測定した。
得られたフィルムの両側をスパッタ装置「JFC−1600(JEOL製)」で20mV,60秒間プラチナでスパッタしイオンブロッキング電極を得た。次に、交流インピーダンス装置「ソーラトロン1260」に成型した電極で作成したセルを繋ぎ、10μHz〜10MHzの範囲でインピーダンス測定を行った。次にボード線図を作成し、1Hz以降に見られるプラトーな領域の|Z|からイオン伝導度を算出した。
<Measurement of ionic conductivity>
The ionic conductivity of the obtained film was measured by the following method.
Both sides of the obtained film were sputtered with platinum at 20 mV for 60 seconds using a sputtering device "JFC-1600 (manufactured by JEOL)" to obtain ion blocking electrodes. Next, a cell made of molded electrodes was connected to the AC impedance device "Solartron 1260", and impedance measurement was performed in the range of 10 μHz to 10 MHz. Next, a Bode diagram was created, and the ionic conductivity was calculated from | Z | in the plateau region seen after 1 Hz.

Figure 2021118180
Figure 2021118180

<実施例21>
高分子電解質組成物(D−1)のアセトン溶液100部(固形分濃度20%)と、活物質粒子としてリチウム−ニッケル−コバルト−アルミニウム複合酸化物(NCA)60部及び導電助剤としてアセチレンブラック[電気化学工業(株)製 デンカブラック]20部を自転・公転式ミキサー あわとり練太郎[(株)シンキー製]の専用容器に投入し、同ミキサーを用いて撹拌速度2000rpmで混合を5分間行いスラリーを得た。得られたスラリーをアルミニウム集電箔上にスラリー厚みが100μmになるようにフィルムアプリケーターで塗工し、60℃の乾燥器で10分間乾燥をおこない、プレス器[SA−302:テスター産業(株)製]で2MPaでプレスをおこない、厚み76μmの電極を得た。
得られた電極の上にさらに実施例1で用いた高分子電解質組成物(D−1)のアセトン溶液を塗布し60℃の乾燥器で10分間乾燥をおこない、厚み10μmの電解質層を形成した。対極にはリチウムおよび銅集電箔を載せて全固体リチウムイオン二次電池(C−1)を作成した。
<Example 21>
100 parts of acetone solution (solid content concentration 20%) of polymer electrolyte composition (D-1), 60 parts of lithium-nickel-cobalt-aluminum composite oxide (NCA) as active material particles, and acetylene black as conductive aid. 20 parts of [Denka Black manufactured by Denka Kagaku Kogyo Co., Ltd.] are put into a special container of a rotating / revolving mixer Awatori Rentaro [manufactured by Shinky Co., Ltd.], and mixing is performed at a stirring speed of 2000 rpm for 5 minutes using the same mixer. A slurry was obtained. The obtained slurry is coated on an aluminum current collector foil with a film applicator so that the slurry thickness becomes 100 μm, dried in a dryer at 60 ° C. for 10 minutes, and pressed with a press [SA-302: Tester Sangyo Co., Ltd.] ], Pressing was performed at 2 MPa to obtain an electrode having a thickness of 76 μm.
An acetone solution of the polymer electrolyte composition (D-1) used in Example 1 was further applied onto the obtained electrode and dried in a dryer at 60 ° C. for 10 minutes to form an electrolyte layer having a thickness of 10 μm. .. An all-solid-state lithium-ion secondary battery (C-1) was prepared by placing lithium and a copper current collector foil on the counter electrode.

<実施例22〜40及び比較例9〜16>
実施例21において、高分子電解質組成物の溶液を表3の通り変更した他は同様にして全固体リチウムイオン二次電池(C−2)〜(C−28)を作成した。
<Examples 22 to 40 and Comparative Examples 9 to 16>
In Example 21, all-solid-state lithium-ion secondary batteries (C-2) to (C-28) were prepared in the same manner except that the solution of the polymer electrolyte composition was changed as shown in Table 3.

<充放電試験:サイクル特性の評価>
45℃下、充放電測定装置「HJ−SD8」[北斗電工(株)製]を用いて以下の方法により全固体リチウムイオン二次電池(C−1)〜(C−20)について充放電試験を行った。
定電流定電圧方式(0.01C)で4.2Vまで充電した後、10分間の休止後、定電流方式(0.01C)で2.6Vまで放電した。
このサイクルを20回繰り返し、1回目と20回目での各サイクルで取りだせた放電容量の比の百分率(100×20回目の放電容量/1回目の放電容量)をサイクル特性とした。結果を表3に示す。
<Charge / discharge test: Evaluation of cycle characteristics>
Charge / discharge test for all-solid-state lithium-ion secondary batteries (C-1) to (C-20) at 45 ° C. using the charge / discharge measuring device "HJ-SD8" [manufactured by Hokuto Denko Co., Ltd.] by the following method. Was done.
The battery was charged to 4.2 V by the constant current constant voltage method (0.01C), paused for 10 minutes, and then discharged to 2.6 V by the constant current method (0.01C).
This cycle was repeated 20 times, and the percentage of the ratio of the discharge capacities taken out in each of the 1st and 20th cycles (100 × 20th discharge capacity / 1st discharge capacity) was taken as the cycle characteristic. The results are shown in Table 3.

Figure 2021118180
Figure 2021118180

本発明の高分子電解質組成物及びそれを用いた全固体リチウムイオン二次電池は、携帯電話、パーソナルコンピューター、ハイブリッド自動車及び電気自動車用として有用である。
The polymer electrolyte composition of the present invention and the all-solid-state lithium ion secondary battery using the same are useful for mobile phones, personal computers, hybrid vehicles and electric vehicles.

Claims (3)

一般式1で表示される単量体(m1)及び/又は一般式2で表示される単量体(m2)と一般式3で表示される単量体(m3)とを含む単量体組成物の重合体(P)及びリチウム塩を含む高分子電解質組成物であって、
前記単量体組成物における前記(m1)と前記(m2)との合計重量割合が前記単量体組成物の重量を基準として10〜60重量%であり、
前記単量体組成物における前記(m3)の重量割合が前記単量体組成物の重量を基準として40〜90重量%であり、
前記(P)の重量割合が前記高分子電解質組成物の重量を基準として70〜90重量%であり、
前記リチウム塩の重量割合が前記高分子電解質組成物の重量を基準として10〜30重量%である高分子電解質組成物。
Figure 2021118180

[一般式1中、Rは水素原子又はメチル基を表す。]
Figure 2021118180

[一般式2中、Rは水素原子又はメチル基を表し、Xは炭素数1〜2のアルキレン基を表す。]
Figure 2021118180

[一般式3中、Rは水素原子又はメチル基を表し、Rは水素原子又は炭素数1〜12の飽和アルキル基を表す。]
Monomer composition containing the monomer (m1) represented by the general formula 1 and / or the monomer (m2) represented by the general formula 2 and the monomer (m3) represented by the general formula 3. A polymer electrolyte composition containing a polymer (P) of a product and a lithium salt.
The total weight ratio of the (m1) and the (m2) in the monomer composition is 10 to 60% by weight based on the weight of the monomer composition.
The weight ratio of the (m3) in the monomer composition is 40 to 90% by weight based on the weight of the monomer composition.
The weight ratio of (P) is 70 to 90% by weight based on the weight of the polymer electrolyte composition.
A polymer electrolyte composition in which the weight ratio of the lithium salt is 10 to 30% by weight based on the weight of the polymer electrolyte composition.
Figure 2021118180

[In general formula 1, R 1 represents a hydrogen atom or a methyl group. ]
Figure 2021118180

[In the general formula 2, R 2 represents a hydrogen atom or a methyl group, and X 2 represents an alkylene group having 1 to 2 carbon atoms. ]
Figure 2021118180

[In the general formula 3, R 3 represents a hydrogen atom or a methyl group, and R 4 represents a hydrogen atom or a saturated alkyl group having 1 to 12 carbon atoms. ]
さらに前記単量体組成物が、ビニル基を有するスルホン酸塩(m4)を含む請求項1に記載の高分子電解質組成物。 The polymer electrolyte composition according to claim 1, wherein the monomer composition further contains a sulfonate (m4) having a vinyl group. 正極と負極との間に介在された請求項1又は2に記載の高分子電解質組成物を有する全固体リチウムイオン二次電池。

An all-solid-state lithium-ion secondary battery having the polymer electrolyte composition according to claim 1 or 2, which is interposed between the positive electrode and the negative electrode.

JP2021007100A 2020-01-22 2021-01-20 Polymer electrolyte composition and all-solid-state lithium-ion secondary battery Active JP7526108B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020007997 2020-01-22
JP2020007997 2020-01-22

Publications (2)

Publication Number Publication Date
JP2021118180A true JP2021118180A (en) 2021-08-10
JP7526108B2 JP7526108B2 (en) 2024-07-31

Family

ID=77175183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021007100A Active JP7526108B2 (en) 2020-01-22 2021-01-20 Polymer electrolyte composition and all-solid-state lithium-ion secondary battery

Country Status (1)

Country Link
JP (1) JP7526108B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10511004B2 (en) 2014-02-06 2019-12-17 Nissan Motor Co., Ltd. Non-aqueous electrolyte secondary battery
JP6059743B2 (en) 2014-02-17 2017-01-11 富士フイルム株式会社 Solid electrolyte composition, battery electrode sheet and all-solid secondary battery using the same, and method for producing the same

Also Published As

Publication number Publication date
JP7526108B2 (en) 2024-07-31

Similar Documents

Publication Publication Date Title
JP4822726B2 (en) Polymer for lithium ion secondary battery and lithium ion secondary battery using the same
TWI422089B (en) Gel-type polymer electrolyte precursor and rechargeable cells employing the same
RU2388088C1 (en) New polymer electrolyte and electrochemical device
US20010033974A1 (en) Polymer electrolyte, a battery cell comprising the electrolyte and method of producing the electrolyte
CN111533851A (en) Preparation method of polymer electrolyte and application of polymer electrolyte in all-solid-state battery
TW202128926A (en) A binder for battery, a negative electrode of lithium ion battery, and a lithium ion battery
CA2227268A1 (en) Rechargeable battery polymeric electrolyte
JP2002198095A (en) Gelled polymer electrolyte and its use
JPH10106345A (en) Solid polymer electrolyte
MXPA97005589A (en) Polim solid electrolyte
US11522220B2 (en) Electrolyte composition
CN107641170B (en) Polymer emulsion, preparation method, prepared water-based adhesive, method and application
JPH10283839A (en) Polymer solid electrolyte, production thereof, and lithium secondary battery using thereof
CN111933937A (en) Energy storage device
US20040029016A1 (en) Polymer electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same
JP2011090952A (en) Ionic conductive polymer electrolyte and secondary battery using the same
JP2023523124A (en) In situ polymerized hybrid polymer electrolytes for high voltage lithium batteries
JP7526108B2 (en) Polymer electrolyte composition and all-solid-state lithium-ion secondary battery
JP4240894B2 (en) Lithium ion conductive gel electrolyte and polymer lithium ion secondary battery
JP2872223B2 (en) Vinyl acetate copolymer, gel polymer electrolyte composition containing the same, and lithium polymer secondary battery
JP2001189166A (en) Polymer-electrolyte
JP4239632B2 (en) Lithium ion conductive gel electrolyte
JP4145617B2 (en) Lithium ion conductive gel electrolyte
JP2003213066A (en) Lithium ion-conductive gel-like electrolyte
WO2019178973A1 (en) Polymer electrolyte for lithium ion battery and polymer battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240719

R150 Certificate of patent or registration of utility model

Ref document number: 7526108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150