JP2021116483A - Antibacterial nonwoven fabric as well as sanitary materials, medical articles, clothing articles and food packaging material which are produced by using antibacterial nonwoven fabric - Google Patents

Antibacterial nonwoven fabric as well as sanitary materials, medical articles, clothing articles and food packaging material which are produced by using antibacterial nonwoven fabric Download PDF

Info

Publication number
JP2021116483A
JP2021116483A JP2020008920A JP2020008920A JP2021116483A JP 2021116483 A JP2021116483 A JP 2021116483A JP 2020008920 A JP2020008920 A JP 2020008920A JP 2020008920 A JP2020008920 A JP 2020008920A JP 2021116483 A JP2021116483 A JP 2021116483A
Authority
JP
Japan
Prior art keywords
antibacterial
woven fabric
thermoplastic resin
nonwoven fabric
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020008920A
Other languages
Japanese (ja)
Inventor
晋吾 林
Shingo Hayashi
晋吾 林
智雄 稲葉
Tomoo Inaba
智雄 稲葉
亮一 羽根
Ryoichi Hane
亮一 羽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2020008920A priority Critical patent/JP2021116483A/en
Publication of JP2021116483A publication Critical patent/JP2021116483A/en
Pending legal-status Critical Current

Links

Abstract

To provide an antibacterial nonwoven fabric having high antibacterial performance by adding metal oxide particles having a predetermined particle diameter to thermoplastic resin fibers constituting the nonwoven fabric and uniformly and finely dispersing them, and to provide an antibacterial article using the antibacterial nonwoven fabric.SOLUTION: The antibacterial nonwoven fabric of the present invention is an antibacterial nonwoven fabric composed of thermoplastic resin fibers, and the nonwoven fabric comprises: 0.1 to 3.0 mass% of a surfactant; and 0.01 to 1 mass% of one or more kind of metal oxide particles having an average particle diameter of 500 nm or less, which are composed of oxides of metal elements selected from copper, cobalt, aluminum, nickel, zinc, palladium, molybdenum, and tungsten.SELECTED DRAWING: None

Description

本発明は、不織布に関するものである。さらに詳しくは、本発明は、抗菌性能に優れた抗菌性不織布と、これを用いてなる抗菌性物品に関するものである。 The present invention relates to a non-woven fabric. More specifically, the present invention relates to an antibacterial nonwoven fabric having excellent antibacterial performance and an antibacterial article using the same.

近年の環境衛生に関する関心の高まりや、インフルエンザの流行、更には新型感染病の発症などから様々な抗菌性材料や、それを用いた抗菌性物品の開発が盛んに行われている。中でも低コストで加工が容易であることから、抗菌性不織布を用いた物品が種々提案されている。 Due to the growing interest in environmental hygiene in recent years, the outbreak of influenza, and the onset of new infectious diseases, various antibacterial materials and antibacterial articles using them are being actively developed. Among them, various articles using antibacterial non-woven fabric have been proposed because they are low in cost and easy to process.

特に特定の金属イオンが抗菌作用を有することは従来から知られており、これらを用いた無機系抗菌剤は、フェノールやハロゲンなどの官能基を有する有機系抗菌剤に比べて、揮発や分解などを起こしにくいため、安全性が高いだけでなく、抗菌作用の持続性、耐熱性に優れるといった特性を有する。 In particular, it has been conventionally known that specific metal ions have an antibacterial effect, and inorganic antibacterial agents using these have volatilization and decomposition, etc., as compared with organic antibacterial agents having functional groups such as phenol and halogen. Not only is it highly safe, but it also has the characteristics of being excellent in sustainability of antibacterial action and heat resistance.

このような無機系抗菌剤の利点から、例えば、無機系抗菌剤を付与した不織布として、無機系抗菌剤と界面活性剤を混合した薬液を塗布した不織布(特許文献1参照)や、親水性を付与するノニオン性の界面活性剤と酸化亜鉛系の無機系抗菌剤をポリオレフィン系樹脂に混合し、製造された不織布(特許文献2参照)、無機系抗菌剤微粒子が一定以上繊維表面に露出している箇所を、特定数有する不織布(特許文献3参照)、抗菌剤を含んだ特定の無機粒子を含む極細繊維不織布Aとより細径で無機粒子を含まない極細繊維不織布Bとを積層させた不織布(特許文献4参照)が提案されている。 From the advantages of such an inorganic antibacterial agent, for example, as a non-woven fabric to which an inorganic antibacterial agent is applied, a non-woven fabric coated with a chemical solution obtained by mixing an inorganic antibacterial agent and a surfactant (see Patent Document 1) and hydrophilicity are used. A non-woven fabric produced by mixing a nonionic surfactant and a zinc oxide-based inorganic antibacterial agent with a polyolefin resin (see Patent Document 2) and fine particles of the inorganic antibacterial agent are exposed on the fiber surface for a certain amount or more. A non-woven fabric in which a specific number of non-woven fabrics (see Patent Document 3), a non-woven fabric A containing specific inorganic particles containing an antibacterial agent, and a non-woven fabric B having a smaller diameter and containing no inorganic particles are laminated. (See Patent Document 4) has been proposed.

特開2014−50790号公報Japanese Unexamined Patent Publication No. 2014-50790 特開2006−249615号公報Japanese Unexamined Patent Publication No. 2006-249615 特開2008−88609号公報Japanese Unexamined Patent Publication No. 2008-88609 特開2008−75227号公報Japanese Unexamined Patent Publication No. 2008-75227

上記の特許文献1〜4に記載の提案のように、不織布に無機系抗菌剤を添加、あるいは塗布することである程度の抗菌性能を付与することはできるものの、不織布に単に無機系抗菌剤を添加、塗布しただけでは、更に高い抗菌性能を有する抗菌性物品のニーズが高まる現状において、その効果は充分と言えるものではなかった。 Although it is possible to impart a certain degree of antibacterial performance by adding or applying an inorganic antibacterial agent to the non-woven fabric as in the proposals described in Patent Documents 1 to 4, the inorganic antibacterial agent is simply added to the non-woven fabric. In the current situation where the need for antibacterial articles having even higher antibacterial performance is increasing just by applying the coating, the effect cannot be said to be sufficient.

そこで本発明の課題は、上記のような問題点に着目し、これまでにない高い抗菌性能を有する抗菌性不織布を提供することにある。 Therefore, an object of the present invention is to pay attention to the above-mentioned problems and to provide an antibacterial nonwoven fabric having unprecedented high antibacterial performance.

本発明者らは、上記の目的を達成するべく鋭意検討を重ねた結果、特定の金属種で、特定の平均粒子径である金属酸化物微粒子を用いた場合、不織布の抗菌性能をさらに向上できるという知見を得た。 As a result of diligent studies to achieve the above object, the present inventors can further improve the antibacterial performance of the non-woven fabric when using metal oxide fine particles having a specific average particle size with a specific metal species. I got the finding.

本発明は、これら知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。 The present invention has been completed based on these findings, and the following inventions are provided according to the present invention.

本発明の抗菌性不織布は、平均単繊維径が0.1μm以上30μm以下である熱可塑性樹脂繊維で構成される抗菌性不織布であって、前記の抗菌性不織布中に界面活性剤を0.1質量%以上3.0質量%以下と、銅、コバルト、アルミニウム、ニッケル、亜鉛、パラジウム、モリブデン、タングステンの中から選ばれる金属元素の酸化物から構成され、平均粒子径が500nm以下である金属酸化物粒子1種以上を0.01質量%以上1質量%以下と、を含む。 The antibacterial nonwoven fabric of the present invention is an antibacterial nonwoven fabric composed of thermoplastic resin fibers having an average single fiber diameter of 0.1 μm or more and 30 μm or less, and 0.1 of a surfactant is contained in the antibacterial nonwoven fabric. It is composed of oxides of metal elements selected from copper, cobalt, aluminum, nickel, zinc, palladium, molybdenum, and tungsten, and has an average particle size of 500 nm or less. Includes one or more kinds of physical particles as 0.01% by mass or more and 1% by mass or less.

本発明の抗菌性不織布の好ましい態様によれば、前記の金属酸化物粒子が酸化亜鉛粒子である。 According to a preferred embodiment of the antibacterial nonwoven fabric of the present invention, the metal oxide particles are zinc oxide particles.

また、本発明の衛生材料、医療用品、衣料用品あるいは食品梱包材は、前記の抗菌性不織布を用いてなる。 Further, the sanitary material, medical product, clothing product or food packaging material of the present invention is made by using the above-mentioned antibacterial non-woven fabric.

さらに、本発明の抗菌性不織布の製造方法は、熱可塑性樹脂Aと熱可塑性樹脂Bとを混合した熱可塑性樹脂組成物から不織布を形成する、前記の抗菌性不織布の製造方法であって、熱可塑性樹脂Aは、銅、コバルト、アルミニウム、ニッケル、亜鉛、パラジウム、モリブデン、タングステンの中から選ばれる金属元素の酸化物から構成され、平均粒子径が500nm以下の金属酸化物粒子1種以上を、形成する抗菌性不織布の0.01質量%以上1質量%以下となるように含有し、熱可塑性樹脂Aおよび/またはBは、界面活性剤を、形成する抗菌性不織布の0.1質量%以上3.0質量%以下となるように含有する。 Further, the method for producing an antibacterial non-woven fabric of the present invention is the above-mentioned method for producing an antibacterial non-woven fabric, which forms a non-woven fabric from a thermoplastic resin composition obtained by mixing a thermoplastic resin A and a thermoplastic resin B. The plastic resin A is composed of an oxide of a metal element selected from copper, cobalt, aluminum, nickel, zinc, palladium, molybdenum, and tungsten, and contains one or more metal oxide particles having an average particle diameter of 500 nm or less. It is contained so as to be 0.01% by mass or more and 1% by mass or less of the antibacterial non-woven fabric to be formed, and the thermoplastic resin A and / or B is 0.1% by mass or more of the antibacterial non-woven fabric forming the surfactant. It is contained so as to be 3.0% by mass or less.

本発明の抗菌性不織布の製造方法の好ましい態様によれば、前記の熱可塑性樹脂Aのメルトフローレートと前記の熱可塑性樹脂Bのメルトフローレートとの差の絶対値が650g/10分以上である。 According to a preferred embodiment of the method for producing an antibacterial nonwoven fabric of the present invention, the absolute value of the difference between the melt flow rate of the thermoplastic resin A and the melt flow rate of the thermoplastic resin B is 650 g / 10 minutes or more. be.

本発明によれば、抗菌性不織布を構成する繊維中に、特定の金属種で、特定の平均粒子径である金属酸化物粒子を微分散させて含有させることにより、これまでにない高い抗菌性能を有する抗菌性不織布を得ることができる。 According to the present invention, by finely dispersing and containing metal oxide particles having a specific average particle size in a specific metal type in the fibers constituting the antibacterial non-woven fabric, the antibacterial performance is unprecedentedly high. An antibacterial non-woven fabric having the above can be obtained.

本発明の抗菌性不織布は、熱可塑性樹脂繊維で構成される平均単繊維径が0.1〜30μmの不織布であって、前記不織布中に界面活性剤を0.1〜3質量%銅、コバルト、アルミニウム、ニッケル、亜鉛、パラジウム、モリブデン、タングステンの中から選ばれる金属元素の酸化物から構成される金属酸化物粒子を0.01〜1質量%含み、金属酸化物粒子の粒子径が500nm以下と、を含む。以下に、その構成要素について詳細に説明するが、本発明はその要旨を超えない限り、以下に説明する範囲に何ら限定されるものではない。 The antibacterial non-woven fabric of the present invention is a non-woven fabric composed of thermoplastic resin fibers and having an average single fiber diameter of 0.1 to 30 μm, and a surfactant is contained in the non-woven fabric in an amount of 0.1 to 3% by mass of copper or cobalt. Contains 0.01 to 1% by mass of metal oxide particles composed of oxides of metal elements selected from aluminum, nickel, zinc, palladium, molybdenum, and tungsten, and the particle size of the metal oxide particles is 500 nm or less. And, including. The components thereof will be described in detail below, but the present invention is not limited to the scope described below as long as the gist thereof is not exceeded.

まず、本発明の抗菌性不織布は、熱可塑性樹脂繊維で構成される。本発明において熱可塑性樹脂繊維とは、構成する繊維が熱可塑性樹脂組成物からなることを指す。 First, the antibacterial nonwoven fabric of the present invention is composed of thermoplastic resin fibers. In the present invention, the thermoplastic resin fiber means that the constituent fiber is made of a thermoplastic resin composition.

本発明において、熱可塑性樹脂繊維に用いられる熱可塑性樹脂組成物としては、例えば、ポリエチレンやポリプロピレン等のポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレートおよびポリ乳酸等のポリエステル系樹脂、ポリカーボネート系樹脂、ポリスチレン系樹脂、ポリフェニレンサルファイド系樹脂、フッ素系樹脂、ポリスチレンエラストマー、ポリオレフィンエラストマー、ポリエステルエラストマー、ポリアミドエラストマーおよびポリウレタンエラストマー等のエラストマーなどが挙げられる。また、これらのホモポリマーに異なる成分を共重合したコポリマーや、異なる2種以上のポリマーブレンド品等の樹脂を用いることもできる。 In the present invention, the thermoplastic resin composition used for the thermoplastic resin fiber includes, for example, a polyolefin resin such as polyethylene and polypropylene, a polyester resin such as polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and polylactic acid. Examples thereof include polycarbonate-based resins, polystyrene-based resins, polyphenylene sulfide-based resins, fluorine-based resins, polystyrene elastomers, polyolefin elastomers, polyester elastomers, polyamide elastomers, and elastomers such as polyurethane elastomers. Further, it is also possible to use a copolymer obtained by copolymerizing these homopolymers with different components, or a resin such as a blend of two or more different polymers.

これらの中でも、JIS K7210−1:2014の「プラスチック−熱可塑性プラスチックのメルトマスフローレイト(MFR)及びメルトボリュームフローレイト(MVR)の求め方−第1部:標準的試験方法」の「8 A法:質量測定法」に準拠して測定した樹脂の流動性を示すメルトフローレート(MFR)が幅広いラインナップで市販されており、所望する不織布形態によって種々選択できること、また、安価に利用できるという観点から、ポリプロピレン樹脂が好ましく用いられる。 Among these, JIS K7210-1: 2014 "Plastic-How to obtain melt mass flow rate (MFR) and melt volume flow rate (MVR) of thermoplastics-Part 1: Standard test method" "8A method" Melt flow rate (MFR), which indicates the fluidity of the resin measured in accordance with the "mass measurement method", is commercially available in a wide lineup, and can be selected in various ways depending on the desired non-woven fabric form, and can be used at low cost. , Polypropylene resin is preferably used.

なお、本発明に用いられる熱可塑性樹脂には、本発明の効果を損なわない限り、ポリオレフィン系樹脂繊維中に熱安定剤、耐候剤、結晶核剤、滑剤および重合禁止剤等の添加剤を添加することができる。 Additives such as heat stabilizers, weathering agents, crystal nucleating agents, lubricants and polymerization inhibitors are added to the thermoplastic resin used in the present invention as long as the effects of the present invention are not impaired. can do.

次に、本発明の抗菌性不織布は、抗菌性不織布中に、界面活性剤を0.1質量%以上、3.0質量%以下含有する。界面活性剤を0.1質量%以上、好ましくは0.7質量%以上含有することで、金属酸化物粒子の分散状態が良好で抗菌性及びその持続性に優れる抗菌性不織布を得ることができる。一方、界面活性剤を5.0質量%以下、好ましくは3.0質量%以下含有することで、強度に優れる抗菌性不織布を得ることができる。 Next, the antibacterial nonwoven fabric of the present invention contains a surfactant in an antibacterial nonwoven fabric of 0.1% by mass or more and 3.0% by mass or less. By containing 0.1% by mass or more, preferably 0.7% by mass or more of the surfactant, an antibacterial nonwoven fabric having a good dispersed state of metal oxide particles and excellent antibacterial property and its durability can be obtained. .. On the other hand, by containing 5.0% by mass or less, preferably 3.0% by mass or less of the surfactant, an antibacterial nonwoven fabric having excellent strength can be obtained.

界面活性剤の含有量は、例えば、次のようにして求めることができる。すなわち、不織布をイソプロパノール/石油エーテル混合溶液でソックスレー抽出後、その抽出物についてHPLC分取を繰り返し、各分取物についてIR測定、GC測定、GC/MS測定、MALDI−MS測定、H−NMR測定、および13C−NMR測定で構造を確認する。該添加剤の含まれる分取物の質量を合計し、不織布全体に対する割合を求め、これを界面活性剤の含有量とする。 The content of the surfactant can be determined, for example, as follows. That is, after Soxhlet extraction of the non-woven fabric with an isopropanol / petroleum ether mixed solution, HPLC fractionation was repeated for the extract, and IR measurement, GC measurement, GC / MS measurement, MALDI-MS measurement, 1 H-NMR for each fraction. Confirm the structure by measurement and 13 C-NMR measurement. The mass of the fraction containing the additive is totaled, the ratio to the whole non-woven fabric is determined, and this is taken as the content of the surfactant.

本発明に用いられる界面活性剤は陽イオン界面活性剤、陰イオン界面活性剤、両性界面活性剤、非イオン界面活性剤、あるいはこれらの混合物が用いられる。これら界面活性剤の種類は熱可塑性樹脂中における金属酸化物粒子の分散状態から種々選択することができる。 As the surfactant used in the present invention, a cationic surfactant, an anionic surfactant, an amphoteric surfactant, a nonionic surfactant, or a mixture thereof is used. Various types of these surfactants can be selected from the dispersed state of the metal oxide particles in the thermoplastic resin.

さらに、本発明の抗菌性不織布は、銅、コバルト、アルミニウム、ニッケル、亜鉛、パラジウム、モリブデン、タングステンの中から選ばれる金属元素の酸化物から構成され、平均粒子径が500nm以下である金属酸化物粒子1種以上を0.01質量%以上1質量%以下、含む。これについて、詳細を以下に説明する。 Further, the antibacterial non-woven fabric of the present invention is composed of an oxide of a metal element selected from copper, cobalt, aluminum, nickel, zinc, palladium, molybdenum, and tungsten, and has an average particle size of 500 nm or less. Contains one or more particles of 0.01% by mass or more and 1% by mass or less. The details of this will be described below.

まず、本発明に用いられる金属酸化物粒子を構成する金属元素の酸化物としては、抗菌性不織布に付与した際の抗菌性能に優れるという観点から、銅、コバルト、アルミニウム、ニッケル、亜鉛、パラジウム、モリブデン、タングステンの中から選ばれる金属元素の酸化物が挙げられる。中でも、特に抗菌性能に優れるという観点から亜鉛の酸化物であることが好ましい。複数の金属元素の酸化物からなる金属酸化物を用いてもよい。 First, as the oxide of the metal element constituting the metal oxide particles used in the present invention, copper, cobalt, aluminum, nickel, zinc, palladium, from the viewpoint of excellent antibacterial performance when applied to an antibacterial non-woven fabric, Examples thereof include oxides of metal elements selected from molybdenum and tungsten. Of these, zinc oxide is particularly preferable from the viewpoint of excellent antibacterial performance. A metal oxide composed of oxides of a plurality of metal elements may be used.

すなわち、本発明に用いられる金属酸化物の具体例としては、例えば、酸化銅(I)、酸化銅(II)、酸化コバルト(II)、酸化コバルト(III)、酸化コバルト(II、III)、酸化アルミニウム(III)、酸化ニッケル(II)、酸化亜鉛(II)、酸化パラジウム(II)、酸化モリブデン(VI)、酸化タングステン(VI)などであり、好ましくは、酸化亜鉛(II)である。 That is, specific examples of the metal oxide used in the present invention include, for example, copper (I) oxide, copper (II) oxide, cobalt oxide (II), cobalt oxide (III), cobalt oxide (II, III), and the like. Aluminum (III) oxide, nickel (II) oxide, zinc (II) oxide, palladium (II) oxide, molybdenum oxide (VI), tungsten oxide (VI) and the like, and zinc (II) oxide is preferable.

本発明の抗菌性不織布は、この金属酸化物粒子を一種以上含有することも好ましい。 The antibacterial nonwoven fabric of the present invention preferably contains one or more of these metal oxide particles.

また、本発明の金属酸化物粒子は、その平均粒子径が500nm以下である。金属酸化物粒子の平均粒子径を500nm以下、好ましくは300nm以下、さらに好ましくは100nm以下とすることで、熱可塑性樹脂繊維中に金属酸化物粒子を均一に微分散させることができ、抗菌性能を向上させることができる。また、紡糸ノズルの詰まりや糸切れの発生など紡糸上の問題を抑制することもできる。一方、本発明に用いられる金属酸化物粒子の平均粒子径については、特に下限があるわけではないが、一般的には1nm以上の粒子を用いることが、ナノマテリアル取り扱い上の観点から好ましい。 Further, the metal oxide particles of the present invention have an average particle diameter of 500 nm or less. By setting the average particle size of the metal oxide particles to 500 nm or less, preferably 300 nm or less, more preferably 100 nm or less, the metal oxide particles can be uniformly finely dispersed in the thermoplastic resin fiber, and the antibacterial performance can be improved. Can be improved. In addition, problems in spinning such as clogging of the spinning nozzle and occurrence of yarn breakage can be suppressed. On the other hand, the average particle size of the metal oxide particles used in the present invention is not particularly limited, but it is generally preferable to use particles having a diameter of 1 nm or more from the viewpoint of handling nanomaterials.

なお、金属酸化物粒子の粒子径を測定する方法としては、まず、抗菌性不織布をキシレンやデカリン、クロロベンゼンなどの非極性の炭化水素系溶媒に浸漬させて熱可塑性樹脂を溶かし金属酸化物粒子を単離する。単離した金属酸化物粒子を水中に均一に分散させ、従来のレーザー回折散乱式粒度測定装置等を用いればよく、体積基準の粒度分布により算出される算術平均値を金属酸化物粒子の平均粒径(nm)とすることができる。 As a method for measuring the particle size of the metal oxide particles, first, the antibacterial non-woven fabric is immersed in a non-polar hydrocarbon solvent such as xylene, decalin, or chlorobenzene to dissolve the thermoplastic resin, and the metal oxide particles are formed. Isolate. The isolated metal oxide particles may be uniformly dispersed in water, and a conventional laser diffraction / scattering particle size measuring device or the like may be used. It can be a diameter (nm).

さらに、本発明の抗菌性不織布中には、前記の金属酸化物粒子1種以上を0.01質量%以上1質量%以下、含む。金属酸化物粒子の含有量を抗菌性不織布の質量に対して、0.01質量%以上、好ましくは0.1質量%以上とすることで、優れた抗菌性能をもつ抗菌性不織布を得ることができる。一方、1質量%以下、好ましくは、0.5質量%以下とすることで、抗菌性不織布の強度を保つことができるだけでなく、紡糸ノズルの詰まりや樹脂塊(ショット)の発生などの紡糸上の問題を抑制することができる。
本発明において、金属酸化物粒子の含有量は、蛍光X線分析、原子吸光分析(FLAAS)、発光分光分析(ICP−AES)等の分析手法を用いることで求めることができる。例えば、蛍光X線分析は、不織布にX線を照射し、発生した蛍光X線を検出する方法である。この蛍光X線は元素固有のエネルギーを持つため、モズレー則による定性分析、蛍光X線強度から定量分析が可能である。定量分析においては分析したい元素の濃度と蛍光X線の関係(検量線)をあらかじめ作成し、その結果を元にして未知試料を測定して得られた蛍光X線強度から濃度を求めることができる。
Further, the antibacterial nonwoven fabric of the present invention contains one or more of the above-mentioned metal oxide particles in an amount of 0.01% by mass or more and 1% by mass or less. By setting the content of the metal oxide particles to 0.01% by mass or more, preferably 0.1% by mass or more with respect to the mass of the antibacterial nonwoven fabric, an antibacterial nonwoven fabric having excellent antibacterial performance can be obtained. can. On the other hand, by setting it to 1% by mass or less, preferably 0.5% by mass or less, not only the strength of the antibacterial non-woven fabric can be maintained, but also the spinning nozzle is clogged and resin lumps (shots) are generated on spinning. The problem can be suppressed.
In the present invention, the content of metal oxide particles can be determined by using analytical methods such as fluorescent X-ray analysis, atomic absorption spectrometry (FLAAS), and emission spectroscopic analysis (ICP-AES). For example, fluorescent X-ray analysis is a method of irradiating a non-woven fabric with X-rays and detecting the generated fluorescent X-rays. Since this fluorescent X-ray has energy peculiar to the element, qualitative analysis according to Mosley's law and quantitative analysis from fluorescent X-ray intensity are possible. In quantitative analysis, the relationship between the concentration of the element to be analyzed and the fluorescent X-ray (calibration curve) can be created in advance, and the concentration can be obtained from the fluorescent X-ray intensity obtained by measuring an unknown sample based on the result. ..

本発明の抗菌性不織布に用いられる熱可塑性樹脂組成物としては、JIS K7210−1:2014の「プラスチック−熱可塑性プラスチックのメルトマスフローレイト(MFR)及びメルトボリュームフローレイト(MVR)の求め方−第1部:標準的試験方法」の「8 A法:質量測定法」に準拠して、温度230℃、荷重2.16kg、測定時間10分の条件化で測定したメルトフローレート(MFR)が50g/10分以上2500g/10分以下であることが好ましい。熱可塑性樹脂組成物のメルトフローレートを好ましくは50g/10分以上、より好ましくは150g/10分以上とすることで、抗菌性不織布を構成する繊維の細径化が容易となる。一方、熱可塑性樹脂組成物のメルトフローレートを好ましくは2500g/10分以下、より好ましくは2000g/10分以下とすることで、不織布の強度を向上させることができる。 As the thermoplastic resin composition used for the antibacterial non-woven fabric of the present invention, JIS K7210-1: 2014 "Plastic-How to Obtain Melt Mass Flow Rate (MFR) and Melt Volume Flow Rate (MVR) of Thermoplastic Plastic-No. According to "8A method: mass measurement method" of "Part 1: Standard test method", the melt flow rate (MFR) measured under the conditions of a temperature of 230 ° C., a load of 2.16 kg, and a measurement time of 10 minutes is 50 g. It is preferably / 10 minutes or more and 2500 g / 10 minutes or less. By setting the melt flow rate of the thermoplastic resin composition to preferably 50 g / 10 minutes or more, more preferably 150 g / 10 minutes or more, the diameter of the fibers constituting the antibacterial nonwoven fabric can be easily reduced. On the other hand, the strength of the non-woven fabric can be improved by setting the melt flow rate of the thermoplastic resin composition to preferably 2500 g / 10 minutes or less, more preferably 2000 g / 10 minutes or less.

本発明の抗菌性不織布に用いられる熱可塑性樹脂繊維は、その平均単繊維径が0.1μm以上30.0μm以下であることが好ましい。平均単繊維径を好ましくは0.1μm以上、より好ましくは1.0μm以上、さらに好ましくは5.0μm以上とすることで、不織布の強度を向上させることができる。一方、30.0μm以下、より好ましくは20.0μm以下、さらに好ましくは15.0μm以下とすることで、抗菌性不織布の繊維表面積を増加することができ、抗菌性能に優れる抗菌性不織布を得ることができる。 The thermoplastic resin fiber used in the antibacterial nonwoven fabric of the present invention preferably has an average single fiber diameter of 0.1 μm or more and 30.0 μm or less. The strength of the non-woven fabric can be improved by setting the average single fiber diameter to preferably 0.1 μm or more, more preferably 1.0 μm or more, and further preferably 5.0 μm or more. On the other hand, by setting the fiber surface area to 30.0 μm or less, more preferably 20.0 μm or less, still more preferably 15.0 μm or less, the fiber surface area of the antibacterial nonwoven fabric can be increased, and an antibacterial nonwoven fabric having excellent antibacterial performance can be obtained. Can be done.

なお、本発明における抗菌性不織布に用いられる熱可塑性樹脂繊維の平均単繊維径は、不織布の幅方向3点(側端部2点と中央1点)、それを長手方向5cmおきに5点、合計15点から、3mm×3mmの測定サンプルを15個採取し、走査型電子顕微鏡(例えば、株式会社キーエンス社製「VHX−D500」など)で倍率を3000倍に調節して、採取した測定サンプルから繊維表面写真を各1枚ずつ、計15枚を撮影した。写真の中の繊維直径(単繊維径)がはっきり確認できる繊維について単繊維径を測定し、平均した値の小数点以下第2位を四捨五入して得られる値のことを指すこととする。 The average single fiber diameter of the thermoplastic resin fibers used in the antibacterial non-woven fabric in the present invention is 3 points in the width direction (2 points at the side ends and 1 point in the center) of the non-woven fabric, and 5 points every 5 cm in the longitudinal direction. From a total of 15 points, 15 measurement samples of 3 mm x 3 mm were collected, and the magnification was adjusted to 3000 times with a scanning electron microscope (for example, "VHX-D500" manufactured by Keyence Co., Ltd.). A total of 15 fibers were taken, one for each fiber surface photograph. It refers to the value obtained by measuring the single fiber diameter of the fiber whose fiber diameter (single fiber diameter) can be clearly confirmed in the photograph and rounding off the second decimal place of the average value.

また、ポリオレフィン系樹脂繊維は、複合繊維であってもよく、例えば、芯鞘型、偏心芯鞘型、サイドバイサイド型、分割型、海島型、アロイ型などの複合繊維の形態をとってもよい。 Further, the polyolefin-based resin fiber may be a composite fiber, and may take the form of a composite fiber such as a core sheath type, an eccentric core sheath type, a side-by-side type, a split type, a sea island type, or an alloy type.

本発明の抗菌性不織布は、その目付が3g/m以上1000g/m以下であることが好ましい。抗菌性不織布の目付を3g/m以上、より好ましくは5g/m以上、さらに好ましくは10g/m以上とすることにより、抗菌性不織布の抗菌性能を向上させることができる。一方、1000g/m以下、より好ましくは、800g/m以下、さらに好ましくは600g/m以下とすることにより、抗菌性不織布の厚さを低減でき、加工性を向上させることができる。 なお、本発明における抗菌性不織布の目付は、抗菌性不織布から、タテ×ヨコ=15cm×15cmのサンプルを採取し、そのサンプルの質量を測定して得られた値を1m当たりの値に換算し、小数点以下第1位を四捨五入して、不織布の目付(g/m)を算出することとする。 The antibacterial nonwoven fabric of the present invention preferably has a basis weight of 3 g / m 2 or more and 1000 g / m 2 or less. By setting the basis weight of the antibacterial non-woven fabric to 3 g / m 2 or more, more preferably 5 g / m 2 or more, and further preferably 10 g / m 2 or more, the antibacterial performance of the antibacterial non-woven fabric can be improved. On the other hand, by setting the content to 1000 g / m 2 or less, more preferably 800 g / m 2 or less, still more preferably 600 g / m 2 or less, the thickness of the antibacterial nonwoven fabric can be reduced and the processability can be improved. The texture of the antibacterial non-woven fabric in the present invention is obtained by collecting a sample of vertical × horizontal = 15 cm × 15 cm from the antibacterial non-woven fabric, measuring the mass of the sample, and converting the obtained value into a value per 1 m 2. Then, the first decimal place is rounded off to calculate the texture (g / m 2) of the non-woven fabric.

本発明の衛生材料は、前記の高抗菌性能効果を活かすことができるため、本発明の抗菌性不織布からなることが好ましい。具体的には、例えば、紙おむつ用トップシート、バックシート、サイドギャザーや失禁用パッド、生理用ナプキン、母乳用パッドなど抗菌性を必要とする衛生材料用の部材として使用することができる。 The sanitary material of the present invention is preferably made of the antibacterial non-woven fabric of the present invention because the above-mentioned high antibacterial performance effect can be utilized. Specifically, for example, it can be used as a member for sanitary materials that require antibacterial properties, such as top sheets for disposable diapers, back sheets, side gathers and incontinence pads, sanitary napkins, and breast milk pads.

本発明の医療用品は、前記の高抗菌性能効果を活かすことができるため、本発明の抗菌性不織布からなることが好ましい。具体的には、例えば、サージカルマスク、ガーゼ、包帯、医療用ドレープなど抗菌性を必要とする医療用品用の部材として使用することができる。 The medical product of the present invention is preferably made of the antibacterial non-woven fabric of the present invention because the above-mentioned high antibacterial performance effect can be utilized. Specifically, for example, it can be used as a member for medical supplies that require antibacterial properties, such as surgical masks, gauze, bandages, and medical drapes.

本発明の衣料用品は、前記の高抗菌性能効果を活かすことができるため、本発明の抗菌性不織布からなることが好ましい。具体的には、例えば、医療用ガウン、患者衣、エプロンなど抗菌性を必要とする衣料用品用の部材として使用することができる。 The clothing product of the present invention is preferably made of the antibacterial non-woven fabric of the present invention because the above-mentioned high antibacterial performance effect can be utilized. Specifically, for example, it can be used as a member for clothing products that require antibacterial properties, such as medical gowns, patient clothes, and aprons.

本発明の食品包装材は、前記の高抗菌性能効果を活かすことができるため、本発明の抗菌性不織布からなることが好ましい。具体的には、例えば、紙パックやペーパー缶など抗菌性を必要とする食品包装材用の部材として使用することができる。 Since the food packaging material of the present invention can utilize the above-mentioned high antibacterial performance effect, it is preferably made of the antibacterial non-woven fabric of the present invention. Specifically, for example, it can be used as a member for food packaging materials that require antibacterial properties such as paper packs and paper cans.

すなわち、本発明の抗菌性不織布は、これら抗菌性を必要とする物品に好適に用いることができる。 That is, the antibacterial nonwoven fabric of the present invention can be suitably used for articles that require these antibacterial properties.

続いて、本発明の抗菌性不織布の製造方法を説明する。 Subsequently, the method for producing the antibacterial nonwoven fabric of the present invention will be described.

本発明の抗菌性不織布の製造において、熱可塑性樹脂中に界面活性剤、金属酸化物粒子を一度に混合して熱可塑性樹脂組成物を形成し、これを用いて不織布を形成することも可能であるが、後述する熱可塑性樹脂Aと、熱可塑性樹脂Bとを混合して、不織布を形成するのに供する熱可塑性樹脂組成物を調製することが好ましい。このようにすることで、不織布を構成する熱可塑性樹脂繊維中に金属酸化物粒子を均一に微分散させることができ、より抗菌性能を高いものとすることができる。 In the production of the antibacterial non-woven fabric of the present invention, it is also possible to mix a surfactant and metal oxide particles in a thermoplastic resin at a time to form a thermoplastic resin composition, and use this to form a non-woven fabric. However, it is preferable to mix the thermoplastic resin A and the thermoplastic resin B, which will be described later, to prepare a thermoplastic resin composition to be used for forming a non-woven fabric. By doing so, the metal oxide particles can be uniformly finely dispersed in the thermoplastic resin fibers constituting the non-woven fabric, and the antibacterial performance can be further improved.

この熱可塑性樹脂Aは、銅、コバルト、アルミニウム、ニッケル、亜鉛、パラジウム、モリブデン、タングステンの中から選ばれる金属元素の酸化物から構成され、平均粒子径が500nm以下の金属酸化物粒子1種以上を、形成する抗菌性不織布の0.01質量%以上1質量%以下となるように含有することが好ましい。このようにすることで、前記の効果、すなわち、抗菌性能に優れた抗菌性不織布を得ることができ、かつ、熱可塑性樹脂繊維中に金属酸化物粒子を均一に微分散させることができることから、抗菌性能をより向上させることができる。また、紡糸ノズルの詰まりや糸切れの発生など紡糸上の問題を抑制することもできる。 This thermoplastic resin A is composed of oxides of metal elements selected from copper, cobalt, aluminum, nickel, zinc, palladium, molybdenum, and tungsten, and has one or more metal oxide particles having an average particle diameter of 500 nm or less. Is preferably contained in an amount of 0.01% by mass or more and 1% by mass or less of the antibacterial non-woven fabric to be formed. By doing so, it is possible to obtain an antibacterial non-woven fabric having the above-mentioned effect, that is, excellent antibacterial performance, and it is possible to uniformly finely disperse the metal oxide particles in the thermoplastic resin fiber. The antibacterial performance can be further improved. In addition, problems in spinning such as clogging of the spinning nozzle and occurrence of yarn breakage can be suppressed.

また、熱可塑性樹脂Aおよび/またはBは、界面活性剤を、形成する抗菌性不織布の0.1質量%以上3.0質量%以下となるように含有することが好ましい。このようにすることで、抗菌性能に優れた抗菌性不織布とすることができる。 Further, the thermoplastic resin A and / or B preferably contains a surfactant so as to be 0.1% by mass or more and 3.0% by mass or less of the antibacterial nonwoven fabric to be formed. By doing so, an antibacterial non-woven fabric having excellent antibacterial performance can be obtained.

さらに、前記の熱可塑性樹脂Aのメルトフローレート(MFR)と前記の熱可塑性樹脂Bのメルトフローレート(MFR)との差の絶対値(|MFR−MFR|)が650g/10分以上であることが好ましい。このようにすることで、金属酸化物粒子の熱可塑性樹脂中の分散状態をより良好なものとし、さらに抗菌性能および、その持続性に優れた抗菌性不織布とすることができる。 Further, the absolute value of the difference between the thermoplastic resin A has a melt flow rate (MFR A) and the thermoplastic resin B has a melt flow rate (MFR B) (| MFR A -MFR B |) is 650 g / 10 It is preferably minutes or more. By doing so, it is possible to improve the dispersed state of the metal oxide particles in the thermoplastic resin, and to obtain an antibacterial nonwoven fabric having excellent antibacterial performance and durability thereof.

熱可塑性樹脂Aと熱可塑性樹脂Bとを用いて上記の方法で金属酸化物粒子を含有するポリオレフィン樹脂組成物を調製する方法としては、二軸押出機などを使用して押し出しながら熱可塑性樹脂に金属酸化物粒子を混合し、熱可塑性樹脂Aを調製した後、これに熱可塑性樹脂Bを混合してもよいし、またはマスターバッチを用いてチップブレンドを作成した後に押し出してもよい。マスターバッチを用いる場合は、例えばポリプロピレンなどの熱可塑性樹脂に金属酸化物粒子を練り込んだ熱可塑性樹脂Aのマスターバッチを準備し、これにポリプロピレンなどの熱可塑性樹脂Bをチップブレンドし、押出機内で練り込んで金属酸化物粒子を含有する熱可塑性樹脂組成物を調製することによって、金属酸化物粒子を熱可塑性樹脂繊維中に均一に微分散させることが可能となる。 As a method for preparing a polyolefin resin composition containing metal oxide particles by the above method using the thermoplastic resin A and the thermoplastic resin B, the thermoplastic resin is extruded while being extruded using a twin-screw extruder or the like. The metal oxide particles may be mixed to prepare the thermoplastic resin A, and then the thermoplastic resin B may be mixed with the thermoplastic resin A, or the chip blend may be prepared using a master batch and then extruded. When using a master batch, for example, a master batch of a thermoplastic resin A in which metal oxide particles are kneaded into a thermoplastic resin such as polypropylene is prepared, and a thermoplastic resin B such as polypropylene is chip-blended into the master batch, and the inside of the extruder is used. By preparing a thermoplastic resin composition containing the metal oxide particles by kneading with the above, the metal oxide particles can be uniformly finely dispersed in the thermoplastic resin fibers.

続いて、得られた熱可塑性樹脂組成物から不織布を形成する。不織布の製造方法としては従来公知の技術を用いればよく、例えば、乾式法、湿式法、スパンボンド法、メルトブロー法、エアレイド法などのウェブ形成方法と、ケミカルボンド法、サーマルボンド法、ニードルパンチ法、スパンレース法などの繊維結合方法を組み合わせて用いることができる。この中でも、紡糸(糸を形成する)工程と製布(不織布を形成する)工程が連続しており、生産性とコストに優れ、且つ、連続繊維からなるため強度に優れるという観点からスパンボンド法やメルトブロー法を好適に用いることができる。 Subsequently, a non-woven fabric is formed from the obtained thermoplastic resin composition. As a method for producing the non-woven fabric, a conventionally known technique may be used, for example, a web forming method such as a dry method, a wet method, a spunbond method, a melt blow method, or an airlaid method, and a chemical bond method, a thermal bond method, or a needle punch method. , A fiber bonding method such as a spunlace method can be used in combination. Among these, the spunbond method is a continuous process of spinning (forming threads) and fabric making (forming non-woven fabrics), which is excellent in productivity and cost, and is excellent in strength because it is composed of continuous fibers. And the melt blow method can be preferably used.

次に、実施例に基づき本発明を具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。 Next, the present invention will be specifically described based on Examples. However, the present invention is not limited to these examples.

(1)不織布の目付:
タテ×ヨコ=15cm×15cmのメルトブロー不織布の質量を、1サンプルについて測定した。得られた値を1m当たりの値に換算し、小数点以下第1位を四捨五入して、不織布の目付(g/m)を算出した。
(1) Non-woven fabric basis weight:
The mass of the melt-blown non-woven fabric of vertical × horizontal = 15 cm × 15 cm was measured for one sample. The obtained value was converted into a value per 1 m 2 , and the first decimal place was rounded off to calculate the basis weight (g / m 2) of the non-woven fabric.

(2)不織布の平均単繊維径:
平均単繊維径については、不織布の幅方向3点(側端部2点と中央1点)、それを長手方向5cmおきに5点、合計15点から、3mm×3mmの測定サンプルを15個採取し、走査型電子顕微鏡(キーエンス社製、VHX−D500)で倍率を3000倍に調節して、採取した測定サンプルから繊維表面写真を各1枚ずつ、計15枚を撮影した。写真の中の繊維直径(単繊維径)がはっきり確認できる繊維について単繊維径を測定し、平均した値の小数点以下第2位を四捨五入して平均単繊維径とした。
(2) Average single fiber diameter of non-woven fabric:
Regarding the average single fiber diameter, 15 measurement samples of 3 mm x 3 mm were collected from a total of 15 points, 3 points in the width direction of the non-woven fabric (2 points at the side edges and 1 point at the center) and 5 points every 5 cm in the longitudinal direction. Then, the magnification was adjusted to 3000 times with a scanning electron microscope (VHX-D500 manufactured by KEYENCE CORPORATION), and one fiber surface photograph was taken from each of the collected measurement samples, for a total of 15 photographs. The single fiber diameter was measured for the fiber whose fiber diameter (single fiber diameter) can be clearly confirmed in the photograph, and the second decimal place of the average value was rounded off to obtain the average single fiber diameter.

(3)不織布の金属酸化物粒子の分散状態:
平均単繊維径の測定方法と同様の方法で撮影した計15枚の写真を全て観察し、金属酸化物粒子が確認されず、分散状態が良好なものを○、金属酸化物粒子が1つの写真内に1〜5つ確認され(凝集部分)、やや凝集が不良なものを△、金属酸化物粒子が1つの写真内に6つ以上確認され(凝集部分)、凝集が不良なものを×として評価した。
(3) Dispersion state of metal oxide particles of non-woven fabric:
Observe all 15 photographs taken by the same method as the method for measuring the average single fiber diameter, and the one in which no metal oxide particles are confirmed and the dispersed state is good is ○, and the one with one metal oxide particle. 1 to 5 particles are confirmed (aggregated part), those with slightly poor aggregation are marked with Δ, and 6 or more metal oxide particles are confirmed in one photograph (aggregated part), and those with poor aggregation are marked with ×. evaluated.

(4)不織布の抗菌性能:
不織布の抗菌性能はJIS L1902:2015の「繊維製品の抗菌性試験方法及び抗菌効果」の「8.1 菌液吸収法」に準拠して、以下の試験菌3種を用いて、抗菌活性値を求めた。
(試験菌種)
・黄色ブドウ球菌:Staphylococcus aureus
・メチシリン耐性黄色ブドウ球菌:methicillin−resistant Staphylococcus aureus
・大腸菌:Escherichia coli
なお、抗菌活性値は以下の式より算出し、小数点第2位を四捨五入して抗菌活性値とした
抗菌活性値=LogA−LogB
ここで、
A:標準試料(綿標準白布)を18時間培養した後、回収した菌数
B:試験試料を18時間培養した後、回収した菌数
抗菌活性値が2.0未満を×、2.0以上6.0未満を△、6.0以上を○として評価した。
(4) Antibacterial performance of non-woven fabric:
The antibacterial performance of the non-woven fabric is based on the "8.1 Bacterial solution absorption method" of "Antibacterial test method and antibacterial effect of textile products" of JIS L1902: 2015, and the antibacterial activity value is used using the following three types of test bacteria. Asked.
(Test bacterial species)
Staphylococcus aureus: Staphylococcus aureus
-Methicillin-resistant Staphylococcus aureus: methicillin-resistant Staphylococcus aureus
・ Escherichia coli: Escherichia coli
The antibacterial activity value was calculated from the following formula and rounded off to the second decimal place to obtain the antibacterial activity value = LogA-LogB.
here,
A: Number of bacteria recovered after culturing the standard sample (cotton standard white cloth) for 18 hours B: Number of bacteria recovered after culturing the test sample for 18 hours The antibacterial activity value is less than 2.0 ×, 2.0 or more Less than 6.0 was evaluated as Δ, and 6.0 or more was evaluated as ◯.

[実施例1]
熱可塑性樹脂原料としてポリプロピレン樹脂に、粒子径が20nmの酸化亜鉛粒子を20質量%含む、メルトフローレートが230g/10分の熱可塑性樹脂Aと、熱可塑性樹脂原料としてポリプロピレン樹脂に、陰イオン界面活性剤“メガファック”(登録商標)F−444(DIC(株)製、表1、2では「F−444」と表記)を1質量%含む、メルトフローレートが1100g/10分の熱可塑性樹脂Bを用いた。
[Example 1]
Anionic interface between a thermoplastic resin A containing 20% by mass of zinc oxide particles having a particle diameter of 20 nm and a melt flow rate of 230 g / 10 minutes as a thermoplastic resin raw material, and a polypropylene resin as a thermoplastic resin raw material. Thermoplastic with a melt flow rate of 1100 g / 10 minutes containing 1% by mass of the activator "Megafuck" (registered trademark) F-444 (manufactured by DIC Co., Ltd., indicated as "F-444" in Tables 1 and 2). Resin B was used.

熱可塑性樹脂Aと熱可塑性樹脂Bを熱可塑性樹脂A:熱可塑性樹脂B=1:99の割合で混合してチップブレンドを行った。次いで、チップブレンドを行った熱可塑性樹脂AおよびBを押出機の原料ホッパーに投入し、押出機で溶融、混練しながら熱可塑性樹脂組成物を生成しギアポンプへ供給した。ギアポンプで計量した熱可塑性樹脂組成物を、直径が0.3mmの吐出孔が一直線上に配置した口金を用いて、メルトブロー法により、吐出量が320g/分、ノズル温度が280℃、エア圧力が0.19MPaの条件で噴射し、捕集コンベア速度を調整することによって、目付が20g/mの不織布を得た。 The thermoplastic resin A and the thermoplastic resin B were mixed at a ratio of thermoplastic resin A: thermoplastic resin B = 1: 99 to perform chip blending. Next, the chip-blended thermoplastic resins A and B were put into the raw material hopper of the extruder, and the thermoplastic resin composition was generated and supplied to the gear pump while being melted and kneaded by the extruder. The thermoplastic resin composition weighed by the gear pump is discharged by the melt blow method using a base in which discharge holes with a diameter of 0.3 mm are arranged in a straight line, the discharge rate is 320 g / min, the nozzle temperature is 280 ° C, and the air pressure is high. By injecting under the condition of 0.19 MPa and adjusting the collection conveyor speed, a non-woven fabric having a grain size of 20 g / m 2 was obtained.

得られた不織布について、熱可塑性樹脂組成物の構成などは表1に、測定結果・評価結果は表3に示す。 Table 1 shows the composition of the thermoplastic resin composition and the like, and Table 3 shows the measurement results and evaluation results of the obtained nonwoven fabric.

[実施例2]
熱可塑性樹脂Aと熱可塑性樹脂Bの混合割合を熱可塑性樹脂A:熱可塑性樹脂B=5:95とした以外は実施例1と同様の方法により不織布を得た。
[Example 2]
A non-woven fabric was obtained by the same method as in Example 1 except that the mixing ratio of the thermoplastic resin A and the thermoplastic resin B was set to thermoplastic resin A: thermoplastic resin B = 5: 95.

得られた不織布について、熱可塑性樹脂組成物の構成などは表1に、測定結果・評価結果は表3に示す。 Table 1 shows the composition of the thermoplastic resin composition and the like, and Table 3 shows the measurement results and evaluation results of the obtained nonwoven fabric.

[実施例3]
熱可塑性樹脂Bに用いたポリプロピレンの種類を変更し、熱可塑性樹脂Bのメルトフローレートを900g/10分とした以外は実施例1と同様の方法により不織布を得た。
[Example 3]
A non-woven fabric was obtained by the same method as in Example 1 except that the type of polypropylene used for the thermoplastic resin B was changed and the melt flow rate of the thermoplastic resin B was set to 900 g / 10 minutes.

得られた不織布について、熱可塑性樹脂組成物の構成などは表1に、測定結果・評価結果は表3に示す。 Table 1 shows the composition of the thermoplastic resin composition and the like, and Table 3 shows the measurement results and evaluation results of the obtained nonwoven fabric.

[実施例4]
熱可塑性樹脂原料として、ポリプロピレン樹脂に粒子径が30nmの酸化亜鉛粒子を40質量%含む、メルトフローレートが230g/10分の熱可塑性樹脂Aを用い、熱可塑性樹脂Aと熱可塑性樹脂Bの混合割合を熱可塑性樹脂A:熱可塑性樹脂B=0.5:99.5とした以外は実施例1と同様の方法により不織布を得た。
[Example 4]
As a thermoplastic resin raw material, a thermoplastic resin A containing 40% by mass of zinc oxide particles having a particle diameter of 30 nm and a melt flow rate of 230 g / 10 minutes is used, and a mixture of the thermoplastic resin A and the thermoplastic resin B is used. A non-woven fabric was obtained by the same method as in Example 1 except that the ratio was thermoplastic resin A: thermoplastic resin B = 0.5: 99.5.

得られた不織布について、熱可塑性樹脂組成物の構成などは表1に、測定結果・評価結果は表3に示す。 Table 1 shows the composition of the thermoplastic resin composition and the like, and Table 3 shows the measurement results and evaluation results of the obtained nonwoven fabric.

[比較例1]
熱可塑性樹脂Aを用いず、熱可塑性樹脂Bのみを用いたこと以外は実施例1と同様の方法により不織布を得た。
[Comparative Example 1]
A non-woven fabric was obtained by the same method as in Example 1 except that the thermoplastic resin A was not used and only the thermoplastic resin B was used.

得られた不織布について、熱可塑性樹脂組成物の構成などは表2に、測定結果・評価結果は表3に示す。 Table 2 shows the composition of the thermoplastic resin composition and the like, and Table 3 shows the measurement results and evaluation results of the obtained nonwoven fabric.

[比較例2]
熱可塑性樹脂原料として、ポリプロピレン樹脂に粒子径が800nmの酸化亜鉛粒子を20質量%含む、メルトフローレートが230g/10分の熱可塑性樹脂Aを用いたこと以外は実施例1と同様の方法により不織布を得た。
[Comparative Example 2]
As the raw material for the thermoplastic resin, the same method as in Example 1 was used except that the thermoplastic resin A containing 20% by mass of zinc oxide particles having a particle diameter of 800 nm and having a melt flow rate of 230 g / 10 minutes was used as the raw material for the thermoplastic resin. A non-woven fabric was obtained.

得られた不織布について、熱可塑性樹脂組成物の構成などは表2に、測定結果・評価結果は表3に示す。 Table 2 shows the composition of the thermoplastic resin composition and the like, and Table 3 shows the measurement results and evaluation results of the obtained nonwoven fabric.

Figure 2021116483
Figure 2021116483

Figure 2021116483
Figure 2021116483

Figure 2021116483
Figure 2021116483

表3から明らかなように、本発明の実施例1〜4に記載の不織布はいずれの菌種に対しても高い抗菌活性値を達成しており、優れた抗菌性能を有していることが分かる。 As is clear from Table 3, the non-woven fabrics described in Examples 1 to 4 of the present invention have achieved high antibacterial activity values against any bacterial species and have excellent antibacterial performance. I understand.

これに対し、金属酸化物粒子を含有していない成分のみとした比較例1に記載の不織布は、実施例1〜4に記載の不織布に対して、いずれの菌種に対しても抗菌活性値が低い結果であった。 On the other hand, the non-woven fabric described in Comparative Example 1 containing only the components containing no metal oxide particles has an antibacterial activity value against any bacterial species with respect to the non-woven fabrics described in Examples 1 to 4. Was a low result.

また、熱可塑性樹脂Aに含まれる金属酸化物粒子の粒子径を800nmとした比較例2に記載の不織布は、実施例1〜4に記載の不織布に対して、紡糸中の糸切れやショットが多発し紡糸性が悪化しただけでなく、金属酸化物粒子の凝集が多く確認され分散状態が不良であり、大腸菌に対する抗菌活性値が劣るものであった。 Further, the non-woven fabric described in Comparative Example 2 in which the particle size of the metal oxide particles contained in the thermoplastic resin A was 800 nm had thread breakage or shots during spinning with respect to the non-woven fabrics described in Examples 1 to 4. Not only did it occur frequently and the spinnability deteriorated, but also a lot of aggregation of metal oxide particles was confirmed, the dispersed state was poor, and the antibacterial activity value against Escherichia coli was inferior.

以上のように本発明では、不織布を構成する熱可塑性樹脂繊維に、所定の粒子径を有する金属酸化物粒子を添加し、均一に微分散させることによって、優れた抗菌性能を有する不織布が得られ、衛生材料や医療用品、衣料用品や食品包装材など抗菌性能を必要とする各種物品に好適に用いることができる。 As described above, in the present invention, a non-woven fabric having excellent antibacterial performance can be obtained by adding metal oxide particles having a predetermined particle size to the thermoplastic resin fibers constituting the non-woven fabric and uniformly finely dispersing them. , Sanitary materials, medical supplies, clothing supplies, food packaging materials, and various other articles that require antibacterial performance can be suitably used.

Claims (8)

平均単繊維径が0.1μm以上30μm以下である熱可塑性樹脂繊維で構成される抗菌性不織布であって、前記抗菌性不織布中に界面活性剤を0.1質量%以上3.0質量%以下と、銅、コバルト、アルミニウム、ニッケル、亜鉛、パラジウム、モリブデン、タングステンの中から選ばれる金属元素の酸化物から構成され、平均粒子径が500nm以下である金属酸化物粒子1種以上を0.01質量%以上1質量%以下と、を含む、抗菌性不織布。 An antibacterial non-woven fabric composed of thermoplastic resin fibers having an average single fiber diameter of 0.1 μm or more and 30 μm or less, wherein a surfactant is contained in the antibacterial non-woven fabric in an amount of 0.1% by mass or more and 3.0% by mass or less. And 0.01 of one or more metal oxide particles having an average particle diameter of 500 nm or less, which is composed of oxides of metal elements selected from copper, cobalt, aluminum, nickel, zinc, palladium, molybdenum, and tungsten. An antibacterial non-woven fabric containing% by mass or more and 1% by mass or less. 前記金属酸化物粒子が酸化亜鉛粒子である、請求項1に記載の抗菌性不織布。 The antibacterial nonwoven fabric according to claim 1, wherein the metal oxide particles are zinc oxide particles. 請求項1または2に記載の抗菌性不織布を用いてなる、衛生材料。 A sanitary material using the antibacterial non-woven fabric according to claim 1 or 2. 請求項1または2に記載の抗菌性不織布を用いてなる、医療用品。 A medical product using the antibacterial non-woven fabric according to claim 1 or 2. 請求項1または2に記載の抗菌性不織布を用いてなる、衣料用品。 A clothing product using the antibacterial non-woven fabric according to claim 1 or 2. 請求項1または2に記載の抗菌性不織布を用いてなる、食品包装材。 A food packaging material using the antibacterial non-woven fabric according to claim 1 or 2. 熱可塑性樹脂Aと熱可塑性樹脂Bとを混合した熱可塑性樹脂組成物から不織布を形成する、請求項1または2に記載の抗菌性不織布の製造方法であって、熱可塑性樹脂Aは、銅、コバルト、アルミニウム、ニッケル、亜鉛、パラジウム、モリブデン、タングステンの中から選ばれる金属元素の酸化物から構成され、平均粒子径が500nm以下の金属酸化物粒子1種以上を、形成する抗菌性不織布の0.01質量%以上1質量%以下となるように含有し、熱可塑性樹脂Aおよび/またはBは、界面活性剤を、形成する抗菌性不織布の0.1質量%以上3.0質量%以下となるように含有する、抗菌性不織布の製造方法。 The method for producing an antibacterial non-woven fabric according to claim 1 or 2, wherein a non-woven fabric is formed from a thermoplastic resin composition obtained by mixing a thermoplastic resin A and a thermoplastic resin B. 0 of the antibacterial non-woven fabric which is composed of oxides of metal elements selected from cobalt, aluminum, nickel, zinc, palladium, molybdenum and tungsten and forms one or more metal oxide particles having an average particle diameter of 500 nm or less. It is contained so as to be 0.01% by mass or more and 1% by mass or less, and the thermoplastic resins A and / or B are 0.1% by mass or more and 3.0% by mass or less of the antibacterial non-woven fabric forming the surfactant. A method for producing an antibacterial non-woven fabric, which is contained so as to be. 前記熱可塑性樹脂Aのメルトフローレートと前記熱可塑性樹脂Bのメルトフローレートとの差の絶対値が650g/10分以上である、請求項7に記載の抗菌性不織布の製造方法。 The method for producing an antibacterial nonwoven fabric according to claim 7, wherein the absolute value of the difference between the melt flow rate of the thermoplastic resin A and the melt flow rate of the thermoplastic resin B is 650 g / 10 minutes or more.
JP2020008920A 2020-01-23 2020-01-23 Antibacterial nonwoven fabric as well as sanitary materials, medical articles, clothing articles and food packaging material which are produced by using antibacterial nonwoven fabric Pending JP2021116483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020008920A JP2021116483A (en) 2020-01-23 2020-01-23 Antibacterial nonwoven fabric as well as sanitary materials, medical articles, clothing articles and food packaging material which are produced by using antibacterial nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020008920A JP2021116483A (en) 2020-01-23 2020-01-23 Antibacterial nonwoven fabric as well as sanitary materials, medical articles, clothing articles and food packaging material which are produced by using antibacterial nonwoven fabric

Publications (1)

Publication Number Publication Date
JP2021116483A true JP2021116483A (en) 2021-08-10

Family

ID=77174277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020008920A Pending JP2021116483A (en) 2020-01-23 2020-01-23 Antibacterial nonwoven fabric as well as sanitary materials, medical articles, clothing articles and food packaging material which are produced by using antibacterial nonwoven fabric

Country Status (1)

Country Link
JP (1) JP2021116483A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023095800A1 (en) * 2021-11-26 2023-06-01 東洋紡株式会社 Electret and electret filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023095800A1 (en) * 2021-11-26 2023-06-01 東洋紡株式会社 Electret and electret filter

Similar Documents

Publication Publication Date Title
CN104968848B (en) Polypropylene fibre and fabric
DE60012526T2 (en) HYDROPHILIC POLYPROPYLENE FIBERS WITH ANTIMICROBIAL EFFECT
JP5631205B2 (en) Antimicrobial polyolefin and polyester composition
US9074303B2 (en) Fibers, nonwoven fabric and uses thereof
CN1069708C (en) Nonwoven webs having improved tensile strength charcteristics and method for preparing the same
CN1476494A (en) Wettable Polyolefin fibers and fabrics
CN105586717B (en) A kind of antibacterial SMS composite nonwoven materials
KR101852243B1 (en) Fiber, non-woven fabric, and use thereof
AU2002355421B2 (en) Thermoplastic constructs with improved softness
CN111662505A (en) Antibacterial non-woven material and preparation method thereof
JP4498957B2 (en) Antibacterial nonwoven fabric and its use
JP6408186B1 (en) Polyolefin synthetic fiber treatment agent and polyolefin synthetic fiber
JP2021116483A (en) Antibacterial nonwoven fabric as well as sanitary materials, medical articles, clothing articles and food packaging material which are produced by using antibacterial nonwoven fabric
DE60008361T2 (en) POLYPROPYLENE FIBERS
JP2018503007A (en) Composition for permanent hydrophilic finishing of textile fibers and textile products
JP2011084824A (en) Hydrophilizing agent for fiber and fiber containing the same
US20120172514A1 (en) Thermoplastic compositions for sheet materials having improved tensile properties
JP2014070297A (en) Thermoplastic fiber providing contact cool feeling
KR101225595B1 (en) Far infrared ray emitting functional polyolefin staple fiber and thermal bonding non-woven using thereof
KR101427192B1 (en) Durable hydrophilic fiber having excellent color fastness, and molded fiber and absorbent article comprising same
KR20170059668A (en) Nonwoven fabric having an improved strength via control of stereoregularity and manufacturing method thereof
CN105492671A (en) Polyolefin based nonwoven fabrics comprising calcium carbonate, and preparation method therefor
JP7282211B2 (en) NONWOVEN FABRIC, MANUFACTURING METHOD THEREFOR, ARTICLES CONTAINING THE NONWOVEN FABRIC, AND SANITARY PRODUCTS USING THE NONWOVEN FABRIC
KR101833495B1 (en) Polyolefin spunbond nonwoven and manufacturing method thereof
JP6611323B2 (en) Absorbent article, nonwoven fabric and method for producing the same