JP2021116441A - Alloy member and method for producing the same - Google Patents

Alloy member and method for producing the same Download PDF

Info

Publication number
JP2021116441A
JP2021116441A JP2020009099A JP2020009099A JP2021116441A JP 2021116441 A JP2021116441 A JP 2021116441A JP 2020009099 A JP2020009099 A JP 2020009099A JP 2020009099 A JP2020009099 A JP 2020009099A JP 2021116441 A JP2021116441 A JP 2021116441A
Authority
JP
Japan
Prior art keywords
coefficient
thermal expansion
alloy member
alloy
continuously
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020009099A
Other languages
Japanese (ja)
Inventor
卓雄 半田
Takuo Handa
卓雄 半田
志民 劉
Shimin Ryu
志民 劉
伸幸 大山
Nobuyuki Oyama
伸幸 大山
勝 鷲尾
Masaru Washio
勝 鷲尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chuzo Co Ltd
Original Assignee
Nippon Chuzo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chuzo Co Ltd filed Critical Nippon Chuzo Co Ltd
Priority to JP2020009099A priority Critical patent/JP2021116441A/en
Publication of JP2021116441A publication Critical patent/JP2021116441A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Powder Metallurgy (AREA)

Abstract

To provide an alloy member whose thermal coefficient of expansion changes continuously or stepwise, and a method for producing the same.SOLUTION: An alloy member consists of an Fe-Ni-based alloy, at least a part of which continuously or stepwise changes in Ni content such that the thermal coefficient of expansion continuously or stepwise changes in an arbitrary range of 0-13 ppm/°C.SELECTED DRAWING: Figure 2

Description

本発明は、熱膨張係数の分布を有する合金部材およびその製造方法に関する。 The present invention relates to an alloy member having a distribution of coefficient of thermal expansion and a method for producing the same.

部材内に温度差が生ずると(部材の物性値、寸法・形状、温度分布等に応じて)熱応力が発生し、部材変形の原因となる。変形のうち弾性変形は、特に高精度が求められる機器においては精度誤差の要因となり、高精度が維持できなくなる。また、燃焼エンジンのように大きな温度差を生じる機器においては、塑性変形を生じ、部材が破壊する場合もある。このため、熱応力に伴う変形や破壊を緩和ないし防止する技術が求められており、それに対応可能な技術として傾斜機能材料がある。傾斜機能材料は、一つの材料の中で組成や機能が連続的または段階的に変化(傾斜)するものである。したがって、部材内の熱膨張係数を連続的または段階的に変化させた傾斜機能材料を用いることにより、熱応力に伴う変形や破壊を緩和ないし防止することができる。 When a temperature difference occurs in the member, thermal stress is generated (according to the physical property value, size / shape, temperature distribution, etc. of the member), which causes deformation of the member. Of the deformations, elastic deformation causes accuracy error, especially in equipment that requires high accuracy, and high accuracy cannot be maintained. Further, in a device such as a combustion engine that causes a large temperature difference, plastic deformation may occur and the member may be destroyed. Therefore, there is a demand for a technique for alleviating or preventing deformation and fracture due to thermal stress, and functionally graded materials are available as a technique capable of dealing with this. A functionally graded material is one in which the composition and function change (tilt) continuously or stepwise within one material. Therefore, by using a functionally graded material in which the coefficient of thermal expansion in the member is continuously or stepwise changed, deformation and fracture due to thermal stress can be alleviated or prevented.

傾斜機能材料の製造方法として、遠心鋳造法、粉末冶金法、複合めっき法、溶射法、指向性エネルギー堆積法等が提案されている(非特許文献1〜4、特許文献1〜2)。 Centrifugal casting, powder metallurgy, composite plating, thermal spraying, directed energy deposition, and the like have been proposed as methods for producing functionally graded materials (Non-Patent Documents 1 to 4 and Patent Documents 1 to 2).

これらのうち非特許文献3には、アルミニウム−窒化アルミニウム(Al−AlN)複合体インゴットを超真空下1000℃で融解し、高速回転による遠心力付加をかけて250℃で傾斜組織を形成しながら凝固させる遠心鋳造法により、Al−AlN傾斜機能材料を作製することが記載されている。 Of these, Non-Patent Document 3 describes that an aluminum-aluminum nitride (Al-AlN) composite ingot is melted at 1000 ° C. under ultravacuum and centrifugal force is applied by high-speed rotation to form a functionally graded structure at 250 ° C. It is described that an Al-AlN functionally graded material is produced by a centrifugal casting method for solidification.

また、非特許文献4には、金属系材料の3次元積層造形技術であるDirected Energy Deposition(DED:指向性エネルギー堆積)を用いて傾斜機能材料を製造することが記載されている。DEDは、噴射ノズルから粉末を供給しつつ、同時にレーザー等の熱源により熱を加える事で溶融結合していく造形技術であり、非特許文献4には、このDED方式の積層造形は、粉末搬送過程で複数種の粉末を混合できるため、粉末の混合比率を変化させながら造形することで、傾斜機能材料を製造できることが記載されている。また、DEDは、必要な部分にだけ材料を供給すればよく、積層厚さは、PBF(Powder Bed Fusion(粉末床溶融結合))方式の積層造形に比べて大きいこと等から、造形速度が速く、大型部材の造形に適していること等が記載されている。 Further, Non-Patent Document 4 describes that a functionally graded material is produced by using Directed Energy Deposition (DED), which is a three-dimensional laminated molding technique for metal-based materials. DED is a molding technology in which powder is supplied from an injection nozzle and at the same time heat is applied by a heat source such as a laser to melt and bond the powder. It is described that functionally graded materials can be produced by modeling while changing the mixing ratio of the powders because a plurality of types of powders can be mixed in the process. Further, in DED, the material needs to be supplied only to the necessary part, and the laminating thickness is larger than that of the PBF (Power Bed Fusion (powder bed melting bond)) laminating molding, so that the molding speed is high. , It is described that it is suitable for molding large members.

特開2010−006054号公報JP-A-2010-006054 特開平01-312015号公報Japanese Unexamined Patent Publication No. 01-312015

傾斜機能材料の開発動向(精密工学会誌、:Vol.83,No.5,2017,P391)Development Trends of Functionally Graded Materials (Journal of Precision Engineering, Vol.83, No.5, 2017, P391) 図解 傾斜機能材料の基礎と応用(コロナ社、目次2章)https://www.coronasha.co.jp/np/isbn/9784339046298/Illustrated Basics and Applications of Functionally Graded Materials (Corona Publishing Co., Ltd., Table of Contents Chapter 2) https://www.coronasha.co.jp/np/isbn/9784339046298/ 放熱性の高い材料を遠心鋳造技術で作製するアルミニウムと窒化アルミニウムによる傾斜機能材料https://corec.meisei-u.ac.jp/archives/1028Functionally graded material made of aluminum and aluminum nitride produced by centrifugal casting technology with high heat dissipation https://corec.meisei-u.ac.jp/archives/1028 金属系材料の3次元積層造形技術の基礎(まてりあ、第56巻第12号(2017))Basics of 3D Laminated Modeling Technology for Metallic Materials (Materia, Vol. 56, No. 12 (2017))

しかし、遠心鋳造法は材料の比重差を利用したものであり、構成材料間の比重差が大きい組合せでしか適用できない。粉末冶金法は構成材料の配合比を段階的に変化させて積層する方法であり、成分組成の連続性に限界がある他、高密度部材とするには焼結後にHIP処理が必要となり製造が複雑になる。溶射法は構成材料の含有率を連続的に変化させて積層することも可能であるが、部材中にポロシティーが多いという問題がある。複合めっき法は、電流密度を連続的に変化させることにより構成元素の含有率をコントロールできるが、変化できる成分組成比率の範囲が狭く、また成膜速度が非常に遅いといった問題がある。また、これらの技術はいずれも、製造可能な部材のサイズ、形状に対する制約が大きいという問題を抱えている。 However, the centrifugal casting method utilizes the difference in the specific densities of the materials, and can be applied only to the combination in which the difference in the specific densities between the constituent materials is large. The powder metallurgy method is a method of laminating by changing the compounding ratio of the constituent materials step by step, and in addition to the limitation of the continuity of the component composition, HIP treatment is required after sintering to make a high-density member, which makes manufacturing. It gets complicated. In the thermal spraying method, it is possible to continuously change the content of the constituent materials for laminating, but there is a problem that there is a large amount of porosity in the members. In the composite plating method, the content of constituent elements can be controlled by continuously changing the current density, but there are problems that the range of the component composition ratio that can be changed is narrow and the film formation rate is very slow. Further, all of these techniques have a problem that there are large restrictions on the size and shape of the member that can be manufactured.

一方、DED方式の積層造形は、非特許文献4に開示されているように、粉末搬送過程で複数種の粉末を混合できるため、構成材料の含有率を連続的に変化させることが可能であり、製造可能な部材のサイズ、形状に対する制約も小さい。 On the other hand, in the DED method laminated modeling, as disclosed in Non-Patent Document 4, since a plurality of types of powder can be mixed in the powder transport process, the content rate of the constituent materials can be continuously changed. , There are few restrictions on the size and shape of the members that can be manufactured.

しかし、非特許文献4には、熱膨張係数を連続的または段階的に変化させた部材については何ら記載されていない。 However, Non-Patent Document 4 does not describe any member whose thermal expansion coefficient is continuously or stepwise changed.

本発明は、熱膨張係数が連続的または段階的に変化する合金部材およびその製造方法を提供することを課題とする。 An object of the present invention is to provide an alloy member whose coefficient of thermal expansion changes continuously or stepwise and a method for producing the same.

本発明者らは、レーザービームまたは電子ビームまたはプラズマを利用した積層造形機によって、Ni粉とFe粉を、一定範囲(Fe:0〜65%、Ni:35〜100%)内において任意の比率で混合して積層造形することにより、熱膨張係数を0〜13ppm/℃の間の任意の範囲で連続的または段階的に変化させた、任意形状、任意サイズのFe−Ni系の合金部材が得られることを見出し、本発明を完成するに至った。 The present inventors use a laminated molding machine using a laser beam, an electron beam, or plasma to produce Ni powder and Fe powder in an arbitrary ratio within a certain range (Fe: 0 to 65%, Ni: 35 to 100%). An arbitrary shape and any size Fe—Ni-based alloy member in which the coefficient of thermal expansion is continuously or stepwise changed in an arbitrary range between 0 and 13 ppm / ° C. We have found that it can be obtained and have completed the present invention.

すなわち、本発明は、以下の(1)〜(8)を提供する。 That is, the present invention provides the following (1) to (8).

(1)Fe−Ni系合金からなり、少なくとも一部が、熱膨張係数が0〜13ppm/℃の間の任意の範囲で連続的または段階的に変化するようにNiの含有量が連続的または段階的に変化していることを特徴とする合金部材。 (1) It is composed of an Fe—Ni alloy, and at least a part of it has a continuous or stepwise Ni content such that the coefficient of thermal expansion changes continuously or stepwise in an arbitrary range between 0 and 13 ppm / ° C. An alloy member characterized by being gradually changed.

(2)前記合金部材は、一方の端部の熱膨張係数が最も低く、他方の端部の熱膨張係数が最も高くなるように、Niの含有量が連続的または段階的に変化していることを特徴とする上記(1)に記載の合金部材。 (2) The Ni content of the alloy member is continuously or stepwise changed so that the coefficient of thermal expansion at one end is the lowest and the coefficient of thermal expansion at the other end is the highest. The alloy member according to (1) above.

(3)前記合金部材は、両端の熱膨張係数が最も低く、中央部の熱膨張係数が最も高くなるように、Niの含有量が連続的または段階的に変化していることを特徴とする上記(1)に記載の合金部材。 (3) The alloy member is characterized in that the Ni content is continuously or stepwise changed so that the coefficient of thermal expansion at both ends is the lowest and the coefficient of thermal expansion at the center is the highest. The alloy member according to (1) above.

(4)前記合金部材は、両端の熱膨張係数が最も高く、中央部の熱膨張係数が最も低くなるように、Niの含有量が連続的または段階的に変化していることを特徴とする上記(1)に記載の合金部材。 (4) The alloy member is characterized in that the Ni content is continuously or stepwise changed so that the coefficient of thermal expansion at both ends is the highest and the coefficient of thermal expansion at the center is the lowest. The alloy member according to (1) above.

(5)前記合金部材は、質量%で、Niが35%以上の範囲で連続的または段階的に変化し、C:0.03%以下、Si:0.2%以下、Mn:0.3%以下、P:0.02%以下、S:0.01%以下を含み、残部がFeおよび不可避不純物からなることを特徴とする上記(1)〜(4)のいずれかに記載の合金部材。 (5) In the alloy member, Ni is continuously or stepwise changed in the range of 35% or more in mass%, C: 0.03% or less, Si: 0.2% or less, Mn: 0.3. The alloy member according to any one of (1) to (4) above, which contains% or less, P: 0.02% or less, S: 0.01% or less, and the balance is composed of Fe and unavoidable impurities. ..

(6)前記合金部材の最も熱膨張係数が低い部分は、Ni:35.0〜36.5%の範囲であり、前記合金部材の最も熱膨張係数が高い部分は、Ni:98.5〜100%の範囲であることを特徴とする上記(5)に記載の合金部材。 (6) The portion of the alloy member having the lowest coefficient of thermal expansion is in the range of Ni: 35.0 to 36.5%, and the portion of the alloy member having the highest coefficient of thermal expansion is Ni: 98.5 to. The alloy member according to (5) above, which is in the range of 100%.

(7)デンドライト2次アーム間隔が30μm以下である凝固組織を有することを特徴とする上記(1)〜(6)のいずれかに記載の合金部材。 (7) The alloy member according to any one of (1) to (6) above, which has a solidified structure having a dendrite secondary arm spacing of 30 μm or less.

(8)上記(1)〜(7)のいずれかの合金部材を構成する合金粉末を供給しつつ、レーザービームまたは電子ビームまたはプラズマにより前記合金粉末を溶融して積層造形し、上記(1)〜(7)のいずれかの合金部材を製造する合金部材の製造方法。 (8) While supplying the alloy powder constituting any of the alloy members (1) to (7) above, the alloy powder is melted by a laser beam, an electron beam, or plasma to form a laminate, and the above (1) A method for manufacturing an alloy member for manufacturing any of the alloy members according to (7).

本発明によれば、熱膨張係数が連続的または段階的に変化する合金部材およびその製造方法が提供される。 According to the present invention, there is provided an alloy member having a coefficient of thermal expansion that changes continuously or stepwise, and a method for producing the same.

通常の鋳造プロセスにより製造したFe-Ni合金のNi量と熱膨張係数の関係を示す図である。It is a figure which shows the relationship between the Ni amount of Fe—Ni alloy produced by a normal casting process, and the coefficient of thermal expansion. 積層造形により製造したFe-Ni合金のNi量と熱膨張係数の関係を、通常の鋳造プロセスにより製造したFe-Ni合金のNi量と熱膨張係数の関係と比較して示す図である。It is a figure which shows the relationship between the Ni amount and the coefficient of thermal expansion of the Fe—Ni alloy manufactured by the laminated molding in comparison with the relationship between the Ni amount and the coefficient of thermal expansion of the Fe—Ni alloy manufactured by a normal casting process. 実施例で用いた積層造形装置の概略構成を示す図である。It is a figure which shows the schematic structure of the laminated modeling apparatus used in an Example. 第1の実施例で製造された試料(造形物)のNi濃度分布を示す図である。It is a figure which shows the Ni concentration distribution of the sample (modeled object) produced in 1st Example. 第2の実施例で設定されたNi濃度構造を概略的に示す図である。It is a figure which shows typically the Ni concentration structure set in 2nd Example.

以下、本発明の実施形態について詳細に説明する。
なお、以下の説明において、特に断わらない限り成分における%表示は質量%、熱膨張係数は10〜40℃の平均熱膨張係数である。
Hereinafter, embodiments of the present invention will be described in detail.
In the following description, unless otherwise specified, the% representation of the components is mass%, and the coefficient of thermal expansion is the average coefficient of thermal expansion of 10 to 40 ° C.

図1は、通常の溶解・鋳造プロセスにより製造したFe-Ni合金のNi含有量と熱膨張係数の関係を示す図である。この図に示すように、NiにFeを合金すると熱膨張係数がFeの添加量に応じて低下し、純Niにおける13ppm/℃から、35.5%Niの1.2ppm/℃に連続的に変化することがわかる。そして、35.5%Niにおいて最低の熱膨張係数を示す。 FIG. 1 is a diagram showing the relationship between the Ni content and the coefficient of thermal expansion of an Fe—Ni alloy produced by a normal melting / casting process. As shown in this figure, when Fe is alloyed with Ni, the coefficient of thermal expansion decreases according to the amount of Fe added, continuously from 13 ppm / ° C in pure Ni to 1.2 ppm / ° C in 35.5% Ni. You can see that it changes. And it shows the lowest coefficient of thermal expansion at 35.5% Ni.

したがって、合金部材としてFe-Ni系合金を用い、Ni含有量を連続的または段階的に変化させることにより、熱膨張係数を連続的または段階的に変化させることができる。しかし、通常の溶解・鋳造プロセスによるFe−Ni合金では1.2ppm/℃が限界であり、ゼロ膨張を実現することはできない。 Therefore, by using a Fe—Ni alloy as the alloy member and changing the Ni content continuously or stepwise, the coefficient of thermal expansion can be changed continuously or stepwise. However, the Fe-Ni alloy produced by a normal melting / casting process has a limit of 1.2 ppm / ° C., and zero expansion cannot be realized.

これに対し、上記組成範囲の合金は、凝固時の冷却速度を大きくして組織を微細化すると、熱膨張係数を小さくすることができ、最小熱膨張係数となるFe−35%Ni組成において熱膨張係数を実質的にゼロにすることができることが判明した。その主な理由は、組織の微細化によってNiのミクロ偏析が軽減するためであると考えられる。このような大きい冷却速度は、後述するような積層造形技術により実現することができる。図2は積層造形により製造したFe-Ni合金のNi量と熱膨張係数の関係を、通常の鋳造プロセスにより製造したFe-Ni合金のNi量と熱膨張係数の関係と比較して示す図である。この図に示すように、積層造形により製造したFe-Ni合金の熱膨張係数は、通常の鋳造プロセスにより製造したFe-Ni合金の熱膨張係数と比較して、全体的に小さくなり、最小熱膨張係数となるFe−35.5%Ni組成において1.2ppm/℃を実質的にゼロと大幅に低下することがわかる。 On the other hand, for alloys in the above composition range, the coefficient of thermal expansion can be reduced by increasing the cooling rate during solidification to make the structure finer, and the alloy has a thermal expansion in the Fe-35% Ni composition, which is the minimum coefficient of thermal expansion. It has been found that the coefficient of expansion can be made substantially zero. It is considered that the main reason is that the microsegregation of Ni is reduced by the miniaturization of the structure. Such a large cooling rate can be realized by a laminated molding technique as described later. FIG. 2 is a diagram showing the relationship between the Ni amount of the Fe-Ni alloy manufactured by laminated molding and the coefficient of thermal expansion in comparison with the relationship between the amount of Ni of the Fe-Ni alloy manufactured by a normal casting process and the coefficient of thermal expansion. be. As shown in this figure, the coefficient of thermal expansion of the Fe-Ni alloy produced by laminated molding is smaller overall than the coefficient of thermal expansion of the Fe-Ni alloy produced by the normal casting process, and the minimum heat. It can be seen that in the Fe-35.5% Ni composition, which is the coefficient of expansion, 1.2 ppm / ° C. is substantially reduced to zero.

したがって、凝固時の冷却速度を大きくすることにより、Fe−Ni系合金で構成され、少なくとも一部が、熱膨張係数が0〜13ppm/℃の間の任意の範囲で連続的または段階的に変化するようにNiの含有量が連続的または段階的に変化している合金部材を実現することができる。熱膨張係数およびNi含有量が段階的に変化する場合、熱膨張係数が異なる部分が2以上存在すればよい。 Therefore, by increasing the cooling rate during solidification, it is composed of Fe—Ni alloy, and at least a part of it changes continuously or stepwise in any range of thermal expansion coefficient between 0 and 13 ppm / ° C. As such, it is possible to realize an alloy member in which the Ni content is continuously or stepwise changed. When the coefficient of thermal expansion and the Ni content change stepwise, it is sufficient that there are two or more portions having different coefficients of thermal expansion.

このとき、合金のデンドライト2次アーム間隔(DAS)を30μm以下にすることが好ましい。このように微細な組織とすることにより、Ni量が最小となり、オーステナイト相の安定性が低下するFe−35%Ni組成において、液体ヘリウム温度(−269℃)でマルテンサイトを生成させないようにすることができる。また、このような微細組織を得るためには、凝固時の冷却速度を5000℃/sec以上とすることが好ましい。 At this time, it is preferable that the dendrite secondary arm spacing (DAS) of the alloy is 30 μm or less. By forming such a fine structure, martensite is not generated at the liquid helium temperature (-269 ° C.) in the Fe-35% Ni composition in which the amount of Ni is minimized and the stability of the austenite phase is lowered. be able to. Further, in order to obtain such a fine structure, it is preferable that the cooling rate at the time of solidification is 5000 ° C./sec or more.

このような合金部材としては、一方の端部の熱膨張係数が最も低く、他方の端部の熱膨張係数が最も高くなるように、Niの含有量が連続的または段階的に変化しているものとすることができる。また、両端の熱膨張係数が最も低く、中央部の熱膨張係数が最も高くなるように、Niの含有量が連続的または段階的に変化しているもの、あるいは、両端の熱膨張係数が最も高く、中央部の熱膨張係数が最も低くなるように、Niの含有量が連続的または段階的に変化しているものとすることもできる。 For such an alloy member, the Ni content is continuously or stepwise changed so that the coefficient of thermal expansion at one end is the lowest and the coefficient of thermal expansion at the other end is the highest. Can be. Further, the Ni content is continuously or stepwise changed so that the coefficient of thermal expansion at both ends is the lowest and the coefficient of thermal expansion at the center is the highest, or the coefficient of thermal expansion at both ends is the highest. It is also possible that the Ni content is continuously or stepwise changed so as to be high and have the lowest coefficient of thermal expansion in the central part.

合金部材を構成するFe−Ni系合金としては、質量%で、Niが35%以上の範囲で連続的または段階的に変化し、C:0.03%以下、Si:0.2%以下、Mn:0.3%以下、P:0.02%以下、S:0.01%以下を含み、残部がFeおよび不可避不純物からなるものを挙げることができる。 As the Fe-Ni alloy constituting the alloy member, in mass%, Ni changes continuously or stepwise in the range of 35% or more, C: 0.03% or less, Si: 0.2% or less, Mn: 0.3% or less, P: 0.02% or less, S: 0.01% or less, and the balance is composed of Fe and unavoidable impurities.

C:0.03%以下、Si:0.2%以下、Mn:0.3%以下、P:0.02%以下、S:0.01%以下としたのは、Fe−35%Ni組成において熱膨張係数を実質的にゼロにするために、これら元素の含有率を制限する必要があるからである。不可避不純物としては、Cr、Moを挙げることができ、その合計量は0.2%以下が好ましい。 C: 0.03% or less, Si: 0.2% or less, Mn: 0.3% or less, P: 0.02% or less, S: 0.01% or less is the Fe-35% Ni composition. This is because it is necessary to limit the content of these elements in order to make the coefficient of thermal expansion substantially zero. Examples of unavoidable impurities include Cr and Mo, and the total amount thereof is preferably 0.2% or less.

Ni含有量を連続的または段階的に変化させるためには、上述したような傾斜機能材料が有効であると考えられるが、上述した傾斜機能材料の製造方法のうち、遠心鋳造法、粉末冶金法、複合めっき法、溶射法では、製造可能な部材のサイズ、形状に対する制約が大きい。 In order to change the Ni content continuously or stepwise, the functionally graded material as described above is considered to be effective. Among the methods for producing the functionally graded material described above, the centrifugal casting method and the powder metallurgy method are used. In the composite plating method and the thermal spraying method, there are many restrictions on the size and shape of the members that can be manufactured.

一方、非特許文献4に記載されたDED方式の積層造形技術を用い、FeとNiを所定の比率に混合した合金粉末を供給しつつ、レーザービームまたは電子ビームまたはプラズマにより合金粉末を溶融して積層造形することにより、部材の任意の位置の熱膨張係数を目的の値することが可能である。また、このような積層造形技術により、従来技術では製造不可能であったサイズ、形状の部材を製造することが可能となる。 On the other hand, using the DED method laminated molding technique described in Non-Patent Document 4, the alloy powder is melted by a laser beam, an electron beam, or plasma while supplying an alloy powder in which Fe and Ni are mixed in a predetermined ratio. By laminating the molding, it is possible to set the desired value of the coefficient of thermal expansion at an arbitrary position of the member. In addition, such a laminated molding technique makes it possible to manufacture a member having a size and shape that could not be manufactured by the conventional technique.

また、この積層造形技術は、レーザービームまたは電子ビームまたはプラズマを熱源とし、そのパラメータを適正に選択することにより、凝固時の冷却速度を5000℃/sec以上と極めて高速にすることができる。このため、組織が微細化され熱膨張係数を小さくすることができ、最小熱膨張係数となるFe−35.5%Ni組成において熱膨張係数を実質的にゼロにすることができる。 Further, in this laminated molding technique, the cooling rate at the time of solidification can be made extremely high as 5000 ° C./sec or more by using a laser beam, an electron beam or plasma as a heat source and appropriately selecting the parameters thereof. Therefore, the structure can be miniaturized and the coefficient of thermal expansion can be reduced, and the coefficient of thermal expansion can be made substantially zero in the Fe-35.5% Ni composition which is the minimum coefficient of thermal expansion.

これにより、熱膨張係数が0〜13ppm/℃の間の任意の範囲で連続的または段階的に変化するようにFeとNiの比率(Ni含有量)が連続的または段階的に変化する合金部材を製造することができる。 As a result, the alloy member in which the ratio of Fe and Ni (Ni content) changes continuously or stepwise so that the coefficient of thermal expansion changes continuously or stepwise in an arbitrary range between 0 and 13 ppm / ° C. Can be manufactured.

このような積層造形は、ステージと、ステージに合金粉末を供給する粉末供給機構と、合金粉末を供給する部分にレーザービームまたは電子ビームまたはプラズマを照射する照射源と、粉末供給機構および照射源を走査する機構とを有する積層造形装置により実施することができる。 Such laminated molding includes a stage, a powder supply mechanism that supplies alloy powder to the stage, an irradiation source that irradiates a laser beam, an electron beam, or plasma to a portion that supplies alloy powder, and a powder supply mechanism and an irradiation source. It can be carried out by a laminated molding apparatus having a scanning mechanism.

合金部材の最も熱膨張係数が低い部分は、Ni:35.0〜36.5%の範囲であり、前記合金部材の最も熱膨張係数が高い部分は、Ni:98.5〜100%の範囲であることが好ましい。これにより、合金部材の熱膨張係数を0〜13ppm/℃の間で変化させることができる。 The portion of the alloy member having the lowest coefficient of thermal expansion is in the range of Ni: 35.0 to 36.5%, and the portion of the alloy member having the highest coefficient of thermal expansion is in the range of Ni: 98.5 to 100%. Is preferable. Thereby, the coefficient of thermal expansion of the alloy member can be changed between 0 and 13 ppm / ° C.

FeとNiを所定の比率に混合した合金粉末を供給しつつ、レーザービームまたは電子ビームまたはプラズマにより前記合金粉末を溶融して積層造形し、一方の端部が熱膨張係数の最も低いNi:35.0〜36.5%の範囲とし、他方の端部が熱膨張係数の最も高い、Ni:98.5〜100%の範囲とすることにより、熱膨張係数が0〜13ppm/℃という極めて広い熱膨張係数の範囲の傾斜機能材料を実現することができる。 While supplying an alloy powder in which Fe and Ni are mixed in a predetermined ratio, the alloy powder is melted by a laser beam, an electron beam, or plasma to form a laminated structure, and one end is Ni: 35 having the lowest coefficient of thermal expansion. By setting the range from .0 to 36.5% and the other end in the range of Ni: 98.5 to 100%, which has the highest coefficient of thermal expansion, the coefficient of thermal expansion is extremely wide, 0 to 13 ppm / ° C. Functionally graded materials in the range of coefficient of thermal expansion can be realized.

以下、本発明の実施例について説明する。
[第1の実施例]
第1の実施例では、30mm×50mm、厚さ20mmのSS400製基板上に、図3に示すレーザー出力1kWのDED方式の積層造形装置によって、1層厚さ0.5mm、ビード幅2mm、肉盛り速度10cm/hで、粒度45〜90μmのガスアトマイズNi粉およびFe粉を用いて、10mm×30mm、厚さ5mmの試料(造形物)を造形した。図3において、1は粉末供給装置、2はトーチ、3は電源、4は冷却水装置、5は制御装置、10は基板、11は試料(造形物)である。粉末供給装置1は、Fe粉末貯留容器21とNi粉末貯留容器22とを有しており、粉末の供給は、2.5g/min.の供給速度で、開始側の組成がNi100%、終了側の組成がNi28%−Fe72%となるように制御装置5をセットして行った。試料(造形物)をワイヤーカットで基板から切り離した後、EPMAを用いて造形開始面から2mmピッチ(一部1mmピッチ)でNiの定量分析を行った。図4および表1に示すように、Niの含有量がほぼ連続的に変化している単一部材が得られたことが確認された。
Hereinafter, examples of the present invention will be described.
[First Example]
In the first embodiment, on a SS400 substrate having a thickness of 30 mm × 50 mm and a thickness of 20 mm, a layer thickness of 0.5 mm, a bead width of 2 mm, and a meat are formed by a DED type laminated molding apparatus having a laser output of 1 kW shown in FIG. A sample (modeled object) having a thickness of 10 mm × 30 mm and a thickness of 5 mm was formed using gas atomized Ni powder and Fe powder having a particle size of 45 to 90 μm at a filling speed of 10 cm 3 / h. In FIG. 3, 1 is a powder supply device, 2 is a torch, 3 is a power supply, 4 is a cooling water device, 5 is a control device, 10 is a substrate, and 11 is a sample (modeled object). The powder supply device 1 has an Fe powder storage container 21 and a Ni powder storage container 22, and the powder supply is 2.5 g / min. The control device 5 was set so that the composition on the start side was 100% Ni and the composition on the end side was 28% -Fe 72% at the supply rate of. After separating the sample (modeled object) from the substrate by wire cutting, quantitative analysis of Ni was performed using EPMA at a pitch of 2 mm (partly 1 mm pitch) from the molding start surface. As shown in FIG. 4 and Table 1, it was confirmed that a single member having a Ni content changing almost continuously was obtained.

Figure 2021116441
Figure 2021116441

[第2の実施例]
第2の実施例では、30mm×170mm、厚さ20mmのSS400製基板上に、図3に示すレーザー出力1kWのDED方式の積層造形装置によって、1層厚さ0.5mm、ビード幅2mm、肉盛り速度10cm/hで、粒度45〜90μmのガスアトマイズNi粉およびFe粉を用いて10mm×145mm、厚さ10mmの試料(造形物)を造形した。粉末供給は、2.5g/min.の供給速度で、開始側の組成がNi100%、終了側の組成がNi30%−Fe70%となるように制御装置5をセットして行った。試料のNi濃度構造は図5に示すように、それぞれ長さ20mmの領域を一定のNi濃度域とし、隣接する長さ5mmの中間層を介して、Ni濃度が段階的に100%、80%、60%、40%、35.5%、30%となるよう設定した。造形物をワイヤーカットで基板から切り離した後、各一定Ni濃度部の中央部からφ6mm×12mmの熱膨張測定試験片を加工し、レーザー干渉式熱膨張計を用いて10〜40℃間の平均熱膨張係数を調べた。熱膨張係数を測定した後、EPMAを用いてNiの定量分析を行った。Ni分析後、試料の組織およびDASを測定し、その後、液体Heに浸漬し、組織変化の有無を観察した。表2に示すように、Ni分析値はほぼ設定濃度であることが確認された。また、熱膨張係数は100%Ni部で13.01ppm/℃、35.5%Ni部で0.02ppm/℃でNi濃度に応じて段階的に熱膨張係数が変化し、最小Ni濃度の35.5%Ni部において実質的にゼロ膨張であることが確認された。また、液体He温度に浸漬しても組織変化しないことが確認された。なお、液体Heに浸漬する前のDASは24μmであった。
[Second Example]
In the second embodiment, on a SS400 substrate having a thickness of 30 mm × 170 mm and a thickness of 20 mm, a DED-type laminated molding apparatus having a laser output of 1 kW shown in FIG. A sample (modeled object) of 10 mm × 145 mm and a thickness of 10 mm was formed using gas atomized Ni powder and Fe powder having a particle size of 45 to 90 μm at a filling speed of 10 cm 3 / h. The powder supply was 2.5 g / min. The control device 5 was set so that the composition on the start side was 100% Ni and the composition on the end side was Ni 30% -Fe 70% at the supply rate of. As shown in FIG. 5, the Ni concentration structure of the sample is such that a region having a length of 20 mm is a constant Ni concentration region, and the Ni concentration is gradually increased to 100% and 80% through an adjacent intermediate layer having a length of 5 mm. , 60%, 40%, 35.5%, and 30%. After separating the modeled object from the substrate by wire cutting, a thermal expansion measurement test piece of φ6 mm × 12 mm is processed from the center of each constant Ni concentration part, and averaged between 10 and 40 ° C. using a laser interference type thermal expansion meter. The coefficient of thermal expansion was investigated. After measuring the coefficient of thermal expansion, quantitative analysis of Ni was performed using EPMA. After Ni analysis, the structure and DAS of the sample were measured, and then the sample was immersed in liquid He and the presence or absence of structure change was observed. As shown in Table 2, it was confirmed that the Ni analysis value was almost the set concentration. The coefficient of thermal expansion is 13.01 ppm / ° C for the 100% Ni part and 0.02 ppm / ° C for the 35.5% Ni part. The coefficient of thermal expansion changes stepwise according to the Ni concentration, and the minimum Ni concentration is 35. It was confirmed that there was substantially zero expansion in the 5.5% Ni part. It was also confirmed that the structure did not change even when immersed in the liquid He temperature. The DAS before immersion in the liquid He was 24 μm.

Figure 2021116441
Figure 2021116441

1 粉体供給装置
2 トーチ
3 電源
4 冷却水装置
5 制御装置
10 基板
11 試料(造形物)
1 Powder supply device 2 Torch 3 Power supply 4 Cooling water device 5 Control device 10 Substrate 11 Sample (modeled object)

Claims (8)

Fe−Ni系合金からなり、少なくとも一部が、熱膨張係数が0〜13ppm/℃の間の任意の範囲で連続的または段階的に変化するようにNiの含有量が連続的または段階的に変化していることを特徴とする合金部材。 Consisting of Fe—Ni based alloys, the Ni content is continuous or gradual, at least in part, so that the coefficient of thermal expansion changes continuously or gradually in any range between 0 and 13 ppm / ° C. An alloy member characterized by being changing. 前記合金部材は、一方の端部の熱膨張係数が最も低く、他方の端部の熱膨張係数が最も高くなるように、Niの含有量が連続的または段階的に変化していることを特徴とする請求項1に記載の合金部材。 The alloy member is characterized in that the Ni content is continuously or stepwise changed so that the coefficient of thermal expansion at one end is the lowest and the coefficient of thermal expansion at the other end is the highest. The alloy member according to claim 1. 前記合金部材は、両端の熱膨張係数が最も低く、中央部の熱膨張係数が最も高くなるように、Niの含有量が連続的または段階的に変化していることを特徴とする請求項1に記載の合金部材。 The alloy member is characterized in that the Ni content is continuously or stepwise changed so that the coefficient of thermal expansion at both ends is the lowest and the coefficient of thermal expansion at the center is the highest. The alloy member described in. 前記合金部材は、両端の熱膨張係数が最も高く、中央部の熱膨張係数が最も低くなるように、Niの含有量が連続的または段階的に変化していることを特徴とする請求項1に記載の合金部材。 The alloy member is characterized in that the Ni content is continuously or stepwise changed so that the coefficient of thermal expansion at both ends is the highest and the coefficient of thermal expansion at the center is the lowest. The alloy member described in. 前記合金部材は、質量%で、Ni:35%以上の範囲で連続的または段階的に変化し、C:0.03%以下、Si:0.2%以下、Mn:0.3%以下、P:0.02%以下、S:0.01%以下を含み、残部がFeおよび不可避不純物からなることを特徴とする請求項1から請求項4のいずれか一項に記載の合金部材。 The alloy member changes continuously or stepwise in the range of Ni: 35% or more in mass%, C: 0.03% or less, Si: 0.2% or less, Mn: 0.3% or less, The alloy member according to any one of claims 1 to 4, wherein P: 0.02% or less, S: 0.01% or less, and the balance is composed of Fe and unavoidable impurities. 前記合金部材の最も熱膨張係数が低い部分は、Ni:35.0〜36.5%の範囲であり、前記合金部材の最も熱膨張係数が高い部分は、Ni:98.5〜100%の範囲であることを特徴とする請求項5に記載の合金部材。 The portion of the alloy member having the lowest coefficient of thermal expansion is in the range of Ni: 35.0 to 36.5%, and the portion of the alloy member having the highest coefficient of thermal expansion is Ni: 98.5 to 100%. The alloy member according to claim 5, wherein the alloy member is in a range. デンドライト2次アーム間隔が30μm以下である凝固組織を有することを特徴とする請求項1から請求項6のいずれか一項に記載の合金部材。 The alloy member according to any one of claims 1 to 6, wherein the dendrite has a solidified structure having a secondary arm spacing of 30 μm or less. 請求項1から請求項7のいずれか一項の合金部材を構成する合金粉末を供給しつつ、レーザービームまたは電子ビームまたはプラズマにより前記合金粉末を溶融して積層造形し、請求項1から請求項7のいずれか一項の合金部材を製造することを特徴とする合金部材の製造方法。 While supplying the alloy powder constituting the alloy member according to any one of claims 1 to 7, the alloy powder is melted by a laser beam, an electron beam, or plasma to form a laminate, and the alloy powder is laminated. A method for manufacturing an alloy member, which comprises manufacturing the alloy member according to any one of 7.
JP2020009099A 2020-01-23 2020-01-23 Alloy member and method for producing the same Pending JP2021116441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020009099A JP2021116441A (en) 2020-01-23 2020-01-23 Alloy member and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020009099A JP2021116441A (en) 2020-01-23 2020-01-23 Alloy member and method for producing the same

Publications (1)

Publication Number Publication Date
JP2021116441A true JP2021116441A (en) 2021-08-10

Family

ID=77174147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020009099A Pending JP2021116441A (en) 2020-01-23 2020-01-23 Alloy member and method for producing the same

Country Status (1)

Country Link
JP (1) JP2021116441A (en)

Similar Documents

Publication Publication Date Title
CN107971489B (en) Copper alloy powder, method for producing layered product, and layered product
CN114134427B (en) Stainless steel powder for molding
JP6388381B2 (en) Alloy structure
JP6393885B2 (en) Method for producing alloy powder
JP6459272B2 (en) Alloy structure
US20210156005A1 (en) Process for manufacturing an aluminum alloy part
JP6716410B2 (en) Copper alloy powder, manufacturing method of layered product and layered product
JP6388277B2 (en) Method for manufacturing alloy structure
JP6455699B2 (en) Method for manufacturing alloy structure
JP6455700B2 (en) Method for manufacturing alloy structure
WO2019171689A1 (en) Production method and production device for three-dimensional structure
WO2019044093A1 (en) Low thermal expansion alloy having excellent low-temperature stability, method for manufacturing same, low thermal expansion alloy powder, and lamination-molded member
JP2016029193A (en) Alloy structure
WO2016013494A1 (en) Alloy powder used in fused deposition modeling, and production method of said alloy powder
Jinoop et al. Mechanical and microstructural characterisation on direct metal laser sintered Inconel 718
KR20220085777A (en) Printable Powder Material of FeCrAl for Additive Manufacturing and Additive Manufacturing Objects and Their Uses
Kulkarni Additive manufacturing of nickel based superalloy
WO2020080062A1 (en) Cured layer lamination method and production method for laminated molded article
JP6866964B1 (en) Products with Ni-based alloys, Ni-based alloy powders, Ni-based alloy members, and Ni-based alloy members.
JP2021116441A (en) Alloy member and method for producing the same
JP6432822B2 (en) Alloy powder used for melt lamination molding
JP7169255B2 (en) Laminated structure manufacturing method
JP6388278B2 (en) Alloy powder used for melt lamination molding
JP6393884B2 (en) Method for producing alloy powder
WO2016013493A1 (en) Production method of casting alloy