JP2021112932A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2021112932A
JP2021112932A JP2020005263A JP2020005263A JP2021112932A JP 2021112932 A JP2021112932 A JP 2021112932A JP 2020005263 A JP2020005263 A JP 2020005263A JP 2020005263 A JP2020005263 A JP 2020005263A JP 2021112932 A JP2021112932 A JP 2021112932A
Authority
JP
Japan
Prior art keywords
transponder
tire
layer
radial direction
bead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020005263A
Other languages
Japanese (ja)
Other versions
JP7469598B2 (en
Inventor
祐輝 長橋
Yuki Nagahashi
祐輝 長橋
雅公 成瀬
Masakimi Naruse
雅公 成瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2020005263A priority Critical patent/JP7469598B2/en
Publication of JP2021112932A publication Critical patent/JP2021112932A/en
Application granted granted Critical
Publication of JP7469598B2 publication Critical patent/JP7469598B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

To provide a pneumatic tire, the durability of which can be improved while the communication property and flaw resistance of a transponder are improved.SOLUTION: An inner surface of a tire is provided with a transponder 20 that is extended along a circumferential direction of the tire. The transponder 20 is arranged between a position P1 15 mm away from an upper end 5e of a bead core 5 toward the radial outside of the tire and a position P2 5 mm away from a terminal 7e of a belt layer 7 toward the radial inside of the tire.SELECTED DRAWING: Figure 2

Description

本発明は、トランスポンダが配置された空気入りタイヤに関し、更に詳しくは、トランスポンダの通信性及び耐外傷性を改善しながら、タイヤの耐久性を改善することを可能にした空気入りタイヤに関する。 The present invention relates to a pneumatic tire on which a transponder is arranged, and more particularly to a pneumatic tire capable of improving the durability of the tire while improving the communication property and the trauma resistance of the transponder.

空気入りタイヤにおいて、RFIDタグ(トランスポンダ)をタイヤ内に埋設することが提案されている(例えば、特許文献1参照)。トランスポンダをタイヤ内に埋設する場合、例えば、トランスポンダをカーカス層とサイドウォール部のゴム層との間やカーカス層とインナーライナー層との間に配置すると、タイヤ接地時の応力集中の影響によりタイヤの耐久性が悪化するという問題がある。また、トランスポンダを金属製のタイヤ構成部材(例えば、ビードコア等)の近くに配置すると、そのタイヤ構成部材とトランスポンダとが干渉して、トランスポンダの通信性が悪化するという問題がある。更に、トランスポンダをカーカス層の巻き上げ部のタイヤ幅方向外側に配置すると、サイドウォール部の損傷に伴ってトランスポンダが損傷することがある。 In a pneumatic tire, it has been proposed to embed an RFID tag (transponder) in the tire (see, for example, Patent Document 1). When the transponder is embedded in the tire, for example, if the transponder is placed between the carcass layer and the rubber layer of the sidewall or between the carcass layer and the inner liner layer, the effect of stress concentration when the tire touches the ground causes the tire to have a transponder. There is a problem that durability deteriorates. Further, if the transponder is arranged near a metal tire component (for example, a bead core or the like), there is a problem that the tire component and the transponder interfere with each other and the communication property of the transponder deteriorates. Further, if the transponder is arranged outside the winding portion of the carcass layer in the tire width direction, the transponder may be damaged due to the damage of the sidewall portion.

特開平7−137510号公報Japanese Unexamined Patent Publication No. 7-137510

本発明の目的は、トランスポンダの通信性及び耐外傷性を改善しながら、タイヤの耐久性を改善することを可能にした空気入りタイヤを提供することにある。 An object of the present invention is to provide a pneumatic tire capable of improving the durability of a tire while improving the communication property and the trauma resistance of the transponder.

上記目的を達成するため本発明の空気入りタイヤは、タイヤ周方向に延在して環状をなすトレッド部と、該トレッド部の両側に配置された一対のサイドウォール部と、これらサイドウォール部のタイヤ径方向内側に配置された一対のビード部とを備え、各ビード部のビードコアの外周上にビードフィラーが配置され、前記一対のビード部間に少なくとも1層のカーカス層が装架され、前記トレッド部における前記カーカス層の外周側に複数層のベルト層が配置された空気入りタイヤにおいて、タイヤ内面にタイヤ周方向に沿って延在するトランスポンダが設けられ、該トランスポンダが前記ビードコアの上端からタイヤ径方向外側に15mmの位置と前記ベルト層の端末からタイヤ径方向内側に5mmの位置との間に配置されていることを特徴とするものである。 In order to achieve the above object, the pneumatic tire of the present invention includes a tread portion extending in the tire circumferential direction to form an annular shape, a pair of sidewall portions arranged on both sides of the tread portion, and these sidewall portions. A pair of bead portions arranged inside in the tire radial direction are provided, a bead filler is arranged on the outer periphery of the bead core of each bead portion, and at least one carcass layer is mounted between the pair of bead portions. In a pneumatic tire in which a plurality of belt layers are arranged on the outer peripheral side of the carcass layer in the tread portion, a transponder extending along the tire circumferential direction is provided on the inner surface of the tire, and the transponder extends from the upper end of the bead core to the tire. It is characterized in that it is arranged between a position of 15 mm on the outer side in the radial direction and a position of 5 mm on the inner side in the radial direction of the tire from the end of the belt layer.

本発明では、タイヤ内面にタイヤ周方向に沿って延在するトランスポンダが設けられ、トランスポンダはビードコアの上端からタイヤ径方向外側に15mmの位置とベルト層の端末からタイヤ径方向内側に5mmの位置との間に配置されているので、トランスポンダがタイヤ接地時における応力集中の少ない部位にあり、タイヤ耐久性への悪影響を低減できるため、タイヤの耐久性を改善することができる。また、金属干渉が生じにくく、トランスポンダの通信性を確保することができる。更に、サイドウォール部の損傷に起因するトランスポンダの損傷を防ぐことができる。 In the present invention, a transponder extending along the tire circumferential direction is provided on the inner surface of the tire, and the transponder is located 15 mm outward in the tire radial direction from the upper end of the bead core and 5 mm inward in the tire radial direction from the terminal of the belt layer. Since the transponder is located between the tires, the transponder is located in a portion where the stress concentration is small when the tire touches the ground, and the adverse effect on the tire durability can be reduced, so that the tire durability can be improved. In addition, metal interference is unlikely to occur, and the communicability of the transponder can be ensured. Further, damage to the transponder due to damage to the sidewall portion can be prevented.

本発明の空気入りタイヤにおいて、トランスポンダはビードフィラーの上端からタイヤ径方向外側に5mmの位置とベルト層の端末からタイヤ径方向内側に5mmの位置との間に配置されていることが好ましい。これにより、トランスポンダはゴムゲージが薄いフレックスゾーンに配置されるが、この領域はトランスポンダの通信時における電波の減衰が少ないため、トランスポンダの通信性を効果的に改善することができる。また、リム組み時のインナーライナー層の損傷に起因するトランスポンダの損傷を防ぐことができる。 In the pneumatic tire of the present invention, it is preferable that the transponder is arranged between the position 5 mm outside the tire radial direction from the upper end of the bead filler and the position 5 mm inside the tire radial direction from the end of the belt layer. As a result, the transponder is arranged in the flex zone where the rubber gauge is thin, but since the radio wave is less attenuated during the communication of the transponder in this region, the communication property of the transponder can be effectively improved. In addition, damage to the transponder due to damage to the inner liner layer during rim assembly can be prevented.

トランスポンダの中心はタイヤ構成部材のスプライス部からタイヤ周方向に10mm以上離間して配置されていることが好ましい。これにより、タイヤの耐久性を効果的に改善することができる。 It is preferable that the center of the transponder is arranged at a distance of 10 mm or more in the tire circumferential direction from the splice portion of the tire component member. Thereby, the durability of the tire can be effectively improved.

トランスポンダの断面中心とタイヤ内面との距離は1mm以上であることが好ましい。これにより、タイヤの耐久性を効果的に改善することができると共に、リム組み時のインナーライナー層の損傷に起因するトランスポンダの損傷を防ぐことができる。 The distance between the center of the cross section of the transponder and the inner surface of the tire is preferably 1 mm or more. As a result, the durability of the tire can be effectively improved, and damage to the transponder due to damage to the inner liner layer during rim assembly can be prevented.

トランスポンダは被覆層により被覆され、被覆層の比誘電率は7以下であることが好ましい。これにより、トランスポンダが被覆層により保護され、トランスポンダの耐久性を改善することができると共に、トランスポンダの電波透過性を確保し、トランスポンダの通信性を効果的に改善することができる。 The transponder is coated with a coating layer, and the relative permittivity of the coating layer is preferably 7 or less. As a result, the transponder is protected by the coating layer, the durability of the transponder can be improved, the radio wave transmission of the transponder can be ensured, and the communication property of the transponder can be effectively improved.

トランスポンダは被覆層により被覆され、被覆層の厚さは0.5mm〜3.0mmであることが好ましい。これにより、トランスポンダの通信性を効果的に改善することができる。 The transponder is coated with a coating layer, and the thickness of the coating layer is preferably 0.5 mm to 3.0 mm. Thereby, the communication property of the transponder can be effectively improved.

トランスポンダはデータを記憶するIC基板とデータを送受信するアンテナとを有し、アンテナは螺旋状であることが好ましい。これにより、走行時におけるタイヤの変形に対して追従することができ、トランスポンダの耐久性を改善することができる。 The transponder has an IC board for storing data and an antenna for transmitting and receiving data, and the antenna is preferably spiral. As a result, it is possible to follow the deformation of the tire during running, and it is possible to improve the durability of the transponder.

本発明の実施形態からなる空気入りタイヤを示す子午線半断面図である。It is a meridian semi-cross-sectional view which shows the pneumatic tire which comprises the embodiment of this invention. 図1の空気入りタイヤを概略的に示す子午線断面図である。FIG. 5 is a cross-sectional view taken along the meridian line schematically showing the pneumatic tire of FIG. 図1の空気入りタイヤを概略的に示す赤道線断面図である。FIG. 5 is a cross-sectional view taken along the equator line schematically showing the pneumatic tire of FIG. 図1の空気入りタイヤに配置されたトランスポンダを拡大して示す断面図である。FIG. 5 is an enlarged cross-sectional view showing a transponder arranged on the pneumatic tire of FIG. 1. (a),(b)は本発明に係る空気入りタイヤに配置可能なトランスポンダを示す斜視図である。(A) and (b) are perspective views which show the transponder which can be arranged in the pneumatic tire which concerns on this invention. 試験タイヤにおけるトランスポンダのタイヤ径方向位置を示す説明図である。It is explanatory drawing which shows the tire radial position of a transponder in a test tire.

以下、本発明の構成について添付の図面を参照しながら詳細に説明する。図1〜4は本発明の実施形態からなる空気入りタイヤを示すものである。 Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings. FIGS. 1 to 4 show a pneumatic tire according to an embodiment of the present invention.

図1に示すように、本実施形態の空気入りタイヤは、タイヤ周方向に延在して環状をなすトレッド部1と、トレッド部1の両側に配置された一対のサイドウォール部2と、これらサイドウォール部2のタイヤ径方向内側に配置された一対のビード部3とを備えている。 As shown in FIG. 1, the pneumatic tire of the present embodiment includes a tread portion 1 extending in the tire circumferential direction to form an annular shape, a pair of sidewall portions 2 arranged on both sides of the tread portion 1, and these. It includes a pair of bead portions 3 arranged inside the sidewall portion 2 in the tire radial direction.

一対のビード部3間には、複数本のカーカスコードをラジアル方向に配列してなる少なくとも1層(図1では1層)のカーカス層4が装架されている。カーカス層4を構成するカーカスコードとしては、ナイロンやポリエステル等の有機繊維コードが好ましく使用される。各ビード部3には環状のビードコア5が埋設されており、そのビードコア5の外周上に断面三角形状のゴム組成物からなるビードフィラー6が配置されている。 At least one layer (one layer in FIG. 1) of the carcass layer 4 formed by arranging a plurality of carcass cords in the radial direction is mounted between the pair of bead portions 3. As the carcass cord constituting the carcass layer 4, an organic fiber cord such as nylon or polyester is preferably used. An annular bead core 5 is embedded in each bead portion 3, and a bead filler 6 made of a rubber composition having a triangular cross section is arranged on the outer periphery of the bead core 5.

一方、トレッド部1におけるカーカス層4のタイヤ外周側には、複数層(図1では2層)のベルト層7が埋設されている。ベルト層7は、タイヤ周方向に対して傾斜する複数本の補強コードを含み、かつ層間で補強コードが互いに交差するように配置されている。ベルト層7において、補強コードのタイヤ周方向に対する傾斜角度は例えば10°〜40°の範囲に設定されている。ベルト層7の補強コードとしては、スチールコードが好ましく使用される。 On the other hand, a plurality of layers (two layers in FIG. 1) of belt layers 7 are embedded on the outer peripheral side of the tire of the carcass layer 4 in the tread portion 1. The belt layer 7 includes a plurality of reinforcing cords that are inclined with respect to the tire circumferential direction, and the reinforcing cords are arranged so as to intersect each other between the layers. In the belt layer 7, the inclination angle of the reinforcing cord with respect to the tire circumferential direction is set in the range of, for example, 10 ° to 40 °. As the reinforcing cord of the belt layer 7, a steel cord is preferably used.

ベルト層7のタイヤ外周側には、高速耐久性の向上を目的として、補強コードをタイヤ周方向に対して例えば5°以下の角度で配列してなる少なくとも1層(図1では2層)のベルトカバー層8が配置されている。図1において、タイヤ径方向内側に位置するベルトカバー層8はベルト層7の全幅を覆うフルカバーを構成し、タイヤ径方向外側に位置するベルトカバー層8はベルト層7の端部のみを覆うエッジカバー層を構成している。ベルトカバー層8の補強コードとしては、ナイロンやアラミド等の有機繊維コードが好ましく使用される。 On the outer peripheral side of the tire of the belt layer 7, at least one layer (two layers in FIG. 1) in which reinforcing cords are arranged at an angle of, for example, 5 ° or less with respect to the tire peripheral direction for the purpose of improving high-speed durability. The belt cover layer 8 is arranged. In FIG. 1, the belt cover layer 8 located inside the tire radial direction constitutes a full cover covering the entire width of the belt layer 7, and the belt cover layer 8 located outside the tire radial direction covers only the end portion of the belt layer 7. It constitutes an edge cover layer. As the reinforcing cord of the belt cover layer 8, an organic fiber cord such as nylon or aramid is preferably used.

上記空気入りタイヤにおいて、カーカス層4の両端末4eは、各ビードコア5の廻りにタイヤ内側から外側へ折り返され、ビードコア5及びビードフィラー6を包み込むように配置されている。カーカス層4は、トレッド部1から各サイドウォール部2を経て各ビード部3に至る部分である本体部4Aと、各ビード部3においてビードコア5の廻りに巻き上げられて各サイドウォール部2側に向かって延在する部分である巻き上げ部4Bとを含む。 In the pneumatic tire, both terminals 4e of the carcass layer 4 are arranged so as to be folded back from the inside to the outside of each bead core 5 and to wrap the bead core 5 and the bead filler 6. The carcass layer 4 is wound around the bead core 5 in each bead portion 3 and the main body portion 4A which is a portion extending from the tread portion 1 through each sidewall portion 2 to each bead portion 3, and is wound up on each sidewall portion 2 side. It includes a winding portion 4B which is a portion extending toward the direction.

また、カーカス層4に沿ってインナーライナー層9が配置されている。即ち、インナーライナー層9はタイヤ内面を成している。トレッド部1にはキャップトレッドゴム層11が配置され、サイドウォール部2にはサイドウォールゴム層12が配置され、ビード部3にはリムクッションゴム層13が配置されている。サイドウォール部2でカーカス層4の外側に配置されたゴム層10は、サイドウォールゴム層12とリムクッションゴム層13とを含む。 Further, the inner liner layer 9 is arranged along the carcass layer 4. That is, the inner liner layer 9 forms the inner surface of the tire. A cap tread rubber layer 11 is arranged on the tread portion 1, a sidewall rubber layer 12 is arranged on the sidewall portion 2, and a rim cushion rubber layer 13 is arranged on the bead portion 3. The rubber layer 10 arranged on the outside of the carcass layer 4 in the sidewall portion 2 includes the sidewall rubber layer 12 and the rim cushion rubber layer 13.

また、上記空気入りタイヤにおいて、タイヤ内面、即ち、インナーライナー層9の内側にはトランスポンダ20が配置されている。トランスポンダ20は、タイヤ成形時において例えばゴム層を介してタイヤ内面に加硫接着され、タイヤ内面(インナーライナー層9)に対して一体的に取り付けられる。また、トランスポンダ20は、タイヤ径方向の配置領域として、ビードコア5の上端5e(タイヤ径方向外側の端部)からタイヤ径方向外側に15mmの位置P1と、ベルト層7の端末7eからタイヤ径方向内側に5mmの位置P2との間に配置されている。即ち、トランスポンダ20は、図2に示す領域S1に配置されている。また、トランスポンダ20はタイヤ周方向に沿って延在している。トランスポンダ20は、タイヤ周方向に対して−10°〜10°の範囲で傾斜するように配置しても良い。 Further, in the pneumatic tire, the transponder 20 is arranged on the inner surface of the tire, that is, inside the inner liner layer 9. At the time of tire molding, the transponder 20 is vulcanized and adhered to the inner surface of the tire via, for example, a rubber layer, and is integrally attached to the inner surface of the tire (inner liner layer 9). Further, the transponder 20 has a position P1 15 mm outward in the tire radial direction from the upper end 5e (outer end in the tire radial direction) of the bead core 5 and a position P1 in the tire radial direction from the terminal 7e of the belt layer 7 as an arrangement area in the tire radial direction. It is arranged inside at a position P2 of 5 mm. That is, the transponder 20 is arranged in the region S1 shown in FIG. Further, the transponder 20 extends along the tire circumferential direction. The transponder 20 may be arranged so as to be inclined in a range of −10 ° to 10 ° with respect to the tire circumferential direction.

トランスポンダ20として、例えば、RFID(Radio Frequency Identification)タグを用いることができる。トランスポンダ20は、図5(a),(b)に示すにように、データを記憶するIC基板21とデータを非接触で送受信するアンテナ22とを有している。このようなトランスポンダ20を用いることで、適時にタイヤに関する情報を書き込み又は読み出し、タイヤを効率的に管理することができる。なお、RFIDとは、アンテナ及びコントローラを有するリーダライタと、IC基板及びアンテナを有するIDタグから構成され、無線方式によりデータを交信可能な自動認識技術である。 As the transponder 20, for example, an RFID (Radio Frequency Identification) tag can be used. As shown in FIGS. 5A and 5B, the transponder 20 has an IC substrate 21 for storing data and an antenna 22 for transmitting and receiving data in a non-contact manner. By using such a transponder 20, it is possible to write or read information about the tire in a timely manner and efficiently manage the tire. RFID is an automatic recognition technology that is composed of a reader / writer having an antenna and a controller, an IC board, and an ID tag having an antenna, and can communicate data wirelessly.

トランスポンダ20の全体の形状は、特に限定されるものではなく、例えば、図5(a),(b)に示すにように柱状や板状のものを用いることができる。特に、図5(a)に示す柱状のトランスポンダ20を用いた場合、タイヤの各方向の変形に対して追従することができるので好適である。この場合、トランスポンダ20のアンテナ22は、IC基板21の両端部の各々から突出し、螺旋状を呈している。これにより、走行時におけるタイヤの変形に対して追従することができ、トランスポンダ20の耐久性を改善することができる。更に、アンテナ22の長さを適宜変更することにより、通信性を確保することができる。 The overall shape of the transponder 20 is not particularly limited, and for example, a columnar or plate-shaped transponder can be used as shown in FIGS. 5A and 5B. In particular, when the columnar transponder 20 shown in FIG. 5A is used, it is preferable because it can follow the deformation of the tire in each direction. In this case, the transponder 20's antenna 22 protrudes from each of both ends of the IC substrate 21 and has a spiral shape. As a result, it is possible to follow the deformation of the tire during traveling, and it is possible to improve the durability of the transponder 20. Further, communication can be ensured by appropriately changing the length of the antenna 22.

上述した空気入りタイヤでは、タイヤ内面にタイヤ周方向に沿って延在するトランスポンダ20が設けられ、トランスポンダ20はビードコア5の上端5eからタイヤ径方向外側に15mmの位置P1とベルト層7の端末7eからタイヤ径方向内側に5mmの位置P2との間に配置されているので、トランスポンダ20がタイヤ接地時における応力集中の少ない部位にあり、タイヤ耐久性への悪影響を低減できるため、タイヤの耐久性を改善することができる。また、金属干渉が生じにくく、トランスポンダ20の通信性を確保することができる。更に、サイドウォール部2の損傷に起因するトランスポンダ20の損傷を防ぐことができる。 In the above-mentioned pneumatic tire, a transponder 20 extending along the tire circumferential direction is provided on the inner surface of the tire, and the transponder 20 is located at a position P1 15 mm outward in the tire radial direction from the upper end 5e of the bead core 5 and the terminal 7e of the belt layer 7. Since the transponder 20 is located between the tire and the position P2 5 mm inward in the radial direction of the tire, the transponder 20 is located in a portion where stress concentration is low when the tire touches the ground, and the adverse effect on the tire durability can be reduced. Can be improved. In addition, metal interference is unlikely to occur, and the communicability of the transponder 20 can be ensured. Further, damage to the transponder 20 due to damage to the sidewall portion 2 can be prevented.

ここで、トランスポンダ20が位置P1よりタイヤ径方向内側に配置されていると、リムフランジとの金属干渉が発生し、トランスポンダ20の通信性が低下する傾向がある。また、トランスポンダ20が位置P2よりタイヤ径方向外側に配置されていると、ベルト層7との金属干渉が発生し、トランスポンダ20の通信性が低下する傾向がある。 Here, if the transponder 20 is arranged inside the tire radial direction from the position P1, metal interference with the rim flange occurs, and the communication property of the transponder 20 tends to deteriorate. Further, when the transponder 20 is arranged outside the position P2 in the tire radial direction, metal interference with the belt layer 7 occurs, and the communication property of the transponder 20 tends to deteriorate.

上記空気入りタイヤにおいて、トランスポンダ20は、ビードフィラー6の上端6eからタイヤ径方向外側に5mmの位置P3と、ベルト層7の端末7eからタイヤ径方向内側に5mmの位置P2との間に配置されていると良い。即ち、トランスポンダ20は、図2に示す領域S2に配置されていると良い。領域S2はゴムゲージが薄いフレックスゾーンであるが、トランスポンダ20が領域S2に配置された場合、トランスポンダ20の通信時における電波の減衰が少なくなり、トランスポンダ20の通信性を効果的に改善することができる。また、リム組み時のインナーライナー層9の損傷に起因するトランスポンダ20の損傷を防ぐことができる。 In the pneumatic tire, the transponder 20 is arranged between the position P3 5 mm outside the tire radial direction from the upper end 6e of the bead filler 6 and the position P2 5 mm inside the tire radial direction from the terminal 7e of the belt layer 7. It is good to have it. That is, it is preferable that the transponder 20 is arranged in the region S2 shown in FIG. The area S2 is a flex zone having a thin rubber gauge, but when the transponder 20 is arranged in the area S2, the attenuation of radio waves during communication of the transponder 20 is reduced, and the communication property of the transponder 20 can be effectively improved. .. Further, it is possible to prevent damage to the transponder 20 due to damage to the inner liner layer 9 when assembling the rim.

図3に示すように、タイヤ周上には、タイヤ構成部材の端部同士が重ねられてなる複数のスプライス部がある。図3には各スプライス部のタイヤ周方向の位置Qが示されている。トランスポンダ20の中心は、タイヤ構成部材のスプライス部からタイヤ周方向に10mm以上離間して配置されていることが好ましい。即ち、トランスポンダ20は、図3に示す領域S3に配置されていると良い。具体的には、トランスポンダ20を構成するIC基板21が位置Qからタイヤ周方向に10mm以上離間していると良い。更には、アンテナ22を含むトランスポンダ20の全体が位置Qからタイヤ周方向に10mm以上離間していることがより好ましく、被覆ゴムにより被覆された状態のトランスポンダ20の全体が位置Qからタイヤ周方向に10mm以上離間していることが最も好ましい。また、トランスポンダ20と離間して配置するタイヤ構成部材として、トランスポンダ20と隣接して配置されるインナーライナー層9又はカーカス層4であることが好ましい。このようにタイヤ構成部材のスプライス部から離間させてトランスポンダ20を配置することで、タイヤの耐久性を効果的に改善することができる。 As shown in FIG. 3, there are a plurality of splice portions on the tire circumference in which the ends of the tire constituent members are overlapped with each other. FIG. 3 shows the position Q of each splice portion in the tire circumferential direction. The center of the transponder 20 is preferably arranged at a distance of 10 mm or more in the tire circumferential direction from the splice portion of the tire component member. That is, it is preferable that the transponder 20 is arranged in the region S3 shown in FIG. Specifically, it is preferable that the IC substrate 21 constituting the transponder 20 is separated from the position Q by 10 mm or more in the tire circumferential direction. Further, it is more preferable that the entire transponder 20 including the antenna 22 is separated from the position Q in the tire circumferential direction by 10 mm or more, and the entire transponder 20 in the state of being covered with the covering rubber is in the tire circumferential direction from the position Q. Most preferably, they are separated by 10 mm or more. Further, as the tire constituent member arranged apart from the transponder 20, it is preferable that the inner liner layer 9 or the carcass layer 4 is arranged adjacent to the transponder 20. By arranging the transponder 20 away from the splice portion of the tire constituent member in this way, the durability of the tire can be effectively improved.

なお、図3の実施形態では、各タイヤ構成部材のスプライス部のタイヤ周方向の位置Qが等間隔に配置された例を示したが、これに限定されるものではない。タイヤ周方向の位置Qは任意の位置に設定することができ、いずれの場合であってもトランスポンダ20は各タイヤ構成部材のスプライス部からタイヤ周方向に10mm以上離間するように配置される。 In the embodiment of FIG. 3, an example is shown in which the positions Q of the splice portions of the tire constituent members in the tire circumferential direction are arranged at equal intervals, but the present invention is not limited to this. The position Q in the tire circumferential direction can be set to an arbitrary position, and in any case, the transponder 20 is arranged so as to be separated from the splice portion of each tire component by 10 mm or more in the tire circumferential direction.

図4に示すように、トランスポンダ20の断面中心とタイヤ内面との距離dは1mm以上であることが好ましい。このようにトランスポンダ20とタイヤ内面とを離間させることで、タイヤの耐久性を効果的に改善することができると共に、リム組み時のインナーライナー層9の損傷に起因するトランスポンダ20の損傷を防ぐことができる。 As shown in FIG. 4, the distance d between the cross-sectional center of the transponder 20 and the inner surface of the tire is preferably 1 mm or more. By separating the transponder 20 from the inner surface of the tire in this way, the durability of the tire can be effectively improved, and damage to the transponder 20 due to damage to the inner liner layer 9 during rim assembly can be prevented. Can be done.

また、トランスポンダ20は被覆層23により被覆されていると良い。この被覆層23は、トランスポンダ20の表裏両面を挟むようにしてトランスポンダ20の全体を被覆する。被覆層23は、サイドウォールゴム層12やリムクッションゴム層13等のタイヤ構成部材を構成するゴムと同じ物性を有するゴムで構成しても良く、異なる物性を有するゴムで構成しても良い。このようにトランスポンダ20が被覆層23により保護されていることで、トランスポンダ20の耐久性を改善することができる。 Further, the transponder 20 is preferably covered with a coating layer 23. The coating layer 23 covers the entire transponder 20 so as to sandwich both the front and back surfaces of the transponder 20. The coating layer 23 may be made of rubber having the same physical characteristics as the rubber constituting the tire constituent members such as the sidewall rubber layer 12 and the rim cushion rubber layer 13, or may be made of rubber having different physical characteristics. Since the transponder 20 is protected by the coating layer 23 in this way, the durability of the transponder 20 can be improved.

上記空気入りタイヤにおいて、トランスポンダ20が被覆層23により被覆された状態で、被覆層23の比誘電率は7以下であることが好ましく、2〜5であることがより好ましい。このように被覆層23の比誘電率を適度に設定することで、トランスポンダ20が電波を放射する際の電波透過性を確保し、トランスポンダ20の通信性を効果的に改善することができる。なお、被覆層23を構成するゴムの比誘電率は、常温において860MHz〜960MHzの比誘電率である。ここで、常温はJIS規格の標準状態に準拠し、23±2℃、60%±5%RHである。当該ゴムは23℃、60%RHで24時間処理された後に比誘電率が計測される。上述した860MHz〜960MHzの範囲は、現状のUHF帯のRFIDの割り当て周波数に該当するが、上記割り当て周波数が変更された場合、その割り当て周波数の範囲の比誘電率を上記の如く規定すれば良い。 In the pneumatic tire, the relative permittivity of the coating layer 23 is preferably 7 or less, and more preferably 2 to 5 in a state where the transponder 20 is covered with the coating layer 23. By appropriately setting the relative permittivity of the coating layer 23 in this way, it is possible to secure radio wave transmission when the transponder 20 radiates radio waves and effectively improve the communication property of the transponder 20. The relative permittivity of the rubber constituting the coating layer 23 is a relative permittivity of 860 MHz to 960 MHz at room temperature. Here, the normal temperature conforms to the standard state of the JIS standard, and is 23 ± 2 ° C. and 60% ± 5% RH. The relative permittivity of the rubber is measured after being treated at 23 ° C. and 60% RH for 24 hours. The above-mentioned range of 860 MHz to 960 MHz corresponds to the current assigned frequency of RFID in the UHF band, but when the above-mentioned allotted frequency is changed, the relative permittivity of the allotted frequency range may be defined as described above.

また、トランスポンダ20が被覆層23により被覆された状態で、被覆層23の厚さtは0.5mm〜3.0mmであることが好ましく、1.0mm〜2.5mmであることがより好ましい。ここで、被覆層23の厚さtは、トランスポンダ20を含む位置でのゴム厚さであり、例えば、図4に示すようにトランスポンダ20の中心を通ってタイヤ内面と直交する直線上での厚さt1と厚さt2を合計したゴム厚さである。このように被覆層23の厚さtを適度に設定することで、トランスポンダ20の通信性を効果的に改善することができる。ここで、被覆層23の厚さtが0.5mmより薄いと、トランスポンダ20の通信性の改善効果を得ることができず、逆に被覆層23の厚さtが3.0mmを超えると、トランスポンダ20を含む被覆層23がタイヤ内面から過度に突出することになるので好ましくない。なお、被覆層23の断面形状は、特に限定されるものではないが、例えば、三角形や長方形、台形、紡錘形を採用することができる。図4の被覆層23では長方形の断面形状を有している。 Further, in a state where the transponder 20 is covered with the coating layer 23, the thickness t of the coating layer 23 is preferably 0.5 mm to 3.0 mm, more preferably 1.0 mm to 2.5 mm. Here, the thickness t of the coating layer 23 is the rubber thickness at the position including the transponder 20, for example, as shown in FIG. 4, the thickness on a straight line passing through the center of the transponder 20 and orthogonal to the inner surface of the tire. It is a rubber thickness which is the sum of the thickness t1 and the thickness t2. By appropriately setting the thickness t of the coating layer 23 in this way, the communicability of the transponder 20 can be effectively improved. Here, if the thickness t of the coating layer 23 is thinner than 0.5 mm, the effect of improving the communication property of the transponder 20 cannot be obtained, and conversely, if the thickness t of the coating layer 23 exceeds 3.0 mm, The coating layer 23 including the transponder 20 protrudes excessively from the inner surface of the tire, which is not preferable. The cross-sectional shape of the covering layer 23 is not particularly limited, but for example, a triangular shape, a rectangular shape, a trapezoidal shape, or a spindle shape can be adopted. The coating layer 23 of FIG. 4 has a rectangular cross-sectional shape.

上述した実施形態では、1層のカーカス層を有する空気入りタイヤの例を示したが、特に限定されるものではなく、2層のカーカス層を有していても良い。また、上述した実施形態では、カーカス層4の巻き上げ部4Bの端末4eがビードフィラー6の上端6eを超えてサイドウォール部2の中腹に配置された例を示したが、これに限定されるものではなく、任意の高さに配置することができる。 In the above-described embodiment, an example of a pneumatic tire having one carcass layer has been shown, but the tire is not particularly limited, and may have two carcass layers. Further, in the above-described embodiment, an example is shown in which the terminal 4e of the winding portion 4B of the carcass layer 4 is arranged in the middle of the sidewall portion 2 beyond the upper end 6e of the bead filler 6, but the present invention is limited to this. Instead, it can be placed at any height.

タイヤサイズ265/40ZR20で、タイヤ周方向に延在して環状をなすトレッド部と、トレッド部の両側に配置された一対のサイドウォール部と、これらサイドウォール部のタイヤ径方向内側に配置された一対のビード部とを備え、各ビード部のビードコアの外周上にビードフィラーが配置され、一対のビード部間にカーカス層が装架され、トレッド部におけるカーカス層の外周側に複数層のベルト層が配置された空気入りタイヤにおいて、タイヤ周方向に沿って延在するトランスポンダが設けられ、トランスポンダの位置(タイヤ幅方向、タイヤ径方向及びタイヤ周方向)、トランスポンダとタイヤ内面の距離、被覆層の比誘電率、被覆層の厚さ、トランスポンダの形態を表1及び表2のように設定した比較例1〜5及び実施例1〜14のタイヤを製作した。 With a tire size of 265 / 40ZR20, a tread portion extending in the tire circumferential direction to form an annular shape, a pair of sidewall portions arranged on both sides of the tread portion, and these sidewall portions are arranged inside the tire radial direction. A pair of bead portions are provided, a bead filler is arranged on the outer periphery of the bead core of each bead portion, a carcass layer is mounted between the pair of bead portions, and a plurality of belt layers are mounted on the outer peripheral side of the carcass layer in the tread portion. In the pneumatic tire in which the tire is arranged, a transponder extending along the tire circumferential direction is provided, and the position of the transponder (tire width direction, tire radial direction and tire circumferential direction), the distance between the transponder and the inner surface of the tire, and the covering layer. The tires of Comparative Examples 1 to 5 and Examples 1 to 14 in which the specific dielectric constant, the thickness of the coating layer, and the form of the transponder were set as shown in Tables 1 and 2 were manufactured.

なお、表1及び表2において、トランスポンダの位置(タイヤ幅方向)が「W」の場合、トランスポンダがタイヤ内面(インナーライナー層の内側)に配置され、トランスポンダの位置(タイヤ幅方向)が「X」の場合、トランスポンダがカーカス層とインナーライナー層との間に配置され、トランスポンダの位置(タイヤ幅方向)が「Y」の場合、トランスポンダがカーカス層とサイドウォールゴム層との間にサイドウォールゴム層に当接して配置され、トランスポンダの位置(タイヤ幅方向)が「Z」の場合、トランスポンダがカーカス層とリムクッションゴム層との間にリムクッションゴム層に当接して配置されていることを示す。また、表1及び表2において、トランスポンダの位置(タイヤ径方向)は、図6に示すA〜Eのそれぞれの位置に対応する。更に、表1及び表2において、トランスポンダの位置(タイヤ周方向)は、トランスポンダの中心からタイヤ構成部材のスプライス部までのタイヤ周方向に測定された距離[mm]を示す。 In Tables 1 and 2, when the position of the transponder (in the tire width direction) is "W", the transponder is arranged on the inner surface of the tire (inside the inner liner layer), and the position of the transponder (in the tire width direction) is "X". In the case of ", the transponder is placed between the carcass layer and the inner liner layer, and when the position of the transponder (in the tire width direction) is" Y ", the transponder is placed between the carcass layer and the sidewall rubber layer. When the transponder is placed in contact with the layer and the position of the transponder (in the tire width direction) is "Z", it means that the transponder is placed in contact with the rim cushion rubber layer between the carcass layer and the rim cushion rubber layer. show. Further, in Tables 1 and 2, the positions of the transponders (in the tire radial direction) correspond to the respective positions A to E shown in FIG. Further, in Tables 1 and 2, the position of the transponder (tire circumferential direction) indicates the distance [mm] measured in the tire circumferential direction from the center of the transponder to the splice portion of the tire component member.

これら試験タイヤについて、下記試験方法により、タイヤ評価(耐久性)及びトランスポンダ評価(通信性、耐久性、耐外傷性及び耐損傷性)を実施し、その結果を表1及び表2に併せて示した。 For these test tires, tire evaluation (durability) and transponder evaluation (communication, durability, trauma resistance and damage resistance) were carried out by the following test methods, and the results are shown in Tables 1 and 2. rice field.

耐久性(タイヤ及びトランスポンダ):
各試験タイヤを標準リムのホイールに組み付け、空気圧120kPa、最大負荷荷重に対して102%、走行速度81kmの条件でドラム試験機にて走行試験を実施した後、タイヤに故障が発生した際の走行距離を測定した。評価結果は、走行距離が6480kmに達した場合を「◎(優)」で示し、走行距離が4050km以上6480km未満の場合を「○(良)」で示し、走行距離が3240km以上4050km未満の場合を「△(可)」で示し、走行距離が3240km未満の場合を「×(不可)」の4段階で示した。更に、走行終了後に各試験タイヤのタイヤ外表面を目視し、タイヤの故障がトランスポンダを起点とするものであるか否かを確認した。評価結果はその故障の有無を示した。
Durability (tires and transponders):
After assembling each test tire to the wheel of the standard rim and conducting a running test with a drum tester under the conditions of an air pressure of 120 kPa, 102% of the maximum load, and a running speed of 81 km, running when a tire failure occurs. The distance was measured. The evaluation results are indicated by "◎ (excellent)" when the mileage reaches 6480 km, "○ (good)" when the mileage is 4050 km or more and less than 6480 km, and when the mileage is 3240 km or more and less than 4050 km. Is indicated by "Δ (possible)", and the case where the mileage is less than 3240 km is indicated by four stages of "x (impossible)". Further, after the running was completed, the outer surface of each test tire was visually inspected to confirm whether or not the tire failure originated from the transponder. The evaluation result showed the presence or absence of the failure.

通信性(トランスポンダ):
各試験タイヤについて、リーダライタを用いてトランスポンダとの通信作業を実施した。具体的には、リーダライタにおいて出力250mW、搬送波周波数860MHz〜960MHzとして通信可能な最長距離を測定した。評価結果は、通信距離500mm以上の場合を「◎(優)」で示し、通信距離が150mm以上500mm未満の場合を「○(良)」で示し、通信距離が150mm未満の場合を「△(可)」の3段階で示した。
Communication (transponder):
For each test tire, communication work with the transponder was carried out using a reader / writer. Specifically, the maximum distance that can be communicated with a reader / writer with an output of 250 mW and a carrier frequency of 860 MHz to 960 MHz was measured. The evaluation results are indicated by "◎ (excellent)" when the communication distance is 500 mm or more, "○ (good)" when the communication distance is 150 mm or more and less than 500 mm, and "△ (△) when the communication distance is less than 150 mm. Yes) ”was shown in three stages.

耐外傷性(トランスポンダ):
各試験タイヤを標準リムのホイールに組み付けて試験車両に装着し、空気圧230kPa、走行速度20km/hの条件で、高さ100mmの縁石に乗り上げるという走行試験を実施した。走行後に、トランスポンダの配置箇所に対応するタイヤ外表面の破損を確認した。評価結果は、トランスポンダの配置に起因するタイヤ外表面の破損の有無を示した。
Trauma resistance (transponder):
Each test tire was assembled to a standard rim wheel, mounted on a test vehicle, and a running test was conducted in which the tire rides on a curb with a height of 100 mm under the conditions of an air pressure of 230 kPa and a running speed of 20 km / h. After running, it was confirmed that the outer surface of the tire corresponding to the location of the transponder was damaged. The evaluation results showed the presence or absence of damage to the outer surface of the tire due to the placement of the transponder.

リム組み時の耐損傷性(トランスポンダ):
各試験タイヤについて、リムの交換を実施した際にトランスポンダの配置箇所に対応するタイヤ内面を目視した。評価結果は、インナーライナーの損傷に起因するトランスポンダの損傷の有無を示した。
Damage resistance when assembling the rim (transponder):
For each test tire, the inner surface of the tire corresponding to the location of the transponder was visually inspected when the rim was replaced. The evaluation results showed the presence or absence of damage to the transponder due to damage to the inner liner.

Figure 2021112932
Figure 2021112932

Figure 2021112932
Figure 2021112932

この表1及び表2から判るように、実施例1〜14の空気入りタイヤは、タイヤの耐久性とトランスポンダの通信性とトランスポンダの耐外傷性がバランス良く改善されていた。実施例6の空気入りタイヤは、トランスポンダの中心とタイヤ内面の距離を長く設定したので、トランスポンダの耐損傷性が改善した。実施例13の空気入りタイヤは、トランスポンダを被覆する被覆層の厚さを厚く設定したので、トランスポンダを含む被覆層のタイヤ内面からの突出量が大きく、リム組み時にも損傷し易くなった。実施例14の空気入りタイヤは、柱状のトランスポンダを用いたので、トランスポンダの耐久性が向上し、トランスポンダを起点とする故障が無かった。 As can be seen from Tables 1 and 2, the pneumatic tires of Examples 1 to 14 have improved tire durability, transponder communication, and transponder trauma resistance in a well-balanced manner. In the pneumatic tire of Example 6, since the distance between the center of the transponder and the inner surface of the tire was set to be long, the damage resistance of the transponder was improved. In the pneumatic tire of Example 13, since the thickness of the coating layer covering the transponder was set to be thick, the amount of protrusion of the coating layer including the transponder from the inner surface of the tire was large, and the tire was easily damaged even when the rim was assembled. Since the pneumatic tire of Example 14 used a columnar transponder, the durability of the transponder was improved, and there was no failure starting from the transponder.

一方、比較例1〜3においては、トランスポンダがタイヤ内に埋設されており、タイヤ接地時における応力集中の影響によりタイヤの耐久性が悪化した。比較例1〜5においては、トランスポンダのタイヤ径方向の位置が本発明で規定する領域から外れているため、トランスポンダの通信性が悪化した。比較例1,2においては、トランスポンダがカーカス層とサイドウォールゴム層又はリムクッションゴム層との間に当該ゴム層に当接して配置されていたため、トランスポンダの耐外傷性が悪化した。 On the other hand, in Comparative Examples 1 to 3, the transponder was embedded in the tire, and the durability of the tire deteriorated due to the influence of stress concentration when the tire touched down. In Comparative Examples 1 to 5, since the position of the transponder in the tire radial direction deviates from the region specified in the present invention, the communication property of the transponder deteriorates. In Comparative Examples 1 and 2, since the transponder was arranged between the carcass layer and the sidewall rubber layer or the rim cushion rubber layer in contact with the rubber layer, the traumatic resistance of the transponder deteriorated.

1 トレッド部
2 サイドウォール部
3 ビード部
4 カーカス層
4A 本体部
4B 巻き上げ部
5 ビードコア
6 ビードフィラー
7 ベルト層
20 トランスポンダ
CL タイヤ中心線
P1〜P3 位置
1 Tread part 2 sidewall part 3 bead part 4 carcass layer 4A main body part 4B winding part 5 bead core 6 bead filler 7 belt layer 20 transponder CL tire center line P1 to P3 position

Claims (7)

タイヤ周方向に延在して環状をなすトレッド部と、該トレッド部の両側に配置された一対のサイドウォール部と、これらサイドウォール部のタイヤ径方向内側に配置された一対のビード部とを備え、各ビード部のビードコアの外周上にビードフィラーが配置され、前記一対のビード部間に少なくとも1層のカーカス層が装架され、前記トレッド部における前記カーカス層の外周側に複数層のベルト層が配置された空気入りタイヤにおいて、
タイヤ内面にタイヤ周方向に沿って延在するトランスポンダが設けられ、該トランスポンダが前記ビードコアの上端からタイヤ径方向外側に15mmの位置と前記ベルト層の端末からタイヤ径方向内側に5mmの位置との間に配置されていることを特徴とする空気入りタイヤ。
A tread portion extending in the tire circumferential direction to form an annular shape, a pair of sidewall portions arranged on both sides of the tread portion, and a pair of bead portions arranged inside the tire radial direction of these sidewall portions. A bead filler is arranged on the outer periphery of the bead core of each bead portion, at least one carcass layer is mounted between the pair of bead portions, and a plurality of layers of belts are mounted on the outer peripheral side of the carcass layer in the tread portion. In pneumatic tires with layers
A transponder extending along the tire circumferential direction is provided on the inner surface of the tire, and the transponder is located 15 mm outward in the tire radial direction from the upper end of the bead core and 5 mm inward in the tire radial direction from the terminal of the belt layer. Pneumatic tires characterized by being placed in between.
前記トランスポンダが前記ビードフィラーの上端からタイヤ径方向外側に5mmの位置と前記ベルト層の端末からタイヤ径方向内側に5mmの位置との間に配置されていることを特徴とする請求項1に記載の空気入りタイヤ。 The first aspect of claim 1, wherein the transponder is arranged between a position 5 mm outward in the tire radial direction from the upper end of the bead filler and a position 5 mm inward in the tire radial direction from the end of the belt layer. Pneumatic tires. 前記トランスポンダの中心がタイヤ構成部材のスプライス部からタイヤ周方向に10mm以上離間して配置されていることを特徴とする請求項1又は2に記載の空気入りタイヤ。 The pneumatic tire according to claim 1 or 2, wherein the center of the transponder is arranged at a distance of 10 mm or more in the tire circumferential direction from the splice portion of the tire component member. 前記トランスポンダの断面中心とタイヤ内面との距離が1mm以上であることを特徴とする請求項1〜3のいずれかに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 3, wherein the distance between the cross-sectional center of the transponder and the inner surface of the tire is 1 mm or more. 前記トランスポンダが被覆層により被覆され、該被覆層の比誘電率が7以下であることを特徴とする請求項1〜4のいずれかに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 4, wherein the transponder is coated with a coating layer, and the relative permittivity of the coating layer is 7 or less. 前記トランスポンダが被覆層により被覆され、該被覆層の厚さが0.5mm〜3.0mmであることを特徴とする請求項1〜5のいずれかに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 5, wherein the transponder is coated with a coating layer, and the thickness of the coating layer is 0.5 mm to 3.0 mm. 前記トランスポンダがデータを記憶するIC基板とデータを送受信するアンテナとを有し、該アンテナが螺旋状であることを特徴とする請求項1〜6のいずれかに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 6, wherein the transponder has an IC substrate for storing data and an antenna for transmitting and receiving data, and the antenna has a spiral shape.
JP2020005263A 2020-01-16 2020-01-16 Pneumatic tires Active JP7469598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020005263A JP7469598B2 (en) 2020-01-16 2020-01-16 Pneumatic tires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020005263A JP7469598B2 (en) 2020-01-16 2020-01-16 Pneumatic tires

Publications (2)

Publication Number Publication Date
JP2021112932A true JP2021112932A (en) 2021-08-05
JP7469598B2 JP7469598B2 (en) 2024-04-17

Family

ID=77076513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020005263A Active JP7469598B2 (en) 2020-01-16 2020-01-16 Pneumatic tires

Country Status (1)

Country Link
JP (1) JP7469598B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024009649A1 (en) * 2022-07-07 2024-01-11 株式会社ブリヂストン Tire

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19900082C2 (en) 1999-01-04 2003-09-25 Continental Ag Friction control system and pneumatic vehicle tires with sensor for it
US6474380B1 (en) 1999-04-29 2002-11-05 Bridgestone/Firestone North American Tire, Llc Pneumatic tire and monitoring device including dipole antenna
US7009576B2 (en) 2002-06-11 2006-03-07 Michelin Recherche Et Technique S.A. Radio frequency antenna for a tire and method for same
JP4107381B2 (en) 2002-08-23 2008-06-25 横浜ゴム株式会社 Pneumatic tire
JP4052290B2 (en) 2003-08-29 2008-02-27 オムロン株式会社 Wireless IC tag joining method, article with wireless IC tag, and vehicle
US8072336B2 (en) 2006-02-27 2011-12-06 The Yokohama Rubber Co., Ltd. Rubber-covered RFID module, and pneumatic tire having the it is embedded
WO2011099958A1 (en) 2010-02-12 2011-08-18 Cooper Tire & Rubber Company Wireless antenna for rfid for tires
FR2962374B1 (en) 2010-07-08 2012-09-07 Michelin Soc Tech VEHICLE PNEUMATIC COMPRISING A RADIO FREQUENCY TRANSPONDER
WO2014091943A1 (en) 2012-12-14 2014-06-19 ソニー株式会社 Image processing device and method
JP6413910B2 (en) 2015-04-23 2018-10-31 横浜ゴム株式会社 Pneumatic tire
JP6594506B1 (en) 2018-10-03 2019-10-23 Toyo Tire株式会社 tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024009649A1 (en) * 2022-07-07 2024-01-11 株式会社ブリヂストン Tire

Also Published As

Publication number Publication date
JP7469598B2 (en) 2024-04-17

Similar Documents

Publication Publication Date Title
WO2021106915A1 (en) Pneumatic tire
WO2021106917A1 (en) Pneumatic tire
WO2021106916A1 (en) Pneumatic tire
JP2021112932A (en) Pneumatic tire
WO2021241203A1 (en) Pneumatic tire
WO2022091836A1 (en) Pneumatic tire
WO2022004477A1 (en) Pneumatic tire
WO2022004479A1 (en) Pneumatic tire
WO2021166800A1 (en) Pneumatic tire
JP7279671B2 (en) pneumatic tire
WO2022004478A1 (en) Pneumatic tire
WO2021241202A1 (en) Pneumatic tire
JP7343784B2 (en) pneumatic tires
JP2021127088A (en) Pneumatic tire
JP2021127089A (en) Pneumatic tire
JP2021127092A (en) Pneumatic tire
JP2021127093A (en) Pneumatic tire
JP2021127087A (en) Pneumatic tire
JP2021127074A (en) Pneumatic tire
JP2021187267A (en) Pneumatic tire
JP2021127091A (en) Pneumatic tire
JP2021127090A (en) Pneumatic tire
JP2021127073A (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240318

R150 Certificate of patent or registration of utility model

Ref document number: 7469598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150