JP2021112369A - Lens transmission spectrum estimation system and lens transmission spectrum estimation method - Google Patents

Lens transmission spectrum estimation system and lens transmission spectrum estimation method Download PDF

Info

Publication number
JP2021112369A
JP2021112369A JP2020006376A JP2020006376A JP2021112369A JP 2021112369 A JP2021112369 A JP 2021112369A JP 2020006376 A JP2020006376 A JP 2020006376A JP 2020006376 A JP2020006376 A JP 2020006376A JP 2021112369 A JP2021112369 A JP 2021112369A
Authority
JP
Japan
Prior art keywords
crystalline lens
optical density
different wavelengths
measured
transmission spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020006376A
Other languages
Japanese (ja)
Other versions
JP7440860B2 (en
Inventor
重和 樋口
Shigekazu Higuchi
重和 樋口
太亮 江藤
Taisuke Eto
太亮 江藤
悠貴 西村
Yuki Nishimura
悠貴 西村
レイモンド ナジャー
Najjar Raymond
レイモンド ナジャー
ペテリ テイカリ
Teikari Petteri
ペテリ テイカリ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Singapore Health Services Pte Ltd
Original Assignee
Kyushu University NUC
Singapore Health Services Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Singapore Health Services Pte Ltd filed Critical Kyushu University NUC
Priority to JP2020006376A priority Critical patent/JP7440860B2/en
Publication of JP2021112369A publication Critical patent/JP2021112369A/en
Application granted granted Critical
Publication of JP7440860B2 publication Critical patent/JP7440860B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

To provide a crystalline lens transmission spectrum estimation system for simply acquiring optical density of a crystalline lens without depending on a sense of an object person.SOLUTION: An estimation system 10 includes an image data actual measurement unit 20 that measures brightness of a plurality of images having wavelengths differing from each other and formed by the crystalline lens as actual measurement brightness for each wavelength and measures sizes of the images as actual measurement sizes for each wavelength. The estimation system 10 acquires estimated optical density in a predetermined wavelength range by using the actual measurement brightness and the actual measurement sizes and, on the basis of the estimated optical density, calculates a transmission factor of the crystalline lens in the predetermined wavelength range as a transmission spectrum of the crystalline lens.SELECTED DRAWING: Figure 4

Description

本発明は、水晶体の透過スペクトル推定システム及び水晶体の透過スペクトル推定方法に関する。 The present invention relates to a transmission spectrum estimation system for the crystalline lens and a transmission spectrum estimation method for the crystalline lens.

人間の眼の水晶体(以下、単に水晶体と記載する)の光学濃度は加齢に伴って増加することが知られている。水晶体の光学濃度の加齢に伴う変化は、色の感じ方等の視覚的な機能や、1日のリズムの調整等の非視覚的な機能に影響を及ぼすと考えられている。そのため、年齢に応じた水晶体の光学濃度を簡便に測定する技術が種々提案されている。 It is known that the optical density of the crystalline lens of the human eye (hereinafter, simply referred to as the crystalline lens) increases with aging. Age-related changes in the optical density of the crystalline lens are thought to affect visual functions such as how to perceive color and non-visual functions such as adjustment of the daily rhythm. Therefore, various techniques for easily measuring the optical density of the crystalline lens according to the age have been proposed.

例えば、特許文献1には、測定対象者(以下、単に対象者という場合がある)が感じる光源の眩しさを評価する装置が開示されている。特許文献1に開示された装置では、対象者の眼の水晶体の透過特性を取得し、光源から照射される光のスペクトルと前述のように取得された透過特性に基づいて、対象者の眼の網膜に到達する光のスペクトルを算出する。その後、特許文献1に開示された装置では、対象者が感じる光源の眩しさを表す指標を前述の光のスペクトルに基づいて算出して出力する。 For example, Patent Document 1 discloses a device for evaluating the glare of a light source felt by a measurement target person (hereinafter, may be simply referred to as a target person). In the apparatus disclosed in Patent Document 1, the transmission characteristics of the crystalline lens of the subject's eye are acquired, and the transmission characteristics of the subject's eye are obtained based on the spectrum of the light emitted from the light source and the transmission characteristics acquired as described above. Calculate the spectrum of light reaching the retina. After that, the apparatus disclosed in Patent Document 1 calculates and outputs an index representing the glare of the light source felt by the subject based on the above-mentioned light spectrum.

特許文献2には、人間の眼の分光感度特性を簡易に測定する装置が開示されている。特許文献2に開示された装置では、年代別、症状の進行度別等の種別に対応して分類された平均的観察者の分光視感度効率に基づき、測定用の光源から照射される複数の異なる色光に対して同じ分類の平均的観察者が等輝度に感じられる色光間の光強度比を導出する。続いて、特許文献2に開示された装置では、被験者に前記異なる色光で光強度比を変化させた光を観察してもらい、等輝度と感じられるとの報告を受けると、前述のように算出された色光間の光強度比から予め作成された分類対応データに基づいて被験者を対応する分類に振り分ける。その後、振り分けられた分類から被験者の分光感度特性が推定される。 Patent Document 2 discloses an apparatus for simply measuring the spectral sensitivity characteristics of the human eye. In the apparatus disclosed in Patent Document 2, a plurality of devices irradiated from a light source for measurement are emitted based on the spectral luminosity efficiency of the average observer classified according to the type such as age group and progression of symptoms. For different colored lights, the average observer of the same classification derives the light intensity ratio between the colored lights that is perceived as having equal brightness. Subsequently, in the apparatus disclosed in Patent Document 2, when the subject observes the light in which the light intensity ratio is changed with the different colored light and receives a report that the light intensity is perceived as equal brightness, the calculation is performed as described above. The subjects are sorted into the corresponding classifications based on the classification correspondence data prepared in advance from the light intensity ratio between the colored lights. After that, the spectral sensitivity characteristics of the subject are estimated from the sorted classification.

特開2008−093131号公報Japanese Unexamined Patent Publication No. 2008-093131 特開2008−237492号公報Japanese Unexamined Patent Publication No. 2008-237492

しかしながら、上述の特許文献1、2に開示された装置をはじめとする従来の装置では、年齢に応じた水晶体の光学濃度を求める際に、対象者の感覚や応答に頼るところがあり、感覚による誤差等を含んだ光学濃度が算出される場合や、対象者が応答するのが難しいときに測定を行えずに水晶体の光学濃度を求められない場合があった。 However, conventional devices such as the devices disclosed in Patent Documents 1 and 2 described above depend on the subject's sensation and response when determining the optical density of the crystalline lens according to the age, and an error due to the sensation may occur. In some cases, the optical density including the above and the like is calculated, or when it is difficult for the subject to respond, the measurement cannot be performed and the optical density of the crystalline lens cannot be obtained.

本発明は、上述の事情に鑑みてなされたものであって、対象者の感覚に頼らず且つ簡便に水晶体の光学濃度を求めるための水晶体の透過スペクトル推定システム及び水晶体の透過スペクトル推定方法を提供する。 The present invention has been made in view of the above circumstances, and provides a transmission spectrum estimation system for the crystalline lens and a transmission spectrum estimation method for the crystalline lens in order to easily obtain the optical density of the crystalline lens without relying on the sense of the subject. do.

本発明は、以下の態様を含む。
[1]水晶体によって形成される複数の互いに異なる波長の像の輝度を前記複数の互いに異なる波長ごとに実測輝度として測定し、前記像の大きさを前記複数の互いに異なる波長ごとに実測サイズとして測定する像データ実測部と、前記複数の互いに異なる波長の各々の前記実測輝度と前記複数の互いに異なる波長の各々について予め得られた参照輝度との比と、前記複数の互いに異なる波長の各々の前記実測サイズと前記複数の互いに異なる波長の各々について予め得られた参照サイズとの比とに基づいて、前記水晶体の前記複数の互いに異なる波長の各々における実測光学濃度を算出する光学濃度算出部と、前記複数の互いに異なる波長の各々における実測光学濃度に対して所定の条件を満たし且つ前記複数の互いに異なる波長を含む所定の波長範囲について予め得られた既知光学濃度を推定光学濃度として推定する光学濃度推定部と、前記所定の波長範囲の前記推定光学濃度に基づいて前記水晶体の前記所定の波長範囲の透過率を前記水晶体の透過スペクトルとして算出するスペクトル算出部と、を備えた、水晶体の透過スペクトル推定システム。
[2]前記所定の波長範囲について予め得られた既知光学濃度は、前記所定の波長範囲内の波長ごとの前記水晶体の水晶体年齢と前記水晶体年齢に応じた所定の係数とに基づいて算出される、[1]に記載の水晶体の透過スペクトル推定システム。
[3]前記像は、前記水晶体の表面のうち硝子体と隣り合う表面での反射によって形成される像である、[1]又は[2]に記載の水晶体の透過スペクトル推定システム。
[4]前記複数の互いに異なる波長は、600nmと、400nm以上600nm未満の波長帯域内の少なくとも1波長と、を含む、[1]から[3]の何れか一つに記載の水晶体の透過スペクトル推定システム。
[5]前記水晶体に前記複数の互いに異なる波長の光を照射する光源をさらに備えた、[1]から[4]の何れか一つに記載の水晶体の透過スペクトル推定システム。
[6]前記水晶体への前記複数の互いに異なる波長の光の入射方向において前記水晶体よりも後側に注視物体が配置された、[1]から[5]の何れか一つに記載の水晶体の透過スペクトル推定システム。
[7]水晶体によって形成される複数の互いに異なる波長の像の輝度を前記複数の互いに異なる波長ごとに実測輝度として測定し、前記像の大きさを前記複数の互いに異なる波長ごとに実測サイズとして測定し、前記複数の互いに異なる波長の各々の前記実測輝度と前記複数の互いに異なる波長の各々について予め得られた参照輝度との比と、前記複数の互いに異なる波長の各々の前記実測サイズと前記複数の互いに異なる波長の各々について予め得られた参照サイズとの比とに基づいて、前記水晶体の前記複数の互いに異なる波長の各々における実測光学濃度を算出し、前記複数の互いに異なる波長の各々における実測光学濃度と、前記複数の互いに異なる波長を含む所定の波長範囲について予め得られた既知光学濃度のうち前記複数の互いに異なる波長を含む所定の予め得られた既知光学濃度との差が最も小さくなる前記既知光学濃度を推定光学濃度として推定し、前記所定の波長範囲の前記推定光学濃度に基づいて前記水晶体の前記所定の波長範囲の透過率を前記水晶体の透過スペクトルとして算出する、ことを含む、水晶体の透過スペクトル推定方法。
The present invention includes the following aspects.
[1] The brightness of a plurality of images having different wavelengths formed by the crystal body is measured as the measured brightness for each of the plurality of different wavelengths, and the size of the image is measured as the measured size for each of the plurality of different wavelengths. The ratio of the actually measured brightness of each of the plurality of different wavelengths to the reference brightness obtained in advance for each of the plurality of different wavelengths, and the said of each of the plurality of different wavelengths. An optical density calculation unit that calculates the measured optical density at each of the plurality of different wavelengths of the crystal body based on the ratio of the measured size to the reference size obtained in advance for each of the plurality of different wavelengths. An optical density that satisfies a predetermined condition for the measured optical density at each of the plurality of different wavelengths and is estimated as an estimated optical density by using a known optical density obtained in advance for a predetermined wavelength range including the plurality of different wavelengths. Transmission spectrum of a crystal body including an estimation unit and a spectrum calculation unit that calculates the transmission rate of the crystal body in the predetermined wavelength range as a transmission spectrum of the crystal body based on the estimated optical density in the predetermined wavelength range. Estimate system.
[2] The known optical density obtained in advance for the predetermined wavelength range is calculated based on the crystalline lens age of the crystalline lens for each wavelength within the predetermined wavelength range and a predetermined coefficient according to the crystalline lens age. , [1]. The transmission spectrum estimation system for the crystalline lens.
[3] The transmission spectrum estimation system for a crystalline lens according to [1] or [2], wherein the image is an image formed by reflection on a surface of the crystalline lens adjacent to the vitreous body.
[4] The transmission spectrum of the crystalline lens according to any one of [1] to [3], wherein the plurality of different wavelengths include 600 nm and at least one wavelength in the wavelength band of 400 nm or more and less than 600 nm. Estimate system.
[5] The transmission spectrum estimation system for a crystalline lens according to any one of [1] to [4], further comprising a light source for irradiating the crystalline lens with light having a plurality of wavelengths different from each other.
[6] The crystalline lens according to any one of [1] to [5], wherein a gaze object is arranged behind the crystalline lens in the direction of incidence of the plurality of light having different wavelengths on the crystalline lens. Transmission spectrum estimation system.
[7] The brightness of a plurality of images having different wavelengths formed by the crystal body is measured as the measured brightness for each of the plurality of different wavelengths, and the size of the image is measured as the measured size for each of the plurality of different wavelengths. Then, the ratio of the measured brightness of each of the plurality of different wavelengths to the reference brightness obtained in advance for each of the plurality of different wavelengths, and the measured size and the plurality of each of the plurality of different wavelengths. Based on the ratio to the reference size obtained in advance for each of the different wavelengths, the measured optical density of the crystal body at each of the plurality of different wavelengths is calculated, and the measured optical density at each of the plurality of different wavelengths is calculated. The difference between the optical density and the predetermined known optical density containing the plurality of different wavelengths among the known optical densities obtained in advance for the predetermined wavelength range containing the plurality of different wavelengths is the smallest. The known optical density is estimated as an estimated optical density, and the transmission rate of the crystal body in the predetermined wavelength range is calculated as the transmission spectrum of the crystal body based on the estimated optical density in the predetermined wavelength range. A method for estimating the transmission spectrum of a crystalline body.

上述の検査用照明装置及び検査装置によれば、検査対象部の形状によらずに、検査者が検査対象部からの鏡面反射光の色相を分解して視認できる。 According to the above-mentioned inspection lighting device and inspection device, the inspector can decompose and visually recognize the hue of the specularly reflected light from the inspection target portion regardless of the shape of the inspection target portion.

図1は、本発明に係る一実施形態の水晶体の透過スペクトル推定システム(推定システム)の概略図である。FIG. 1 is a schematic view of a transmission spectrum estimation system (estimation system) for a crystalline lens according to an embodiment of the present invention. 図2は、図1に示す推定システムにおけるプルキンエ像が形成される原理を説明するための側面図である。FIG. 2 is a side view for explaining the principle of forming a Purkinje image in the estimation system shown in FIG. 図3は、図1に示す推定システムにおけるプルキンエ像の輝度と大きさを説明するための模式図である。FIG. 3 is a schematic diagram for explaining the brightness and magnitude of the Purkinje image in the estimation system shown in FIG. 図4は、本発明に係る一実施形態の推定システムの図1とは別の概略図である。FIG. 4 is a schematic view different from FIG. 1 of the estimation system of one embodiment according to the present invention. 図5は、図1に示す推定システムの光学濃度算出部、光学濃度推定部、スペクトル算出部に関するブロック図である。FIG. 5 is a block diagram relating to an optical density calculation unit, an optical density estimation unit, and a spectrum calculation unit of the estimation system shown in FIG. 図6は、実施例における透過率スペクトル推定システムの一部の概略図である。FIG. 6 is a schematic view of a part of the transmittance spectrum estimation system in the example. 図7は、実施例において取得したプルキンエ像の写真である。FIG. 7 is a photograph of the Purkinje image obtained in the example. 図8は、実施例において算出した複数の被験者の水晶体の実測光学濃度の分布を示すグラフである。FIG. 8 is a graph showing the distribution of the measured optical densities of the crystalline lenses of a plurality of subjects calculated in the examples. 図9は、実施例において年齢層ごとに推定した推定光学濃度を示すグラフである。FIG. 9 is a graph showing the estimated optical density estimated for each age group in the examples. 図10は、実施例において推定した年齢層ごとの透過スペクトルを示すグラフである。FIG. 10 is a graph showing the transmission spectrum for each age group estimated in the examples.

以下、本発明に係る水晶体の透過スペクトル推定システム及び水晶体の透過スペクトル推定方法の好ましい実施形態について、図面を参照して説明する。 Hereinafter, preferred embodiments of the lens transmission spectrum estimation system and the lens transmission spectrum estimation method according to the present invention will be described with reference to the drawings.

図1に示すように、本発明を適用した一実施形態の水晶体の透過スペクトル推定システム10(以下、単に推定システム10という場合がある)は、像データ実測部20と、光学濃度算出部50と、光学濃度推定部60と、スペクトル算出部70と、を備える。 As shown in FIG. 1, the transmission spectrum estimation system 10 of the crystalline lens of the embodiment to which the present invention is applied (hereinafter, may be simply referred to as the estimation system 10) includes an image data measurement unit 20 and an optical density calculation unit 50. An optical density estimation unit 60 and a spectrum calculation unit 70 are provided.

像データ実測部20は、水晶体310によって形成される複数の互いに異なる波長のプルキンエ像(像)120の輝度と大きさとを複数の互いに異なる波長ごとに実測輝度と実測サイズとして測定する。プルキンエ像120は、角膜や水晶体の表面による反射像である。 The image data measurement unit 20 measures the brightness and magnitude of the plurality of Purkinje images (images) 120 having different wavelengths formed by the crystalline lens 310 as the measured brightness and the measured size for each of the plurality of different wavelengths. The Purkinje image 120 is a reflection image by the surface of the cornea or the crystalline lens.

一般に、プルキンエ像120には、複数の種類がある。複数の種類のプルキンエ像には、例えば図2に示すように、第1のプルキンエ像121から第4のプルキンエ像124が含まれる。第1のプルキンエ像121は、不図示の対象者の眼の入射した入射光200が対象者の眼の角膜302における入射光200の入射方向の手前側の表面302aで反射したときの反射光202によって形成される像である。第2のプルキンエ像122は、角膜302の表面302aを透過した透過光205が角膜302における入射光200の入射方向の奥側の表面302bで反射したときの反射光204によって形成される像である。第1のプルキンエ像121及び第2のプルキンエ像122は、投影像130に対して上下方向及び上下方向に直交する左右方向において反転せず、互いに同じ向きになっている。なお、図2では、第1のプルキンエ像121及び第2のプルキンエ像122が互いに重ねて例示されている。 In general, there are a plurality of types of Purkinje image 120. The plurality of types of Purkinje images include, for example, the first Purkinje image 121 to the fourth Purkinje image 124, as shown in FIG. The first Purkinje image 121 is a reflected light 202 when the incident light 200 incident on the subject's eye (not shown) is reflected on the surface 302a on the front side of the incident light 200 in the cornea 302 of the subject's eye. It is an image formed by. The second Purkinje image 122 is an image formed by the reflected light 204 when the transmitted light 205 transmitted through the surface 302a of the cornea 302 is reflected by the surface 302b on the back side of the incident light 200 in the incident direction in the cornea 302. .. The first Pulkiner image 121 and the second Pulkiner image 122 are not inverted in the vertical direction and the horizontal direction orthogonal to the vertical direction with respect to the projected image 130, and are oriented in the same direction. In FIG. 2, the first Purkinje image 121 and the second Purkinje image 122 are illustrated so as to overlap each other.

第3のプルキンエ像123は、角膜302の表面302bを透過した透過光210が水晶体310における入射光200の入射方向の手前側の表面310aで反射したときの反射光206によって形成される像である。第3のプルキンエ像123は、投影像130に対して上下方向及び上下方向に直交する左右方向において反転せず、互いに同じ向きになっている。第4のプルキンエ像124は、水晶体310の表面310aを透過した透過光215が水晶体310における入射光200の入射方向の奥側の表面310bで反射したときの反射光208によって形成される像である。第4のプルキンエ像124は、投影像130に対して上下方向及び上下方向に直交する左右方向において反転し、互いに逆向きになっている。 The third Purkinje image 123 is an image formed by the reflected light 206 when the transmitted light 210 transmitted through the surface 302b of the cornea 302 is reflected by the surface 310a on the front side of the incident light 200 in the incident direction in the crystalline lens 310. .. The third Purkinje image 123 is not inverted in the vertical direction and the horizontal direction orthogonal to the vertical direction with respect to the projected image 130, and is oriented in the same direction as each other. The fourth Purkinje image 124 is an image formed by the reflected light 208 when the transmitted light 215 transmitted through the surface 310a of the crystalline lens 310 is reflected by the surface 310b on the inner side of the incident light 200 in the incident direction in the crystalline lens 310. .. The fourth Purkinje image 124 is inverted in the vertical direction and the horizontal direction orthogonal to the vertical direction with respect to the projected image 130, and is opposite to each other.

像データ実測部20は、第4のプルキンエ像124の輝度と大きさとを測定する。図2に示すように、反射光204は、角膜302の表面302bから出射した後に表面302aを通って屈折するため、反射光202に対して傾斜する。但し、角膜302は非常に薄い(例えば、水晶体310の最大厚みに比べて薄い)ので、反射光202、204は互いに略平行であるといえる。一方、反射光208は、水晶体310の表面310bから出射した後に、表面310a、及び角膜302の表面302b、302aを順次通る度に屈折する。そのため、反射光208は、反射光202、204、206よりも反射光202に対して傾斜する。つまり、角膜302の表面302aを出射した反射光208(以下、単に反射光208という。)と入射光200とがなす角度θ4は、他の反射光202、204、角膜302の表面302aを出射した反射光206の各々が入射光200とがなす角度(図示略)の各々よりも大きい。 The image data measurement unit 20 measures the brightness and magnitude of the fourth Purkinje image 124. As shown in FIG. 2, the reflected light 204 is inclined with respect to the reflected light 202 because it is refracted through the surface 302a after being emitted from the surface 302b of the cornea 302. However, since the cornea 302 is very thin (for example, thinner than the maximum thickness of the crystalline lens 310), it can be said that the reflected lights 202 and 204 are substantially parallel to each other. On the other hand, the reflected light 208 is refracted every time it is emitted from the surface 310b of the crystalline lens 310 and then sequentially passes through the surface 310a and the surfaces 302b and 302a of the cornea 302. Therefore, the reflected light 208 is more inclined with respect to the reflected light 202 than the reflected lights 202, 204, and 206. That is, the angle θ4 formed by the reflected light 208 (hereinafter, simply referred to as the reflected light 208) emitted from the surface 302a of the cornea 302 and the incident light 200 emitted the other reflected light 202, 204 and the surface 302a of the cornea 302. Each of the reflected light 206 is larger than each of the angles (not shown) formed by the incident light 200.

水晶体310は、硝子体330と隣り合っている。硝子体330は、水晶体310に対して入射光200の入射方向の奥側にある。即ち、第4のプルキンエ像124は、水晶体310の表面のうち硝子体330と隣り合う表面310bでの反射によって形成される像である。 The crystalline lens 310 is adjacent to the vitreous 330. The vitreous 330 is located behind the crystalline lens 310 in the incident direction of the incident light 200. That is, the fourth Purkinje image 124 is an image formed by reflection on the surface 310b of the surface of the crystalline lens 310 adjacent to the vitreous 330.

図1に示すように、像データ実測部20は、例えば光源22と、光ファイバ24と、成形用フィルタ28と、撮像カメラ30と、を備える。光源22からは、少なくとも複数の互いに異なる波長を含む多色光を出射される。光ファイバ24の入力端は、光源22の出射部に接続されている。光源22は、例えば多色光として白色光を点灯可能な不図示のキセノンランプと、バンドパスフィルタと、を備える。光源22の内部におけるバンドパスフィルタの回転に伴い、キセノンランプの多色光のうち複数の互いに異なる波長λ1、・・・、λmの光IL1、・・・、ILmがバンドパスフィルタ透過を透過し、光ファイバ24に入力され、光ファイバ24の出力端25から出射される。mは、複数の互いに異なる波長の数を表し、2以上の自然数である。波長λ1、・・・、λmは、600nmと、400nm以上600nm未満の波長帯域内の少なくとも1波長と、を含むことが好ましい。 As shown in FIG. 1, the image data measurement unit 20 includes, for example, a light source 22, an optical fiber 24, a molding filter 28, and an image pickup camera 30. The light source 22 emits multicolored light containing at least a plurality of wavelengths different from each other. The input end of the optical fiber 24 is connected to the exit portion of the light source 22. The light source 22 includes, for example, a xenon lamp (not shown) capable of lighting white light as multicolored light, and a bandpass filter. As the bandpass filter rotates inside the light source 22, a plurality of different wavelengths λ1, ..., λm light IL1, ..., ILm among the multicolored lights of the xenon lamp pass through the bandpass filter transmission. It is input to the optical fiber 24 and emitted from the output end 25 of the optical fiber 24. m represents a plurality of numbers having different wavelengths from each other, and is a natural number of 2 or more. The wavelengths λ1, ..., λm preferably include 600 nm and at least one wavelength within the wavelength band of 400 nm or more and less than 600 nm.

成形用フィルタ28は、板面が光ファイバ24の出力端25から出射された光IL1、・・・、ILmの光軸(図1の破線)に対して略直交する姿勢で、光ファイバ24の出力端25から離れた位置に設けられている。成形用フィルタ28の中央部分には、例えば直径約3mmの孔が形成されている。光IL1、・・・、ILmは、成形用フィルタ28に形成されている孔を通り、所定の形状に成形される。光IL1、・・・、ILmは、進路上に配置された測定対象の眼350に照射される。 The molding filter 28 has a posture in which the plate surface is substantially orthogonal to the optical axis (broken line in FIG. 1) of the optical IL1, ..., ILm emitted from the output end 25 of the optical fiber 24, and the optical fiber 24 It is provided at a position away from the output end 25. A hole having a diameter of, for example, about 3 mm is formed in the central portion of the molding filter 28. The optical IL1, ..., ILm pass through the holes formed in the molding filter 28 and are molded into a predetermined shape. The light IL1, ..., ILm is applied to the eye 350 to be measured, which is arranged on the path.

撮像カメラ30は、眼350における水晶体310の表面310bで反射された反射光RL1、・・・、RLmを受光し、波長λ1、・・・、λmごとの第4のプルキンエ像124−1、・・・、124−mを撮像する。撮像カメラ30で撮像された第4のプルキンエ像124−1、・・・、124−mに関する情報は、ケーブルを介してパソコン等の計算機40に送信される。 The imaging camera 30 receives the reflected light RL1, ..., RLm reflected by the surface 310b of the crystalline lens 310 in the eye 350, and receives the fourth Purkinje image 124-1 for each wavelength λ1, ..., λm. ..., 124-m is imaged. Information about the fourth Purkinje image 124-1, ..., 124-m captured by the imaging camera 30 is transmitted to a computer 40 such as a personal computer via a cable.

計算機40は、光学濃度算出部50、光学濃度推定部60及びスペクトル算出部70を備える。但し、図1及び後述する図3では、光学濃度算出部50、光学濃度推定部60、スペクトル算出部70及び水晶体310は省略されている。 The computer 40 includes an optical density calculation unit 50, an optical density estimation unit 60, and a spectrum calculation unit 70. However, in FIG. 1 and FIG. 3 described later, the optical density calculation unit 50, the optical density estimation unit 60, the spectrum calculation unit 70, and the crystalline lens 310 are omitted.

光学濃度算出部50は、水晶体310によって形成され且つ撮像カメラ30で撮像された第4のプルキンエ像124−1、・・・、124−mの輝度を実測輝度として測定する。また、光学濃度算出部50は、第4のプルキンエ像124−1、・・・、124−mの大きさを実測サイズとして測定する。例えば、第4のプルキンエ像124−1、・・・、124−mの実測輝度は、第4のプルキンエ像124−1、・・・、124−mの各々の範囲内で輝度の平均値である。同じく第4のプルキンエ像124−1、・・・、124−mの実測サイズは、図3に例示したプロファイルの縦軸の最大値を1としたときの縦軸の1/2に相当する位置のプロファイルの幅(実測位置の距離)であり、図3に例示したプロファイルの所謂半値全幅(full width at half maximum:FWHM)である。また、第4のプルキンエ像124−1、・・・、124−mの実測サイズは、図3に例示したプロファイルの縦軸の最大値を1としたときの縦軸の1/eに相当する位置のプロファイルの幅(実測位置の距離)であってもよい。 The optical density calculation unit 50 measures the brightness of the fourth Purkinje image 124-1, ..., 124-m formed by the crystalline lens 310 and captured by the image pickup camera 30 as the measured brightness. Further, the optical density calculation unit 50 measures the size of the fourth Purkinje image 124-1, ..., 124-m as the measured size. For example, the measured brightness of the fourth Purkinje image 124-1, ..., 124-m is the average value of the brightness within each range of the fourth Purkinje image 124-1, ..., 124-m. be. Similarly, the measured size of the fourth Purkinje image 124-1, ..., 124-m is a position corresponding to 1/2 of the vertical axis when the maximum value of the vertical axis of the profile illustrated in FIG. 3 is 1. Is the width of the profile (distance at the measured position), which is the so-called full width at half maximum (FWHM) of the profile illustrated in FIG. Further, the actually measured size of the fourth Purkinje image 124-1, ..., 124-m corresponds to 1 / e 2 of the vertical axis when the maximum value of the vertical axis of the profile illustrated in FIG. 3 is 1. It may be the width of the profile of the position to be performed (distance of the measured position).

光学濃度算出部50は、光学濃度が波長λ1、・・・、λmに寄らず略一定である眼の第4のプルキンエ像124−1、・・・、124−mについて、実測輝度及び実測サイズの各々と同じ算出方法によって算出された参照輝度及び参照サイズの情報を予め得ている。光学濃度算出部50は、波長λ1、・・・、λmの各々の実測輝度と参照輝度との比、及び、波長λ1、・・・、λmの各々の実測サイズと参照サイズとの比に基づいて、波長λ1、・・・、λmの各々における実測光学濃度ADmedia(λ1)、・・・、ADmedia(λm)を算出する。 The optical density calculation unit 50 determines the measured brightness and the measured size of the fourth Pulkiner image 124-1, ..., 124-m of the eye whose optical density is substantially constant regardless of the wavelengths λ1, ..., λm. Information on the reference brightness and the reference size calculated by the same calculation method as in each of the above is obtained in advance. The optical density calculation unit 50 is based on the ratio of the measured brightness of each of the wavelengths λ1, ..., λm to the reference brightness, and the ratio of the measured size of each of the wavelengths λ1, ..., λm to the reference size. Then, the measured optical densities AD media (λ1), ..., AD media (λm) at each of the wavelengths λ1, ..., λm are calculated.

光学濃度算出部50は、波長λ1、・・・、λmを含む所定の波長範囲について予め得られた複数の既知光学濃度分布のうち、波長λ1、・・・、λmの各々の複数の既知光学濃度FDmedia(λ1)、・・・、FDmedia(λm)の情報を予め得ている。所定の波長範囲は、例えば可視光の波長帯域であり、380nm以上780nm以下の範囲である。複数の既知光学濃度分布は、例えば対象者の年齢に応じた光学濃度分布である。光学濃度算出部50は、複数の既知光学濃度FDmedia(λk)のうち、実測光学濃度ADmedia(λk)との差が最も小さくなる既知光学濃度FDmedia(λk)を推定光学濃度EDmedia(λ)として推定する。kは、1からmまでの自然数である。 The optical density calculation unit 50 has a plurality of known optics having wavelengths λ1, ..., λm among a plurality of known optical density distributions obtained in advance for a predetermined wavelength range including wavelengths λ1, ..., λm. Information on the concentration FD media (λ1), ..., FD media (λm) is obtained in advance. The predetermined wavelength range is, for example, the wavelength band of visible light, which is a range of 380 nm or more and 780 nm or less. The plurality of known optical density distributions are, for example, optical density distributions according to the age of the subject. The optical density calculating unit 50, among the plurality of known optical density FD media (λk), the measured optical density AD media (λk) known optical density difference is smallest between the FD media (λk) the estimated optical density ED media ( Estimated as λ). k is a natural number from 1 to m.

スペクトル算出部70は、所定の波長範囲の推定光学濃度EDmedia(λ)に基づいて水晶体310の所定の波長範囲の透過率T(λk)を水晶体310の透過スペクトルT(λ)として算出する。 The spectrum calculation unit 70 calculates the transmittance T (λk) of the crystalline lens 310 in the predetermined wavelength range as the transmission spectrum T (λ) of the crystalline lens 310 based on the estimated optical density ED media (λ) in the predetermined wavelength range.

光学濃度算出部50、光学濃度推定部60及びスペクトル算出部70は、各々の処理内容を実行するプログラムとして構成され、計算機40に内蔵されている。 The optical density calculation unit 50, the optical density estimation unit 60, and the spectrum calculation unit 70 are configured as programs that execute the respective processing contents, and are built in the computer 40.

本発明を適用した一実施形態の水晶体の透過スペクトル推定方法は、次に説明する第1工程から第5工程を備える。 The transmission spectrum estimation method of the crystalline lens of one embodiment to which the present invention is applied includes the first to fifth steps described below.

第1工程では、像データ実測部20を用いて、予め所定の波長範囲の光学濃度(既知光学濃度との区別のため、絶対光学濃度と称する)ZDmedia(λk)が波長λ1、・・・、λmに寄らず略一定な(光学濃度が既知である)模擬眼を図1の眼350の位置に設定する。入射光ILkを眼350に照射する。続いて、撮像カメラ30で反射光RLkを受光し、第4のプルキンエ像124−kを撮像する。ここで、模擬眼の第4のプルキンエ像124−kをプルキンエ像Ref[124−k]とする。撮像カメラ30で撮像されたプルキンエ像Ref[124−k]に関する情報を計算機40の光学濃度算出部50に送信する。 In the first step, using the image data measurement unit 20, the optical density in a predetermined wavelength range (referred to as absolute optical density to distinguish it from the known optical density) ZD media (λk) is the wavelength λ1, ... , A substantially constant (optical density is known) simulated eye is set at the position of the eye 350 in FIG. 1 regardless of λm. The incident light ILk is applied to the eye 350. Subsequently, the image pickup camera 30 receives the reflected light RLk and images the fourth Purkinje image 124-k. Here, the fourth Purkinje image 124-k of the simulated eye is referred to as the Purkinje image Ref [124-k]. Information about the Purkinje image Ref [124-k] captured by the image pickup camera 30 is transmitted to the optical density calculation unit 50 of the computer 40.

光学濃度算出部50では、プルキンエ像Ref[124−k]を図3に示すように横軸が実測位置で縦軸が輝度であるグラフにプロットしたプロファイルとして表し、そのプロファイルの最大値と半値全幅とを求め、それぞれを参照輝度FL(λk)と参照サイズFW(λk)とする。なお、前述のプロファイルの実測位置は、撮像カメラ30のピクセル数で表される。前述のプロファイルの輝度は、撮像カメラ30の各ピクセルにおける明るさ即ち諧調によって表される。撮像カメラ30の各ピクセルと実測時の大きさとはキャリブレーションされ、撮像カメラ30の各ピクセルにおける明るさ即ち諧調と撮像カメラ30に入射する光の輝度もキャリブレーションされている。得られた参照輝度FL(λk)及び参照サイズFW(λk)は、計算機40の記憶部45又は任意のデータベース等に記憶される。 In the optical density calculation unit 50, the Pulkinje image Ref [124-k] is represented as a profile plotted on a graph in which the horizontal axis is the measured position and the vertical axis is the brightness as shown in FIG. 3, and the maximum value and full width at half maximum of the profile are represented. , And let each be the reference luminance FL (λk) and the reference size FW (λk). The actually measured position of the profile described above is represented by the number of pixels of the imaging camera 30. The brightness of the profile described above is represented by the brightness or gradation of each pixel of the imaging camera 30. Each pixel of the image pickup camera 30 and the size at the time of actual measurement are calibrated, and the brightness of each pixel of the image pickup camera 30, that is, the gradation and the brightness of the light incident on the image pickup camera 30 are also calibrated. The obtained reference luminance FL (λk) and reference size FW (λk) are stored in the storage unit 45 of the computer 40, an arbitrary database, or the like.

次に、第2工程では、水晶体310によって形成される複数の互いに異なる波長λkの第4のプルキンエ像124−kの輝度を複数の波長λkごとに実測輝度AL(λk)として測定し、第4のプルキンエ像124−kの大きさを複数の波長λkごとに実測サイズAW(λk)として測定する。 Next, in the second step, the brightness of a plurality of fourth Pulkinje images 124-k having different wavelengths λk formed by the crystalline lens 310 is measured as the measured brightness AL (λk) for each of the plurality of wavelengths λk, and the fourth step is performed. The size of the Purkinje image 124-k is measured as the measured size AW (λk) for each of a plurality of wavelengths λk.

詳しく説明すると、対象者の眼を図4の眼360の位置に設定し、図4に示すように眼360の視野内に注視物体90を配置する。つまり、推定システム10では、入射光(複数の互いに異なる波長の光)ILkの入射方向において水晶体310よりも後側に注視物体90が配置される。 More specifically, the subject's eye is set at the position of the eye 360 in FIG. 4, and the gaze object 90 is placed in the field of view of the eye 360 as shown in FIG. That is, in the estimation system 10, the gaze object 90 is arranged behind the crystalline lens 310 in the incident direction of the incident light (a plurality of lights having different wavelengths) ILk.

続いて、像データ実測部20を用いて、第1工程と同様に、成形用フィルタ28を作動させ、入射光ILkを眼350に照射する。撮像カメラ30で反射光RLkを受光し、第4のプルキンエ像124−kを撮像する。ここで、対象者の眼の第4のプルキンエ像124−kをプルキンエ像Meas[124−k]とする。撮像カメラ30で撮像されたプルキンエ像Meas[124−k]に関する情報を計算機40の光学濃度算出部50に送信する。 Subsequently, using the image data measurement unit 20, the molding filter 28 is operated in the same manner as in the first step, and the incident light ILk is irradiated to the eye 350. The image pickup camera 30 receives the reflected light RLk and images the fourth Purkinje image 124-k. Here, the fourth Purkinje image 124-k of the subject's eye is referred to as the Purkinje image Meas [124-k]. Information about the Purkinje image Meas [124-k] captured by the imaging camera 30 is transmitted to the optical density calculation unit 50 of the computer 40.

続いて、プルキンエ像Meas[124−k]を図3に示すように横軸が実測位置で縦軸が輝度であるグラフにプロットしたプロファイルとして表し、そのプロファイルの最大値と半値全幅とを求め、それぞれを実測輝度AL(λk)と実測サイズAW(λk)とする。 Subsequently, as shown in FIG. 3, the Purkinje image Meas [124-k] is represented as a profile plotted on a graph in which the horizontal axis is the measured position and the vertical axis is the brightness, and the maximum value and the full width at half maximum of the profile are obtained. Let each be the measured brightness AL (λk) and the measured size AW (λk).

次に、第3工程では、図5に示すように光学濃度算出部50において、複数の波長λk(k=1〜m)の各々の実測輝度AL(λk)と予め得られた参照輝度FL(k)との比と、複数の波長λkの各々の実測サイズAW(λk)と予め得られた参照サイズFW(λk)との比とに基づいて、対象者の眼の水晶体310の複数の波長λkの各々における実測光学濃度ADmedia(λk)を算出する。 Next, in the third step, as shown in FIG. 5, in the optical density calculation unit 50, the measured brightness AL (λk) of each of the plurality of wavelengths λk (k = 1 to m) and the reference brightness FL (λk) obtained in advance are obtained. Multiple wavelengths of the crystalline lens 310 of the subject's eye based on the ratio to k) and the ratio of each measured size AW (λk) of the plurality of wavelengths λk to the previously obtained reference size FW (λk). The measured optical density AD media (λk) at each of λk is calculated.

詳しく説明すると、光学濃度算出部50において、次に示す(1)式を用いて実測輝度AL(λk)、参照輝度FL(λk)、実測サイズAW(λk)及び参照サイズFW(λk)から実測光学濃度ADmedia(λk)を算出する。 More specifically, the optical density calculation unit 50 actually measures the measured brightness AL (λk), the reference brightness FL (λk), the measured size AW (λk), and the reference size FW (λk) using the following equation (1). The optical density AD media (λk) is calculated.

Figure 2021112369
Figure 2021112369

次に、第4工程では、光学濃度推定部60において、複数の波長λkの各々の実測光学濃度ADmedia(λk)と、所定の波長範囲について予め得られた1種類以上の既知光学濃度FDmedia(λk)のうち、所定の条件として「実測光学濃度ADmedia(λk)との差が最も小さくなる」種類の既知光学濃度FDmedia(λk)を推定光学濃度EDmedia(λ)として推定する。 Next, in the fourth step, in the optical density estimation unit 60, the measured optical density AD media (λk) of each of the plurality of wavelengths λk and one or more known optical density FD media obtained in advance for a predetermined wavelength range are used. Among (λk), a known optical density FD media (λk) of the type “the difference from the measured optical density AD media (λk) is the smallest” is estimated as the estimated optical density ED media (λ) as a predetermined condition.

詳しく説明すると、例えば予め得られる1種類以上の既知光学濃度FDmedia(λk)として、心理学・物理学的方法に基づいて求められたもの(例えば、J. van de Kraats et al., 2007参照)が挙げられる。この既知光学濃度FDmedia(λk)は、2つの所定の群の係数:第1群の係数{dRL(age)、dTP(age)、dLY(age)、dLOUV(age)、dLO(age)、dneutral}、第2群の係数{MRL(λ)、MTP(λ)、MLY(λ)、MLOUV(λ)、MLO(λ)}によって、次に示す(2)式のように表される。 More specifically, for example, one or more known optical densities FD media (λk) obtained in advance, which are obtained based on psychological and physical methods (see, for example, J. van de Kraats et al., 2007). ). This known optical density FD media (λk) is the coefficient of two predetermined groups: the coefficient of the first group {d RL (age), d TP (age), d LY (age), d LOUV (age), d. the LO (age), d neutral} , the coefficient {M RL (λ) of the second group, M TP (λ), M LY (λ), M LOUV (λ), M LO (λ)}, the following It is expressed as in equation (2).

Figure 2021112369
Figure 2021112369

(2)式の波長λに波長λk(k=1〜m)の各々を代入することで、波長λkの各々の既知光学濃度FDmedia(λk)を得る。(2)式からわかるように、変数である年齢ageを変更すると、変更した年齢ageの数と同数の既知光学濃度FDmedia(λk)が得られる。そこで、波長λkの各々について、実測光学濃度ADmedia(λk)との差が最も小さくなる既知光学濃度FDmedia(λk)の年齢ageを算出し、その年齢ageを水晶体年齢AGEとする。光学濃度推定部60では、(2)式の年齢ageに水晶体年齢AGEを代入し、推定光学濃度EDmedia(λ)を推定する。 By substituting each of the wavelengths λk (k = 1 to m) into the wavelength λ of the equation (2), each known optical density FD media (λk) of the wavelength λk is obtained. As can be seen from the equation (2), when the variable age age is changed, the same number of known optical density FD media (λk) as the number of changed age ages is obtained. Therefore, for each of the wavelengths λk, the age age of the known optical density FD media (λk) having the smallest difference from the measured optical density AD media (λk) is calculated, and the age age is defined as the crystalline lens age AGE. The optical density estimation unit 60 substitutes the crystalline lens age AGE for the age age of Eq. (2) to estimate the estimated optical density ED media (λ).

次に、第5工程では、光学濃度推定部60において、所定の波長範囲の推定光学濃度EDmedia(λ)に基づいて眼360の水晶体310の所定の波長範囲の透過率T(λ)を水晶体310の透過スペクトルとして算出する。 Next, in the fifth step, the optical density estimation unit 60 sets the transmittance T (λ) of the crystalline lens 310 of the eye 360 in a predetermined wavelength range based on the estimated optical density ED media (λ) in a predetermined wavelength range. Calculated as the transmission spectrum of 310.

詳しく説明すると、光学濃度推定部60では、(2)式の年齢ageに推定年齢AGEを代入し、第1群の係数を全て定数化した既知光学濃度FDmedia(λk)を推定光学濃度EDmedia(λ)とする。推定光学濃度EDmedia(λ)は、任意の波長λのみで求まる関数である。透過率T(λ)は、推定光学濃度EDmedia(λ)によって次に示す(3)式のように表される。 In detail, the optical density estimating unit 60, (2) age age to substitute the estimated age AGE, known optical density all constants of the coefficients of the first group FD media (.lamda.k) the estimated optical density ED media Let it be (λ). The estimated optical density ED media (λ) is a function that can be obtained only at an arbitrary wavelength λ. The transmittance T (λ) is expressed by the estimated optical density ED media (λ) as shown in Eq. (3) below.

Figure 2021112369
Figure 2021112369

所定の波長範囲が前述のように可視光の波長帯域であり、380nm以上780nm以下の範囲であれば、横軸に少なくとも380nmから780nmまでの波長をとり、縦軸に(3)式で表される透過率T(λ)をプロットすると、水晶体310の透過スペクトルが図示される。 If the predetermined wavelength range is the wavelength band of visible light as described above and is in the range of 380 nm or more and 780 nm or less, the horizontal axis has a wavelength of at least 380 nm to 780 nm, and the vertical axis is represented by equation (3). When the transmittance T (λ) is plotted, the transmission spectrum of the crystal body 310 is illustrated.

以上の各工程を行うことによって、少なくとも所定の波長範囲に含まれる任意の波長λについて、対象者の眼360の水晶体310の透過スペクトルが算出される。 By performing each of the above steps, the transmission spectrum of the crystalline lens 310 of the subject's eye 360 is calculated for at least an arbitrary wavelength λ included in a predetermined wavelength range.

以上説明した本実施形態の推定システム10によれば、像データ実測部20によって対象者の眼360の水晶体310から光学的に形成されるプルキンエ像Meas[124−k]に基づき、光学濃度算出部50、光学濃度推定部60及びスペクトル算出部70の各々での計算を経て、任意の波長λにおける水晶体310の透過率T(λ)、即ち水晶体310の透過スペクトルが算出される。つまり、眼360に複数の波長λkの光を照射でき且つプルキンエ像Meas[124−k]を撮像さえできれば、対象者の感覚に頼らず且つ簡便に、水晶体310の透過スペクトルを算出できる。 According to the estimation system 10 of the present embodiment described above, the optical density calculation unit is based on the Pulkinje image Meas [124-k] optically formed from the crystalline lens 310 of the subject's eye 360 by the image data measurement unit 20. 50, the transmittance T (λ) of the crystalline lens 310 at an arbitrary wavelength λ, that is, the transmission spectrum of the crystalline lens 310 is calculated through calculations by each of the optical density estimation unit 60 and the spectrum calculation unit 70. That is, as long as the eye 360 can be irradiated with light having a plurality of wavelengths λk and the Purkinje image Meas [124-k] can be imaged, the transmission spectrum of the crystalline lens 310 can be calculated easily and without depending on the sense of the subject.

また、本実施形態の推定システム10によれば、既知光学濃度FDmedia(λk)は、前記所定の波長範囲内の波長λkごとの水晶体310の水晶体年齢AGEと水晶体年齢AGEに応じた第1群の係数(所定の係数){dRL(AGE)、dTP(AGE)、dLY(AGE)、dLOUV(AGE)、dLO(AGE)、dneutral}とに基づいて算出される。つまり、プルキンエ像Meas[124−k]から実測輝度AL(λk)と実測サイズAW(λk)が得られれば、前述の(1)式から(3)式に従って水晶体310の水晶体年齢AGEを算出すると共に水晶体310の透過スペクトルを簡便に算出できる。 Further, according to the estimation system 10 of the present embodiment, the known optical density FD media (λk) is the first group corresponding to the crystalline lens age AGE and the crystalline lens age AGE of the crystalline lens 310 for each wavelength λk within the predetermined wavelength range. (Predetermined coefficient) {d RL (AGE), d TP (AGE), d LY (AGE), d LOUV (AGE), d LO (AGE), d neutral }. That is, if the measured brightness AL (λk) and the measured size AW (λk) are obtained from the Purkinje image Meas [124-k], the crystalline lens age AGE of the crystalline lens 310 is calculated according to the above equations (1) to (3). At the same time, the transmission spectrum of the crystalline lens 310 can be easily calculated.

また、本実施形態の推定システム10によれば、プルキンエ像Meas[124−k]、Ref[124−k]は、水晶体310の表面のうち硝子体330と隣り合う表面310bでの反射によって形成される像である。そのため、プルキンエ像Meas[124−k]の実測輝度AL(λk)及び実測サイズAW(λk)の双方に水晶体310の光学濃度が良好に反映され、推定光学濃度EDmedia(λ)及び水晶体310の透過スペクトルを高精度に算出できる。また、図1及び図3に例示したように入射光ILkの光軸と反射光RLkの光軸との角度θ4を確保できる。このことによって、像データ実測部20の光源22、光ファイバ24、成形用フィルタ28や撮像カメラ30を配置しやすくなる。 Further, according to the estimation system 10 of the present embodiment, the Purkinje images Meas [124-k] and Ref [124-k] are formed by reflection on the surface 310b of the surface of the crystalline lens 310 adjacent to the vitreous 330. It is a statue. Therefore, the optical density of the crystalline lens 310 is well reflected in both the measured luminance AL (λk) and the measured size AW (λk) of the Purkinje image Meas [124-k], and the estimated optical density ED media (λ) and the crystalline lens 310 The transmission spectrum can be calculated with high accuracy. Further, as illustrated in FIGS. 1 and 3, the angle θ4 between the optical axis of the incident light ILk and the optical axis of the reflected light RLk can be secured. This makes it easier to arrange the light source 22, the optical fiber 24, the molding filter 28, and the image pickup camera 30 of the image data measurement unit 20.

また、本実施形態の推定システム10によれば、複数の互いに異なる波長λkは、600nmと、400nm以上600nm未満の波長帯域内の少なくとも1波長とを含む。この場合、複数の波長λkには、例えば基準波長とする600nmと、600nmよりも短い波長範囲(即ち、光学濃度が高く、加齢変化が大きい範囲)とが含まれる。そのため、光学濃度の高い波長範囲において、他の波長範囲を用いる場合よりも水晶体310の水晶体年齢AGE及び水晶体310の透過スペクトルを正確に算出できる。なお、600nm程度の波長であれば、水晶体の光学濃度の加齢変化が小さく、光学濃度の年齢差が零に近いため、基本的には基準波長を600nm以上の可視波長とすることが好ましい。但し、基準波長は被験者の条件等に応じて適宜設定変更してもよい。 Further, according to the estimation system 10 of the present embodiment, a plurality of different wavelengths λk include 600 nm and at least one wavelength in the wavelength band of 400 nm or more and less than 600 nm. In this case, the plurality of wavelengths λk include, for example, 600 nm as a reference wavelength and a wavelength range shorter than 600 nm (that is, a range in which the optical density is high and the aging change is large). Therefore, in the wavelength range where the optical density is high, the lens age AGE of the crystalline lens 310 and the transmission spectrum of the crystalline lens 310 can be calculated more accurately than when other wavelength ranges are used. If the wavelength is about 600 nm, the change in the optical density of the crystalline lens with aging is small, and the age difference in the optical density is close to zero. Therefore, it is basically preferable to set the reference wavelength to a visible wavelength of 600 nm or more. However, the reference wavelength may be appropriately set and changed according to the conditions of the subject and the like.

また、本実施形態の推定システム10によれば、水晶体310に向けて複数の波長λkの入射光ILkを照射する光源22をさらに備えることで、複数の波長λkに対して個別に光源等を用意する必要がなく、簡便に且つ省スペースで構成される。 Further, according to the estimation system 10 of the present embodiment, by further providing a light source 22 that irradiates the crystalline lens 310 with incident light ILk having a plurality of wavelengths λk, light sources and the like are individually prepared for the plurality of wavelengths λk. It is simple and space-saving.

また、本実施形態の推定システム10によれば、複数の波長λkの入射光ILkの入射方向において水晶体310よりも後側に、複数の波長λkのプルキンエ像Meas[124−k]を形成するための注視物体90が配置されたので、プルキンエ像Meas[124−k]の撮像時に、水晶体310の動きを略止め、プルキンエ像Meas[124−k]を安定させ、且つ複数の波長λkごとのばらつきや誤差を抑えることができる。 Further, according to the estimation system 10 of the present embodiment, in order to form a Purkinje image Meas [124-k] having a plurality of wavelengths λk behind the crystalline lens 310 in the incident direction of the incident light ILk having a plurality of wavelengths λk. Since the gaze object 90 of the above is arranged, the movement of the crystalline lens 310 is almost stopped at the time of imaging of the Pulkinye image Meas [124-k], the Pulkinje image Meas [124-k] is stabilized, and the variation among a plurality of wavelengths λk. And errors can be suppressed.

また、本実施形態の水晶体の透過スペクトル推定方法によれば、上述の推定システム10を用いて、少なくとも第2工程から第5工程までを行い、対象者の感覚に頼らず且つ簡便に、水晶体310の透過スペクトルを算出できる。 Further, according to the transmission spectrum estimation method of the crystalline lens of the present embodiment, at least the second to fifth steps are performed using the above-mentioned estimation system 10, and the crystalline lens 310 can be easily performed without depending on the sense of the subject. The transmission spectrum of can be calculated.

以上、本発明の好ましい実施形態について詳述したが、本発明は上述の実施形態に限定されない。本発明は、特許請求の範囲内に記載された本発明の要旨の範囲内において、変更可能である。 Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments. The present invention may be modified within the scope of the gist of the invention described within the claims.

例えば、上述の各実施形態において、複数の互いに異なる波長の数は少なくとも2つあればよく、8つ程度であることが好ましいが、2つ以上であれば特に限定されない。また、上述の実施形態では、複数の既知光学濃度FDmedia(λk)として、(2)式で表されるものを用いたが、任意の波長の関数として表される光学濃度であれば(2)式で表されるものに限定されず用いることができる。 For example, in each of the above-described embodiments, the number of a plurality of wavelengths different from each other may be at least two, preferably about eight, but is not particularly limited as long as it is two or more. Further, in the above-described embodiment, as a plurality of known optical densities FD media (λk), those represented by the equation (2) are used, but if the optical densities are represented as a function of an arbitrary wavelength (2). ) Can be used without being limited to those represented by the formula.

また、上述の推定システム10では、複数の波長λ1、・・・、λmの光を出射可能な光源22と、波長λ1、・・・、λmごとのプルキンエ像(像)を取得可能な撮像カメラ30があり、光源22から出射される入射光ILkの進行方向及び撮像カメラ30の撮像方向との角度θ4を確保できれば、光源22及び撮像カメラ30と眼350、360との距離は特に限定されず、眼350、360に対する光源22及び撮像カメラ30の相対配置は制限されない。例えば、ヘッドマウントディスプレイの内側、即ちヘッドマウントディスプレイの筐体内部に、光源22及び撮像カメラ30が角度θ4を確保できる相対配置で設けられてもよい。 Further, in the above estimation system 10, a light source 22 capable of emitting light having a plurality of wavelengths λ1, ..., λm and an imaging camera capable of acquiring a Pulkinje image (image) for each wavelength λ1, ..., λm can be acquired. If there is 30, and the angle θ4 between the traveling direction of the incident light ILk emitted from the light source 22 and the imaging direction of the imaging camera 30 can be secured, the distance between the light source 22 and the imaging camera 30 and the eyes 350 and 360 is not particularly limited. The relative arrangement of the light source 22 and the imaging camera 30 with respect to the eyes 350 and 360 is not limited. For example, the light source 22 and the image pickup camera 30 may be provided in a relative arrangement that can secure an angle θ4 inside the head-mounted display, that is, inside the housing of the head-mounted display.

また、上述の推定システム10及び水晶体の透過スペクトル推定方法において、プルキンエ像の取得時間は、光源22から互いに異なる波長の入射光ILkを出射させる時間に依存する。光源22におけるバンドパスフィルタの回転時間(即ち、切り替え時間)が短縮され、それに伴い撮像カメラ30のフレームレートが短縮される程、プルキンエ像の取得時間を短縮でき、より高速に水晶体の透過スペクトルを推定できる。 Further, in the estimation system 10 and the transmission spectrum estimation method of the crystalline lens described above, the acquisition time of the Purkinje image depends on the time for emitting incident light ILk having different wavelengths from the light source 22. As the rotation time (that is, switching time) of the bandpass filter in the light source 22 is shortened and the frame rate of the imaging camera 30 is shortened accordingly, the acquisition time of the Purkinje image can be shortened, and the transmission spectrum of the crystalline lens can be obtained at a higher speed. Can be estimated.

上述の実施形態の水晶体の透過スペクトル推定方法では、参照輝度FL(λk)と参照サイズ(λk)の一例として各波長λkにおける模擬眼の第4プルキンエ像の輝度と大きさとを取得した。しかしながら、本発明に係る水晶体の透過スペクトル推定方法では、参照輝度FL(λk)と参照サイズ(λk)は、実測光学濃度ADmedia(λk)を算出可能とするものであればよく、模擬眼の第4プルキンエ像の輝度と大きさに限定されない。実測光学濃度ADmedia(λk)は眼に入射した各波長λkの光の強度が例えば第4プルキンエ像として反射される前にどれだけ減衰したかを示す物理量であるから、参照輝度FL(λk)及び参照サイズ(λk)は、複数の波長λ1〜λmを含む所定の波長帯域において光学濃度が波長に寄らず略一定なもので形成される像の輝度及び大きさであればよく、例えば所定の波長帯域において所定の光学濃度を有する部材によって形成される像の輝度及び大きさであってもよい。 In the transmission spectrum estimation method of the crystalline lens of the above-described embodiment, the brightness and magnitude of the fourth Pulkinye image of the simulated eye at each wavelength λk were obtained as an example of the reference brightness FL (λk) and the reference size (λk). However, in the method for estimating the transmission spectrum of the crystalline lens according to the present invention, the reference luminance FL (λk) and the reference size (λk) need only be such that the measured optical density AD media (λk) can be calculated, and the simulated eye. It is not limited to the brightness and size of the fourth Pulkinje image. Since the measured optical density AD media (λk) is a physical quantity indicating how much the intensity of the light of each wavelength λk incident on the eye is attenuated before being reflected as, for example, the fourth Pulkinje image, the reference brightness FL (λk). The reference size (λk) may be any brightness and magnitude of an image formed in a predetermined wavelength band including a plurality of wavelengths λ1 to λm and whose optical density is substantially constant regardless of the wavelength, for example, a predetermined size. It may be the brightness and magnitude of an image formed by a member having a predetermined optical density in the wavelength band.

上述の推定システム10では、光源22から出射された光が光ファイバ24によって導かれ、光ファイバ24から眼350、360への入射光ILkとして出射される。しかしながら、第4のプルキンエ像124を撮影できれば、推定システム10において複数の波長の入射光ILkを眼350、360に入射させるための構成は、特に限定されない。例えば、光源22に波長λ1、・・・λmの各々の光を発するLEDが設けられれば、バンドパスフィルタやカラーフィルタは不要である。また、光源22にLEDを用いることで、光源22から出射される光の強度を適度に低くすることができるため、カバー部材や孔が形成されたフィルタ等が不要である場合が考えられる。このことによって、推定システム10の小型化を図ることができる。 In the estimation system 10 described above, the light emitted from the light source 22 is guided by the optical fiber 24 and emitted as incident light ILk from the optical fiber 24 to the eyes 350 and 360. However, if the fourth Purkinje image 124 can be photographed, the configuration for causing the incident light ILk having a plurality of wavelengths to be incident on the eyes 350 and 360 in the estimation system 10 is not particularly limited. For example, if the light source 22 is provided with LEDs that emit light having wavelengths λ1 and ... λm, a bandpass filter or a color filter is unnecessary. Further, by using the LED as the light source 22, the intensity of the light emitted from the light source 22 can be appropriately lowered, so that it is conceivable that a cover member, a filter having holes, or the like is unnecessary. As a result, the estimation system 10 can be miniaturized.

次いで、本発明の実施例について説明する。なお、本発明は、以下の実施例に限定されない。 Next, examples of the present invention will be described. The present invention is not limited to the following examples.

本実施例では、図1及び図4で説明した推定システム10を試作した。試作では、光源22として、市販のキセノンランプ(型番;MAX−301、朝日分光株式会社製)及び複数のカラーフィルタを用いた。本実施例では、第4のプルキンエ像124を取得するために、430nm、460nm、470nm、480nm、500nm、520nm、540nm、600nmの合計8つの波長に着目した。前述の8つの波長に対応するように、8つの市販のカラーフィルタ(型番;MX0430、MX0600等、朝日分光株式会社製)を用いた。 In this embodiment, the estimation system 10 described with reference to FIGS. 1 and 4 was prototyped. In the trial production, a commercially available xenon lamp (model number: MAX-301, manufactured by Asahi Spectral Co., Ltd.) and a plurality of color filters were used as the light source 22. In this example, in order to obtain the fourth Purkinje image 124, a total of eight wavelengths of 430 nm, 460 nm, 470 nm, 480 nm, 500 nm, 520 nm, 540 nm, and 600 nm were focused on. Eight commercially available color filters (model number: MX0430, MX0600, etc., manufactured by Asahi Spectroscopy Co., Ltd.) were used so as to correspond to the above-mentioned eight wavelengths.

光ファイバ24として、市販のライトガイド(型番;UD0164、朝日分光株式会社製)を用いた。図6に示すように、ライトガイドの出射端には、入射光ILkの進路上に直径3mmの正面視円形の孔が形成されたカバー部材を設けた。カバー部材を、黒に着色したスチレンボードで形成した。キセノンランプからは高強度の白色光が発せられるが、ライトガイドの出射端にカバー部材を設けることで、光源22からの光ILkの強度を適度に抑えて眼360に照射できる。本実施例では、前述のようにk=8である。 As the optical fiber 24, a commercially available light guide (model number: UD0164, manufactured by Asahi Spectroscopy Co., Ltd.) was used. As shown in FIG. 6, at the exit end of the light guide, a cover member having a circular hole with a diameter of 3 mm formed in the front view was provided on the path of the incident light ILk. The cover member was formed of a black colored styrene board. High-intensity white light is emitted from the xenon lamp, but by providing a cover member at the exit end of the light guide, the intensity of the light ILk from the light source 22 can be appropriately suppressed to irradiate the eye 360. In this embodiment, k = 8 as described above.

撮像カメラ30として、市販のCMOSカメラ(型番;BFS−U3−32S4M−C、FLIR Systems,Inc.製)を用いた。CMOSカメラの受光部に、焦点距離50mm、開口数0.018の市販の固定焦点レンズ(型番;TECHSPEC C series 50mm VIS−NIR、エドモンド・オプティクス・ジャパン株式会社製)を設けた。図4に示す注視物体90には、電球色の発光ダイオード(LED)(順方向電圧VF=3.2V、順方向電流IF=20mA、光度IV=18000mcd)を用いた。 As the imaging camera 30, a commercially available CMOS camera (model number: BFS-U3-32S4MC, FLIR Systems, Inc.) was used. A commercially available fixed focus lens (model number: TECHSPEC Series 50 mm VIS-NIR, manufactured by Edmund Optics Japan Co., Ltd.) having a focal length of 50 mm and a numerical aperture of 0.018 was provided in the light receiving portion of the CMOS camera. As the gaze object 90 shown in FIG. 4, a light bulb-colored light emitting diode (LED) (forward voltage VF = 3.2 V, forward current IF = 20 mA, luminous intensity IV = 18000 mcd) was used.

前述した水晶体の透過スペクトル推定方法に基づき、試作した推定システム10を用いて、20歳から34歳までの若年齢層(Young)の被験者10名と、35歳から49歳までの中年齢層(Middle)の被験者9名と、50歳から70歳までの高年齢層(Older)の7名との合計26名の被験者の水晶体の透過スペクトルを推定した。図7は、ある被験者の眼によって形成された第1のプルキンエ像、第3のプルキンエ像及び第4のプルキンエ像の一例である。試作した推定システム10では、カバー部材に形成された孔の直径が小さくなるに従って第1のプルキンエ像、第3のプルキンエ像及び第4のプルキンエ像が互いに離れて識別し易くなる一方、第4プルキンエ像が非常に小さくなる。カバー部材に形成された孔の直径は3mmに限定されないが、一例として3mmとした場合、図7に示すように第1のプルキンエ像、第3のプルキンエ像及び第4のプルキンエ像をそれぞれ識別できるように互いに分離させ、且つ第4のプルキンエ像を感知できることがわかる。 Using the prototype estimation system 10 based on the above-mentioned method for estimating the transmission spectrum of the crystalline lens, 10 subjects in the young age group (Young) from 20 to 34 years old and middle age groups from 35 to 49 years old ( The transmission spectra of the crystalline lenses of a total of 26 subjects, including 9 subjects of (Middle) and 7 subjects of the older age group (Older) from 50 to 70 years old, were estimated. FIG. 7 is an example of a first Purkinje image, a third Purkinje image, and a fourth Purkinje image formed by the eyes of a subject. In the prototype estimation system 10, as the diameter of the hole formed in the cover member becomes smaller, the first Purkinje image, the third Purkinje image, and the fourth Purkinje image are separated from each other and easily distinguished from each other, while the fourth Purkinje image is easily identified. The image becomes very small. The diameter of the hole formed in the cover member is not limited to 3 mm, but when it is set to 3 mm as an example, the first Purkinje image, the third Purkinje image, and the fourth Purkinje image can be distinguished as shown in FIG. It can be seen that the fourth Purkinje image can be sensed while being separated from each other.

26名の各被験者の眼360によって形成された第4のプルキンエ像Meas[124−k]を撮影し、第4のプルキンエ像Meas[124−k]に関する情報に基づいて実測輝度AL(λk)及び実測サイズAW(λk)を測定した。また、光学濃度が可視波長帯域の波長に寄らず一定の市販の模擬眼を用いて参照輝度FL(λk)及び参照サイズFW(λk)を測定した。 The fourth Purkinje image Meas [124-k] formed by the eyes 360 of each of the 26 subjects was photographed, and the measured brightness AL (λk) and the measured brightness AL (λk) based on the information regarding the fourth Purkinje image Meas [124-k]. The measured size AW (λk) was measured. Further, the reference luminance FL (λk) and the reference size FW (λk) were measured using a commercially available simulated eye whose optical density was constant regardless of the wavelength in the visible wavelength band.

次に、前述の(1)式に基づいて、各被験者について実測光学濃度ADmedia(λk)を算出した。即ち、本実施例では、各被験者についてADmedia(430nm)、ADmedia(460nm)、ADmedia(470nm)、ADmedia(480nm)、ADmedia(500nm)、ADmedia(520nm)、ADmedia(540nm)、ADmedia(600nm)の8つの実測光学濃度を算出した。図8に、各年齢層(Young、Middle、Older)の被験者について前述の8つの波長の各々のADmedia(λk)を算出した結果を標準偏差のエラーバー形式で示す。なお、図8では、実測光学濃度ADmedia(λk)の標準偏差のエラーバーが年齢層同士で重ならないように、若年齢層については負方向に、中年齢層及び高年齢層については正方向に表示した。 Next, the measured optical density AD media (λk) was calculated for each subject based on the above-mentioned equation (1). That is, in this example, for each subject, AD media (430 nm), AD media (460 nm), AD media (470 nm), AD media (480 nm), AD media (500 nm), AD media (520 nm), AD media (540 nm). ), AD media (600 nm), eight measured optical densities were calculated. FIG. 8 shows the results of calculating the AD media (λk) of each of the above eight wavelengths for the subjects of each age group (Young, Middle, Older) in the error bar format of the standard deviation. In FIG. 8, the young age group is in the negative direction, and the middle age group and the older group are in the positive direction so that the error bars of the standard deviation of the measured optical density AD media (λk) do not overlap with each other. Displayed in.

続いて、光学濃度推定部60において、前述の(2)式の波長λに波長λk(k=1〜8、即ち430nm、460nm、470nm、480nm、500nm、520nm、540nm、600nmの8つの波長)の各々を代入することで、波長λkの各々の既知光学濃度FDmedia(λk)を得た。各被験者の前述の8つの波長の各々での実測光学濃度ADmedia(λk)との差が最も小さくなる既知光学濃度FDmedia(λk)の年齢ageを算出し、水晶体年齢AGEとした。 Subsequently, in the optical density estimation unit 60, the wavelength λ of the above equation (2) is combined with the wavelength λk (k = 1 to 8, that is, eight wavelengths of 430 nm, 460 nm, 470 nm, 480 nm, 500 nm, 520 nm, 540 nm, and 600 nm). By substituting each of the above, a known optical density FD media (λk) having a wavelength of λk was obtained. The age age of the known optical density FD media (λk), which minimizes the difference from the measured optical density AD media (λk) at each of the above eight wavelengths of each subject, was calculated and used as the crystalline lens age AGE.

続いて、光学濃度推定部60において、各被験者について求めた水晶体年齢AGEを前述の(2)式に代入し、推定光学濃度EDmedia(λ)(λ=430nm〜600nm)を推定した。推定光学濃度EDmedia(λ)は(2)によって求まるので、波長λに依存する連続関数として被験者ごとの推定光学濃度EDmedia(λ)を得た。図9には、年齢層ごとの水晶体の透過スペクトルの変化の傾向を見るために各年齢層の推定光学濃度EDmedia(λ)の平均値を算出した結果を示す。 Subsequently, the optical density estimation unit 60 substituted the crystalline lens age AGE obtained for each subject into the above equation (2) to estimate the estimated optical density ED media (λ) (λ = 430 nm to 600 nm). Since the estimated optical density ED media (λ) is obtained by (2), the estimated optical density ED media (λ) for each subject was obtained as a continuous function depending on the wavelength λ. FIG. 9 shows the result of calculating the average value of the estimated optical density ED media (λ) of each age group in order to see the tendency of the change of the transmission spectrum of the crystalline lens for each age group.

続いて、算出した各年齢層の平均的な推定光学濃度EDmedia(λ)を前述の(3)式に代入し、各年齢層の複数の被験者の水晶体の透過率T(λ)(以下、平均透過率TAVE(λ)とする。)を算出した。図10に、各年齢層の380nm以上700nm以下の可視波長帯域の平均透過率TAVE(λ)、即ち各年齢層の複数の被験者の可視波長帯域における水晶体の平均的な透過スペクトルを算出した結果を示す。 Subsequently, the calculated average estimated optical density ED media (λ) of each age group is substituted into the above equation (3), and the transmittance T (λ) of the crystal bodies of a plurality of subjects in each age group (hereinafter, The average transmittance TAVE (λ)) was calculated. FIG. 10 shows the results of calculating the average transmittance TAVE (λ) in the visible wavelength band of 380 nm or more and 700 nm or less in each age group, that is, the average transmittance spectrum of the crystalline body in the visible wavelength band of a plurality of subjects in each age group. Is shown.

以上説明したように、本実施例では、前述した水晶体の透過スペクトル推定方法に基づき、3つの年齢層の合計26名の各被験者の水晶体の第4プルキンエ像を取得することによって、3つの年齢層の水晶体の平均的な透過スペクトルを算出した。図10に示す3つの透過スペクトルから、年齢層による水晶体の透過スペクトルの変化の傾向を読み取ることができる。 As described above, in this embodiment, based on the above-mentioned method for estimating the transmission spectrum of the crystalline lens, the fourth Pulkinje image of the crystalline lens of each subject of a total of 26 subjects in the three age groups is acquired to obtain the fourth Pulkinje image of the three age groups. The average transmission spectrum of the crystalline lens of was calculated. From the three transmission spectra shown in FIG. 10, the tendency of changes in the transmission spectrum of the crystalline lens depending on the age group can be read.

例えば、図10に示すように、400nmから700nmの波長帯域全体において、若年齢層(Young)に比べて中年齢層(Middle)の方が水晶体の平均透過率TAVE(λ)が低く、さらに中年齢層(Middle)に比べて高年齢層(Older)の方が水晶体の平均透過率TAVE(λ)が低かった。このことから、既に知られているように、水晶体の光学濃度は加齢に伴って増加することが示された。しかしながら、本実施例では、図10に示すように、若年齢層と中年齢層との平均透過率TAVE(λ)の差、及び中年齢層と高年齢層との平均透過率TAVE(λ)の差をそれぞれ380nm以上700nm以下の可視波長帯域にわたって定量的に透過スペクトルとして得ることができた。このことによって、若年齢層と中年齢層との水晶体の平均透過率TAVE(λ)の差が380nm以上700nm以下の可視波長帯域において一定ではないことがわかり、同様に若年齢層と中年齢層との水晶体の平均透過率TAVE(λ)の差が380nm以上700nm以下の可視波長帯域において一定ではないことがわかった。また、同じ波長λにおいて、若年齢層と中年齢層との水晶体の平均透過率TAVE(λ)の差に比べて中年齢層と高年齢層との水晶体の平均透過率TAVE(λ)の差が大きいこと、及び若年齢層と中年齢層との水晶体の平均透過率TAVE(λ)の差と中年齢層と高年齢層との水晶体の平均透過率TAVE(λ)の差との違いが380nm以上700nm以下の可視波長帯域において一定ではないことがわかった。特に、450nm以上500nm以下の可視波長帯域では、他の可視波長帯域に比べて、中年齢層と高年齢層との水晶体の平均透過率TAVE(λ)の差が大きくなった。このことから、赤色や緑色の可視光に比べて青色の可視光に対して高年齢層の水晶体の光学濃度が高まるという傾向が得られた。 For example, as shown in FIG. 10, in the entire wavelength band from 400 nm to 700 nm, the average transmittance TAVE (λ) of the crystalline body is lower in the middle age group (Middle) than in the young age group (Young), and further. The average transmittance TAVE (λ) of the crystalline body was lower in the older group (Older) than in the middle age group (Middle). From this, it was shown that the optical density of the crystalline lens increases with aging, as is already known. However, in the present embodiment, as shown in FIG. 10, young average difference in transmittance T AVE (lambda) between the ages and the middle ages, and the average transmittance T AVE of the middle age and older layer ( The difference of λ) could be quantitatively obtained as a transmission spectrum over the visible wavelength band of 380 nm or more and 700 nm or less. From this, it was found that the difference in the average transmittance TAVE (λ) of the crystalline body between the young age group and the middle age group is not constant in the visible wavelength band of 380 nm or more and 700 nm or less, and similarly, the young age group and the middle age group. It was found that the difference in the average transmittance TAVE (λ) of the crystal body from the layer is not constant in the visible wavelength band of 380 nm or more and 700 nm or less. Further, in the same wavelength lambda, young age and the middle age and the average transmittance T AVE of the lens of the middle age and advanced age in comparison with the difference between the average transmittance of the lens T AVE (λ) (λ) the difference in the difference is large, and young age and middle age and average transmittance T AVE of the lens of the difference and the middle ages and advanced age of the average transmittance T AVE of the lens (lambda) of (lambda) It was found that the difference from the above is not constant in the visible wavelength band of 380 nm or more and 700 nm or less. In particular, in the visible wavelength band of 450 nm or more and 500 nm or less, the difference in the average transmittance TAVE (λ) of the crystalline lens between the middle-aged group and the elderly group was larger than that of other visible wavelength bands. From this, it was found that the optical density of the crystalline lens of the elderly group tends to be higher with respect to blue visible light than with red or green visible light.

上述のように、本実施例の結果から、上述の水晶体の透過スペクトル推定方法によれば、複数の所定の波長の第4プルキンエ像を撮影してから、単に所定の波長の水晶体の光学濃度を得るに留まらず、所定の波長を含む可視波長帯域における水晶体の透過スペクトルを算出できることを確認した。可視波長帯域の透過スペクトルを得ることによって、各年代層の水晶体の透過スペクトルの変化に反映される被験者の視覚的な機能及び非視覚的な機能を把握し、被験者に適した診断や生活環境及び使用する補助器具等の提案を行うことができる。 As described above, from the results of this example, according to the transmission spectrum estimation method of the crystal body described above, after photographing a plurality of fourth Pulkinje images having a predetermined wavelength, the optical density of the crystal body having a predetermined wavelength is simply determined. It was confirmed that the transmission spectrum of the crystalline body in the visible wavelength band including a predetermined wavelength can be calculated as well as the acquisition. By obtaining the transmission spectrum in the visible wavelength band, the visual and non-visual functions of the subject reflected in the change in the transmission spectrum of the crystalline lens of each age group can be grasped, and the diagnosis, living environment and use suitable for the subject can be understood. Can make proposals for assistive devices, etc.

なお、本実施例では、年齢層ごとの水晶体の透過スペクトルの変化の動向を検討するために、各年齢層において複数の被験者の8つの波長の各々での推定光学濃度EDmedia(λ)の平均値を算出した。但し、例えば同じ年齢層の中でも被験者個人ごとの水晶体の透過スペクトルの変化を知りたい場合は、各被験者につき8つの波長の各々で推定した推定光学濃度EDmedia(λ)に基づいて(3)式から被験者ごとの透過率T(λ)を算出してもよい。そのことによって、各被験者の水晶体の透過スペクトルを算出でき、各被験者における水晶体の透過スペクトルの年代による変化や変化の要因と生活習慣等との関連性を調べることができる。 In this example, in order to examine the trend of changes in the transmission spectrum of the crystalline lens for each age group, the average of the estimated optical densities ED media (λ) at each of the eight wavelengths of a plurality of subjects in each age group. The value was calculated. However, for example, if you want to know the change in the transmission spectrum of the crystalline lens for each subject even within the same age group, formula (3) is based on the estimated optical density ED media (λ) estimated for each of the eight wavelengths for each subject. The transmittance T (λ) for each subject may be calculated from. By doing so, the transmission spectrum of the crystalline lens of each subject can be calculated, and the relationship between the change in the transmission spectrum of the crystalline lens of each subject with age and the factors of the change and lifestyle and the like can be investigated.

10 推定システム(水晶体の透過スペクトル推定システム)
20 像データ実測部
50 光学濃度算出部
60 光学濃度推定部
70 スペクトル算出部
10 Estimation system (lens transmission spectrum estimation system)
20 Image data measurement unit 50 Optical density calculation unit 60 Optical density estimation unit 70 Spectrum calculation unit

Claims (7)

水晶体によって形成される複数の互いに異なる波長の像の輝度を前記複数の互いに異なる波長ごとに実測輝度として測定し、前記像の大きさを前記複数の互いに異なる波長ごとに実測サイズとして測定する像データ実測部と、
前記複数の互いに異なる波長の各々の前記実測輝度と前記複数の互いに異なる波長の各々について予め得られた参照輝度との比と、前記複数の互いに異なる波長の各々の前記実測サイズと前記複数の互いに異なる波長の各々について予め得られた参照サイズとの比とに基づいて、前記水晶体の前記複数の互いに異なる波長の各々における実測光学濃度を算出する光学濃度算出部と、
前記複数の互いに異なる波長の各々における実測光学濃度に対して所定の条件を満たし且つ前記複数の互いに異なる波長を含む所定の波長範囲について予め得られた既知光学濃度を推定光学濃度として推定する光学濃度推定部と、
前記所定の波長範囲の前記推定光学濃度に基づいて前記水晶体の前記所定の波長範囲の透過率を前記水晶体の透過スペクトルとして算出するスペクトル算出部と、
を備えた、水晶体の透過スペクトル推定システム。
Image data in which the brightness of a plurality of images having different wavelengths formed by the crystalline lens is measured as the measured brightness for each of the plurality of different wavelengths, and the size of the image is measured as the measured size for each of the plurality of different wavelengths. Actual measurement part and
The ratio of the measured brightness of each of the plurality of different wavelengths to the reference brightness obtained in advance for each of the plurality of different wavelengths, the measured size of each of the plurality of different wavelengths, and the plurality of each other. An optical density calculation unit that calculates the measured optical density at each of the plurality of different wavelengths of the crystalline lens based on the ratio to the reference size obtained in advance for each of the different wavelengths.
An optical density that satisfies a predetermined condition for the measured optical density at each of the plurality of different wavelengths and is estimated as an estimated optical density by using a known optical density obtained in advance for a predetermined wavelength range including the plurality of different wavelengths. Estimator and
A spectrum calculation unit that calculates the transmittance of the crystalline lens in the predetermined wavelength range as the transmission spectrum of the crystalline lens based on the estimated optical density in the predetermined wavelength range.
A transmission spectrum estimation system for the crystalline lens.
前記所定の波長範囲について予め得られた既知光学濃度は、前記所定の波長範囲内の波長ごとの前記水晶体の水晶体年齢と前記水晶体年齢に応じた所定の係数とに基づいて算出される、
請求項1に記載の水晶体の透過スペクトル推定システム。
The known optical density obtained in advance for the predetermined wavelength range is calculated based on the crystalline lens age of the crystalline lens for each wavelength within the predetermined wavelength range and a predetermined coefficient according to the crystalline lens age.
The transmission spectrum estimation system for a crystalline lens according to claim 1.
前記像は、前記水晶体の表面のうち硝子体と隣り合う表面での反射によって形成される像である、
請求項1又は請求項2に記載の水晶体の透過スペクトル推定システム。
The image is an image formed by reflection on the surface of the crystalline lens adjacent to the vitreous body.
The transmission spectrum estimation system for a crystalline lens according to claim 1 or 2.
前記複数の互いに異なる波長は、600nmと、400nm以上600nm未満の波長帯域内の少なくとも1波長と、を含む、
請求項1から請求項3の何れか一項に記載の水晶体の透過スペクトル推定システム。
The plurality of different wavelengths include 600 nm and at least one wavelength within the wavelength band of 400 nm or more and less than 600 nm.
The transmission spectrum estimation system for a crystalline lens according to any one of claims 1 to 3.
前記水晶体に前記複数の互いに異なる波長の光を照射する光源をさらに備えた、
請求項1から請求項4の何れか一項に記載の水晶体の透過スペクトル推定システム。
The crystalline lens is further provided with a light source for irradiating the plurality of light having different wavelengths.
The transmission spectrum estimation system for a crystalline lens according to any one of claims 1 to 4.
前記水晶体への前記複数の互いに異なる波長の光の入射方向において前記水晶体よりも後側に注視物体が配置された、
請求項1から請求項5の何れか一項に記載の水晶体の透過スペクトル推定システム。
A gaze object is arranged behind the crystalline lens in the direction of incidence of the plurality of light having different wavelengths on the crystalline lens.
The transmission spectrum estimation system for a crystalline lens according to any one of claims 1 to 5.
水晶体によって形成される複数の互いに異なる波長の像の輝度を前記複数の互いに異なる波長ごとに実測輝度として測定し、前記像の大きさを前記複数の互いに異なる波長ごとに実測サイズとして測定し、
前記複数の互いに異なる波長の各々の前記実測輝度と前記複数の互いに異なる波長の各々について予め得られた参照輝度との比と、前記複数の互いに異なる波長の各々の前記実測サイズと前記複数の互いに異なる波長の各々について予め得られた参照サイズとの比とに基づいて、前記水晶体の前記複数の互いに異なる波長の各々における実測光学濃度を算出し、
前記複数の互いに異なる波長の各々における実測光学濃度と、前記複数の互いに異なる波長を含む所定の波長範囲について予め得られた既知光学濃度のうち前記複数の互いに異なる波長を含む所定の予め得られた既知光学濃度との差が最も小さくなる前記既知光学濃度を推定光学濃度として推定し、
前記所定の波長範囲の前記推定光学濃度に基づいて前記水晶体の前記所定の波長範囲の透過率を前記水晶体の透過スペクトルとして算出する、
ことを含む、水晶体の透過スペクトル推定方法。
The brightness of a plurality of images having different wavelengths formed by the crystalline lens is measured as the measured brightness for each of the plurality of different wavelengths, and the size of the image is measured as the measured size for each of the plurality of different wavelengths.
The ratio of the measured luminance of each of the plurality of different wavelengths to the reference luminance obtained in advance for each of the plurality of different wavelengths, the measured size of each of the plurality of different wavelengths, and the plurality of each other. Based on the ratio to the reference size obtained in advance for each of the different wavelengths, the measured optical density at each of the plurality of different wavelengths of the crystal body was calculated.
Of the measured optical densities at each of the plurality of different wavelengths and the known optical densities obtained in advance for a predetermined wavelength range including the plurality of different wavelengths, the predetermined optical densities including the plurality of different wavelengths are obtained in advance. The known optical density having the smallest difference from the known optical density is estimated as the estimated optical density, and the difference is estimated.
Based on the estimated optical density in the predetermined wavelength range, the transmittance of the crystalline lens in the predetermined wavelength range is calculated as the transmission spectrum of the crystalline lens.
A method for estimating the transmission spectrum of the crystalline lens, including the above.
JP2020006376A 2020-01-17 2020-01-17 Crystalline lens transmission spectrum estimation system and crystalline lens transmission spectrum estimation method Active JP7440860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020006376A JP7440860B2 (en) 2020-01-17 2020-01-17 Crystalline lens transmission spectrum estimation system and crystalline lens transmission spectrum estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020006376A JP7440860B2 (en) 2020-01-17 2020-01-17 Crystalline lens transmission spectrum estimation system and crystalline lens transmission spectrum estimation method

Publications (2)

Publication Number Publication Date
JP2021112369A true JP2021112369A (en) 2021-08-05
JP7440860B2 JP7440860B2 (en) 2024-02-29

Family

ID=77077380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020006376A Active JP7440860B2 (en) 2020-01-17 2020-01-17 Crystalline lens transmission spectrum estimation system and crystalline lens transmission spectrum estimation method

Country Status (1)

Country Link
JP (1) JP7440860B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070109619A1 (en) * 2000-10-07 2007-05-17 Physoptics Opto-Electronic Gmbh Information system and method for providing information using a holographic element
JP2015085176A (en) * 2013-05-01 2015-05-07 株式会社ニデック Ophthalmologic apparatus, analysis program, intermediate translucent body opacity acquisition method, and fluorescence intensity acquisition method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070109619A1 (en) * 2000-10-07 2007-05-17 Physoptics Opto-Electronic Gmbh Information system and method for providing information using a holographic element
JP2015085176A (en) * 2013-05-01 2015-05-07 株式会社ニデック Ophthalmologic apparatus, analysis program, intermediate translucent body opacity acquisition method, and fluorescence intensity acquisition method

Also Published As

Publication number Publication date
JP7440860B2 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
CN101049230B (en) Ocular fundus observing device
EP3562379B1 (en) System and method for camera calibration
US9095255B2 (en) Method and device for locating function-supporting tissue areas in a tissue region
AU2022229909A1 (en) Dental imaging system and image analysis
CN110658625A (en) Holographic eye imaging device
EP3028644B1 (en) Diagnosis assistance device and diagnosis assistance method
JP5424064B2 (en) measuring device
JP5217046B2 (en) Optical characteristic measuring apparatus and optical characteristic measuring method
JP5638234B2 (en) Transparency measuring device and transparency measuring method
JP7440860B2 (en) Crystalline lens transmission spectrum estimation system and crystalline lens transmission spectrum estimation method
US20240085326A1 (en) Method, computer program and data processing unit for preparing observation of fluorescence intensity, method for observing fluorescence intensity, and optical observation system
US20230162354A1 (en) Artificial intelligence-based hyperspectrally resolved detection of anomalous cells
WO2007053942A1 (en) In vivo spatial measurement of the density and proportions of human visual pigments
WO2014129522A1 (en) Fundus imaging device and retinal tissue characteristic value measurement method
JP6691824B2 (en) Evaluation method of skin transparency
FR3036946A3 (en) DEVICE FOR DENTAL USE TO DISCRIMINATE THE COLOR OF TEETH
RU176795U1 (en) Optical device for the study of the fundus to detect age-related macular degeneration of the retina
JP6400159B2 (en) Medical imaging apparatus and imaging method for photosensitive object, for example, biological tissue
JP2023009720A (en) Blood oxygen saturation degree measuring device
JP7532702B1 (en) Film thickness measuring device and film thickness measuring method
RU2312314C2 (en) Mode of measuring color of objects(variants) and an arrangement for its execution(variants)
CN103635129B (en) Method and arrangement for comparative imaging in ophthalmological devices
US11864834B1 (en) Multi-tiled plenoptic system for the detection and correction of ocular defects and for improved foveated rendering
JP7679156B1 (en) Dual Frequency Band Otoscope
EP4506790A1 (en) Multi-tiled plenoptic system for the detection and correction of ocular defects and for improved foveated rendering

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20200217

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20200428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240207

R150 Certificate of patent or registration of utility model

Ref document number: 7440860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150